09.03.2013 Views

A Coarse Grained DNA Model: Twist/Writhe Partitioning in DNA ...

A Coarse Grained DNA Model: Twist/Writhe Partitioning in DNA ...

A Coarse Grained DNA Model: Twist/Writhe Partitioning in DNA ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

msayar@ku.edu.tr<br />

A <strong>Coarse</strong> <strong>Gra<strong>in</strong>ed</strong> <strong>DNA</strong> <strong>Model</strong>:<br />

<strong>Twist</strong>/<strong>Writhe</strong> <strong>Partition<strong>in</strong>g</strong> <strong>in</strong> <strong>DNA</strong> M<strong>in</strong>icircles<br />

Mehmet Sayar<br />

College of Eng<strong>in</strong>eer<strong>in</strong>g, Koç University,<br />

İstanbul, Turkey<br />

Novel Simulation Approaches to Soft Matter Systems<br />

September 20 - 24, 2010<br />

Dresden, Germany<br />

http://home.ku.edu.tr/~msayar


Supercoil<strong>in</strong>g <strong>in</strong> <strong>DNA</strong><br />

Lauren Polder. From Kornberg, A. and Baker, T.A., <strong>DNA</strong> Replication (2nd ed.), p. 36, W.H. Freeman (1992)<br />

Understand<strong>in</strong>g the supercoil formation energetics/dynamics <strong>in</strong> <strong>DNA</strong> molecule is<br />

key to resolv<strong>in</strong>g several important features of <strong>DNA</strong> such as the structure-function<br />

relationship, the melt<strong>in</strong>g behaviour, twist-writhe <strong>in</strong>terplay.<br />

Computer simulations can play a major role <strong>in</strong> tackl<strong>in</strong>g these problems.<br />

Current elastic rod models cannot properly account for the helical nature and<br />

hybridization of the <strong>DNA</strong> molecule.<br />

Computationally efficient coarse-gra<strong>in</strong>ed models are essential for simulat<strong>in</strong>g large<br />

enough systems for long enough times.<br />

msayar@ku.edu.tr<br />

http://home.ku.edu.tr/~msayar


Length 90 bps<br />

Full atomistic MD<br />

simulation us<strong>in</strong>g<br />

a 400 core cluster<br />

AMBER-99 force field<br />

L:<strong>DNA</strong> length<br />

l p :persistence length<br />

Lk:l<strong>in</strong>k<strong>in</strong>g number<br />

Lk o :relaxed l<strong>in</strong>k<strong>in</strong>g number<br />

σ= Lk−Lk o <br />

Lk o<br />

msayar@ku.edu.tr<br />

<strong>DNA</strong> m<strong>in</strong>icircle<br />

Harris S.A., et.al., Nucleic Acids Research, 2008, Vol. 36, No. 1 21–29<br />

http://home.ku.edu.tr/~msayar


msayar@ku.edu.tr<br />

<strong>DNA</strong> under Torsion<br />

Harris S.A., et.al., Nucleic Acids Research, 2008, Vol. 36, No. 1 21–29<br />

http://home.ku.edu.tr/~msayar


msayar@ku.edu.tr<br />

<strong>Coarse</strong>-<strong>Gra<strong>in</strong>ed</strong> <strong>Model</strong> of <strong>DNA</strong><br />

Full-atomistic model Fitt<strong>in</strong>g Superatoms <strong>Coarse</strong>-gra<strong>in</strong>ed model<br />

S. B. Dixit et. al. Biophys.<br />

J. 89 3721-3740 (2005)<br />

Amber (parm94 force field)<br />

Two bead model:<br />

Phosphate bead (P), Base<br />

bead (B)<br />

Intra-strand bonded and<br />

Inter-strand nonbonded<br />

<strong>in</strong>teractions<br />

Force constants extracted<br />

from full-atomistic MD<br />

simulations via Boltzmann<br />

Inversion<br />

Generic base model: no<br />

A, T, G, C specificity<br />

http://home.ku.edu.tr/~msayar


msayar@ku.edu.tr<br />

<strong>Model</strong> Interactions<br />

Four different bonds<br />

Two dihedrals<br />

Two <strong>in</strong>terstrand<br />

<strong>in</strong>teractions<br />

Harmonic potentials are<br />

fitted to the Boltzmann<br />

<strong>in</strong>verted potentials.<br />

Generic base model: no<br />

A, T, G, C specificity<br />

Electrostatic <strong>in</strong>teractions<br />

are not explicitly <strong>in</strong>cluded<br />

http://home.ku.edu.tr/~msayar


msayar@ku.edu.tr<br />

Intra-strand <strong>in</strong>teractions<br />

Slight departure from harmonic behaviour<br />

Good agreement between the fitted functions and observed PMF<br />

from coarse-gra<strong>in</strong>ed simulations<br />

Equilibrium Distributions<br />

No significant coupl<strong>in</strong>g among CG <strong>in</strong>teractions<br />

