Aryllithium and Hetaryllithium Compounds

Aryllithium and Hetaryllithium Compounds Aryllithium and Hetaryllithium Compounds

thieme.chemistry.com
from thieme.chemistry.com More from this publisher
02.03.2013 Views

8.1.14 Product Subclass 14: Aryllithium and Hetaryllithium Compounds G. W. Gribble General Introduction Previously published information regarding this product class can be found in Houben– Weyl, Vol. 13/1, pp 89–253, and Vol. E 19d, pp 369–447. Aryllithium and hetaryllithium compounds are immensely important in organic synthesis and have surpassed Grignard reagents in this regard. Numerous reviews describe the generation and reactions of aryllithium and hetaryllithium compounds formed via both halogen–lithium exchange and directed lithiation methodologies. [1–13] These accounts offer the reader access to the early literature. An outstanding summary of the work of Gilman, who was the pioneer in organolithium chemistry, is given by Eisch. [14] Likewise, the seminal work of Wittig, Parham, Beak, Snieckus, Meyers, Bailey, Wakefield, Comins, and others is featured in relevant earlier reviews. [15–25] Several important studies discuss the theoretical and mechanistic aspects of halogen–lithium exchange, [22,26] directed lithiation, [27–32] and direct deprotonation [28,32–34] processes. A review of the role of N,N,N¢,N¢-tetramethylethylenediamine, which is generally thought to be an important additive for lithium, has appeared, [35] and a new ligand for lithium, N,N,N¢,N¢¢,N¢¢-pentamethyldipropylenetriamine, is purported to be superior to N,N,N¢,N¢-tetramethylethylenediamine. [36] Solvation of alkyllithium compounds and lithium amide bases is often a key factor in the generation of aryllithium and hetaryllithium compounds. [16,37] Like aryllithium compounds, hetaryllithium compounds can be generated by halogen–lithium exchange and directed lithiation. However, the inherent inductive electron-withdrawing ability of heteroatoms allows for the facile direct deprotonation of adjacent protons without the assistance of a directing group per se. Owing to their air and water sensitivity, aryllithium and hetaryllithium compounds are never isolated when used in synthesis. All solvents and glassware must be dried and all reactions should be performed under nitrogen or argon. Since alkyllithium compounds degrade during storage, they must be standardized prior to use. This is especially true for tert-butyllithium, which, for example, has a half-life of only 1 hour at 0 8C in diethyl ether. [38] The commercial availability of several lithium amide bases of good quality obviates the need to generate these in situ from alkyllithium compounds and amines. Synthesis of Product Subclass 14 8.1.14.1 Method 1: Aryllithium Compounds by Halogen–Lithium Exchange Aryl halides undergo halogen–lithium exchange with lithium metal or, more commonly, with an alkyllithium compound. This interchange reaction follows the rate: I > Br >> Cl >> F. Modern versions of this reaction employ alkyllithium compounds exclusively, owing to their commercial availability and ease of handling. The “back reactions” such as alkylation or elimination of the byproduct alkyl halide can be circumvented. For example, halogen–lithium exchange reactions using tert-butyllithium should employ 2 equivalents of the lithium reagent, wherein the second equivalent destroys the tert-butyl halide 357 for references see p 414 G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG

8.1.14 Product Subclass 14:<br />

<strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong><br />

G. W. Gribble<br />

General Introduction<br />

Previously published information regarding this product class can be found in Houben–<br />

Weyl, Vol. 13/1, pp 89–253, <strong>and</strong> Vol. E 19d, pp 369–447.<br />

<strong>Aryllithium</strong> <strong>and</strong> hetaryllithium compounds are immensely important in organic synthesis<br />

<strong>and</strong> have surpassed Grignard reagents in this regard. Numerous reviews describe<br />

the generation <strong>and</strong> reactions of aryllithium <strong>and</strong> hetaryllithium compounds formed via<br />

both halogen–lithium exchange <strong>and</strong> directed lithiation methodologies. [1–13] These accounts<br />

offer the reader access to the early literature. An outst<strong>and</strong>ing summary of the<br />

work of Gilman, who was the pioneer in organolithium chemistry, is given by Eisch. [14]<br />

Likewise, the seminal work of Wittig, Parham, Beak, Snieckus, Meyers, Bailey, Wakefield,<br />

