New generation HIPIMS and combined HIPIMS/UBM PVD

New generation HIPIMS and combined HIPIMS/UBM PVD New generation HIPIMS and combined HIPIMS/UBM PVD

09.03.2013 Views

[ New Generation Nanoscale Multilayr Coatings to Serve High Temperature, Corrosion and Tribological Applications Deposited by HIPIMS P. Eh. Hovsepian 1 , A. P. Ehiasarian 1 , W. Smarsly 2 , A. Werner 2 , R. Tietema 3 , F. Papa 3 , R. Jacobs 3 , R. Braun 4 1 Nanotechnology Centre for PVD Research, Sheffield Hallam University, UK 2 MTU Munich, Germany 3 Hauzer Techno Coating, Venlo, The Netherlands 4 DLR, German Aerospace Centre ]

[<br />

<strong>New</strong> Generation Nanoscale Multilayr Coatings to Serve High<br />

Temperature, Corrosion <strong>and</strong> Tribological Applications Deposited by<br />

<strong>HIPIMS</strong><br />

P. Eh. Hovsepian 1 , A. P. Ehiasarian 1 , W. Smarsly 2 , A. Werner 2 , R. Tietema 3 , F. Papa 3 , R.<br />

Jacobs 3 , R. Braun 4<br />

1 Nanotechnology Centre for <strong>PVD</strong> Research, Sheffield Hallam University, UK<br />

2 MTU Munich, Germany<br />

3 Hauzer Techno Coating, Venlo, The Netherl<strong>and</strong>s<br />

4 DLR, German Aerospace Centre<br />

]


[<br />

Monolithic Columnar<br />

Structure, BF TEM image<br />

TiAlN, University of<br />

Linköping<br />

Nanoscale Multilayer<br />

Structure, BF TEM image<br />

3.2 nm<br />

CrN/NbN, Sheffield Hallam<br />

University<br />

The concept of<br />

"superhardening" introduced<br />

by James Koehler , University ]<br />

of Illinois in 1970.<br />

Q=GA-GB / GA+GB<br />

Q- critical stress to move a<br />

dislocation across the interface<br />

GA, GB, shear modulus of<br />

material A <strong>and</strong> B


[<br />

Influence of the "superlattice" period on the hardness of<br />

the TiAlN/CrN coating.<br />

I.Wadsworth et al, Surf. <strong>and</strong> Coat.<br />

Technol. 94-95, (1997).<br />

]


[<br />

Wear mechanism of single <strong>and</strong> multilayer coatings<br />

]


[<br />

Industrial Scale Hauzer HTC 1000/4 <strong>PVD</strong> Coater at SHU<br />

a) XSEM of CrN/NbN Coated<br />

knife blade<br />

b) BF XTEM showing the<br />

nanoscale multilayer structure<br />

on the tip of the blade, P.Eh.<br />

Hovsepian et al, Surf. <strong>and</strong> Coat. Technol. 133,<br />

(2000).<br />

]


[<br />

∆<br />

CrAlYN/CrN<br />

CrAlN<br />

interface<br />

SUBSTRATE<br />

D = 4.0 nm<br />

High temperature<br />

oxidation resistant<br />

Dry machining, automotive<br />

<strong>and</strong> aero engines.<br />

SHU Nanoscale Multilayer Coating Family<br />

TiAlCN/VCN<br />

TiAlN<br />

interface<br />

SUBSTRATE<br />

D = 3.2 nm<br />

High hardness<br />

low friction<br />

Al <strong>and</strong> Ti cutting<br />

CrN / NbN<br />

CrN<br />

interface<br />

SUBSTRATE<br />

D = 3.4 nm<br />

Corrosion <strong>and</strong><br />

Wear resistant<br />

C / Cr<br />

CrN<br />

interface<br />

SUBSTRATE<br />

D = 2 nm<br />

Low friction -<br />

tribological<br />

]


[<br />

lifetime<br />

mechanical properties<br />

<strong>HIPIMS</strong>-ABS Days, Sheffield Hallam University, 12-13 July, 2005<br />

A project strongly driven by industrial needs<br />

hot corrosion resistance<br />

titanium aluminides (γ-TiAl)<br />

cost savings<br />

wear resistance<br />

oxidation resistance<br />

]<br />

3


[<br />

Nanoscale Multilayer CrAlYN/CrN Deposited by <strong>HIPIMS</strong>/<strong>UBM</strong>, (Pat.<br />

pending, H10245PGB, 13.07.07)<br />

CrAlN<br />

interface<br />

SUBSTRATE<br />

Ti- free formula,<br />

Y- stabilised interface by Y + <strong>and</strong> Cr +<br />

ion etching using <strong>HIPIMS</strong><br />

CrAlYN/CrN nanoscale multilayer,<br />

(∆ = 4.7 nm) deposited by <strong>HIPIMS</strong><br />

or <strong>UBM</strong> or <strong>combined</strong> <strong>HIPIMS</strong>/<strong>UBM</strong><br />

technique.<br />

]


