06.03.2013 Views

Black carbon in Arctic snow and ice - Atmospheric Sciences ...

Black carbon in Arctic snow and ice - Atmospheric Sciences ...

Black carbon in Arctic snow and ice - Atmospheric Sciences ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Black</strong> <strong>carbon</strong> <strong>in</strong> <strong>Arctic</strong> <strong>snow</strong> <strong>and</strong> <strong>ice</strong>:<br />

Quantify<strong>in</strong>g its effect on surface albedo<br />

Tom Grenfell & Steve Warren<br />

Dept of <strong>Atmospheric</strong> <strong>Sciences</strong>, University of Wash<strong>in</strong>gton<br />

<strong>in</strong> collaboration with<br />

Tony Clarke (University of Hawaii)<br />

Other UW participants (past <strong>and</strong> future):<br />

Dean Hegg<br />

Sarah Doherty<br />

Mike Town<br />

Steve Hudson<br />

Hyun-Seung Kim (ESS)<br />

Jamie Morison, Andy Heiberg & Mike Steele(APL)<br />

Project website: www.atmos.wash<strong>in</strong>gton.edu/soot<strong>in</strong><strong>snow</strong>


The question that motivates this<br />

research:<br />

Why is the <strong>Arctic</strong><br />

warm<strong>in</strong>g so much faster<br />

than the global average?


Outl<strong>in</strong>e<br />

What affects <strong>snow</strong> albedo?<br />

Why are impurities so effective at reduc<strong>in</strong>g <strong>snow</strong> albedo?<br />

Why do impurities reduce <strong>snow</strong> albedo more than cloud albedo ?<br />

Measurement of black <strong>carbon</strong> (BC) <strong>in</strong> <strong>snow</strong><br />

Measurements to date<br />

Planned measurements<br />

Uncerta<strong>in</strong>ties <strong>in</strong> measur<strong>in</strong>g BC <strong>in</strong> <strong>snow</strong><br />

Uncerta<strong>in</strong>ties <strong>in</strong> model<strong>in</strong>g effect of BC on <strong>snow</strong> albedo<br />

Errors <strong>in</strong> albedo measurement<br />

Why remote sens<strong>in</strong>g is not useful to determ<strong>in</strong>e BC's effect<br />

on <strong>snow</strong> albedo<br />

Where <strong>and</strong> when does <strong>snow</strong> albedo matter for climate?


Beg<strong>in</strong>n<strong>in</strong>gs:<br />

NCAR 1978 Steve Warren & Warren Wiscombe, RT Model<strong>in</strong>g


What affects <strong>snow</strong> albedo?<br />

Gra<strong>in</strong> size (age)<br />

Variation of gra<strong>in</strong> size with depth<br />

Snow depth (& vegetation)<br />

Impurities: dust, black <strong>carbon</strong> (soot) – more effective for<br />

larger gra<strong>in</strong>s<br />

Sun angle<br />

density - if <strong>snow</strong> layer is th<strong>in</strong><br />

Why does albedo vary with wavelength:<br />

Absorption spectrum of <strong>ice</strong> - strongly wavelength dependent<br />

Very transparent at blue <strong>and</strong> near UV wavelengths<br />

Opaque <strong>in</strong> the near <strong>in</strong>frared <strong>and</strong> beyond<br />

New values recently published (Warren, Br<strong>and</strong>t, Grenfell,<br />

Applied Optics, 45, 5320, 2006)


Surface <strong>snow</strong> at South Pole


Snow Albedo<br />

Effect of <strong>snow</strong> gra<strong>in</strong> size (Wiscombe & Warren 1980)<br />

WW JAS I model


Interaction of sunlight with <strong>snow</strong><br />

To get the same number of refraction events, the distance traveled<br />

through <strong>ice</strong> is greater <strong>in</strong> coarse-gra<strong>in</strong>ed <strong>snow</strong>. Therefore, coarsegra<strong>in</strong>ed<br />

