02.03.2013 Views

In-vitro orthodontic bond strength testing: A systematic ... - share

In-vitro orthodontic bond strength testing: A systematic ... - share

In-vitro orthodontic bond strength testing: A systematic ... - share

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SYSTEMATIC REVIEW<br />

<strong>In</strong>-<strong>vitro</strong> <strong>orthodontic</strong> <strong>bond</strong> <strong>strength</strong> <strong>testing</strong>:<br />

A <strong>systematic</strong> review and meta-analysis<br />

Katrina J. Finnema, a Mutlu Özcan, b Wendy J. Post, c Yijin Ren, d and Pieter U. Dijkstra e<br />

Groningen, The Netherlands, and Zürich, Switzerland<br />

<strong>In</strong>troduction: The aims of this study were to <strong>systematic</strong>ally review the available literature regarding in-<strong>vitro</strong><br />

<strong>orthodontic</strong> shear <strong>bond</strong> <strong>strength</strong> <strong>testing</strong> and to analyze the influence of test conditions on <strong>bond</strong> <strong>strength</strong>.<br />

Methods: Our data sources were Embase and Medline. Relevant studies were selected based on predefined<br />

criteria. Study test conditions that might influence in-<strong>vitro</strong> <strong>bond</strong> <strong>strength</strong> were independently assessed by 2<br />

observers. Studies reporting a minimum number of test conditions were included for meta-analysis by<br />

using a multilevel model with 3 levels, with author as the highest level, study as the second level, and<br />

specimens in the study as the lowest level. The primary outcome measure was <strong>bond</strong> <strong>strength</strong>. Results: We<br />

identified 121 relevant studies, of which 24 were included in the meta-analysis. Methodologic drawbacks of<br />

the excluded studies were generally related to inadequate reporting of test conditions and specimen<br />

storage. The meta-analysis demonstrated that 3 experimental conditions significantly affect in-<strong>vitro</strong> <strong>bond</strong><br />

<strong>strength</strong> <strong>testing</strong>. Although water storage decreased <strong>bond</strong> <strong>strength</strong> on average by 10.7 MPa, each second<br />

of photopolymerization time and each millimeter per minute of greater crosshead speed increased <strong>bond</strong><br />

<strong>strength</strong> by 0.077 and 1.3 MPa, respectively. Conclusions: Many studies on in-<strong>vitro</strong> <strong>orthodontic</strong> <strong>bond</strong><br />

<strong>strength</strong> fail to report test conditions that could significantly affect their outcomes. (Am J Orthod<br />

Dentofacial Orthop 2010;137:615-22)<br />

Orthodontic <strong>bond</strong>ing of brackets to teeth is a standard<br />

procedure to align teeth with fixed appliances.<br />

Orthodontic treatment with brackets<br />

generally takes approximately 2 years. Bond failure of<br />

brackets during this period retards treatment and is<br />

costly in terms of time, material, and patient inconvenience.<br />

Bracket de<strong>bond</strong>ing at the end of the treatment<br />

should not damage the enamel. Hypothetically, in-vivo<br />

<strong>testing</strong> in controlled trials is the best way to test the<br />

effectiveness of a <strong>bond</strong>ing system and any detrimental<br />

effects on the enamel. However, clinically, it is almost im-<br />

a Postgraduate student, Department of Orthodontics, University Medical Center<br />

Groningen, University of Groningen, Groningen, The Netherlands.<br />

b Professor, University of Zürich, Dental Materials Unit, Center for Dental and<br />

Oral Medicine, Clinic for Fixed and Removable Prosthodontics and Dental Materials<br />

Science, Zürich, Switzerland.<br />

c Statistician, Department of Epidemiology, University Medical Center<br />

Groningen, University of Groningen, Groningen, The Netherlands.<br />

d Professor and chair, Department of Orthodontics, University Medical Center<br />

Groningen, University of Groningen, Groningen, The Netherlands.<br />

e Professor, Center for Rehabilitation, Department of Oral and Maxillofacial Surgery,<br />

School for Health Research, University Medical Center Groningen, University<br />

of Groningen, Groningen, The Netherlands.<br />

The authors report no commercial, proprietary, or financial interest in the products<br />

or companies described in this article.<br />

Reprint requests to: Katrina J. Finnema, Department of Orthodontics, University<br />

Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box<br />

30.001, 9700 RB Groningen, The Netherlands; e-mail, k.j.finnema@dmo.<br />

umcg.nl.<br />

Submitted, July 2009; revised and accepted, December 2009.<br />

0889-5406/$36.00<br />

Copyright Ó 2010 by the American Association of Orthodontists.<br />

doi:10.1016/j.ajodo.2009.12.021<br />

possible to distinguish the adhesive potential of a specific<br />

<strong>bond</strong>ing system independent of many other variables<br />

that can influence either the quality or the longevity of<br />

bracket <strong>bond</strong>ing to enamel. 1 <strong>In</strong> addition, the methodologic<br />

quality of in-vivo randomized controlled trials<br />

(RCTs) evaluating de<strong>bond</strong>ing and bracket failure is generally<br />

poor. 2 Consequently, it is difficult to draw conclusions<br />

about the effectiveness of specific <strong>bond</strong>ing systems and<br />

their effects on the enamel from in-vivo studies.<br />

<strong>In</strong>-<strong>vitro</strong> studies possibly allow for more standardized<br />

procedures for <strong>testing</strong> a specific <strong>bond</strong>ing system.<br />

However, the various test conditions that are used hamper<br />

the comparison of their results. 3,4 Test conditions<br />

suggested to influence <strong>bond</strong> <strong>strength</strong> include enamel<br />

origin (ie, bovine vs human), substrate storage (eg,<br />

physiologic saline solution or water), and pretreatment<br />

of the enamel surface (eg, grinding and means of<br />

cleaning). 5-7 <strong>In</strong> addition, <strong>bond</strong> <strong>strength</strong> <strong>testing</strong> might<br />

also be influenced by the specific test mode used (eg,<br />

tensile or shear <strong>testing</strong>). 8 An explanation for the different<br />

outcomes between in-<strong>vitro</strong> <strong>bond</strong> <strong>strength</strong> studies<br />

might therefore be that <strong>bond</strong> <strong>strength</strong> is not being tested<br />

but, rather, an unknown combination of mechanical<br />

properties and factors related to the test surfaces. Lately,<br />

more attention has been given to the various test conditions<br />

and their effects on the results. Recent studies have<br />

evaluated the influence of some of these factors on <strong>bond</strong><br />

<strong>strength</strong>, including force location, 9 tooth type, 10-12<br />

crosshead speed variations, 13,14 and loading mode. 8<br />

615


616 Finnema et al American Journal of Orthodontics and Dentofacial Orthopedics<br />

May 2010<br />

At present, there is no overview on bracket <strong>bond</strong><br />

<strong>strength</strong> from which general conclusions can be drawn.<br />

Because of the lack of standardization, the growing<br />

number of in-<strong>vitro</strong> studies being published can only<br />

be evaluated individually. The aims of this study were<br />

to <strong>systematic</strong>ally review the literature regarding in<strong>vitro</strong><br />

<strong>bond</strong> <strong>strength</strong> and failure mode of the most frequently<br />

used clinical <strong>bond</strong>ing systems and to analyze<br />

by meta-regression the influence of test conditions on<br />

the <strong>bond</strong> <strong>strength</strong> measured.<br />

MATERIAL AND METHODS<br />

Relevant studies were identified in a literature<br />

search and subsequently selected on the basis of inclusion<br />

criteria. Studies fulfilling the inclusion criteria<br />

were assessed for reporting test conditions that could influence<br />

the results of in-<strong>vitro</strong> <strong>bond</strong> <strong>strength</strong> <strong>testing</strong>. The<br />

studies reporting a minimal number of test conditions<br />

were included for meta-analysis.<br />

To identify studies related to in-<strong>vitro</strong> <strong>bond</strong> <strong>strength</strong>,<br />

a search was performed in the databases of Medline<br />

(1967 to December 2007) and Embase (1950 to December<br />

2007) (Table I). References of identified studies and<br />

relevant review articles were searched for additional<br />

studies missed in the initial search. English was the language<br />

restriction.<br />

<strong>In</strong>itially, the titles and abstracts of the studies identified<br />

in the literature search were prescreened (by<br />

K.J.F.) for relevance to the topic of this study (in-<strong>vitro</strong><br />

