Lilach Goren - Physics@Technion

Lilach Goren - Physics@Technion Lilach Goren - Physics@Technion

physics.technion.ac.il
from physics.technion.ac.il More from this publisher
02.03.2013 Views

zx Enhancement of the Superconducting Transition Temperature in Cuprate Heterostructures Lilach Goren Ehud Altman PRB 79, 174509 (2009)

zx<br />

Enhancement of the Superconducting<br />

Transition Temperature<br />

in Cuprate Heterostructures<br />

<strong>Lilach</strong> <strong>Goren</strong><br />

Ehud Altman<br />

PRB 79, 174509 (2009)


temperature<br />

Experiment<br />

R (!)<br />

R (!)<br />

15<br />

10<br />

5<br />

MI SC<br />

I (nA)<br />

1<br />

0<br />

-1<br />

4.2 K<br />

-50 0 50<br />

Bias (mV)<br />

x = 0.35<br />

doping (x)<br />

(a)<br />

0<br />

0 75 150<br />

STO<br />

225 300<br />

O. Yuli et al., PRL 101, 057005 (2008)<br />

(c) bare<br />

(d)<br />

A. 10 Gozar<br />

x =<br />

et<br />

0.18<br />

al., Nature 455, 782 (2008)<br />

x = 0.12<br />

bilayer<br />

5<br />

20 K<br />

20 K<br />

90 nm x<br />

40<br />

20<br />

0<br />

0 20 40 60<br />

10<br />

(b)<br />

x = 0.10<br />

21K<br />

bare<br />

bare<br />

bilayer<br />

28K<br />

bilayer<br />

can Tc be increased by coupling to a metallic layer?<br />

10 nm x=0.35<br />

90 nm x<br />

21 K<br />

T c (K)<br />

30<br />

20<br />

10<br />

0<br />

(a)<br />

bilayer<br />

underdoped<br />

0.05 0.10 0.15 0.20 0.25<br />

Sr doping (x)<br />

z<br />

40<br />

20<br />

0<br />

2<br />

(b)<br />

0.05<br />

FIG. 2: (a) Tc vs. x of the bilayers (op<br />

films (solid symbols) measured in this w<br />

films grown on LaSrAlO4 (open symbol


Tc of underdoped cuprates<br />

∆<br />

Tc<br />

Campuzano et al. (1999)<br />

ergy scale on carrier density:<br />

the spectra (T 15 K) at the<br />

. The inset shows Tc vs doping.<br />

, and the peak and hump binding<br />

g state along with their ratio (c),<br />

he empirical relation between Tc<br />

1 2 82.6x 2 0.162 ergy scale on carrier density:<br />

the spectra (T 15 K) [25] at with the<br />

. squares The inset represent showslower Tc vs bounds. doping.<br />

, and the peak and hump binding<br />

g state along with their ratio (c),<br />

•<br />

are similar (Fig. 3c), unlike the dispersi<br />

Intensity (arb.units) Intensity (arb.units)<br />

(a)<br />

O72K<br />

(a)<br />

Tc ∝ ρs(T U83K = 0)<br />

U55K<br />

• small stiffness O72K<br />

ρs(T = 0) U83K ∼ x<br />

0.16<br />

0.08<br />

0<br />

U55K Binding Energy (eV)<br />

Mode Energy (eV) Mode Energy (eV)<br />

0.04<br />

0.05 0.03<br />

0.04 0.02<br />

0.03 0.01<br />

(b)<br />

z<br />

0.020<br />

35 50 65<br />

i l l<br />

T ( K )<br />

T (K)<br />

0.01<br />

(b)<br />

for a YBCO film at optimal doping and four<br />

FIG. 5. Doping dependence of the mode<br />

stages of deoxygenation. Tc and A -2 (0) decrease<br />

at p,0 showing as oxygen the is removed. decrease Irregularities in near theTc energ in s<br />

the underdoped stages are the result 0 of thermal s<br />

peak 0.16 and dip 0.08with<br />

phase fluctuations underdoping. 0 and sample inhomogeneity. 35 Peak 50 and 65 p<br />

t<br />

obtainedBinding by independent Energy (eV) polynomial fits anU<br />

m<br />

ation and sample inhomogeneity effects become F<br />

for the effects significant. of energy Our model resolution. reproduces these (b) when Do<br />