<strong>snow</strong> has lower albedo.<br />

Mostly refraction


Modelcalculated<br />

albedos were<br />

too high!<br />

Wiscombe &<br />

Warren 1980<br />

Grenfell &<br />

Maykut 1977,<br />

<strong>snow</strong> on <strong>Arctic</strong><br />

sea <strong>ice</strong>:<br />

dry new <strong>snow</strong><br />

wet new <strong>snow</strong><br />

old melt<strong>in</strong>g<br />

<strong>snow</strong><br />

Model albedos too high


Why are impurities so effective at reduc<strong>in</strong>g <strong>snow</strong> albedo?<br />

Because absorption by <strong>ice</strong> is very weak at visible wavelengths:<br />

<strong>ice</strong> is nearly transparent.<br />

Almost any additional absorption is significant.<br />

Impurities effective


Snow Albedo<br />

0.5ppm 0.05ppm<br />

0.05 ppm<br />

5 ppm<br />

0.5 ppm<br />

5 ppm<br />

Warren &<br />

Wiscombe<br />

JAS, 1980,<br />

RT Model<br />

Results<br />

WW JAS II dirty <strong>snow</strong>


Grenfell &<br />

Maykut<br />

(1977)<br />

Obs<br />

Warren<br />

(1982)<br />

RT Model<br />

GM 77 Observations


Grenfell Perovich & Ogren (CRST, 1981). Obs of albedos & impurities for<br />

alp<strong>in</strong>e <strong>snow</strong>. Dust ~ 20-60 ppm; maximum observed albedos between 0.8<br />

<strong>and</strong> 0.95. Clean <strong>snow</strong> ~0.98-0.99 from RT models. WWII values <strong>in</strong> range.<br />

GPO Observations


What impurities get <strong>in</strong>to <strong>snow</strong> that affect the albedo on a<br />

regional scale?<br />

Soot; W<strong>in</strong>dblown dust; volcanic ash; rafted sediments (sea<br />

<strong>ice</strong>); other exotic material of various colors on record.<br />

Many questions rema<strong>in</strong> about how the material gets <strong>in</strong>to the<br />

<strong>snow</strong>, but “clean” <strong>snow</strong> is not as common as we expected.


Where can we f<strong>in</strong>d clean <strong>snow</strong>?


South Pole Station, 1986<br />

South Pole


Warren & Clarke (JGR, 1990)<br />

Antarctic Plateau Soot


Grenfell, Warren, Mullen (1994) Hudson et al., J. Geophys. Res., 2006<br />

South Pole Dome C<br />

Observations consistent with RT models <strong>and</strong> soot concentrations<br />

Antarctic Plateau Spectral Albedo


Clarke & Noone A


AGASP 1 aircraft flights April 1983 <strong>and</strong> Snow Samples 1982-1983<br />

Range 1-120 ppb<br />

Most with<strong>in</strong> 5-50 ppb.<br />

Western Sector Only<br />

1983<br />

Clarke & Noone Map


Warren &<br />

Wiscombe<br />

(1985);<br />

Warren &<br />

Clarke<br />

(1986)<br />

Soot<br />

contents<br />

from Clarke<br />

& Noone<br />

(1985)<br />

Albedo Change vs Mass Fraction


Now, 20 years after Clarke & Noone (1985),<br />

there is renewed <strong>in</strong>terest <strong>in</strong> dirty <strong>snow</strong>.<br />

20 years after


Hansen & Nazarenko Proc. Nat. Acad. Sci. 2004


E<br />

i<br />

ΔTs<br />

/ Fi<br />

=<br />

ΔT<br />

/ F( CO )<br />

Soot <strong>in</strong> <strong>snow</strong> has the greatest<br />

efficacy of all climate forc<strong>in</strong>g<br />

components considered,<br />

because:<br />

(1) Peak of soot fallout (Spr<strong>in</strong>g)<br />

co<strong>in</strong>cides with onset of<br />

<strong>snow</strong>melt<br />

(2) Melt<strong>in</strong>g <strong>snow</strong> has lower<br />

albedo than cold <strong>snow</strong><br />

(3) Earlier melt exposes dark<br />

underly<strong>in</strong>g surface<br />

(4) Soot may concentrate at the<br />

surface dur<strong>in</strong>g melt<strong>in</strong>g (?)<br />

s<br />

Efficacy of <strong>snow</strong> albedo<br />

2


New Project was launched <strong>in</strong> 2006:<br />

A comprehensive survey of soot <strong>in</strong> <strong>Arctic</strong> <strong>snow</strong>,<br />

to update Clarke & Noone’s survey from 1983-4.