<strong>orthodontic</strong> shear <strong>bond</strong> <strong>strength</strong> <strong>testing</strong>). The full text<br />

of each possibly relevant study was retrieved and assessed<br />

by 2 reviewers (M.Ö., K.J.F.) for inclusion and<br />

detailed assessment of the experimental conditions.<br />

The Figure outlines the algorithm of the study selection<br />

procedure.<br />

Studies regarding <strong>bond</strong> <strong>strength</strong> <strong>testing</strong> were selected<br />

for detailed assessment of the experimental conditions<br />

if they met the following criteria: in-<strong>vitro</strong><br />

investigation, with the shear <strong>bond</strong> <strong>strength</strong>s of metal<br />

brackets evaluated and expressed in megapascals<br />

(MPa), and the sound buccal enamel of human premolars<br />

used. Case reports, abstracts, letters, and narrative<br />

reviews were excluded.<br />

A list of 27 items was used to assess the experimental<br />

conditions, each reflecting an experimental condition<br />

that influences the results of in-<strong>vitro</strong> <strong>bond</strong> <strong>strength</strong> <strong>testing</strong><br />

(Table II). 3,4 Before the assessment of the studies, 2<br />

observers (M.Ö. and K.J.F.) discussed all 27<br />

experimental conditions to reach consensus about<br />

their content. They independently assessed whether<br />

the experimental conditions were reported in the<br />

study. After the assessment, the observers agreed on<br />

Table I. Search strategy in Medline and Embase<br />

Search Literature search strategy<br />

1 Explode "<strong>orthodontic</strong>-brackets"/MeSH<br />

all subheadings<br />

2 Bracket*<br />

3 Fixed applian*<br />

4 #1or#2or#3<br />

5 Explode "dental-<strong>bond</strong>ing"/MeSH all subheadings<br />

6 Bond*<br />

7 #5 or #6<br />

8 #4 and #7<br />

9 Explode "composite-resins"/MeSH all subheadings<br />

10 Explode "compomers"/MeSH all subheadings<br />

11 Explode "glass-ionomer-cements"/MeSH<br />

all subheadings<br />

12 Composite resin<br />

13 Glass ionomer<br />

14 Compomer<br />

15 #8 and (#9 or #12)<br />

16 #8 and (#10 or #14)<br />

17 #8 and (#11 or #13)<br />

18 #8 and <strong>bond</strong> <strong>strength</strong><br />

19 Search Medline/Embase: #15 or #16 or #17 or #18<br />

#, Search; MeSH, medical subjects heading (a thesaurus word); *, truncation<br />

of a text word.<br />

the reporting of the 27 experimental conditions of<br />

each study in a consensus meeting.<br />

Studies included in the meta-analysis<br />

The 2 observers independently determined the most<br />

relevant experimental conditions for in-<strong>vitro</strong> <strong>bond</strong><br />

<strong>strength</strong> studies based on the results from previous studies.<br />

<strong>In</strong> a consensus meeting, agreement was reached on<br />

these required experimental conditions. Studies were<br />

included in the meta-analysis if at least all of the following<br />

experimental conditions were reported: storage<br />

solution of teeth, 15 cleaning of enamel, 16 bracket<br />

type, 17-19 etchant type, 20 etching time, 21 adhesive<br />

type, photopolymerization device, 22 total photopolymerization<br />

time, 23 specimen storage time, 24 crosshead<br />

speed, 9,14 force location on bracket, 13 and blade design<br />

of the jig of the universal <strong>testing</strong> machine. 25<br />

The 2 observers independently extracted the data.<br />

Consensus was reached after discussion in case of disagreement.<br />

First, for each of the 27 experimental conditions, the<br />

number and percentage of included studies describing<br />

this specific item were calculated (Table II). Subsequently,<br />

for each study included in the meta-analysis,<br />

the following data were presented: thymol storage<br />

solution (yes/no), fluor-free cleaning (yes/no), mesh<br />

brackets (yes/no), phosphoric acid etching (yes/no), etching<br />

time (\30 seconds/$30 seconds), photopolymerization<br />

time (seconds), photopolymerized composite (yes/


American Journal of Orthodontics and Dentofacial Orthopedics Finnema et al 617<br />

Volume 137, Number 5<br />

Potentially relevant studies<br />

identified and screened for<br />

retrieval (n = 918)<br />

Studies retrieved for more<br />

detailed evaluation (n = 166)<br />

Potentially appropriate studies<br />

to be included in the<br />

meta-analysis (n = 121)<br />

Studies included in metaanalysis<br />

(n = 28)<br />

Studies with usable<br />

information, by outcome<br />

(n = 24)<br />

Studies excluded, with<br />

reasons (n = 752)<br />

- not relevant for topic<br />

Studies excluded, with<br />

reasons (n = 45)<br />

- did not meet with<br />

inclusion criteria<br />

Studies excluded, with<br />

reasons (n = 93)<br />

- did not meet threshold<br />

Studies withdrawn, by<br />

outcome, with reasons<br />

(n = 4)<br />

- overlapping data<br />

or missing data<br />

Fig. Algorithm of study selection procedure.<br />

no), halogen light (yes/no), water storage (yes/no), storage<br />

time (hours), thermocycling (yes/no), crosshead<br />

speed (millimeters per minute), force location on the<br />

tooth-bracket interface (yes/no), and shearing blade<br />

(yes/no). Of the latter data, the influence on the main outcome<br />

variable (<strong>bond</strong> <strong>strength</strong> in megapascals) was evaluated<br />

in the meta-analysis. Failure mode reported with the<br />

adhesive remnant index (ARI) was also scored when<br />

reported and is presented as the percentage of specimens<br />

with all adhesive left on the enamel. 26<br />

Statistical analysis<br />

Statistical analyses were performed by using the<br />

Statistical Package for the Social Sciences (version<br />

16.0, SPSS, Chicago, Ill). The interobserver agreement<br />

with respect to the reporting of experimental conditions<br />

of the included studies before the consensus meeting<br />

was expressed as the Cohen kappa. For descriptive<br />

statistics, means (standard deviations or medians) and<br />

interquartile ranges in skewed distributions are reported.<br />

<strong>In</strong> MLwin (version 2.02, Centre for Multilevel<br />

Modelling, Bristol, United Kingdom), a 3-level analysis<br />

(random-effects model) was performed. This is a metaregression<br />

analysis. The lowest level corresponded to<br />

the specimen level (specimens in studies), the middle<br />

level with the study, and the highest level corresponded<br />

Table II. Experimental conditions assessed in the 121<br />

articles<br />

Experimental condition<br />

Number (%) of studies<br />

adequately reporting<br />

experimental<br />

condition<br />

1. Substrate origin* 121 (100)<br />

2. Type of teeth* 121 (100)<br />

3. Storage time before <strong>bond</strong>ing 38 (31)<br />

4. Storage temperature before <strong>bond</strong>ing 38 (31)<br />

5. Storage solution before <strong>bond</strong>ing† 108 (89)<br />

6. Cleaning of specimens† 113 (93)<br />

7. Bracket material* 121 (100)<br />

8. Type of bracket† 94 (78)<br />

9. Type of etchant† 111 (92)<br />

10. Time of etching† 109 (90)<br />

11. Adhesive type† 119 (98)<br />

12. Amount of force at bracket placement 18 (15)<br />

13. Light device type† 75 (62)<br />

14. Total polymerization time† 84 (69)<br />

15. Light directions 65 (54)<br />

16. Sample storage time† 109 (90)<br />

17. Sample storage solution 103 (85)<br />

18. Sample storage temperature 97 (80)<br />

19. Thermocycling 26 (22)<br />

20. Testing machine 119 (98)<br />

21. Shear <strong>testing</strong> as test method 121 (100)<br />

22. Crosshead speed† 117 (97)<br />

23. Force location on bracket† 83 (69)<br />

24. Blade design† 73 (60)<br />

25. ARI 93 (77)<br />

26. Magnification used in determining ARI 70 (58)<br />

27. Bond <strong>strength</strong> in MPa* 121 (100)<br />

*Studies reporting experimental conditions numbers 1, 2, 7 and 27<br />

were included in the <strong>systematic</strong> review. †Studies reporting experimental<br />

conditions numbers 5, 6, 8, 9, 10, 11, 13, 14, 16, 22, 23 and 24,<br />

together with those conditions marked *, were selected for metaanalysis.<br />

with the author. <strong>In</strong> this way, the correlation within authors<br />