http://home.ku.edu.tr/~msayar


msayar@ku.edu.tr<br />

Equilibrium Distributions<br />

Inter-strand <strong>in</strong>teractions<br />

Non-harmonic behaviour is observed.<br />

H-bonds with<strong>in</strong> basepairs lead to stiff potentials<br />

Inter PP <strong>in</strong>teraction displays GC – AT basepair specificity<br />

http://home.ku.edu.tr/~msayar


5’<br />

3’<br />

Directionality<br />

msayar@ku.edu.tr<br />

Equilibrium Structure<br />

M<strong>in</strong>or and Major grove<br />

Double helical structure<br />

http://home.ku.edu.tr/~msayar


msayar@ku.edu.tr<br />

Persistence Length<br />

Correlations of the PP bond<br />

vectors follow the helical pitch of<br />

the <strong>DNA</strong><br />

11.08bp pitch at f<strong>in</strong>ite<br />

temperature<br />

96 bps persistence length (l p )<br />

Persistence length is shorter<br />

than experimental value (~150<br />

bps)<br />

http://home.ku.edu.tr/~msayar


L/l p =1.2<br />

L/l p =2.9<br />

L/l p =5.8<br />

σ= Lk−Lk o <br />

Lk o<br />

msayar@ku.edu.tr<br />

Supercoil Formation<br />

σ =0.00 σ =0.05 σ =0.13<br />

http://home.ku.edu.tr/~msayar


Lk = Wr + Tw<br />

<strong>DNA</strong> m<strong>in</strong>i-circles (L/l p =1.2) exhibit a<br />

non-l<strong>in</strong>ear behaviour<br />

For small σ Tw absorbs all<br />

deformation, the m<strong>in</strong>icircle rema<strong>in</strong>s<br />

planar.<br />

Buckl<strong>in</strong>g <strong>in</strong>stability of the planar<br />

state is observed.<br />

Beyond the transition Tw and Wr<br />

absorb the excess l<strong>in</strong>k<strong>in</strong>g number<br />

equally<br />

msayar@ku.edu.tr<br />

σ= Lk−Lk o <br />

Lk o<br />

Supercoil Formation<br />

http://home.ku.edu.tr/~msayar


msayar@ku.edu.tr<br />

Supercoil Formation<br />

For longer cha<strong>in</strong>s the planar regime slowly disappears.<br />

The buckl<strong>in</strong>g <strong>in</strong>stability is only observed <strong>in</strong> short cha<strong>in</strong>s.<br />

Majority of the excess l<strong>in</strong>k<strong>in</strong>g number is absorbed by the Wr.<br />

http://home.ku.edu.tr/~msayar


The coarse-gra<strong>in</strong>ed <strong>DNA</strong> model mimics local geometric properties successfully.<br />

This model enables us to reach the relevant length scale for supercoil formation.<br />

Buckl<strong>in</strong>g <strong>in</strong>stability is observed for short cha<strong>in</strong>s<br />

Once planarity of the m<strong>in</strong>icircles is lost, for short cha<strong>in</strong>s the excess l<strong>in</strong>k<strong>in</strong>g number is<br />

absorbed equally by twist and writhe.<br />

For long cha<strong>in</strong>s the buckl<strong>in</strong>g <strong>in</strong>stability disappears, and the writhe absorbs majority of<br />