Target Voltage, V<br />

[ Novel High Power Impulse Magnetron Sputtering (<strong>HIPIMS</strong>)<br />

Technology<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0 20 40 60 80 100<br />

Time, µ s<br />

]<br />

A powerful source<br />

for highly ionised<br />

metal plasmas<br />

used for surface<br />

pre treatment <strong>and</strong><br />

deposition of high<br />

quality coatings.<br />

Patented for surface pre treatment by SHU in USA <strong>and</strong> Europe: A.P. Ehiasarian, P. Eh. Hovsepian, W.-D. Münz,<br />

US Pat. US 10718435, (2005) , EP 02 011 204.1 (2001).<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

Target Current Density, A.cm -2


Roadmap to industrialisation<br />

[<br />

100000<br />

10000<br />

Cr (1+) + Cr (0)<br />

Cr (0)<br />

Cr (0)<br />

Cr (1+)<br />

1000<br />

Cr (2+)<br />

100<br />

10<br />

Ar (1+)<br />

1<br />

200 250 300 350 400 450 500<br />

Optical Emission Intensity, a.u.<br />

100<br />

10<br />

}<br />

}<br />

1<br />

200 250 300 350 400 450 500<br />

Wavelength, nm<br />

}<br />

<strong>HIPIMS</strong><br />

Continuous<br />

Magnetron<br />

Jan. 2001. First OES<br />

of <strong>HIPIMS</strong> on lab size<br />

magnetron<br />

Dec. 2003. First<br />

industrially viable<br />

<strong>HIPIMS</strong> power<br />

supply by AC now<br />

HUETTINGER<br />

Optical emission intensity, a.u.<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

Cr2+<br />

Cr1+ Cr2+<br />

{<br />

Cr2+<br />

{<br />

0<br />

200 210 220 230 240 250<br />

Wavelength, nm<br />

Jan. 2004. First<br />

<strong>HIPIMS</strong> on industrial<br />

size (500X88 mm)<br />

CemeCon cathode<br />

February 2004.<br />

<strong>HIPIMS</strong> on large<br />

(600X200 mm)<br />

HAUZER cathode<br />

]<br />

Dec. 2006. First<br />

<strong>HIPIMS</strong> dedicated<br />

Bias power<br />

supply, SHU,<br />

HAUZER,<br />

HUETTINGER,<br />

pat. pending


[<br />

Mass spectroscopy results of the <strong>HIPIMS</strong> Plasma of Cr used for Pretreatment<br />

During pre-treatment, the peak substrate ion current density<br />

was Js = 155 mAcm-2.<br />

]


[<br />

Mass spectroscopy results of the <strong>HIPIMS</strong> <strong>and</strong> DC Plasmas during<br />

deposition of CrAlN<br />

<strong>HIPIMS</strong><br />

DC <strong>UBM</strong><br />

]


[<br />

Coating-Substrate Interface Microstructure<br />

STEM Bright Field STEM Z-Contrast<br />

CrAlYN/CrN<br />

CrAlN<br />

]<br />

γ-TiAl<br />

High density Y <strong>and</strong><br />

Cr implanted zone<br />

5nm


[<br />

Local Epitaxial Growth in <strong>HIPIMS</strong> – Lattice Imaging<br />

CrAlN<br />

Coating<br />

Interface<br />

γ-TiAl<br />

Substrate<br />

Atomic Resolution TEM<br />

image of the interface<br />

SAD Patterns<br />

]<br />

CrAlN<br />

Coating<br />

γ-TiAl<br />

Substrate


Ultra-high resolution characterisation of the interface between CrAlYN/CrN<br />

coating <strong>and</strong> the γ-TiAl substrate grown using <strong>HIPIMS</strong> technology<br />

[<br />

Atomic resolution chemical composition<br />

across the interface<br />

High resolution atomic image showing the<br />

intimate atomic bonding at the interface<br />

]


[<br />

Local epitaxial growth on large areas due to <strong>HIPIMS</strong> pre treatment of<br />

the substrate<br />

Homogeneous contrast along interface<br />

signifies local epitaxial growth on<br />

substrate (steel) grain<br />

Critical Load L c [N]<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

56<br />

CrAlYN/CrN<br />

arc etch<br />

65<br />

]<br />

Growth<br />

defects<br />

originating<br />

from<br />

droplets<br />

during arc<br />

etching, ABS<br />

technology<br />

CrAlYN/CrN<br />

<strong>HIPIMS</strong> etch


[<br />

XTEM images of the structure of CrAlYN/CrN deposited by various<br />

techniques: a) <strong>HIPIMS</strong>/<strong>HIPIMS</strong> <strong>and</strong> b) <strong>HIPIMS</strong> <strong>UBM</strong>.<br />