between studies was taken into account. Residual<br />

variance was entered in the multilevel model by using<br />

the within-study variance published in each study.<br />

Different models were compared by using the<br />

change in deviance (–2 log likelihood), a likelihood ratio<br />

test (chi-square distributed). <strong>In</strong> this way, it was also<br />

possible to test the statistical heterogeneity between<br />

authors and between articles by making different assumptions<br />

about (models for) the covariance structure.<br />

Effects with P values smaller than 0.05 were considered<br />

significant.<br />

RESULTS<br />

The searches of Medline and Embase yielded 918<br />

publications. After the first assessment, 166 studies<br />

were judged to be relevant for this <strong>systematic</strong> review.<br />

We found no additional studies by checking the


618 Finnema et al American Journal of Orthodontics and Dentofacial Orthopedics<br />

May 2010<br />

references of the included studies and relevant review<br />

articles. After we used the specified criteria, 121 of<br />

the 166 studies regarding <strong>bond</strong> <strong>strength</strong> <strong>testing</strong> were included<br />

for detailed assessment of the experimental conditions<br />

(Fig). <strong>In</strong>terobserver agreement (Cohen kappa)<br />

for reporting the 27 experimental conditions of the included<br />

studies was 0.86. Disagreements were generally<br />

caused by differences in language interpretation and<br />

were resolved in the consensus meeting.<br />

On average, the 121 included studies reported<br />

a mean of 20.4 (SD, 2.8) experimental conditions with<br />

a minimum of 12 27 and a maximum of 26. 28,29 The<br />

most poorly reported item was the experimental<br />

condition of amount of force at bracket placement.<br />

This was reported in 18 (15%) of the 121 studies. The<br />

most relevant experimental conditions for in-<strong>vitro</strong><br />

<strong>bond</strong> <strong>strength</strong> were reported in the following percentage<br />

of studies: adhesive type, 98%; crosshead speed, 97%;<br />

cleaning of enamel, 93%; etchant type, 92%; etching<br />

time, 90%; specimen storage time, 90%; storage solution<br />

of teeth before <strong>bond</strong>ing, 89%; bracket type, 78%;<br />

total polymerization time, 69%; force location on<br />

bracket, 69%; photopolymerization device, 62%; and<br />

blade design, 60% (Table II).<br />

Studies included for meta-analysis<br />

By using the threshold value, 28 studies were included<br />

in the meta-analysis. <strong>In</strong> 3 of the 9 studies from<br />

the same authors, overlapping study data were reported.<br />

30-32 These duplicated data were not entered in<br />

the meta-analysis. One other study was excluded from<br />

the meta-analysis because the standard deviation of<br />

the main outcome measure (<strong>bond</strong> <strong>strength</strong> in megapascals)<br />

was not reported. 33 As a result, 24 studies were included<br />

in the meta-analysis (Appendix). 28,34-56 From<br />

these studies, data regarding experimental groups with<br />

a photopolymerized adhesive and nonself-ligating<br />

metal brackets were extracted for further analyses.<br />

This yielded 65 experimental groups that tested <strong>bond</strong><br />

<strong>strength</strong> in specimen groups ranging from 5 to 40 premolars<br />

(mean, 14.1; SD, 7.4) (Appendix). Extracted<br />

teeth were stored in distilled water with thymol in 30 experimental<br />

groups. Fluor-free cleaning was explicitly<br />

reported in 32 groups. <strong>In</strong> 58 groups, a metal bracket<br />

with a mesh base was used. Phosphoric acid etching<br />

was used in 47 groups; in 48 experimental groups, the<br />

etching time was $30 seconds. The total polymerization<br />

times in the 65 groups varied from 2 to 60 seconds<br />

(mean, 25.3; SD, 14.8).<br />

A photopolymerized composite was used in 59<br />

groups, and a halogen polymerization device was used<br />

to cure the adhesives in 48 groups. Water storage was re-<br />

Table III. Multilevel meta-analysis with <strong>bond</strong> <strong>strength</strong><br />

(MPa) as the dependent variable<br />

<strong>In</strong>dependent variable Beta (SE)<br />

Lower<br />

95% CI<br />

Upper<br />

95% CI<br />

Water storage<br />

(no, 0; yes,1)<br />

–10.648 (3.541) –17.730 –3.566<br />

Polymerization time<br />

(per second)<br />

0.077 (0.030) 0.017 0.137<br />

Crosshead speed<br />

(mm/min)<br />

1.302 (0.599) 0.104 2.500<br />

Constant 20.014 (3.452) 13.110 26.918<br />

ported in 57 groups; in 8 experimental groups, artificial<br />

saliva was used for storing the test specimens. 28 The<br />

storage times of the specimens ranged from 0 to 672<br />

hours (median, 24; interquartile range, 0-48). Thermocycling<br />

was explicitly reported in 15 of the 65 groups.<br />

The crosshead speeds when removing the bracket varied<br />

from 0.1 to 5.0 mm per minute (median, 0.5; interquartile<br />

range, 0.5-1.0). <strong>In</strong> 23 studies, the force location was<br />

at the bracket-enamel interface. <strong>In</strong> 50 groups, a shearing<br />

blade was used for de<strong>bond</strong>ing the brackets. <strong>In</strong> the remaining<br />

15 groups, a wire loop was used for the same<br />

purpose. Based on the diversity in reported test conditions,<br />

we concluded that there was considerable clinical<br />

heterogeneity in these studies. Bond <strong>strength</strong>s ranged<br />

from 3.5 to 27.8 MPa (mean, 13.4; SD, 5.7). ARI scores<br />

were reported in 57 experimental groups. Specimens<br />

with all adhesive left on the enamel after <strong>bond</strong> <strong>strength</strong><br />

<strong>testing</strong> varied from 0% to 90%.<br />

Meta-analysis<br />

Table III summarizes the results of the metaanalysis.<br />

Heterogeneity between authors and studies<br />

was still significant after entering the predictor variables<br />

(P \0.05). The results of <strong>bond</strong> <strong>strength</strong> <strong>testing</strong> were<br />

negatively influenced when the teeth were stored in water.<br />

Water storage on average decreased <strong>bond</strong> <strong>strength</strong><br />

by 10.7 MPa, assuming that the other predictors remain<br />

constant. Analogously, each second of photopolymerization<br />

time increased the <strong>bond</strong> <strong>strength</strong> by 0.077 MPa;<br />

when crosshead speed increased by 1 mm per minute,<br />

<strong>bond</strong> <strong>strength</strong> increased by 1.3 MPa.<br />

DISCUSSION<br />

There was great diversity in the experimental conditions<br />

of studies reporting <strong>bond</strong> <strong>strength</strong> <strong>testing</strong> in <strong>orthodontic</strong>s.<br />

The results from the meta-analysis in this<br />

<strong>systematic</strong> review indicate that the experimental conditions<br />

of water storage, photopolymerization time, and<br />

crosshead speed significantly influenced the results of<br />

in-<strong>vitro</strong> <strong>bond</strong> <strong>strength</strong> <strong>testing</strong>.


American Journal of Orthodontics and Dentofacial Orthopedics Finnema et al 619<br />

Volume 137, Number 5<br />

As previously shown in 2 other reviews evaluating<br />

<strong>orthodontic</strong> <strong>bond</strong> <strong>strength</strong> studies, there is still great diversity<br />

in test protocols and quality of these studies. 3,4<br />

The observed heterogeneity between the studies in<br />

this meta-analysis was clinically and statistically large.<br />

Not one study described all 27 experimental conditions.<br />

This finding might relate to the fact that some experimental<br />

conditions—eg, the ARI and thermocycling—<br />

were not used in all studies. However, when evaluating<br />

the 121 studies for the most relevant experimental conditions,<br />

only 28 fulfilled the threshold value. This finding<br />

indicates that most of these in-<strong>vitro</strong> studies did not<br />

properly report important confounding factors that affect<br />

<strong>bond</strong> <strong>strength</strong> outcomes. When we finally included<br />

24 of these 28 studies in a meta-analysis, water storage<br />

of the <strong>bond</strong>ed specimens, photopolymerization time,<br />

and crosshead speed were shown to be the variables<br />

that primarily affected the <strong>bond</strong> <strong>strength</strong> outcomes.<br />

Water storage decreased <strong>bond</strong> <strong>strength</strong> on average<br />

by 10.7 MPa. Although this was the most pronounced<br />

effect of an experimental condition on in-<strong>vitro</strong> <strong>bond</strong><br />