Outl<strong>in</strong>e<br />

What affects <strong>snow</strong> albedo?<br />

Why are impurities so effective at reduc<strong>in</strong>g <strong>snow</strong> albedo?<br />

Why do impurities reduce <strong>snow</strong> albedo more than cloud albedo?<br />

Measurement of black <strong>carbon</strong> (BC) <strong>in</strong> <strong>snow</strong><br />

Measurements to date<br />

Planned measurements Uncerta<strong>in</strong>ties <strong>in</strong> measur<strong>in</strong>g BC <strong>in</strong> <strong>snow</strong><br />

Uncerta<strong>in</strong>ties <strong>in</strong> model<strong>in</strong>g effect of BC on <strong>snow</strong> albedo<br />

Errors <strong>in</strong> albedo measurement<br />

Why remote sens<strong>in</strong>g is not useful to determ<strong>in</strong>e BC's effect<br />

on <strong>snow</strong> albedo<br />

Where <strong>and</strong> when does <strong>snow</strong> albedo matter for climate?<br />

Uncerta<strong>in</strong>ties <strong>in</strong> comput<strong>in</strong>g climatic effects of BC <strong>in</strong> <strong>snow</strong>


The Greenl<strong>and</strong> Ice Sheet


Transportation


Sample jars <strong>in</strong>serted <strong>in</strong>to the <strong>snow</strong><br />

Surface samples Depth profile


Sample Jars dug out


NE Greenl<strong>and</strong> Clean Tent


NE Greenl<strong>and</strong> Microwave Oven


Decant<strong>in</strong>g Melted Sample


Vacuum Filter<strong>in</strong>g


Snow at 96 km Snow at 38 km<br />

(~ 400 ml of meltwater was passed through each filter.)<br />

Filters will be analyzed for light transmission at multiple<br />

wavelengths to separate contributions by soot <strong>and</strong> dust. Greenl<strong>and</strong> filters


BC<br />

st<strong>and</strong>ards<br />

made by<br />

Tony<br />

Clarke<br />

“Monarch<br />

-71 soot”<br />

St<strong>and</strong>ard Filters


NSF project<br />

began 2006<br />

Sites samples<br />

to date <strong>in</strong> red<br />

Planned sites<br />

<strong>in</strong> green<br />

Our sites


HOTRAX voyage, Summer 2005 (Grenfell)<br />

<strong>Arctic</strong> Transect


Canada & Alaska, Spr<strong>in</strong>g 2006 & 2007: Tom Grenfell, Von Walden,<br />

Dave Barber & Co., Matt Nolan, Matthew Sturm<br />

<strong>Arctic</strong> Canada


Cambridge Bay, Nunavut 2006


Resolute Bay <strong>and</strong> sampl<strong>in</strong>g traverse April 2006. Green po<strong>in</strong>ts<br />

show the sample sites.<br />

Resolute


Konrad Steffen, Univ.<br />

Colorado.<br />

Automatic weather stations at<br />

2000-m level.<br />

Mike Town, Summit<br />

Lora Koenig, Swiss Camp<br />

Greenl<strong>and</strong>


Matthew Sturm (CRREL)<br />

March-April 2007<br />

Sturm Traverse 07


The Russian Federation<br />

Большая Карта


Соруководитель<br />

Dr. Vladimir<br />

Radionov<br />

<strong>Arctic</strong> <strong>and</strong><br />

Antarctic Research<br />

Institute<br />

St. Petersburg<br />

Victor<br />

Boyarsky<br />

VICAAR Polar Logistics<br />

Michael Lamak<strong>in</strong> & Valery Ippolitov


The quality of our shoes has been well tested for a long time.<br />

It is always strictly monitored – Peshekhod Shoe Center (<strong>in</strong> Siktivkar)<br />