CrAlYN/CrN<br />

nanoscale multilayer<br />

CrAlN base layer<br />

substrate<br />

a) <strong>HIPIMS</strong>/<strong>HIPIMS</strong>,<br />

Z-contrast image<br />

b) <strong>HIPIMS</strong>/<strong>HIPIMS</strong>,<br />

BF image<br />

c) <strong>HIPIMS</strong>/<strong>UBM</strong>,<br />

BF image<br />

]


[<br />

Alternated <strong>HIPIMS</strong>/DCMS/<strong>HIPIMS</strong>/DCMS deposition of CrN<br />

]


[<br />

High purity intercolumnar boundaries in TiN films deposited by <strong>HIPIMS</strong>. a)<br />

cross sectional view, b) plan view, near bulk material density achieved<br />

with <strong>PVD</strong> coating<br />

]


[ High Temperature Phase <strong>and</strong> Hardness Stability of CrAlYN/CrN<br />

]


[ High Tempearture Tribological Behaviour of CrAlYN/CrN<br />

]


[<br />

Thermogravimetric data for various CrAlYN/CrN coatings from<br />

quasi-isothermal tests carried out at 850C in air<br />

<strong>UBM</strong> coated <strong>and</strong> uncoated γ-TiAl show an increase in mass gain by a factor of 2 <strong>and</strong> 6<br />

respectively as compared to the <strong>HIPIMS</strong>-<strong>HIPIMS</strong> coated γ-TiAl specimens<br />

]


[ Onset of Rapid Oxidation of CrAlYN/CrN deposited by various techniques<br />

]


[<br />

High Temperature Corrosion Resistance of CrAlYN/CrN.<br />

Weight gain after 1000 hours exposure to H 2 /H 2 S/H 2 O at 750C<br />

Weight Gain, mg/cm2<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

CrAlYN/CrN γ-TiAl<br />

uncoated<br />

Al2Au TiAlCr<br />

]


[<br />

Fatigue testing<br />

Experimental conditions of fatigue testing<br />

► after high temperature exposure to air at 850°C for 300 h<br />

the oxides in the thread regions were removed by shot peening<br />

► fatigue tests carried out at room temperature<br />

► R ratio R = -1<br />

► loading frequency was 20 Hz<br />

► maximum testing period was 5 million cycles<br />

]


[<br />

Ultimate tensile strengths of γ-TiAl samples<br />

]


[<br />

Maximum stress vs. number of cycles to failure of γ-TiAl specimens bare <strong>and</strong><br />

coated with CrAlYN/CrN using different magnetron sputtering technologies<br />

]


[<br />

Wear <strong>and</strong> fretting resistance of TiAl turbine blades with best available<br />

coatings in simulated aero engine environment at MTU Munich<br />

<strong>New</strong> Aero Engine Concept:<br />

Geared Turbo Fan<br />

Up to 30% less CO2<br />

Perceived aircraft noise is halved<br />

Oxidation <strong>and</strong><br />

Corrosion Resistant<br />

Coatings<br />

max. 800 °C<br />

35.000 hours<br />

Low Pressure Turbine<br />

Blade required in Gamma<br />

TiAl<br />

CrAlYN/ CrN +<br />

Al2O3<br />

]<br />

Wear Resistant<br />

Coatings<br />

max . 800 °C<br />

25.000 Cycles<br />

50 % weight reduction per blade<br />

compared to current nickel alloy<br />

•Fretting wear tests with contact pressures relevant to blade shroud contact area


2.1 Pulsed DC Al 2 O 3<br />

Technology for you<br />

T-Mode Control System for Al 2 O 3 Coatings<br />

• Special Cathode Design<br />

• Magnetic Field<br />

• Permanent Magnets<br />

• Closed field Unbalanced Magnetron Coils<br />

• Optimised gas introduction system<br />

• Fast reactive gas control system<br />

Plasma<br />

Confinement<br />

• Enables reproducible coatings at adequate deposition speeds.