A0(0 ) _~ 300K is fixed and Too ~- F 2/5 in the<br />

FIG. the collective 5. Doping mode dependence energy inferred of thefrom mode d<br />

experimental range, 0.4 < F < 1. The gap ra- Ac<br />

tio, at that p,0 inferred showingAo(O)/kBTco, increases with underdoping,<br />

from neutron the decrease data (for in the theenerg latted<br />

but the gap ratio defined from the maximum<br />

a<br />

peak compiled and in dipRef. with gap on the [5], underdoping. contributing FS segments, Bi2212 results Peak Am~ = of Refs ands<br />

AO (0) cos ( ~ (1 - F ) ) , increases only slightly.<br />

r<br />

obtained by independent The model provides polynomial a basis for interpretation fits of an<br />

7(T) [5]. Figure 2 shows the normalized specific 3 R<br />

for the effects of energy resolution. (b) Do<br />

Tc is suppressed due to low carrier density<br />

5 6 2 B.R. Boyce et al./Physica C 341<br />

ρs<br />

25<br />

20<br />

10<br />

Boyce et al. (2000)<br />

optimaliy doped<br />

. . . . . . . . . I . . . . . . . . . i . . . . . . . . . r . . . . . . . . . i . . . . . . . . .<br />

under doped<br />

20 40 60 80<br />

Figure 1. The inverse squared penetration depth<br />

100<br />

U<br />

F<br />

a<br />

d


Tc of underdoped cuprates<br />

∆<br />

Tc<br />

Campuzano et al. (1999)<br />

ergy scale on carrier density:<br />

the spectra (T 15 K) at the<br />

. The inset shows Tc vs doping.<br />

, and the peak and hump binding<br />

g state along with their ratio (c),<br />

he empirical relation between Tc<br />

1 2 82.6x 2 0.162 ergy scale on carrier density:<br />

the spectra ky (T 15 K) [25] at with the<br />

. squares The inset represent showslower Tc vs bounds. doping. kx<br />

, and the peak and hump binding<br />

g state along with their ratio (c),<br />

are similar (Fig. 3c), unlike the dispersi<br />

Intensity (arb.units) Intensity (arb.units)<br />

(a)<br />

O72K<br />

(a)<br />

Tc ∝ ρs(T U83K = 0)<br />

U55K<br />

• small stiffness O72K<br />

ρs(T = 0) U83K ∼ x<br />

• Low energy quasiparticles of d-wave SC: Ek <br />

•<br />

0.16<br />

0.08<br />

0<br />

U55K Binding Energy (eV)<br />

Mode Energy (eV) Mode Energy (eV)<br />

0.04<br />

0.05 0.03<br />

0.04 0.02<br />

0.03 0.01<br />

(b)<br />

z<br />

0.020<br />

35 50 65<br />

i l l<br />

T ( K )<br />

T (K)<br />

0.01<br />

(b)<br />

FIG. 5. Doping dependence of the mode<br />

at p,0 showing the decrease in the energ<br />

<br />

0<br />

peak 0.16 and v dip 0.08with<br />

underdoping. 0<br />

35 Peak 50 and 65<br />

obtainedBinding by independent Energy (eV) polynomial fits anU<br />

for the effects of energy resolution. (b) Do<br />

FIG. the collective 5. Doping mode dependence energy inferred of thefrom modeA<br />

at that p,0 inferred showing from neutron the decrease data (for in the theenerg latte<br />

peak compiled and in dipRef. with[5], underdoping. Bi2212 results Peak of Refs and<br />

obtained by independent polynomial fits an<br />

3<br />

for the effects of energy resolution. (b) Do<br />

2 f (k − kn) 2 || + v2 ∆ (k − kn) 2 for a YBCO film at optimal doping and four<br />