<strong>strength</strong> outcomes, this finding was mainly influenced<br />

by 1 relatively large study sample in which artificial saliva<br />

was used as a storage medium for specimens. 28<br />

Most in-<strong>vitro</strong> <strong>bond</strong> <strong>strength</strong> studies used distilled water<br />

for storing the specimens, but 11% of the studies did not<br />

report the storage medium. It was previously reported<br />

that specimen storage in artificial saliva reduces <strong>bond</strong><br />

<strong>strength</strong> similarly to the effect of water degradation. 57<br />

Although our study indicates that distilled water has<br />

a different effect on <strong>bond</strong> <strong>strength</strong> than artificial saliva,<br />

future research on the effects of different storage media<br />

on <strong>bond</strong> <strong>strength</strong> is needed.<br />

The second experimental condition that we found to<br />

significantly affect in-<strong>vitro</strong> <strong>bond</strong> <strong>strength</strong> was photopolymerization<br />

time. Each additional second of photopolymerization<br />

increased <strong>bond</strong> <strong>strength</strong> by 0.077 MPa. It was<br />

previously suggested that photopolymerization time has<br />

a greater influence on in-<strong>vitro</strong> <strong>bond</strong> <strong>strength</strong> than the<br />

type of photopolymerization device. 23,58 The studies in<br />

this meta-analysis showed considerable variations in<br />

photopolymerization time: from 2 to 50 seconds. Moreover,<br />

31% of the included studies did not even report<br />

polymerization time (Appendix). Most remaining studies<br />

used 40 seconds for polymerizing the adhesive; this<br />

corresponds to the routine clinical standard. The fact<br />

that the majority of these studies used a halogen device<br />

for polymerizing the adhesive most likely explains<br />

why this polymerization time was used. The results<br />

from our meta-analysis, however, suggest that a longer<br />

polymerization time yields higher <strong>bond</strong> <strong>strength</strong>s,<br />

although the most optimal time for polymerizing the<br />

adhesive cannot be deduced from our results.<br />

The third experimental condition shown to significantly<br />

affect outcomes of <strong>bond</strong> <strong>strength</strong> <strong>testing</strong> was<br />

crosshead speed. An increase in crosshead speed of 1<br />

mm per minute yielded an increase in average <strong>bond</strong><br />

<strong>strength</strong> of 1.3 MPa. The opposite effect was demonstrated<br />

in 2 previous studies in which increases in crosshead<br />

speed from 0.5 to 5.0 mm per minute and from 1 to<br />

200 mm per minute, respectively, were associated with<br />

significant decreases of in-<strong>vitro</strong> <strong>bond</strong> <strong>strength</strong>. 14,59 This<br />

phenomenon was suggested to relate to the induction of<br />

a stiff body response and the elimination of the<br />

viscoelastic properties of the adhesive. 59 <strong>In</strong> another<br />

study, no effect was observed on <strong>bond</strong> <strong>strength</strong> with<br />

crosshead speed variations between 0.1 and 5 mm per<br />

minute. 9 <strong>In</strong> the studies included in this meta-analysis,<br />

crosshead speeds ranged from 0.1 to 5 mm per minute<br />

with most using a speed of 0.5 mm per minute<br />

(Appendix). We have no obvious explanation for the<br />

discrepancy of our results with those of previous studies;<br />

unknown confounders might be responsible.<br />

Bond <strong>strength</strong> values reported in the 24 studies in<br />

this meta-analysis ranged from 3.5 to 27.8 MPa. Clinical<br />

implications of in-<strong>vitro</strong> <strong>bond</strong> <strong>strength</strong> values are<br />

generally based on the recommendation in a review article<br />

from 1975 60 ; a ‘‘clinically acceptable’’ value was<br />

defined as an in-<strong>vitro</strong> <strong>bond</strong> <strong>strength</strong> of 6 to 8 MPa. According<br />

to this criterion, 53 of the 65 experimental<br />

groups from our meta-analysis should be considered<br />

to have clinically acceptable <strong>bond</strong> <strong>strength</strong> values. Because<br />

it has never actually been tested whether 6 to 8<br />

MPa is a sufficient in-<strong>vitro</strong> <strong>bond</strong> <strong>strength</strong> for clinical<br />

use, the use of this reference value has been criticized<br />

before. 4,61 Since the publication of this reference<br />

value, various materials have been used, and the<br />

effects of various test conditions (eg, pH and<br />

temperature variations) have been implicated in the<br />

aging of composite resins. 61 This implies that interpretation<br />

of <strong>bond</strong> <strong>strength</strong> data should be limited to the relative<br />

effectiveness of the adhesives used in a study.<br />

Extrapolation of absolute values and comparing them<br />

with a supposedly ‘‘clinically acceptable’’ reference<br />

value should be avoided. 62<br />

Since shear <strong>bond</strong> <strong>strength</strong> <strong>testing</strong> is the most commonly<br />

used method for de<strong>bond</strong>ing brackets, only studies<br />

that used this method were included in our review.<br />

With respect to shear <strong>bond</strong> <strong>strength</strong> <strong>testing</strong>, there are<br />

also some variations in blade design. Most studies<br />

used a shearing blade for de<strong>bond</strong>ing the brackets,<br />

whereas in some studies a wire loop was used. 40-43,45-47<br />

De<strong>bond</strong>ing brackets with a wire loop is not a true<br />

form of shear <strong>bond</strong> <strong>strength</strong> <strong>testing</strong>, since it also<br />

incorporates a component of tensile stress. Although<br />

blade design could not be identified as an


620 Finnema et al American Journal of Orthodontics and Dentofacial Orthopedics<br />

May 2010<br />

experimental condition that significantly affected in<strong>vitro</strong><br />

<strong>bond</strong> <strong>strength</strong> results in this meta-analysis, different<br />

shearing blades could have an effect. This should be<br />

substantiated by additional studies.<br />

Theoretically, in-<strong>vitro</strong> studies determine the true<br />

<strong>strength</strong> of a given <strong>bond</strong>ing system to the enamel substrate.<br />

Unfortunately, in-<strong>vitro</strong> studies have not been successful<br />

in predicting in-vivo effectiveness. 63,64 An<br />

accurate simulation of the clinical situation seems<br />

necessary to obtain clinically relevant results from in<strong>vitro</strong><br />

experiments. 4 However, because of the many conditions<br />

involved in the in-vivo situation, an accurate<br />

simulation is at present an unrealistic goal. Although<br />

in-<strong>vitro</strong> <strong>bond</strong> <strong>strength</strong> <strong>testing</strong> is valuable for initial<br />

screening and selection of materials, it cannot be regarded<br />

as a substitute for in-vivo <strong>testing</strong>. Orthodontic<br />

materials that perform well in in-<strong>vitro</strong> experiments<br />

should always be tested with in-vivo RCTs.<br />

Although we <strong>systematic</strong>ally reviewed the current<br />

literature on in-<strong>vitro</strong> shear <strong>bond</strong> <strong>strength</strong> <strong>testing</strong>, our<br />

study has some possible limitations. Selection bias<br />

could have resulted in inappropriate inclusion or exclusion<br />

of studies based on factors other than the inclusion<br />

criteria. This chance was minimized by having 2 observers<br />

independently assess the articles. Another shortcoming<br />

might have been our language restriction.<br />

Moreover, only 2 databases were searched. Some relevant<br />

studies might have been missed by doing so. However,<br />

we believe that our conclusion of poor descriptions<br />

of test conditions in most in-<strong>vitro</strong> <strong>bond</strong> <strong>strength</strong> studies<br />

would not be altered by studies that were possibly<br />

missed because of language and database restrictions.<br />

This is substantiated, since 93 (77%) of the 121 potentially<br />

appropriate studies were excluded from the<br />

meta-analysis because test conditions were not adequately<br />

reported. Finally, this is a <strong>systematic</strong> review<br />

concerning in-<strong>vitro</strong> observational studies. Conclusions<br />

in <strong>systematic</strong> reviews and meta-analyses are preferably<br />

based on results from RCTs. No RCTs were available<br />

for the topic of this <strong>systematic</strong> review and metaanalysis.<br />

Selection bias, information bias, and unknown<br />

confounders threatened the validity of each study that<br />

we evaluated. <strong>In</strong> future in-<strong>vitro</strong> studies, bracket de<strong>bond</strong>ing<br />

should be evaluated more carefully by considering<br />

the items studied in this review. With this approach,<br />

the most dominant factor affecting bracket adhesion in<br />

<strong>vitro</strong> might also be identified and correlated with the<br />

clinical situation.<br />

CONCLUSIONS<br />

<strong>In</strong> this <strong>systematic</strong> review and meta-analysis, a summary<br />

of factors is given that can affect the in-<strong>vitro</strong> <strong>bond</strong><br />