the excess l<strong>in</strong>k<strong>in</strong>g number<br />

msayar@ku.edu.tr<br />

Conclusions<br />

M. Sayar, B. Avsaroglu, A. Kabakcioglu, Phys. Rev. E 016001 (6) 2010<br />

http://home.ku.edu.tr/~msayar


msayar@ku.edu.tr<br />

Hydrophobically Modified PEs<br />

M. Bockstaller et al., Macromolecules, 34, 6353 (2001)<br />

http://home.ku.edu.tr/~msayar


Hydrophobically Modified PEs<br />

• Rich phase diagram<br />

msayar@ku.edu.tr<br />

M. Bockstaller et al., Macromolecules, 34 (2001), 6353<br />

• Micellar PPP aggregates <strong>in</strong> solution<br />

• 10-19 PPP molecules/cross-section (Na + counterion)<br />

• 60 PPP molecules/cross-section (Ca +2 counterion)<br />

• 4-5 PPP molecules <strong>in</strong> length<br />

• Double micelle length with double PPP length<br />

http://home.ku.edu.tr/~msayar


msayar@ku.edu.tr<br />

Preform the Bundle<br />

top view side view<br />

No self-assembly<br />

1000 water / PPP<br />

Gromos 96 Force Field<br />

SPC water model<br />

http://home.ku.edu.tr/~msayar


msayar@ku.edu.tr<br />

Simulation Results<br />

Monovalent counterions<br />

Sodium, Na<br />

http://home.ku.edu.tr/~msayar


msayar@ku.edu.tr<br />

8 PPP Molecules<br />

• Basic pack<strong>in</strong>g idea is OK.<br />

• Hydrophobic side cha<strong>in</strong>s <strong>in</strong> the<br />

core.<br />

• Charged SO 3 groups rema<strong>in</strong> on<br />

the surface.<br />

• Condensed counterions<br />

• Small fraction <strong>in</strong> the hydrophobic<br />

core<br />

• Counterions move with their<br />

hydration shell<br />

• Water <strong>in</strong>side the core<br />

http://home.ku.edu.tr/~msayar


msayar@ku.edu.tr<br />

Bundle Stability<br />

8 PPP Molecules 10 PPP Molecules 14 PPP Molecules<br />

20 PPP Molecules<br />

http://home.ku.edu.tr/~msayar


Bundle Size from Simulations<br />

Comparison of Experimental and Simulated SAXS Results<br />

Bundles of 8-10 PPPs yield the closest match to the experimental SAXS results.<br />

B. Hess, M. Sayar, and C. Holm., Macromolecules 1703 (40), 2007<br />

msayar@ku.edu.tr<br />

http://home.ku.edu.tr/~msayar


msayar@ku.edu.tr<br />

Multivalent Counterions<br />

Divalent counterions<br />

Calcium, Ca<br />

Experimentallly bundles of size<br />

60 PPPs is observed with Ca +2<br />

http://home.ku.edu.tr/~msayar


msayar@ku.edu.tr<br />

Bundle Stability with Ca +2<br />

8 PPP molecules 10 PPP<br />

molecules<br />

20 PPP<br />

molecules<br />

Stable bundle<br />

http://home.ku.edu.tr/~msayar


• 10-14 molecules /bundle<br />

msayar@ku.edu.tr<br />

Summary<br />

• Counterions penetrate the hydrophobic core for big bundles<br />

• Beyond 20 molecules the bundle forms two separate cores.<br />

• Pack<strong>in</strong>g of the side cha<strong>in</strong><br />

• Coulomb energy of the bundle<br />

• Hydrophobic energy of the side cha<strong>in</strong>s<br />

• No fundamental difference <strong>in</strong> bundle size with Na vs. Ca ions<br />

http://home.ku.edu.tr/~msayar


msayar@ku.edu.tr<br />

Bundle Size<br />

B. Hess, M. Sayar, and C. Holm., Macromolecules . 1703 (40), 2007<br />

http://home.ku.edu.tr/~msayar


Na<br />

+<br />

Ca +<br />

2<br />

msayar@ku.edu.tr<br />

Comparison of Na + and Ca +2<br />

http://home.ku.edu.tr/~msayar


msayar@ku.edu.tr<br />

<strong>Coarse</strong>-<strong>Gra<strong>in</strong>ed</strong> <strong>Model</strong> of PPP<br />

Bead spr<strong>in</strong>g model<br />

PPP backbone mapped on three<br />

beads (blue)<br />

PPP backbone is semi flexible<br />

Hydrophobic side cha<strong>in</strong> mapped<br />

on to a flexible cha<strong>in</strong> (green)<br />

Na + Ions (yellow)<br />

Preformed bundle of PPPs <strong>in</strong> Cell<br />

<strong>Model</strong><br />

H. J. Limbach, M. Sayar, and C. Holm., J. Phys.:<br />

Condens. Matter. 16, 2135 (2004)<br />

http://home.ku.edu.tr/~msayar


Simulation <strong>Model</strong><br />

Molecular dynamics<br />

Langev<strong>in</strong> Thermostat<br />

Cell <strong>Model</strong><br />

Full electrostatics (N<br />

msayar@ku.edu.tr<br />

http://home.ku.edu.tr/~msayar<br />

2-loop) with explicit counterions<br />

Espresso Package


msayar@ku.edu.tr<br />

Bundle Simulation<br />

H. J. Limbach, M. Sayar, and C. Holm., J. Phys.: Condens. Matter. 16, 2135 (2004)<br />

counterions both <strong>in</strong> and around the bundle<br />

only a fraction of counterions condense<br />

net charge on the micelle<br />

http://home.ku.edu.tr/~msayar


msayar@ku.edu.tr<br />

Phase Diagram<br />

non-monotonic dependence on<br />

l B and ε<br />

stable f<strong>in</strong>ite size bundles<br />

decreased stability with<br />

<strong>in</strong>creas<strong>in</strong>g l B , upto l B ≈2.0σ.<br />

<strong>in</strong>creas<strong>in</strong>g l B <strong>in</strong>creases<br />