Чувство Юмора


Prelim Effective Soot<br />

Concentration (ngC/g)<br />

1000<br />

100<br />

10<br />

Нарьян<br />

Мар<br />

Nar'yan<br />

Mar<br />

Воркута<br />

Vorkuta<br />

Хатанга<br />

Khatanga<br />

Диксон<br />

Dikson<br />

1<br />

0 50 100 150<br />

Site Index<br />

Наблюдение


Bronto<br />

Plan B<br />

Khatanga Transport


Vorkuta Transport


Results from NW<br />

Russia 2007<br />

Nar’yan Mar:<br />

Ave = 11 ppb<br />

Std Dev = 7 ppb<br />

Background ~ 5 ppb<br />

Vorkuta:<br />

Ave = 236 ppb<br />

Std Dev = 118 ppb<br />

‘Background’ ~ 90 ppb<br />

Khatanga:<br />

Ave = 36 ppb<br />

Std Dev = 30 ppb<br />

Background ~ 11 ppb<br />

Dikson:<br />

Ave = 20 ppb<br />

Std Dev = 24 ppb<br />

Background ~ 6 ppb<br />

Table of Values to date


In 20 years, the<br />

<strong>Arctic</strong> has become<br />

cleaner, by factors:<br />

1<br />

4<br />

2<br />

6<br />

<strong>Arctic</strong> is cleaner


Outl<strong>in</strong>e<br />

What affects <strong>snow</strong> albedo?<br />

Why are impurities so effective at reduc<strong>in</strong>g <strong>snow</strong> albedo?<br />

Why do impurities reduce <strong>snow</strong> albedo more than cloud albedo?<br />

Measurement of black <strong>carbon</strong> (BC) <strong>in</strong> <strong>snow</strong><br />

Measurements to date<br />

Planned measurements<br />

Uncerta<strong>in</strong>ties <strong>in</strong> measur<strong>in</strong>g BC <strong>in</strong> <strong>snow</strong><br />

Uncerta<strong>in</strong>ties <strong>in</strong> model<strong>in</strong>g effect of BC on <strong>snow</strong> albedo<br />

Errors <strong>in</strong> albedo measurement<br />

Why remote sens<strong>in</strong>g is not useful to determ<strong>in</strong>e BC's effect<br />

on <strong>snow</strong> albedo<br />

Where <strong>and</strong> when does <strong>snow</strong> albedo matter for climate?<br />

Uncerta<strong>in</strong>ties <strong>in</strong> comput<strong>in</strong>g climatic effects of BC <strong>in</strong> <strong>snow</strong>


Uncerta<strong>in</strong>ties <strong>in</strong> measur<strong>in</strong>g BC <strong>in</strong> <strong>snow</strong><br />

1. Incomplete capture of BC by the filter (Clarke & Noone got 85-88%)<br />

2. Inadequate dist<strong>in</strong>ction of BC from other absorbers (dust)<br />

3. Absorption coefficient will vary depend<strong>in</strong>g on type of soot<br />

But we don’t need the mass; we need only its effect on albedo; that’s why<br />

we use an optical method.<br />

The mass we report would be the true mass if the absorber <strong>in</strong> the sampled<br />

<strong>snow</strong> were identical to the soot used to make the weighed st<strong>and</strong>ards.<br />

4. Snow may be unrepresentative<br />

- contam<strong>in</strong>ated dur<strong>in</strong>g sampl<strong>in</strong>g (sooty clothes after cook<strong>in</strong>g)<br />

- too close to cities or research station


Greenl<strong>and</strong> Summit, July 2006 (Mike Town)<br />

Greenl<strong>and</strong> summit variations


Use of wavelength dependence of Absorption to separate Soot <strong>and</strong> Dust Absorption<br />