Dual Magnetron<br />

Modified<br />

T-mode<br />

Midfrequency<br />

supply<br />

Al<br />

AlTi<br />

(Arc)<br />

Technology for you<br />

AlTi<br />

(Arc)<br />

Al<br />

Modified<br />

T-mode<br />

Separate T-mode control for<br />

selection of working point on<br />

each cathode (patent pending)<br />

Reactive oxide process<br />

stable behind shutters<br />

Possibility to co-sputter<br />

different materials at<br />

the same time – each at a<br />

different working point


2.2 Dual Magnetron<br />

Deposition rates up to 1µm per hour<br />

Stable process over long run times<br />

Improved ionization<br />

Nanocrystalline γ-Al2O3 Thick oxides within a reasonable timeframe<br />

Low maintenance<br />

Technology for you


[<br />

Production <strong>and</strong> tests of prototype γ-TiAl components for<br />

aeronautic/aerospace application at MTU Munich<br />

Coating of TiAl LPT blades:<br />

CrAlYN/CrN /SHU + Al 2 O 3 /<br />

Hauzer<br />

z - notch hard<br />

phase<br />

AlCrYN/CrN +<br />

Al2O3(Oxidation) + Zr2O3<br />

TiAl LPT blade Coatings Test rig /850C Air 100 h<br />

Test results<br />

- Thermal barrier coating by DLR<br />

- Fretting wear coating by SHU <strong>and</strong> Hauzer<br />

Test of thermal barrier coating by thermal ageing in air<br />

Test of fretting wear resistant coatings by wear resistnce tests at elevated temperatures<br />

tests<br />

running<br />

]


[<br />

Fretting wear test results at Room temperature <strong>and</strong> 700C<br />

Test Parameters<br />

R.T. <strong>and</strong> 700 °C in air,<br />

55 h, 20.000 cycles, frequency 0,1 Hz,<br />

contact pressure 25 MPa<br />

]<br />

RT,<br />

CrAlYN/CrN<br />

RT,<br />

CrAlYN/CrN<br />

+ Al2O3<br />

700C,<br />

CrAlYN/CrN<br />

700C,<br />

CrAlYN/CrN<br />

+ Al2O3


[ Final Conclusions from turbine blade tests<br />

MTU supported by DLR, Hauzer, SHU <strong>and</strong> BTUC :<br />

Evaluation of specimen <strong>and</strong> component tests results:<br />

Wear resistance coatings show potential for TiAl turbine blade root applications<br />

Thermal barrier coatings show potential for TiAl cooled turbine blades<br />

Oxidation <strong>and</strong> corrosion resistant coatings show potential for TiAl turbine airfoil<br />

applications<br />

Need for industrialization of coatings technology, e.g. cost reduction measures in<br />

order to meet cost targets<br />

]


[ NP gas turbine buckets <strong>and</strong> OSVAT engine valves coated with CrAlYN/CrN<br />

nanoscale multilayer coating at SHU<br />

]


[<br />

Rolling dies <strong>and</strong> pushing rods for diesel engines coated with CrAlYN/CrN<br />

nanoscale multilayer coating.<br />

]


[<br />

CONCLUSIONS<br />

A new <strong>generation</strong> nanoscale CrAlYN/CrN multilayer <strong>PVD</strong> coatings to operate in<br />

harsh environment have been successfully deposited in an industrial sized<br />

Hauzer HTC-4 1000 <strong>PVD</strong> coater enabled with the <strong>HIPIMS</strong> technology.<br />

The novel <strong>HIPIMS</strong> technology offers better plasma conditions with higher<br />

percentage of Me + to Ar + ratio:<br />

For pre-treatment conditions: ratio of 3:1 (ionisation state for Cr +3)<br />

For deposition conditions: ratio of 1:3 (factor of 6 higher than DC)<br />

<strong>HIPIMS</strong> deposited coatings have clean <strong>and</strong> sharp interfaces, flat multilayers <strong>and</strong><br />

very dense structures with evidence of epitaxial growth promoting high<br />

adhesion.<br />

The new coatings have shown excellent mechanical, tribological, <strong>and</strong> high<br />

temperature oxidation resistance. The technology <strong>and</strong> the coatings are close to<br />

industrialisation<br />

]


[<br />

Acknowledgements<br />

• The hard work <strong>and</strong> dedication of all the researchers at the<br />

Nanotechnology Centre for <strong>PVD</strong> Research at Sheffield Hallam<br />

University in UK is highly acknowledged.<br />

• The authors acknowledge the use of the Centre for Microanalysis of<br />

Materials, University of Illinois, which is partially sponsored by the U.S.<br />

Department of Energy under grant DEFG02-91-ER45439.<br />

• The research on CrAlYN/CrN nanoscale multilayer coatings utilising<br />

<strong>HIPIMS</strong> pre treatment have been carried out within FP6 Integrated<br />

Project INNOVATIAL, n° NMP3 - CT- 2005 – 515844. The financial<br />

support of the EC <strong>and</strong> the intellectual support of all partners are deeply<br />

acknowledged.<br />

]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!