06.03.2013 Views

Endra Joelianto - ITB

Endra Joelianto - ITB

Endra Joelianto - ITB

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Endra</strong> <strong>Joelianto</strong><br />

Engineering Physics<br />

Bandung Institute of Technology, Indonesia<br />

The The Asahi Asahi Glass Glass Foundation Foundation Seminar<br />

Seminar<br />

<strong>ITB</strong>, <strong>ITB</strong>, Bandung, Bandung, Indonesia Indonesia<br />

Indonesia<br />

July July 6, 2012 2012


Outline<br />

1. Introduction<br />

2. Bake Plate<br />

3. Multiplexed Model Predictive Control(MMPC)<br />

4. Robust Counterpart<br />

5. Experiment and Simulation<br />

6. Conclusion<br />

7. References<br />

2


Introduction<br />

Integrated Circuits(ICs) mostly used in :<br />

• Television sets<br />

• Digital Video Disc(DVD)<br />

player<br />

• Cellular phone<br />

• etc<br />

4


Introduction<br />

On ICs fabrication, photolithography is the most important process. It<br />

spent about 40 to 50% total wafer process time.<br />

Photolithography :<br />

• temporary coat photoresist on wafer<br />

• transfers designed pattern to photoresist<br />

• determines the minimum feature size called Critical<br />

Dimension(CD)<br />

Source/Drain Mask<br />

PR<br />

Photoresist<br />

N-Silicon<br />

N-Silicon<br />

Field Oxide<br />

Field Oxide<br />

Source/Drain Mask<br />

PR<br />

PR<br />

N-Silicon<br />

N-Silicon<br />

UV Light<br />

Field Oxide<br />

5


Introduction<br />

CD is significantly affected on modern electrical device’s<br />

performances.<br />

The Alignment and exposure step is the most critical process<br />

for ICs fabrication. It is also the most challenging technology.<br />

Post exposure bake normally uses hot plate within temperature<br />

about 100 o C.<br />

6


Bake Plate<br />

Post exposure bake normally uses hot plate within temperature<br />

about 100 o C. The hot plate called Bake Plate. It is the radial zones<br />

plate, multi-zones Bake Plate.<br />

7


Bake Plate<br />

The bake plate consists of an aluminum plate at the upside and the<br />

heater at the bottom<br />

8


Bake Plate<br />

The heater will transform the heat to the plate at every zone. The<br />

system is a MIMO (Multi Input Multi Output) system with power of<br />

electricity as the inputs (u1, u2, and u3) and temperature as the<br />

outputs (y1, y2, and y3).<br />

9


Multiplexed Model Predictive Control(MMPC)<br />

Model Predictive Control(MPC) can handle multivariable<br />

system. It means MPC can handle drawback of PID<br />

controller. But, its derivation is more complex than PD<br />

controller.<br />

MPC operates by solving an optimization problem on-line, in<br />

real time, to determine a plan for future operation.<br />

MPC determine optimal input signal, minimizes cost function,<br />

and adopts receding horizon.<br />

11


Multiplexed Model Predictive Control(MMPC)<br />

Multiplexed Model Predictive Control(MMPC) :<br />

Assume Tb is time sampling, and m is number of inputs, in<br />

MMPC, only one control input update at Tb/m time. So, after<br />

Ts time, all inputs have been update, and a fresh cycle<br />

begins.<br />

It reduces the computational complexity.<br />

12


J<br />

=<br />

The cost function of MMPC is given by<br />

N<br />

ˆ<br />

∑<br />

2<br />

|| y ∑<br />

k + i − wk<br />

+ i || Q +<br />

i=<br />

N<br />

i=<br />

N<br />

1 1<br />

N<br />

|| Δu<br />

⎡Q(<br />

1)<br />

0 L 0 ⎤<br />

⎢<br />

⎥<br />

= ⎢<br />