Kev<strong>in</strong> Noone & Tony Clarke<br />

Abisko, Sweden, 1984<br />

Soot filtered from <strong>snow</strong><br />

from above tree-l<strong>in</strong>e<br />

Dust from stream-flow<br />

above tree-l<strong>in</strong>e<br />

Soot<br />

Volcanic<br />

Ash dust<br />

reference<br />

Calibration<br />

soot<br />

Dust<br />

Separate soot dust ash spectral analysis


Uncerta<strong>in</strong>ties <strong>in</strong> translat<strong>in</strong>g from filter measurement<br />

to effect of BC on <strong>snow</strong> albedo<br />

1. The effective absorptive properties of soot particles depend on the<br />

refractive <strong>in</strong>dex of the surround<strong>in</strong>g medium. A soot particle on the<br />

surface of the nuclepore filter material may not have the same mass<br />

absorption cross-section as a soot particle on the surface of a <strong>snow</strong><br />

gra<strong>in</strong>.<br />

2. Soot particles are on the surface of the filter but may be embedded<br />

with<strong>in</strong> the <strong>snow</strong> particles, so k abs (soot on filter) differs from<br />

k abs (soot <strong>in</strong> <strong>snow</strong>).<br />

Uncerta<strong>in</strong>ty <strong>in</strong> comput<strong>in</strong>g effect on albedo as <strong>snow</strong> ages:<br />

1. Growth of <strong>snow</strong> gra<strong>in</strong>s<br />

2. Vertical redistribution of BC dur<strong>in</strong>g melt<strong>in</strong>g<br />

Filter <strong>in</strong>dex <strong>and</strong> age<strong>in</strong>g


Vertical redistribution of BC dur<strong>in</strong>g melt<strong>in</strong>g<br />

Do particles collect at the surface as the <strong>snow</strong> melts?<br />

Soot collect<strong>in</strong>g at surface?


Conway et al., Albedo of dirty <strong>snow</strong> dur<strong>in</strong>g conditions of melt,<br />

Water Resources Res., 1996<br />

Migration of soot with melt<strong>in</strong>g refs


Sources of error <strong>in</strong> albedo measurement<br />

1. Imperfect cos<strong>in</strong>e-collector (deviation from cos<strong>in</strong>e response varies<br />

with wavelength, <strong>and</strong> correction varies with diffuse-fraction of<br />

<strong>in</strong>cident radiation)<br />

2. Imperfect level<strong>in</strong>g of <strong>in</strong>strument<br />

Albedo errors A


Sources of error <strong>in</strong> albedo measurement<br />

1. Imperfect cos<strong>in</strong>e-collector (deviation from cos<strong>in</strong>e response varies<br />

with wavelength, <strong>and</strong> correction varies with diffuse-fraction of<br />

<strong>in</strong>cident radiation)<br />

2. Imperfect level<strong>in</strong>g of <strong>in</strong>strument<br />

3. Slop<strong>in</strong>g surface:<br />

Albedo errors B


Sources of error <strong>in</strong> albedo measurement<br />

1. Imperfect cos<strong>in</strong>e-collector (deviation from cos<strong>in</strong>e response varies<br />

with wavelength, <strong>and</strong> correction varies with diffuse-fraction of<br />

<strong>in</strong>cident radiation)<br />

2. Imperfect level<strong>in</strong>g of <strong>in</strong>strument<br />

3. Slop<strong>in</strong>g surface:<br />

4. Sampl<strong>in</strong>g of bumps (sastrugi)<br />

(These 4 errors are much smaller under overcast sky.)<br />

Albedo errors C


Sastrugi


Sources of error <strong>in</strong> albedo measurement (cont<strong>in</strong>ued)<br />

5. Fluctuations of <strong>in</strong>cident irradiance under cloud (need to monitor<br />

this)<br />

6. Shadow<strong>in</strong>g correction (can be made


Why remote sens<strong>in</strong>g is not useful to determ<strong>in</strong>e BC's effect<br />

on <strong>snow</strong> albedo<br />

1. It's hard to dist<strong>in</strong>guish <strong>snow</strong> from clouds-over-<strong>snow</strong>. Th<strong>in</strong> near-surface<br />

layers of atmospheric <strong>ice</strong> crystals ("diamond-dust") are common <strong>in</strong> the<br />