Comins, <strong>and</strong> others is featured in relevant earlier reviews. [15–25] Several important studies<br />

discuss the theoretical <strong>and</strong> mechanistic aspects of halogen–lithium exchange, [22,26] directed<br />

lithiation, [27–32] <strong>and</strong> direct deprotonation [28,32–34] processes. A review of the role of<br />

N,N,N¢,N¢-tetramethylethylenediamine, which is generally thought to be an important<br />

additive for lithium, has appeared, [35] <strong>and</strong> a new lig<strong>and</strong> for lithium, N,N,N¢,N¢¢,N¢¢-pentamethyldipropylenetriamine,<br />

is purported to be superior to N,N,N¢,N¢-tetramethylethylenediamine.<br />

[36] Solvation of alkyllithium compounds <strong>and</strong> lithium amide bases is often a<br />

key factor in the generation of aryllithium <strong>and</strong> hetaryllithium compounds. [16,37] Like aryllithium<br />

compounds, hetaryllithium compounds can be generated by halogen–lithium exchange<br />

<strong>and</strong> directed lithiation. However, the inherent inductive electron-withdrawing<br />

ability of heteroatoms allows for the facile direct deprotonation of adjacent protons without<br />

the assistance of a directing group per se.<br />

Owing to their air <strong>and</strong> water sensitivity, aryllithium <strong>and</strong> hetaryllithium compounds<br />

are never isolated when used in synthesis. All solvents <strong>and</strong> glassware must be dried <strong>and</strong><br />

all reactions should be performed under nitrogen or argon. Since alkyllithium compounds<br />

degrade during storage, they must be st<strong>and</strong>ardized prior to use. This is especially<br />

true for tert-butyllithium, which, for example, has a half-life of only 1 hour at 0 8C in<br />

diethyl ether. [38] The commercial availability of several lithium amide bases of good<br />

quality obviates the need to generate these in situ from alkyllithium compounds <strong>and</strong><br />

amines.<br />

Synthesis of Product Subclass 14<br />

8.1.14.1 Method 1:<br />

<strong>Aryllithium</strong> <strong>Compounds</strong> by Halogen–Lithium Exchange<br />

Aryl halides undergo halogen–lithium exchange with lithium metal or, more commonly,<br />

with an alkyllithium compound. This interchange reaction follows the rate: I > Br >> Cl<br />

>> F. Modern versions of this reaction employ alkyllithium compounds exclusively,<br />

owing to their commercial availability <strong>and</strong> ease of h<strong>and</strong>ling. The “back reactions” such<br />

as alkylation or elimination of the byproduct alkyl halide can be circumvented. For example,<br />

halogen–lithium exchange reactions using tert-butyllithium should employ 2 equivalents<br />

of the lithium reagent, wherein the second equivalent destroys the tert-butyl halide<br />

357<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


358 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

bby an elimination reaction. Ether solvents are typically used, provided one remembers<br />

that tetrahydrofuran reacts with alkyllithium compounds at or above room temperature.<br />

8.1.14.1.1 Variation 1:<br />

From Aryl Fluorides<br />

The strength of the C-F bond has precluded fluorine–lithium exchange until recently.<br />

Thus, reaction of fluoroarenes 1 with lithium <strong>and</strong> catalytic naphthalene affords the corresponding<br />

aryllithium, which, upon treatment with electrophiles, provides the corresponding<br />

products 2 (Scheme 1). [39]<br />

Scheme 1 Fluorine–Lithium Exchange Induced by Lithium Metal <strong>and</strong> Naphthalene [39]<br />

R 1<br />

F<br />

1. Li, 7% naphthalene, THF, −30 oC 2. E + , −30 to 0 oC 3. HCl, H2O 31−72%<br />

1 2<br />

R 1 = H, 2-Me, 3-Me, 4-Me, 4-OMe, 4-F; E = CH(OH)iPr, C(OH)Et 2, CH(OH)Ph, TMS, C(OH)MePh, 1-hydroxycyclohexyl<br />

(4-Methoxyphenyl)phenylmethanol [2,R 1 = 4-OMe; X = CH(OH)Ph]; Typical Procedure: [39]<br />

To a green suspension of Li powder (70 mg, 10.0 mmol) <strong>and</strong> naphthalene (18 mg,<br />

0.14 mmol) in THF (5 mL), under N 2, was added dropwise a soln of 1-fluoro-4-methoxybenzene<br />