stages of deoxygenation. Tc and A -2 (0) decrease<br />

as oxygen is removed. Irregularities near Tc in s<br />

the underdoped stages are the result of thermal s<br />

phase fluctuations and sample inhomogeneity. p<br />

⊥<br />

t<br />

m<br />

ation and sample inhomogeneity effects become F<br />

significant. Our model reproduces these when<br />

A0(0 ) _~ 300K is fixed 2 lnand 2 Too<br />

vf<br />

~- F 2/5 in the<br />

d<br />

ρs(T experimental )=ρ0 range, − 0.4 < F α2 < 1. The T<br />

gap rac<br />

tio, Ao(O)/kBTco, increases π with v∆underdoping,<br />

d<br />

but the gap ratio defined from the maximum<br />

a<br />

gap on the contributing FS segments, Am~ =<br />

s<br />

AO (0) cos ( ~ (1 - F ) ) , increases only slightly.<br />

The model provides Lee a basis & Wen for interpretation (1997)<br />

r<br />

of<br />

7(T) [5]. Figure 2 shows the normalized specific<br />

R<br />

Tc is suppressed due to low carrier density<br />

5 6 2 B.R. Boyce et al./Physica C 341<br />

ρs<br />

25<br />

20<br />

10<br />

Boyce et al. (2000)<br />

optimaliy doped<br />

. . . . . . . . . I . . . . . . . . . i . . . . . . . . . r . . . . . . . . . i . . . . . . . . .<br />