<strong>Arctic</strong>.<br />

2. The bidirectional reflectance (BRDF) is affected by small-scale surface<br />

roughness: ripples, sastrugi, suncups, pressure-ridges.<br />

(The effects of sastrugi on BRDF are different at different wavelengths,<br />

because they depend on the ratio of sastrugi width to flux-penetration<br />

depth.)<br />

3. When a th<strong>in</strong> ground-fog (or diamond-dust layer) covers the rough <strong>snow</strong>,<br />

the forward peak is enhanced <strong>and</strong> the nadir view is darker, even though<br />

the albedo is probably unchanged or slightly higher. This darken<strong>in</strong>g at<br />

nadir could be mistaken for soot-contam<strong>in</strong>ation.<br />

4. Gra<strong>in</strong> shape affects BRDF (even if does not affect albedo).<br />

Remote sens<strong>in</strong>g not useful<br />

A


Surface Frost on West Antarctica<br />

(Photo by Nad<strong>in</strong>e Nereson)


Why remote sens<strong>in</strong>g is not useful to determ<strong>in</strong>e BC's effect<br />

on <strong>snow</strong> albedo (cont<strong>in</strong>ued)<br />

5. Increase of gra<strong>in</strong> size with depth reduces visible albedo more than near-<br />

IR albedo, masquerad<strong>in</strong>g as soot.<br />

6. Albedo reduction by BC <strong>in</strong> <strong>snow</strong> can be mimicked:<br />

- by th<strong>in</strong> <strong>snow</strong>. Sooty <strong>snow</strong> has the same spectral signature as th<strong>in</strong> <strong>snow</strong>.<br />

<strong>Arctic</strong> <strong>snow</strong> is th<strong>in</strong> <strong>in</strong> many places.<br />

- by sub-grid-scale leads <strong>in</strong> the <strong>Arctic</strong> Ocean.<br />

- by BC <strong>in</strong> the atmosphere above the <strong>snow</strong> ("<strong>Arctic</strong> haze").<br />

Remote sens<strong>in</strong>g not useful B


Where <strong>and</strong> when does variation of <strong>snow</strong> albedo matter for climate?<br />

Whenever <strong>snow</strong> is exposed to significant solar energy<br />

(<strong>snow</strong> albedo is less important <strong>in</strong> w<strong>in</strong>ter <strong>and</strong> <strong>in</strong> boreal forest)<br />

<strong>Arctic</strong> <strong>snow</strong><br />

- Tundra <strong>in</strong> spr<strong>in</strong>g<br />

- Sea <strong>ice</strong> <strong>in</strong> spr<strong>in</strong>g (covered with <strong>snow</strong>)<br />

- Greenl<strong>and</strong> Ice Sheet <strong>in</strong> spr<strong>in</strong>g (cold <strong>snow</strong>)<br />

- Greenl<strong>and</strong> Ice Sheet <strong>in</strong> summer (melt<strong>in</strong>g <strong>snow</strong>)<br />

Non-<strong>Arctic</strong> <strong>snow</strong><br />

- Great Pla<strong>in</strong>s of North America<br />

- Steppes of Asia: Kazakhstan, Mongolia, X<strong>in</strong>jiang, Tibet<br />

Glacier <strong>ice</strong> <strong>and</strong> sea <strong>ice</strong> are also important:<br />

- Ablation zone of Greenl<strong>and</strong> Ice Sheet <strong>in</strong> summer<br />

- <strong>Arctic</strong> ocean <strong>in</strong> summer<br />

Where <strong>and</strong> when does soot matter?


Summary of our Strategy<br />

Climatic effect of BC on <strong>snow</strong> albedo is expected to be at most a<br />

few percent, <strong>and</strong> <strong>snow</strong> albedo depends on several other<br />

variables. Therefore we do not directly measure the albedo<br />

reduction. Instead:<br />

1. Collect <strong>snow</strong> samples, melt <strong>and</strong> filter them. Analyze the filters<br />

for BC <strong>and</strong> dust.<br />

2. Use the BC amount together with <strong>snow</strong> gra<strong>in</strong> size <strong>in</strong> a radiativetransfer<br />

model to compute albedo reduction - comparison with<br />

selected albedo observations.<br />

3. Direct measurement of albedo-reduction (to verify the model<strong>in</strong>g)<br />

may be possible where all other variables are constant: e.g. a<br />

transect outward from a pollution source.