(126 mg, 1.0 mmol) in THF (2 mL) over ca. 20 min at –308C. After 15 min of stirring at<br />

the same temperature, PhCHO (127 mg, 1.2 mmol) was added <strong>and</strong> the mixture was stirred<br />

for 3 h, allowing the temperature to rise to 08C. The resulting mixture was hydrolyzed<br />

with H 2O (10 mL), acidified with 2 M HCl, <strong>and</strong> extracted with EtOAc (3 ” 20 mL). The organic<br />

layers were successively washed with aq NaHCO 3 (5 mL), H 2O (5 mL), <strong>and</strong> sat. aq NaCl<br />

(5 mL), <strong>and</strong> then dried (Na 2SO 4). After concentration of the solvents (15 Torr) the resulting<br />

residue was purified by column chromatography (silica gel, hexane/EtOAc) to yield the<br />

title compound; yield: 131 mg (61%).<br />

8.1.14.1.2 Variation 2:<br />

From Aryl Chlorides<br />

Aryl chlorides are reluctant to undergo chlorine–lithium exchange under the usual conditions<br />

with alkyllithium compounds, but this reaction is accomplished under Yus conditions.<br />

[40] Alkyllithium compounds can effect chlorine–lithium exchange if the ortho position<br />

is blocked, so as to prevent ortho-lithiation, <strong>and</strong> several examples are known. For<br />

example, hexalithiobenzene (4) may be synthesized from hexachlorobenzene (3) (Scheme<br />

2). [41] Derivatization of 4 with deuterium oxide gives benzene-d 6 (5). The lithio species 4 is<br />

isolable as a colorless solid that undergoes a violent reaction when exposed to air.<br />

Scheme 2 Synthesis of Hexalithiobenzene [41]<br />

Cl<br />

Cl<br />

Cl<br />

Cl<br />

3<br />

Cl<br />

Cl<br />

t-BuLi (excess)<br />

pentane, dioxane<br />

−125 oC 53%<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG<br />

Li<br />

Li<br />

Li<br />

Li<br />

4<br />

R 1<br />

Li<br />

Li<br />

E<br />

D 2O<br />

D<br />

D<br />

D<br />

D<br />

5<br />

D<br />

D


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 359<br />

bBenzene-d 6 (5) via Hexalithiobenzene (4): [41]<br />

Hexachlorobenzene (3; 1.0 g, 3.5 mmol) was slowly added to a slurry consisting of pentane<br />

(40 mL), 1.7 M t-BuLi (49.6 mL, 84 mmol), <strong>and</strong> 1,4-dioxane (28.7 mL, 337 mmol), maintained<br />

at –1258C. The mixture was stirred for 24 h (the optimum reaction time) <strong>and</strong> then 4<br />

(55% yield) was derivatized by the addition of excess D 2O <strong>and</strong> the reaction temperature<br />

was slowly raised to rt. The deuteration products were analyzed by GC/MS. Benzene-d 6<br />

(5; CAUTION: carcinogen) was identified by 13 C <strong>and</strong> 1 H NMR <strong>and</strong> by HRMS. Other products<br />

were polymeric species from cross-linking <strong>and</strong> coupling reactions.<br />

8.1.14.1.3 Variation 3:<br />

From Aryl Bromides<br />

Given their excellent reactivity <strong>and</strong> availability, aryl bromides are the aryl halide of<br />

choice for most halogen–lithium exchange routes to aryllithium compounds. The isolation<br />

<strong>and</strong> physical characterization, including X-ray structures, of aryllithium compounds<br />

6–8 has utilized bromine–lithium exchange (Scheme 3). [42–44]<br />

Scheme 3 Isolable <strong>Aryllithium</strong> <strong>Compounds</strong> via Bromine–Lithium Exchange [42–44]<br />

Pr i<br />

Li<br />

Pri 6 (tetrameric)<br />

Pr i<br />

Mes<br />

Li<br />

7 (dimeric)<br />

Mes<br />

Ph<br />

Li<br />

Ph<br />

8 (monomeric)<br />

Bromine–lithium exchange may be employed on polybrominated substrates to achieve<br />

polylithiation or excellent selective monolithiation. The reagents of choice are typically<br />

butyllithium (1 equiv per bromine) or tert-butyllithium (2 equiv per bromine) <strong>and</strong> aryllithium<br />

compounds 9 are synthesized in this fashion (Table 1). [45–50] The conditions used for<br />

various quenching reactions are shown in Table 1, with the specific example shown for<br />

the synthesis of 1,4-bis(trimethylsilyl)benzene (10). [46]<br />

Ph<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


360 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

bTable 1 Selected <strong>Aryllithium</strong> <strong>Compounds</strong> via Bromine–Lithium Exchange <strong>and</strong><br />