<strong>strength</strong> of <strong>orthodontic</strong> brackets. Experimental conditions<br />

that significantly influence in-<strong>vitro</strong> <strong>bond</strong> <strong>strength</strong><br />

are water storage of the <strong>bond</strong>ed specimens, photopolymerization<br />

time, and crosshead speed. Based on the results<br />

from this <strong>systematic</strong> review, we concluded that<br />

many studies did not properly report test conditions<br />

that could have significantly affected the outcomes. Because<br />

of developments in adhesive dentistry and the increasing<br />

numbers of <strong>bond</strong> <strong>strength</strong> studies, uniform<br />

guidelines for standardization of the experimental conditions<br />

of in-<strong>vitro</strong> <strong>bond</strong> <strong>strength</strong> research is clearly<br />

indicated.<br />

REFERENCES<br />

1. Leloup G, D’Hoore W, Bouter D, Degrange M, Vreven J. Metaanalytical<br />

review of factors involved in dentin adherence. J Dent<br />

Res 2000;80:1605-14.<br />

2. Mandall NA, Millett DT, Mattick CR, Hickman J,<br />

Worthington HV, Macfarlane TV. Orthodontic adhesives: a <strong>systematic</strong><br />

review. J Orthod 2002;29:205-10.<br />

3. Fox NA, McCabe JF, Buckley JG. A critique of <strong>bond</strong> <strong>strength</strong> <strong>testing</strong><br />

in <strong>orthodontic</strong>s. Br J Orthod 1994;21:33-3.<br />

4. Eliades T, Brantley WA. The inappropriateness of conventional<br />

<strong>orthodontic</strong> <strong>bond</strong> <strong>strength</strong> assessment protocols. Eur J Orthod<br />

2000;22:13-23.<br />

5. Oesterle LJ, Shellhart WC, Belanger GK. The use of bovine<br />

enamel in <strong>bond</strong>ing studies. Am J Orthod Dentofacial Orthop<br />

1998;114:514-9.<br />

6. Mühleman HR. Storage medium and enamel hardness. Helvetica<br />

Odontologica Acta 1964;8:112-7.<br />

7. Eliades T, Viazis AD, Eliades G. Bonding of ceramic brackets to<br />

enamel: morphologic and structural considerations. Am J Orthod<br />

Dentofacial Orthop 1991;99:369-75.<br />

8. Katona TR, Long RW. Effect of loading mode on <strong>bond</strong> <strong>strength</strong> of<br />

<strong>orthodontic</strong> brackets <strong>bond</strong>ed with 2 systems. Am J Orthod Dentofacial<br />

Orthop 2006;129:60-4.<br />

9. Klocke A, Kahl-Nieke B. <strong>In</strong>fluence of crosshead speed in <strong>orthodontic</strong><br />

<strong>bond</strong> <strong>strength</strong> <strong>testing</strong>. Dent Mater 2005;21:139-44.<br />

10. Oztürk B, Malkoç S, Koyutürk AE, Catalbas B, Ozer F. <strong>In</strong>fluence<br />

of different tooth types on the <strong>bond</strong> <strong>strength</strong> of two <strong>orthodontic</strong><br />

adhesive systems. Eur J Orthod 2008;30:407-12.<br />

11. Hobson RS, McCabe JF, Hogg SD. Bond <strong>strength</strong> to surface<br />

enamel for different tooth types. Dent Mater 2001;17:184-9.<br />

12. Linklater RA, Gordon PH. An ex vivo study to investigate <strong>bond</strong><br />

<strong>strength</strong>s of different tooth types. J Orthod 2001;28:59-65.<br />

13. Klocke A, Kahl-Nieke B. <strong>In</strong>fluence of force location in <strong>orthodontic</strong><br />

shear <strong>bond</strong> <strong>strength</strong> <strong>testing</strong>. Dent Mater 2005;21:391-6.<br />

14. Bishara SE, Soliman M, Laffoon J, Warren JJ. Effect of changing<br />

a test parameter on the shear <strong>bond</strong> <strong>strength</strong> of <strong>orthodontic</strong><br />

brackets. Angle Orthod 2005;75:832-5.<br />

15. Titley K, Caldwell R, Kulkarni G. Factors that affect the shear<br />

<strong>bond</strong> <strong>strength</strong> of multiple component and single bottle adhesives<br />

to dentin. Am J Dent 2003;16:120-4.<br />

16. Lindauer SJ, Browning H, Shroff B, Marshall F, Anderson RH,<br />

Moon PC. Effect of pumice prophylaxis on the <strong>bond</strong> <strong>strength</strong> of<br />

<strong>orthodontic</strong> brackets. Am J Orthod Dentofacial Orthop 1997;<br />

111:599-605.<br />

17. Bishara SE, Soliman MM, Oonsombat C, Laffoon JF, Ajlouni R.<br />

The effect of variation in mesh-base design on the shear <strong>bond</strong><br />

<strong>strength</strong> of <strong>orthodontic</strong> brackets. Angle Orthod 2004;74:400-4.


American Journal of Orthodontics and Dentofacial Orthopedics Finnema et al 621<br />

Volume 137, Number 5<br />

18. Sharma-Sayal SK, Rossouw PE, Kulkarni GV, Titley KC. The influence<br />

of <strong>orthodontic</strong> bracket base design on shear <strong>bond</strong> <strong>strength</strong>.<br />

Am J Orthod Dentofacial Orthop 2003;124:74-82.<br />

19. Knox J, Hubsch P, Jones ML, Middleton J. The influence of<br />

bracket base design on the <strong>strength</strong> of the bracket-cement interface.<br />

J Orthod 2000;27:249-54.<br />

20. De Munck J, Van Landuyt K, Peumans M, Poitevin A,<br />

Lambrechts P, Braem M, et al. A critical review of the durability<br />

of adhesion to tooth tissue: methods and results. J Dent Res 2005;<br />

84:118-32.<br />

21. Gardner A, Hobson R. Variations in acid-etch patterns with different<br />

acids and etch times. Am J Orthod Dentofacial Orthop 2001;<br />

120:64-7.<br />

22. Niepraschk M, Rahiotis C, Bradley TG, Eliades T, Eliades G. Effect<br />

of various curing lights on the degree of cure of <strong>orthodontic</strong><br />

adhesives. Am J Orthod Dentofacial Orthop 2007;132:382-4.<br />

23. Eliades T. Orthodontic materials research and applications: part 1.<br />

Current status and projected future developments in <strong>bond</strong>ing and<br />

adhesives. Am J Orthod Dentofacial Orthop 2006;130:445-51.<br />

24. Yamamoto A, Yoshida T, Tsubota K, Takamizawa T,<br />

Kurokawa H, Miyazaki M. Orthodontic bracket <strong>bond</strong>ing: enamel<br />

<strong>bond</strong> <strong>strength</strong> vs time. Am J Orthod Dentofacial Orthop 2006;130:<br />

435. e1-6.<br />

25. Mojtahedzadeh F, Akhoundi MS, Noroozi H. Comparison of wire<br />

loop and shear blade as the 2 most common methods for <strong>testing</strong><br />

<strong>orthodontic</strong> shear <strong>bond</strong> <strong>strength</strong>. Am J Orthod Dentofacial Orthop<br />

2006;130:385-7.<br />

26. A˚ rtun J, Bergland S. Clinical trials with crystal growth conditioning<br />

as an alternative to acid-etch enamel pretreatment. Am J Orthod<br />

1984;85:333-40.<br />

27. Sehgal V, Shetty VS, Mogra S, Bhat G, Eipe M, Jacob S, et al.<br />

Evaluation of antimicrobial and physical properties of <strong>orthodontic</strong><br />

composite resin modified by addition of antimicrobial agents—an<br />

in-<strong>vitro</strong> study. Am J Orthod Dentofacial Orthop 2007;131:525-9.<br />

28. Chang WG, Lim BS, Yoon TH, Lee YK, Kim CW. Effects of<br />

salicylic-lactic acid conditioner on the shear <strong>bond</strong> <strong>strength</strong> of<br />

brackets and enamel surfaces. J Oral Rehabil 2005;32:287-95.<br />

29. Tecco S, Traini T, Caputi S, Festa F, de Luca V, D’Attilio M. A<br />

new one-step dental flowable composite for <strong>orthodontic</strong> use: an<br />

in-<strong>vitro</strong> <strong>bond</strong> <strong>strength</strong> study. Angle Orthod 2005;75:672-7.<br />