Summary 1. Reduction of albedo<br />

To reduce albedo of old melt<strong>in</strong>g <strong>snow</strong><br />

by 1% requires mass fractions:<br />

~10 ppb black <strong>carbon</strong> (soot)<br />

~500 ppb soil dust<br />

~1000 ppb volcanic ash


Summary 2. Prelim<strong>in</strong>ary results.<br />

Median BC values <strong>in</strong> Greenl<strong>and</strong> are <strong>in</strong> the same range as found by<br />

Clarke & Noone (1985).<br />

Median background values from Canada, Alaska, <strong>and</strong> the <strong>Arctic</strong><br />

Ocean are lower by factors of 2-6 than <strong>in</strong> early 1980’s.<br />

Background values from NW Russia are ~5-20 ppb<br />

Quantification ref<strong>in</strong>ements due shortly:<br />

new spectrophotometer to analyze filters<br />

new st<strong>and</strong>ards


Summary 3. Uncerta<strong>in</strong>ties <strong>in</strong> comput<strong>in</strong>g climatic effects<br />

of BC <strong>in</strong> <strong>snow</strong>:<br />

BC content of <strong>snow</strong>: <strong>in</strong>adequate temporal <strong>and</strong> spatial sampl<strong>in</strong>g<br />

Seasonal variation<br />

Geographical variation<br />

Vertical redistribution<br />

Effect on <strong>snow</strong> albedo: variations of<br />

Snow gra<strong>in</strong> size (varies seasonally <strong>and</strong> geographically)<br />

Snow depth<br />

Importance of <strong>snow</strong> albedo for climate: what is hid<strong>in</strong>g the <strong>snow</strong>?<br />

Vegetation cover<br />

Cloud cover<br />

Cloud thickness


Planned Activities<br />

1. Survey (update of Clarke & Noone 1985)<br />

(exp<strong>and</strong> to eastern <strong>Arctic</strong>, several years at all possible locations)<br />

Additional data needed from: <strong>Arctic</strong> tundra, <strong>ice</strong> sheets & sea <strong>ice</strong> <strong>in</strong> Alaska,<br />

Canada, Greenl<strong>and</strong>, Russia, <strong>Arctic</strong> Ocean, Sc<strong>and</strong><strong>in</strong>avia<br />

March-May (time of maximum <strong>snow</strong> depth, sample deposition at several<br />

vertical levels – <strong>in</strong>tra-annual variations)<br />

Summer: Greenl<strong>and</strong> Ice Sheet (melt<strong>in</strong>g <strong>snow</strong>), <strong>Arctic</strong> Ocean (melt<strong>in</strong>g sea <strong>ice</strong>).<br />

Who: Our group + Volunteers<br />

2. Process studies<br />

Scaveng<strong>in</strong>g ratio for BC <strong>in</strong> <strong>snow</strong>fall<br />

Vertical redistribution of BC with melt<strong>in</strong>g<br />

Characterization of soot by source type<br />

3. Methods comparison with Gerl<strong>and</strong>, Berntsen<br />

4. Collaborate on source attribution with Dean Hegg (PC/factor analysis) +<br />

Planned Activities


<strong>Arctic</strong> Russia<br />

March-May 2007/ 08<br />

Tom Grenfell, Steve Hudson, Steve Warren<br />

<strong>Arctic</strong> Russia 2007-08


Jim Hansen<br />

for <strong>in</strong>spir<strong>in</strong>g us to take on this project<br />

Ellen Baum <strong>and</strong> the Clean Air Task Force<br />

for gett<strong>in</strong>g us go<strong>in</strong>g with foundation fund<strong>in</strong>g<br />

(Torrance, Redman, Hatch, Kendall, Oak)<br />

NSF <strong>Arctic</strong> Program<br />

Thanks to:<br />

Our volunteer force for greatly extend<strong>in</strong>g coverage of our results<br />

Polar Cont<strong>in</strong>ental Shelf Project of Canada<br />

for logistics support at Resolute, Nunavut<br />

Danish Polar Center<br />

for logistics support <strong>in</strong> northeast Greenl<strong>and</strong><br />

Russian Hydrometeorological Servive<br />

for support <strong>and</strong> permissions for northern Russia

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!