0 Q(<br />

2)<br />

L 0<br />

Q<br />

⎥<br />

⎢ ⎥<br />

⎢<br />

⎥<br />

⎦<br />

⎢ Q =<br />

M M O M<br />

⎣ 0 0 L Q(<br />

N2)<br />

Q<br />

R<br />

= T<br />

Q<br />

= T<br />

R<br />

≥<br />

><br />

0<br />

0<br />

k + i|<br />

k<br />

||<br />

2<br />

R<br />

⎡R(<br />

1)<br />

0 L 0 ⎤<br />

⎢<br />

⎥<br />

= ⎢<br />

0 R(<br />

2)<br />

L 0<br />

R<br />

⎥<br />

⎢ ⎥<br />

⎢<br />

⎥<br />

⎦<br />

⎢ R =<br />

M M O M<br />

⎣ 0 0 L R(<br />

Nu<br />

−1)<br />

13


In compact form<br />

U<br />

G<br />

U<br />

H<br />

U<br />

J<br />

T<br />

T ˆ<br />

ˆ<br />

ˆ Δ<br />

−<br />

Δ<br />

Δ<br />

=<br />

ω<br />

≤<br />

ΩΔU ˆ )<br />

(<br />

)<br />

1<br />

( k<br />

Mx<br />

k<br />

Fu +<br />

−<br />

+<br />

≡ β<br />

ω<br />

14<br />

ω<br />

≤<br />

ΩΔU ˆ )<br />

(<br />

)<br />

1<br />

( k<br />

Mx<br />

k<br />

Fu +<br />

−<br />

+<br />

≡ β<br />

ω<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

Φ<br />

Φ<br />

−<br />

−<br />

−<br />

=<br />

Ω<br />

u<br />

u<br />

E<br />

I<br />

E<br />

I<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

Δ<br />

−<br />

−<br />

Δ<br />

−<br />

=<br />

max<br />

max<br />

max<br />

min<br />

min<br />

min<br />

ˆ<br />

ˆ<br />

ˆ<br />

ˆ<br />

ˆ<br />

ˆ<br />

y<br />

U<br />

U<br />

y<br />

U<br />

U<br />

β<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

Γ<br />

−<br />

Γ<br />

=<br />

0<br />

0<br />

0<br />

0<br />

F<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

Φ<br />

−<br />

Φ<br />

=<br />

0<br />

0<br />

0<br />

0<br />

M


Robust Counterpart<br />

In the case where the plant dynamics ar uncertain, robust<br />

MPC has been developed to tackle this problem.<br />

Recently, methodology called Robust Optimization (RO) has<br />

been extensively studies in many area research.<br />

The RO methodology is designed to solve optimization<br />

problems where data are uncertain and are only known to<br />

belong some uncertainty sets.<br />

16


Robust Counterpart<br />

Robust Counterpart(RC) is pioneered by Ben-Tal and Nemirovski.<br />

The advantages of this approach is that the resulting optimization<br />

problem belongs to the class of Conic Optimization(CO), i.e.:<br />

linear optimization (LO) problems<br />

conic quadratic optimization (CQO) problems<br />

semidifinite optimization (SDO) problems<br />

which are computationally tractable and can be<br />

solved efficiently by interior point methods.<br />

The uncertainty is modelled as an ellipsoidal uncertainty set such<br />

that the obtained RC is modeled in one of special problems of CP,<br />

i.e. a conic quadratic optimization(CQO) problem.<br />

17


RMMPC<br />

Formulation<br />

Eliminating the uncertainty in the objective<br />

function, the robust MMPC problem is then of the<br />

form<br />

18


RMMPC Results<br />

H<br />

=<br />

S<br />

T<br />

S<br />

19


Experiment and Simulation<br />

Collect experimental data using Bake Plate as a plant and<br />

LabView 7.1<br />

21


Experiment and Simulation<br />

System Identification<br />

Parametric model estimation gives,<br />

Cp1=190.21 J/K, Cp2= 515.039 J/K, Cp3=557.848 J/K<br />

rp1= 8.158 K/W, rp2= 3.1207 K/W, rp3= 1.274 K/W<br />

rp12= rp12= 2.754 K/W, rp23=0.583 K/W<br />

From all the parameters we can construct the state space model<br />

for 3-zones bake plate as,<br />

x = [θp1 θp2 θp3] T<br />

u = [u1 u2 u3] T<br />