Conditions for Subsequent Quenching [45–50]<br />

R 5<br />

R 4<br />

Br<br />

R 3<br />

R 1<br />

R 2<br />

R 6 Li<br />

R 5<br />

R 4<br />

Li<br />

R3 9<br />

R 1<br />

R 2<br />

TMSCl, THF, −78 o C to rt<br />

R 1 = R 2 = R 4 = R 5 = H; R 3 = Li<br />

TMS<br />

TMS<br />

10<br />

R 1 R 2 R 3 R 4 R 5 Conditions Yield (%) a Ref<br />

Br H H H H BuLi, THF/Et2O, –1108C, b [45]<br />

30 min 95<br />

H Br H H H t-BuLi, THF/pentane, –788C, c [46]<br />

30 min 90<br />

H H Br H H t-BuLi, Et2O/pentane, –788C, c [46]<br />

2 h 86<br />

H Br H Br H BuLi, Et2O/hexane, –788C, d [47]<br />

1.5 h 80<br />

OMe Br H Br H BuLi, pentane/hexane, –208C, e [48]<br />

25 min 87<br />

H H F H H t-BuLi, THF/pentane, –788C, c [46]<br />

30 min 98<br />

H Li H H H t-BuLi, THF/pentane, –788C, c [46]<br />

1 h 95<br />

H H Li H H t-BuLi, THF/pentane, –788C, c [46]<br />

1 h 99<br />

Li F F F F BuLi, Et2O/hexane, –788C, f [49]<br />

30 min 46<br />

OMe Li H Br H BuLi, pentane/hexane, –208C, e [48]<br />

25 min 91<br />

Br Br Li Cl Cl BuLi, toluene, –788C, g [50]<br />

4.5 h 55<br />

a Yields refer to products, e.g. 10, after quenching with an electrophile.<br />

b Quenching with HCl.<br />

c Quenching with TMSCl.<br />

d Quenching with a perfluoroalkyl ether ester.<br />

e Quenching with B(OMe)3.<br />

f Quenching with CF3CO2Me. g Quenching with MeOH.<br />

(2,4,6-Triphenylphenyl)lithium–Bis(diethyl ether) (8); Typical Procedure: [43]<br />

1-Bromo-2,4,6-triphenylbenzene (7.7 g, 20 mmol) in Et 2O (30 mL) <strong>and</strong> hexane (5 mL) was<br />

cooled in an ice bath. With vigorous stirring, 1.6 M BuLi in hexane (12.5 mL, 20 mmol)<br />

was added dropwise. The soln, which was initially colorless, became yellow during the<br />

addition. The ice bath was then removed <strong>and</strong> the soln was stirred for a further 2 h. The<br />

solvent was removed under reduced pressure until a precipitate appeared. The soln was<br />

then warmed to redissolve the pale yellow precipitate. Overnight cooling in a –208C freezer<br />

gave the product as pale yellow crystals; yield: 8.2 g (87%); mp 72–74 8C.<br />

1,4-Bis(trimethylsilyl)benzene (10): [46]<br />

1,4-Dilithiobenzene (9,R 1 =R 2 =R 4 =R 5 =H;R 3 = Li):<br />

To a stirred 2.1 M soln of t-BuLi in pentane (2.0 mL, 4.2 mmol) in THF (4.0 mL) was added<br />

1,4-dibromobenzene (0.24 g, 1.0 mmol) in THF (1 mL) at –788C via cannula. The ensuing<br />

reaction soln was stirred at –788C for 1 h, <strong>and</strong> then used in subsequent reactions..<br />

1,4-Bis(trimethylsilyl)benzene (10):<br />

TMSCl (0.3 mL, 2.2 mmol) was added at –788C to a soln of 9. The mixture was stirred at<br />

–78 8C for 5 min <strong>and</strong> allowed to warm to rt <strong>and</strong> stirred overnight. H 2O (10 mL) was added<br />

<strong>and</strong> the organic layer was separated. The aqueous portion was extracted with Et 2O. The<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 361<br />

bcombined organic layers were washed with brine <strong>and</strong> dried (MgSO 4). Filtration <strong>and</strong> removal<br />

of the solvent under reduced pressure gave the product as colorless flakes; yield: 0.22 g<br />