under doped<br />

20 40 60 80<br />

Figure 1. The inverse squared penetration depth<br />

100<br />

U<br />

F<br />

a<br />

d


How can we increase Tc?<br />

T=0:<br />

underdoped cuprates<br />

large pairing gap<br />

small stiffness<br />

ρs(T = 0) ∝ x<br />

S. Kivelson, Physica B 11, 61 (2002)<br />

E. Berg D. Orgad and S. Kivelson, PRB 78, 094509 (2008)<br />

T>0:<br />

underdoped cuprates<br />

ρs(T )=ρ0 − B T<br />

ky<br />

kx<br />

metal<br />

proximity to the metal enhances the SF stiffness<br />

v∆<br />

no gap<br />

large carrier density<br />

z<br />

4


How can we increase Tc?<br />

T=0:<br />

underdoped cuprates<br />

large pairing gap<br />

small stiffness<br />

ρs(T = 0) ∝ x<br />

S. Kivelson, Physica B 11, 61 (2002)<br />

E. Berg D. Orgad and S. Kivelson, PRB 78, 094509 (2008)<br />

metal<br />

no gap<br />

large carrier density<br />

T>0: underdoped cuprates<br />

bilayer<br />

ρs(T )=ρ0 − B T<br />

proximity to the metal enhances the SF stiffness<br />

v∆<br />

ky<br />

the proximity gap is smaller than the gap is Tc higher?<br />

kx<br />

ρs(T ) = ˜ρ0 − ˜ B T<br />

z<br />

˜v∆<br />

4


temperature<br />

Low energy effective model<br />

AF<br />

hk =<br />

SC<br />

doping (x)<br />

Nambu-Gorkov Hamiltonian for the quasiparticles<br />

in the bilayer:<br />

⎛<br />

⎞<br />

ξ (1)<br />

k ∆k ˜t⊥(x) 0<br />

⎜ ∆k −ξ<br />

⎜<br />

⎝<br />

(1)<br />

−k 0 −˜t⊥(x)<br />

˜t⊥(x) 0 ξ (2)<br />

k 0<br />

0 −˜t⊥(x) 0 −ξ (2)<br />

⎟<br />

⎠<br />

−k<br />

L. <strong>Goren</strong> and E. Altman, PRB 79, 174509 (2009)<br />

ky<br />

kx<br />

z<br />

5


temperature<br />

Low energy effective model<br />

AF<br />

hk =<br />

SC<br />

doping (x)<br />

Nambu-Gorkov Hamiltonian for the quasiparticles<br />

in the bilayer:<br />

⎛<br />

⎞<br />

h eff<br />

2 =<br />

ξ (1)<br />

k ∆k ˜t⊥(x) 0<br />

⎜ ∆k −ξ<br />

⎜<br />

⎝<br />

(1)<br />

−k 0 −˜t⊥(x)<br />

˜t⊥(x) 0 ξ (2)<br />

k 0<br />

0 −˜t⊥(x) 0 −ξ (2)<br />

⎟<br />

⎠<br />

−k<br />

Effective low energy Hamiltonian of the metallic layer:<br />

⎛<br />

k −<br />

2 ˜t⊥ ξ Ek<br />

(1)<br />

k<br />

2 ˜t⊥<br />

∆k<br />

Ek<br />

⎜<br />

⎝ ξ(2)<br />

−ξ (2)<br />

k +<br />

L. <strong>Goren</strong> and E. Altman, PRB 79, 174509 (2009)<br />

2 ˜t⊥<br />

∆k<br />

Ek<br />

2 ˜t⊥ ξ Ek<br />

(1)<br />

k<br />

⎞<br />

⎟<br />

⎠<br />

ky<br />

˜v∆ v∆<br />

2xt 2 ⊥<br />

δE 2<br />

kx<br />

fermi surface<br />

mismatch<br />

z<br />

5


temperature<br />

Low energy effective model<br />

AF<br />

SC<br />

doping (x)<br />

ρ1 = ρ1(0) −<br />

ρ2 = ρ2(0) −<br />

2 ln 2 vf<br />

α2<br />

π v∆<br />

L. <strong>Goren</strong> and E. Altman, PRB 79, 174509 (2009)<br />

+<br />

2 ln 2<br />

π<br />

˜α2 ˜vf<br />

˜v∆<br />

T<br />

T − c vf<br />

v∆<br />

T<br />

! s<br />

ky<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 10 20<br />

T<br />

30 40<br />

˜v∆ v∆<br />

2xt 2 ⊥<br />

δE 2<br />

kx<br />

fermi surface<br />

mismatch<br />

z<br />

5


Results - phenomenology<br />

We take parameters from experiment with bulk pure material<br />

•<br />

•<br />

•<br />

•<br />

ρ1(T = 0)<br />

dρ1<br />

dT<br />

∆<br />

vF<br />

• δk (fermi surface mismatch)<br />

L. <strong>Goren</strong> and E. Altman, PRB 79, 174509 (2009)<br />

with good FS matching, Tc can be enhanced for t⊥>t/5<br />

R (!)<br />

R (!)<br />

15<br />

10<br />

5<br />

I (nA)<br />

1<br />

0<br />

-1<br />

4.2 K<br />

-50 0 50<br />

Bias (mV)<br />

(a)<br />

x = 0.35 STO<br />

0<br />

0 75 150 225 300<br />

10<br />

5<br />

90 nm x<br />

(c) bare<br />

x = 0.18<br />

bilayer<br />

20 K<br />

20 K<br />

10 nm x=0.35<br />

90 nm x<br />

STO<br />

0<br />

0 20 40 60<br />

40<br />

20<br />

0<br />

0 20 40 60<br />

10<br />

[K]<br />

100<br />

(b)<br />

x = 0.10<br />

21K<br />

(d)<br />

x = 0.12<br />

21 K<br />

80<br />

60<br />

40<br />

20<br />

bare<br />

bare<br />

bilayer<br />

28K<br />

bilayer<br />

32 K<br />

0<br />

0 20 40 60<br />

Δ/2<br />

T c (K)<br />

30<br />

20<br />

10<br />

0<br />

t ⊥ =t/4<br />

0<br />

0 0.05 0.1 0.15 0.2<br />

doping x (x)<br />

(a)<br />

t ⊥ =t/5<br />

0.05 0.10 0.15 0.20 0.25<br />

Sr doping (x)<br />

z<br />

0<br />

T<br />

c<br />

Student Version of MATLAB<br />

40<br />

20<br />

0<br />

(b)<br />

0.05 0.10<br />

Sr d<br />

FIG. 2: (a) Tc vs. x of the bilayers (open sym<br />

films (solid symbols) measured in this work.<br />

films grown on LaSrAlO4 (open symbols), an<br />

symbols), as compiled from Refs. 9 and 15.<br />

depicts the 6<br />

Tc of bulk LSCO.