y = [θp1 θp2 θp3] T<br />

22


Experiment and Simulation<br />

Construct the state space model :<br />

x & = Fx + Gu<br />

y =<br />

Ix<br />

Using System Identification Toolbox on Matlab, we get<br />

the state space model as follow :<br />

⎡ − 1 1<br />

⎢<br />

⎢<br />

Cp1Rp1<br />

Cp1rp12<br />

⎢ 1 −1<br />

F =<br />

⎢Cp2rp12<br />

Cp2Rp2<br />

⎢<br />

1<br />

⎢ 0<br />

⎢⎣<br />

Cp3rp23<br />

⎡ 1<br />

⎢<br />

⎢<br />

Cp1<br />

G = ⎢ 0<br />

⎢<br />

⎢<br />

⎢ 0<br />

⎢⎣<br />

0<br />

1<br />

Cp2<br />

0<br />

0<br />

0<br />

1<br />

3<br />

Cp<br />

⎤<br />

⎥<br />

⎥ ⎡0<br />

⎥ =<br />

⎢<br />

⎥ ⎢<br />

⎥ ⎢⎣<br />

⎥<br />

⎥⎦<br />

⎤<br />

0 ⎥<br />

⎥ ⎡−<br />

0.<br />

0025525<br />

1 ⎥ =<br />

⎢<br />

⎥ ⎢<br />

0.<br />

0007048<br />

Cp2rp23<br />

−1<br />

⎥ ⎢⎣<br />

0<br />

⎥<br />

Cp3Rp3<br />

⎥⎦<br />

. 0052573<br />

0<br />

0<br />

0<br />

0.<br />

0019416<br />

0<br />

0.<br />

0019085<br />

−<br />

0.<br />

004652<br />

0.<br />

0030697<br />

0 ⎤<br />

0<br />

⎥<br />

⎥<br />

0.<br />

0017926⎥⎦<br />

0 ⎤<br />

0.<br />

003324<br />

⎥<br />

⎥<br />

− 0.<br />

004471⎥⎦<br />

23


Performance Specifications<br />

The control system is required to<br />

maintain the temperature defined as<br />

follow:<br />

Temperature set-point 90o Temperature set-point 90 C.<br />

Lenght of heating is not more than 4<br />

minutes.<br />

Overshoot must be lower than 0.2 o C.<br />

Each zone has uniform temperature.<br />

Control signal must be lower than 2.5 V.<br />

24


Parameters in Simulation<br />

25


CONCLUSIONS<br />

The paper proposed a bake plate control<br />

system design using a robust<br />

multiplexed model predictive control<br />

(RMMPC) to produce fast recovery and<br />

good attenuation after disturbances.<br />

The developed RMMPC using robust<br />

counterpart methodology showed better<br />

disturbance attenuation performances<br />

than the MMPC and the standard MPC.<br />

28


References<br />

[1] K.V, Ling, B.F. Wu, and J.M. Maciejowski,”Embedded Model Predictive Control (MPC)<br />

using a FPGA”, Proc. Of the 17th World Congress, Seoul, Korea, July 6-11, 2008,<br />

pp.15250-15255.<br />

[2] Ling KV , MPC Course at <strong>ITB</strong>/Ling KV/May08, Introduction to Model Andreas’s paper,<br />

NUS, MPC on Bake Plate System.<br />

[3] Maciejowski, Predictive Control with Constraints, Prentice-Hall, 2001.<br />

[4] A. Ben-Tal and A. Nemirovski, “Robust Solutions of Uncertain Linear Programs”,<br />

Operations Research Letters, 1999, vol. 25, no. 1, pp. 1-13.<br />

[5] D. Chaerani, Modelling Robust Design Problems via Conic Optimization, , PhD Thesis,<br />

Technische Universiteit Delft, The Netherlands, 2006.<br />

[6] J.F. Sturm, “Using SeDuMi 1.02, a Matlab Toolbox for Optimization over Symmetric<br />

Cones”, Department of Econometrics, University of Tilburg, 2001.<br />

[7] Soon L K, System Identification Method Lecture Note, School of EEE NTU, 2008.<br />

[8] Wang QG, Linear system lecture note, Department of Computer & Electrical Engineering<br />

NUS, 2008.<br />

[9] Seron MM, Receding Horizon control lecture notes, University of Newcastle, 2004.<br />

[10]. E. <strong>Joelianto</strong>, R.I. Simangunsong, D. Chaerani, K.V. Ling, “The Robust Model Predictive<br />

Control (MPC)”, Proc. IEEE International Conference on Advanced Computer Control<br />

(ICACC), Singapore, pp. 546-550, 2009.<br />

29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!