attractive ion correlations<br />

leads to <strong>in</strong>creased stability<br />

H. J. Limbach, M. Sayar, and C. Holm., J. Phys.: Condens. Matter. 16, 2135 (2004)<br />

http://home.ku.edu.tr/~msayar


<strong>Coarse</strong>-Gra<strong>in</strong> <strong>Model</strong><strong>in</strong>g of Phase Separat<strong>in</strong>g Systems<br />

Can we use iterative Boltzmann <strong>in</strong>version <strong>in</strong> the presence of an <strong>in</strong>terface?<br />

msayar@ku.edu.tr<br />

Cahit Dalgıçdir<br />

V i+1 r =V i r −k BT ln gi r <br />

g r <br />

http://home.ku.edu.tr/~msayar


msayar@ku.edu.tr<br />

LENNARD-JONES MODEL SYSTEM<br />

System composed of two types of particles (A and B)<br />

Same type of particles attract each other (i.e A-A and B-B)<br />

A-B <strong>in</strong>teraction is repulsive Lennard-Jones<br />

Iterative Boltzmann Inversion is applied to obta<strong>in</strong> all potentials<br />

simultaneously <strong>in</strong> the presence of the <strong>in</strong>terface.<br />

The radial distribution functions do not<br />

converge to 1 (i.e. bulk density) <strong>in</strong> the<br />

presence of an <strong>in</strong>terface.<br />

http://home.ku.edu.tr/~msayar


Lennard-Jones <strong>Model</strong> System Results<br />

IBI successfully reproduces the actual RDFs and potentials<br />

RDF for attractive particles RDF for repulsive particles<br />

Attractive potential Repulsive potential<br />

Insufficient statistics for the A-B <strong>in</strong>teraction destabilizes the convergence of IBI.<br />

This can be overcome by a scal<strong>in</strong>g factor for the A-B <strong>in</strong>teraction.<br />

msayar@ku.edu.tr<br />

http://home.ku.edu.tr/~msayar


msayar@ku.edu.tr<br />

Hydrophobically Modified PEs<br />

M. Bockstaller et al., Macromolecules, 34, 6353 (2001)<br />

http://home.ku.edu.tr/~msayar


msayar@ku.edu.tr<br />

Application to a Real System: Propane & Water<br />

Propane-water system also phase separates<br />

Map each propane and water molecule onto a s<strong>in</strong>gle bead<br />

Target radial distribution functions are acquired from atomistic simulations.<br />

Iterative Boltzmann <strong>in</strong>version simulations are performed for propane and solvent<br />

separately to obta<strong>in</strong> propane-propane and solvent-solvent <strong>in</strong>teractions.<br />

Atomistic snapshot<br />

<strong>Coarse</strong>-gra<strong>in</strong>ed snapshot<br />

http://home.ku.edu.tr/~msayar


msayar@ku.edu.tr<br />

RDF for propane-propane<br />

Potential for propane-propane<br />

<strong>in</strong>teraction<br />

RDF for solvent-solvent<br />

Potential for solvent-solvent<br />

<strong>in</strong>teraction<br />

http://home.ku.edu.tr/~msayar


Propane-solvent <strong>in</strong>teraction is also obta<strong>in</strong>ed by IBI.<br />

The propane-propane and solvent-solvent <strong>in</strong>teractions are kept<br />

fixed as obta<strong>in</strong>ed from the IBI simulations of homogeneous<br />

systems<br />

msayar@ku.edu.tr<br />

RDF for propane-solvent<br />

Potential for propane-solvent <strong>in</strong>teraction<br />

http://home.ku.edu.tr/~msayar


Max-Planck Society Partner Group Program with Theory group of Prof. Kurt Kremer at MPIP<br />

TUBITAK Project No: 108T553<br />

High-Performance Comput<strong>in</strong>g Lab at Koç University<br />

msayar@ku.edu.tr<br />

Thanks to:<br />

Baris Avsaroglu<br />

Alkan Kabakcioglu<br />

Berk Hess<br />

Christian Holm<br />

Hans Jorg Limbach<br />

Cahit Dalgıçdir<br />

Acknowledgements<br />

http://home.ku.edu.tr/~msayar

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!