30. Vicente A, Bravo LA, Romero M, Ortız AJ, Canteras M. Bond<br />

<strong>strength</strong> of brackets <strong>bond</strong>ed with an adhesion promoter. Br Dent<br />

J 2004;196:482-5.<br />

31. Vicente A, Bravo LA, Romero M, Ortız AJ, Canteras M. Effects<br />

of 3 adhesion promoters on the shear <strong>bond</strong> <strong>strength</strong> of <strong>orthodontic</strong><br />

brackets: an in-<strong>vitro</strong> study. Am J Orthod Dentofacial Orthop 2006;<br />

129:390-5.<br />

32. Vicente A, Bravo LA, Romero M. Self-etching primer and a nonrinse<br />

conditioner versus phosphoric acid: alternative methods for<br />

<strong>bond</strong>ing brackets. Eur J Orthod 2006;28:173-8.<br />

33. Aljubouri YD, Millett DT, Gilmour WH. Laboratory evaluation of<br />

a self-etching primer for <strong>orthodontic</strong> <strong>bond</strong>ing. Eur J Orthod 2003;<br />

25:411-5.<br />

34. Buyukyilmaz T, Usumez S, Karaman AI. Effect of self-etching<br />

primers on <strong>bond</strong> <strong>strength</strong>—are they reliable? Angle Orthod<br />

2003;73:64-70.<br />

35. Kim MJ, Lim BS, Chang WG, Lee YK, Rhee SH, Yang HC. Phosphoric<br />

acid incorporated with acidulated phosphate fluoride gel<br />

etchant effects on bracket <strong>bond</strong>ing. Angle Orthod 2005;75:<br />

678-84.<br />

36. Klocke A, Korbmacher HM, Huck LG, Kahl-Nieke B. Plasma arc<br />

curing lights for <strong>orthodontic</strong> <strong>bond</strong>ing. Am J Orthod Dentofacial<br />

Orthop 2002;122:643-8.<br />

37. Martin S, Garcia-Godoy F. Shear <strong>bond</strong> <strong>strength</strong> of <strong>orthodontic</strong><br />

brackets cemented with a zinc oxide-polyvinyl cement. Am J Orthod<br />

Dentofacial Orthop 1994;106:615-20.<br />

38. McCourt JW, Cooley RL, Barnwell S. Bond <strong>strength</strong> of light-cure<br />

fluoride-releasing base-liners as <strong>orthodontic</strong> bracket adhesives.<br />

Am J Orthod Dentofacial Orthop 1991;100:47-52.<br />

39. Northrup RG, Berzins DW, Bradley TG, Schuckit W. Shear <strong>bond</strong><br />

<strong>strength</strong> comparison between two <strong>orthodontic</strong> adhesives and<br />

self-ligating and conventional brackets. Angle Orthod 2007;77:<br />

701-6.<br />

40. Romano FL, Tavares SW, Nouer DF, Consani S, Borges de Araújo<br />

Magnani MB. Shear <strong>bond</strong> <strong>strength</strong> of metallic <strong>orthodontic</strong><br />

brackets <strong>bond</strong>ed to enamel prepared with self-etching primer. Angle<br />

Orthod 2005;75:849-53.<br />

41. Sayinsu K, Isik F, Sezen S, Aydemir B. New protective polish effects<br />

on shear <strong>bond</strong> <strong>strength</strong> of brackets. Angle Orthod 2006;76:<br />

306-9.<br />

42. Sayinsu K, Isik F, Sezen S, Aydemir B. Light curing the primer—<br />

beneficial when working in problem areas? Angle Orthod 2006;<br />

76:310-3.<br />

43. Schaneveldt S, Foley TF. Bond <strong>strength</strong> comparison of moistureinsensitive<br />

primers. Am J Orthod Dentofacial Orthop 2002;122:<br />

267-73.<br />

44. Scougall Vilchis RJ, Yamamoto S, Kitai N, Hotta M,<br />

Yamamoto K. Shear <strong>bond</strong> <strong>strength</strong> of a new fluoride-releasing <strong>orthodontic</strong><br />

adhesive. Dent Mater J 2007;26:45-51.<br />

45. Signorelli MD, Kao E, Ngan PW, Gladwin MA. Comparison of<br />

<strong>bond</strong> <strong>strength</strong> between <strong>orthodontic</strong> brackets <strong>bond</strong>ed with halogen<br />

and plasma arc curing lights: an in-<strong>vitro</strong> and in-vivo study. Am<br />

J Orthod Dentofacial Orthop 2006;129:277-82.<br />

46. Sunna S, Rock WP. An ex vivo investigation into the <strong>bond</strong><br />

<strong>strength</strong> of <strong>orthodontic</strong> brackets and adhesive systems. Br J Orthod<br />

1999;26:47-50.<br />

47. Tecco S, Traini T, Caputi S, Festa F, de Luca V, D’Attilio M. A<br />

new one-step dental flowable composite for <strong>orthodontic</strong> use: an<br />

in-<strong>vitro</strong> <strong>bond</strong> <strong>strength</strong> study. Angle Orthod 2005;75:672-7.<br />

48. Usxümez S, Büyükyilmaz T, Karaman AI. Effect of light-emitting<br />

diode on <strong>bond</strong> <strong>strength</strong> of <strong>orthodontic</strong> brackets. Angle Orthod<br />

2004;74:259-63.<br />

49. Uysal T, Basciftci FA, Usxümez S, Sari Z, Buyukerkmen A. Can<br />

previously bleached teeth be <strong>bond</strong>ed safely? Am J Orthod Dentofacial<br />

Orthop 2003;123:628-32.<br />

50. Vicente A, Bravo LA, Romero M, Ortiz AJ, Canteras M. Adhesion<br />

promoters: effects on the <strong>bond</strong> <strong>strength</strong> of brackets. Am<br />

J Dent 2005;18:323-6.<br />

51. Vicente A, Bravo LA, Romero M, Ortız AJ, Canteras M. Shear<br />

<strong>bond</strong> <strong>strength</strong> of <strong>orthodontic</strong> brackets <strong>bond</strong>ed with self-etching<br />

primers. Am J Dent 2005;18:256-60.<br />

52. Vicente A, Bravo LA, Romero M. <strong>In</strong>fluence of a nonrinse conditioner<br />

on the <strong>bond</strong> <strong>strength</strong> of brackets <strong>bond</strong>ed with a resin adhesive<br />

system. Angle Orthod 2005;75:400-5.<br />

53. Vicente A, Bravo LA, Romero M, Ortiz AJ, Canteras M. A<br />

comparison of the shear <strong>bond</strong> <strong>strength</strong> of a resin cement and<br />

two <strong>orthodontic</strong> resin adhesive systems. Angle Orthod 2005;<br />

75:109-13.<br />

54. Vicente A, Navarro R, Mena A, Bravo LA. Effect of surface treatments<br />

on the <strong>bond</strong> <strong>strength</strong> of brackets <strong>bond</strong>ed with a compomer.<br />

Am J Dent 2006;19:271-4.<br />

55. Vicente A, Bravo LA. Direct <strong>bond</strong>ing with precoated brackets and<br />

self-etching primers. Am J Dent 2006;19:241-4.<br />

56. Wendl B, Droschl H. A comparative in-<strong>vitro</strong> study of the <strong>strength</strong><br />

of directly <strong>bond</strong>ed brackets using different curing techniques. Eur<br />

J Orthod 2004;26:535-44.


622 Finnema et al American Journal of Orthodontics and Dentofacial Orthopedics<br />

May 2010<br />

57. Kitasako Y, Burrow MF, Nikaido T, Tagami J. The influence of<br />

storage solution on dentin <strong>bond</strong> durability of resin cement. Dent<br />

Mater 2000;16:1-6.<br />

58. Ilie N, Hickel R. Correlation between ceramics translucency and<br />

polymerization efficiency through ceramics. Dent Mater 2008;24:<br />

908-14.<br />

59. Eliades T, Katsavrias E, Zinelis S, Eliades G. Effect of loading<br />

rate on <strong>bond</strong> <strong>strength</strong>. J Orofac Orthop 2004;65:336-42.<br />

60. Reynolds IR. A review of direct <strong>orthodontic</strong> <strong>bond</strong>ing. Br J Orthod<br />

1975;2:171-8.<br />

61. Eliades T. Comparing <strong>bond</strong> <strong>strength</strong>s. Am J Orthod Dentofacial<br />

Orthop 2002;122(6):13-15A.<br />

62. Eliades T, Bourauel C. <strong>In</strong>traoral aging of <strong>orthodontic</strong> materials:<br />

the picture we miss and its clinical relevance. Am J Orthod Dentofacial<br />

Orthop 2005;127:403-12.<br />

63. Murray SD, Hobson RS. Comparison of in-vivo and in-<strong>vitro</strong><br />

shear <strong>bond</strong> <strong>strength</strong>. Am J Orthod Dentofacial Orthop 2003;123:2-9.<br />

64. Sunna S, Rock WP. Clinical performance of <strong>orthodontic</strong> brackets<br />

and adhesive systems: a randomized clinical trial. Br J Orthod<br />

1998;25:283-7.