Results - phenomenology<br />

We take parameters from experiment with bulk pure material<br />

•<br />

•<br />

•<br />

•<br />

ρ1(T = 0)<br />

dρ1<br />

dT<br />

∆<br />

vF<br />

• δk (fermi surface mismatch)<br />

We also carried out a<br />

microscopic slave boson<br />

mean field theory calculation:<br />

L. <strong>Goren</strong> and E. Altman, PRB 79, 174509 (2009)<br />

with good FS matching, Tc can be enhanced for t⊥>t/5<br />

max<br />

R (!)<br />

T c /T c,0<br />

R (!)<br />

1.5<br />

15<br />

10<br />

5<br />

-1<br />

1<br />

0<br />

4.2 K<br />

-50 0 50<br />

t ⊥ =0.5t<br />

x = 0.35<br />

0<br />

0.5 t =0.3t<br />

⊥<br />

10<br />

5<br />

I (nA)<br />

1<br />

0<br />

Bias (mV)<br />

0 75 150 225 300<br />

t ⊥ =0.1t<br />

(a)<br />

90 nm x<br />

STO<br />

(c) bare<br />

x = 0.18<br />

bilayer<br />

20 K<br />

40<br />

20<br />

0<br />

0 20 40 60<br />

10<br />

(b)<br />

x = 0.10<br />

21K<br />

(d)<br />

x = 0.12<br />

bare<br />

0 0.1 0.2<br />

10 nm x=0.35<br />

x<br />

20 K<br />

90 nm x<br />

STO<br />

0<br />

0 20 40 60<br />

[K]<br />

100<br />

21 K<br />

80<br />

60<br />

40<br />

20<br />

bare<br />

bilayer<br />

28K<br />

bilayer<br />

32 K<br />

0<br />

0 20 40 60<br />

Δ/2<br />

T c (K)<br />

30<br />

20<br />

10<br />

0<br />

t ⊥ =t/4<br />

0<br />

0 0.05 0.1 0.15 0.2<br />

doping x (x)<br />

(a)<br />

t ⊥ =t/5<br />

0.05 0.10 0.15 0.20 0.25<br />

Sr doping (x)<br />

z<br />

0<br />

T<br />

c<br />

Student Version of MATLAB<br />

40<br />

20<br />

0<br />

(b)<br />

0.05 0.10<br />

Sr d<br />

FIG. 2: (a) Tc vs. x of the bilayers (open sym<br />

films (solid symbols) measured in this work.<br />

films grown on LaSrAlO4 (open symbols), an<br />

symbols), as compiled from Refs. 9 and 15.<br />

depicts the 6<br />

Tc of bulk LSCO.


Zero temperature paramagnetism<br />

expect:<br />

for two underdoped layers<br />

with doping x ~ y:<br />

δρpara(0) ∝− xy(α1 − α2) 2<br />

δk 2 (x, y)<br />

δρpara =<br />

ρs(T = 0) = n1<br />

m ∗ 1<br />

1<br />

J1σ0<br />

2<br />

1<br />

J1σ0<br />

1<br />

t 2 ⊥ kF<br />

vF<br />

+ n2<br />

m ∗ 2<br />

J2σ0<br />

! / *01!,<br />

)<br />

"'(<br />

"<br />

&'(<br />

. " 1!'&.<br />

. " 1!').<br />

. " 1!'(.<br />

! " # $ %<br />

*+ !+ ,<br />

& " " -. "<br />

2<br />

measuring the T=0 stiffness reduction can reveal the doping dependence of the QP charge<br />

1<br />

+ 2<br />

2 + 2×<br />

2<br />

J2σ0<br />

1<br />

J1σ0<br />

2<br />

J2σ0<br />

1 2<br />

2<br />

z<br />

7


Summary<br />

• d-wave symmetry of the gap can be crucial in determining Tc enhancement<br />

• Low energy effective theory of the bilayer explains enhancement of Tc but requires<br />

rather too large interlayer tunneling<br />

• Can effectively large interlayer coupling be achieved due to inhomogeneous interface?<br />

(Work in progress)<br />

MI SC<br />

z<br />

8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!