American Journal of Orthodontics and Dentofacial Orthopedics Finnema et al 622.e1<br />

Volume 137, Number 5<br />

APPENDIX REFERENCES<br />

1. Buyukyilmaz T, Usumez S, Karaman AI. Effect of self-etching<br />

primers on <strong>bond</strong> <strong>strength</strong>—are they reliable? Angle Orthod<br />

2003;73:64-70.<br />

2. Chang WG, Lim BS, Yoon TH, Lee YK, Kim CW. Effects of<br />

salicylic-lactic acid conditioner on the shear <strong>bond</strong> <strong>strength</strong> of<br />

brackets and enamel surfaces. J Oral Rehabil 2005;32:287-95.<br />

3. Kim MJ, Lim BS, Chang WG, Lee YK, Rhee SH, Yang HC. Phosphoric<br />

acid incorporated with acidulated phosphate fluoride gel<br />

etchant effects on bracket <strong>bond</strong>ing. Angle Orthod 2005;75:678-84.<br />

4. Klocke A, Korbmacher HM, Huck LG, Kahl-Nieke B. Plasma arc<br />

curing lights for <strong>orthodontic</strong> <strong>bond</strong>ing. Am J Orthod Dentofacial<br />

Orthop 2002;122:643-8.<br />

5. Martin S, Garcia-Godoy F. Shear <strong>bond</strong> <strong>strength</strong> of <strong>orthodontic</strong><br />

brackets cemented with a zinc oxide-polyvinyl cement. Am<br />

J Orthod Dentofacial Orthop 1994;106:615-20.<br />

6. McCourt JW, Cooley RL, Barnwell S. Bond <strong>strength</strong> of light-cure<br />

fluoride-releasing base-liners as <strong>orthodontic</strong> bracket adhesives.<br />

Am J Orthod Dentofacial Orthop 1991;100:47-52.<br />

7. Northrup RG, Berzins DW, Bradley TG, Schuckit W. Shear <strong>bond</strong><br />

<strong>strength</strong> comparison between two <strong>orthodontic</strong> adhesives and selfligating<br />

and conventional brackets. Angle Orthod 2007;77:701-6.<br />

8. Romano FL, Tavares SW, Nouer DF, Consani S, Borges de Araújo<br />

Magnani MB. Shear <strong>bond</strong> <strong>strength</strong> of metallic <strong>orthodontic</strong><br />

brackets <strong>bond</strong>ed to enamel prepared with self-etching primer.<br />

Angle Orthod 2005;75:849-53.<br />

9. Sayinsu K, Isik F, Sezen S, Aydemir B. New protective polish effects<br />

on shear <strong>bond</strong> <strong>strength</strong> of brackets. Angle Orthod 2006;76:306-9.<br />

10. Sayinsu K, Isik F, Sezen S, Aydemir B. Light curing the primer–<br />

beneficial when working in problem areas? Angle Orthod 2006;<br />

76:310-3.<br />

11. Schaneveldt S, Foley TF. Bond <strong>strength</strong> comparison of moistureinsensitive<br />

primers. Am J Orthod Dentofacial Orthop 2002;122:<br />

267-73.<br />

12. Scougall Vilchis RJ, Yamamoto S, Kitai N, Hotta M,<br />

Yamamoto K. Shear <strong>bond</strong> <strong>strength</strong> of a new fluoride-releasing<br />

<strong>orthodontic</strong> adhesive. Dent Mater J 2007;26:45-51.<br />

13. Signorelli MD, Kao E, Ngan PW, Gladwin MA. Comparison of<br />

<strong>bond</strong> <strong>strength</strong> between <strong>orthodontic</strong> brackets <strong>bond</strong>ed with halogen<br />

and plasma arc curing lights: an in-<strong>vitro</strong> and in-vivo study. Am<br />

J Orthod Dentofacial Orthop 2006;129:277-82.<br />

14. Sunna S, Rock WP. An ex vivo investigation into the <strong>bond</strong><br />

<strong>strength</strong> of <strong>orthodontic</strong> brackets and adhesive systems. Br J Orthod<br />

1999;26:47-50.<br />

15. Tecco S, Traini T, Caputi S, Festa F, de Luca V, D’Attilio M. A<br />

new one-step dental flowable composite for <strong>orthodontic</strong> use: an<br />

in-<strong>vitro</strong> <strong>bond</strong> <strong>strength</strong> study. Angle Orthod 2005;75:672-7.<br />

16. Usxümez S, Büyükyilmaz T, Karaman AI. Effect of light-emitting<br />

diode on <strong>bond</strong> <strong>strength</strong> of <strong>orthodontic</strong> brackets. Angle Orthod<br />

2004;74:259-63.<br />

17. Uysal T, Basciftci FA, Usxümez S, Sari Z, Buyukerkmen A. Can<br />

previously bleached teeth be <strong>bond</strong>ed safely? Am J Orthod Dentofacial<br />

Orthop 2003;123:628-32.<br />

18. Vicente A, Bravo LA, Romero M, Ortiz AJ, Canteras M.<br />

Adhesion promoters: effects on the <strong>bond</strong> <strong>strength</strong> of brackets.<br />

Am J Dent 2005;18:323-6.<br />

19. Vicente A, Bravo LA, Romero M, Ortız AJ, Canteras M. Shear<br />

<strong>bond</strong> <strong>strength</strong> of <strong>orthodontic</strong> brackets <strong>bond</strong>ed with self-etching<br />

primers. Am J Dent 2005;18:256-60.<br />

20. Vicente A, Bravo LA, Romero M. <strong>In</strong>fluence of a nonrinse conditioner<br />

on the <strong>bond</strong> <strong>strength</strong> of brackets <strong>bond</strong>ed with a resin<br />

adhesive system. Angle Orthod 2005;75:400-5.<br />

21. Vicente A, Bravo LA, Romero M, Ortiz AJ, Canteras M.<br />

A comparison of the shear <strong>bond</strong> <strong>strength</strong> of a resin cement<br />

and two <strong>orthodontic</strong> resin adhesive systems. Angle Orthod<br />

2005;75:109-13.<br />

22. Vicente A, Navarro R, Mena A, Bravo LA. Effect of surface treatments<br />

on the <strong>bond</strong> <strong>strength</strong> of brackets <strong>bond</strong>ed with a compomer.<br />

Am J Dent 2006;19:271-4.<br />

23. Vicente A, Bravo LA. Direct <strong>bond</strong>ing with precoated brackets and<br />

self-etching primers. Am J Dent 2006;19:241-4.<br />

24. Wendl B, Droschl H. A comparative in-<strong>vitro</strong> study of the <strong>strength</strong><br />

of directly <strong>bond</strong>ed brackets using different curing techniques.<br />

Eur J Orthod 2004;26:535-44.


622.e2 Finnema et al American Journal of Orthodontics and Dentofacial Orthopedics<br />

May 2010<br />

Appendix table. Overview of the experimental conditions and outcomes of the studies in the meta-analysis<br />

Reference<br />

number of<br />

study<br />

Number<br />

per<br />

group<br />

Thymol<br />

storage<br />

Fluor-free<br />

cleaning<br />

Mesh<br />

base<br />

Phosphoric<br />

acid<br />

etch<br />

Etch<br />

time<br />

$30 s<br />

Polymerization<br />

time (s)<br />

1 20 N N Y Y Y 40 Y<br />

1 20 N N Y N N 40 Y<br />

1 20 N N Y N N 40 Y<br />

1 20 N N Y N Y 40 Y<br />

2 9 Y Y Y Y N 30 Y<br />

2 9 Y Y Y Y N 4 Y<br />

2 9 Y Y Y Y N 50 Y<br />

2 9 Y Y Y Y N 4 Y<br />

2 9 Y Y Y N Y 30 Y<br />

2 9 Y Y Y N Y 4 Y<br />

2 9 Y Y Y N Y 50 Y<br />

2 9 Y Y Y N Y 4 Y<br />

3 10 Y Y Y Y Y 40 Y<br />

3 10 Y Y Y Y Y 40 Y<br />

3 10 Y Y Y Y Y 40 Y<br />

4 15 N N Y Y Y 6 Y<br />

4 15 N N Y Y Y 2 Y<br />

4 15 N N Y Y Y 6 Y<br />

4 15 N N Y Y Y 2 Y<br />

4 15 N N Y Y Y 20 Y<br />

5 10 N N Y Y N 60 Y<br />

6 10 N N Y Y Y 20 Y<br />

6 10 N N Y Y Y 20 Y<br />

6 10 N N Y Y Y 20 N<br />

6 10 N N Y Y Y 20 N<br />

7 20 N N Y Y N 20 Y<br />

8 10 Y Y N Y Y 40 Y<br />

8 10 Y Y N N N 40 Y<br />

8 10 Y Y N N N 40 Y<br />

9 20 N N N Y Y 40 Y<br />

10 15 N N N Y Y 40 Y<br />

10 15 N N N Y Y 40 Y<br />

11 40 Y Y Y Y Y 40 Y<br />

12 35 Y Y Y Y Y 30 Y<br />

12 35 Y Y Y N Y 30 Y<br />

13 15 Y N Y Y Y 20 Y<br />

13 15 Y N Y Y Y 20 Y<br />

13 15 Y N Y Y Y 6 Y<br />

13 15 Y N Y Y Y 6 Y<br />

14 10 N N Y Y Y 20 Y<br />

14 10 N N N Y Y 20 Y<br />

14 10 N N Y Y Y 20 Y<br />

15 15 Y Y Y Y Y 40 Y<br />

16 20 N Y Y Y Y 40 Y<br />

16 20 N Y Y Y Y 10 Y<br />

16 20 N Y Y Y Y 20 Y<br />

16 20 N Y Y Y Y 40 Y<br />

17 20 N Y Y Y Y 20 Y<br />

18 25 Y N Y Y Y 20 Y<br />

19 25 Y N Y N N 20 Y<br />

20 15 Y N Y N N 20 Y<br />

21 25 Y N Y Y Y 30 Y<br />

22 15 Y N Y Y Y 40 Y<br />

22 15 Y N Y N N 40 Y<br />

23 15 Y N Y Y Y 20 Y<br />

23 15 Y N Y N N 20 Y<br />

24 5 N Y Y Y Y 40 Y<br />

24 5 N Y Y Y Y 10 Y<br />

24 5 N Y Y Y Y 2 Y<br />

24 5 N Y Y Y Y 3 Y<br />

24 5 N Y Y Y Y 24 Y<br />

24 5 N Y Y N N 40 N<br />

24 5 N Y Y N N 10 N<br />

24 5 N Y Y N N 6 N<br />

24 5 N Y Y N N 24 N<br />

Light-cured<br />

composite<br />

*On bracket-adhesive interface; †all adhesive remained on enamel; Y, yes; N, no; ?, only mean ARI value given; NR, not reported; SEM, standard<br />

error of the mean.


American Journal of Orthodontics and Dentofacial Orthopedics Finnema et al 622.e3<br />

Volume 137, Number 5<br />

Appendix table. (Continued)<br />

Halogen<br />

light<br />

Water<br />

storage<br />

Storage<br />

time (h) Thermocycling<br />

Crosshead speed<br />

(mm/min)<br />

Force<br />

location*<br />

Shear<br />

blade<br />

ARI†<br />

(%)<br />

Bond <strong>strength</strong><br />

(MPa) SEM<br />

Y Y 24 N 0.5 Y Y 85 13.10 0.69<br />

Y Y 24 N 0.5 Y Y 75 16.00 1.01<br />

Y Y 24 N 0.5 Y Y 0 11.50 0.74<br />

Y Y 24 N 0.5 Y Y 0 9.90 0.89<br />

Y N 72 Y 0.5 Y Y 11 24.40 1.84<br />

N N 72 Y 0.5 Y Y 11 18.21 1.34<br />

Y N 72 Y 0.5 Y Y 11 27.76 1.03<br />

N N 72 Y 0.5 Y Y 11 25.09 1.24<br />

Y N 72 Y 0.5 Y Y 0 23.44 1.94<br />

N N 72 Y 0.5 Y Y 0 21.23 1.37<br />

Y N 72 Y 0.5 Y Y 0 22.89 1.19<br />

N N 72 Y 0.5 Y Y 0 16.24 1.05<br />

Y Y 1 N 1.0 Y Y 22 14.05 1.03<br />

Y Y 24 N 1.0 Y Y 30 20.94 0.79<br />

Y Y 0 Y 1.0 Y Y 10 18.03 0.84<br />

N Y 48 N 1.0 N Y 0 12.09 0.89<br />

N Y 48 N 1.0 N Y 0 7.66 0.41<br />

Y Y 48 N 1.0 N Y 7 11.24 0.92<br />

Y Y 48 N 1.0 N Y 0 6.41 0.57<br />

Y Y 48 N 1.0 N Y 7 11.85 1.13<br />

Y Y 24 Y 0.5 Y Y NR 19.60 3.04<br />

Y Y 24 N 0.5 N Y NR 11.35 0.93<br />

Y Y 672 N 0.5 N Y NR 9.19 1.20<br />

Y Y 24 N 0.5 N Y NR 11.58 0.95<br />

Y Y 672 N 0.5 N Y NR 5.39 0.75<br />

N Y 40 N 0.1 N Y 90 15.20 1.01<br />

Y Y 24 N 0.5 N N 80 6.43 0.59<br />

Y Y 24 N 0.5 N N 50 4.61 0.28<br />

Y Y 24 N 0.5 N N 0 4.74 0.4<br />

Y Y 72 N 3.0 N N NR 13.03 0.54<br />

Y Y 72 N 3.0 N N NR 14.45 0.61<br />

Y Y 72 N 3.0 N N NR 14.17 0.54<br />

Y Y 72 Y 2.0 N N 17.5 14.82 0.41<br />

Y Y 360 Y 5.0 Y Y 29 18.10 0.93<br />

Y Y 360 Y 5.0 Y Y 29 12.70 0.56<br />

Y Y 0.5 N 1.0 N N ? 13.6 0.98<br />

Y Y 1 Y 1.0 N N ? 16.1 0.93<br />

N Y 0.5 N 1.0 N N ? 14.2 1.19<br />

N Y 1 Y 1.0 N N ? 18.2 1.19<br />

Y Y 24 N 5.0 N N 0 21.56 1.05<br />

Y Y 24 N 5.0 N N 0 22.32 0.51<br />

Y Y 24 N 5.0 N N 0 17.82 0.5<br />

Y Y 72 N 1.0 N N 65 23.23 1.34<br />

Y Y 24 N 0.5 Y Y 85 13.10 0.69<br />

N Y 24 N 0.5 Y Y 50 9.10 0.69<br />

N Y 24 N 0.5 Y Y 55 13.90 1.07<br />

N Y 24 N 0.5 Y Y 55 12.70 1.16<br />

Y Y 24 N 0.5 Y Y 80 12.90 0.76<br />

Y Y 24 N 1.0 N Y 0 12.27 1.00<br />

Y Y 24 N 1.0 N Y 0 12.20 0.85<br />

Y Y 24 N 1.0 N Y 0 10.45 1.06<br />

Y Y 24 N 1.0 N Y 0 14.93 0.95<br />

Y Y 24 N 1.0 N Y 0 7.19 0.73<br />

Y Y 24 N 1.0 N Y 0 8.34 0.51<br />

Y Y 24 N 1.0 N Y 0 14.13 2.27<br />

Y Y 24 N 1.0 N Y 0 14.28 2.74<br />

Y Y 1 N 0.5 N Y 0 9.50 0.72<br />

Y Y 1 N 0.5 N Y 0 5.80 0.58<br />

N Y 1 N 0.5 N Y 0 3.50 0.49<br />

N Y 1 N 0.5 N Y 0 5.20 0.31<br />

N Y 1 N 0.5 N Y 0 5.80 0.72<br />

Y Y 1 N 0.5 N Y 0 8.20 0.80<br />

Y Y 1 N 0.5 N Y 0 7.50 0.63<br />

N Y 1 N 0.5 N Y 0 9.40 0.85<br />

N Y 1 N 0.5 N Y 0 8.00 0.67

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!