(99%); mp 93–95 8C.<br />

8.1.14.1.4 Variation 4:<br />

From Aryl Iodides<br />

Aryl iodides undergo iodine–lithium exchange rapidly. A drawback to the use of aryl iodides<br />

in organic synthesis is their relative inaccessibility <strong>and</strong> occasional instability. Nonetheless,<br />

many important iodine–lithium exchange reactions have been described, <strong>and</strong> the<br />

study of these reactions supports the intermediacy of iodine “ate” complexes in the iodine–lithium<br />

exchange reaction. [51–53] Some representative reactions are illustrated in<br />

Scheme 4, e.g. to give aryllithium compound 11.<br />

Scheme 4 Selected <strong>Aryllithium</strong> <strong>Compounds</strong> via Iodine–Lithium Exchange [42,46,54]<br />

I<br />

I<br />

I<br />

Mes Mes<br />

I<br />

Ph Ph<br />

t-BuLi (2 equiv), THF<br />

−78 oC BuLi, hexane, rt<br />

80%<br />

BuLi, hexane, rt<br />

73%<br />

Li<br />

I<br />

TMSCl<br />

−78 oC 78%<br />

Li<br />

Mes Mes<br />

Li<br />

Ph Ph<br />

(2,6-Diphenylphenyl)lithium–Bis(diethyl ether) (11); Typical Procedure: [54]<br />

To a suspension of 1-iodo-2,6-diphenylbenzene (30 g, 86 mmol) in degassed hexane<br />

(150 mL) was added 1.6 M BuLi in hexanes (60 mL, 96 mmol) via syringe at rt over a period<br />

of 10 min. The inert N 2 atmosphere was rigorously maintained throughout the procedure.<br />

The soln was stirred for 24 h, after which it was cooled to –788C for 3 h <strong>and</strong> filtered. The<br />

remaining colorless powder was washed with another portion of degassed hexane<br />

(150 mL). The fine crude product was then dried under reduced pressure <strong>and</strong> extracted<br />

(Et 2O). Cooling the soln to –258C afforded colorless rod-shaped crystals; yield: 24.2 g<br />

(73%); X-ray-quality crystals were grown from a sat. Et 2O soln at rt, undisturbed on the<br />

benchtop for 2 d; mp 1818C.<br />

8.1.14.2 Method 2:<br />

<strong>Aryllithium</strong> <strong>Compounds</strong> by Directed ortho-Lithiation<br />

Lithiation of an unsubstituted arene ring is normally a very slow process <strong>and</strong> is of no synthetic<br />

use. Calculations indicate that “it is less endothermic to remove a proton from<br />

phenyllithium than from benzene!” [55] However, if the arene contains a substituent with<br />

Lewis base character, which can “direct” an alkyllithium to a proximate proton, then lithiation<br />

is possible (Scheme 5). The resulting lithiated arene 12 is stabilized by chelation<br />

(e.g., Z = amide, alkylamine) <strong>and</strong>/or inductive stabilization (e.g., Z = alkoxy, halogen).<br />

11<br />

TMS<br />

I<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


362 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

bDirected ortho-lithiation is an exceedingly powerful tactic in organic synthesis <strong>and</strong> is<br />

widely practiced, with excellent results. [8,11,13,16,19]<br />

Scheme 5 Directed ortho-Lithiation [8,11,13,16,19]<br />

Z<br />

•<br />

H<br />

R 1 Li<br />

Z<br />

R<br />

H<br />

1<br />

Li<br />

Numerous competition experiments reveal the following decreasing directing abilities:<br />

OCONEt 2,SO 2NMe 2,SO 2NHMe, CONEt 2, dihydrooxazole, CONHMe, CH 2NMe 2 > OMe ><br />

CH 2CH 2NMe 2, NMe 2,CF 3,F. [11,13,16,19,56–58] These trends vary, depending on the reaction conditions<br />

<strong>and</strong> whether the competition is intermolecular or intramolecular. For example,<br />

whereas methoxy is a poorer directing group than sulfonamide, carboxamide, or dihydrooxazole<br />

when alkyllithium reagents are employed, it is superior to these other directing<br />

groups when ethoxyvinyllithium is used. [59]<br />

8.1.14.2.1 Variation 1:<br />

Amine Directed ortho-Lithiation Groups<br />

Amines are strong Lewis bases <strong>and</strong> were recognized early to be powerful directed lithiation<br />

groups. [11,13,16,20] Reich has used multinuclear NMR to probe the structures of aryllithium<br />

compounds, e.g. 13, with amine side chains (Scheme 6). [60,61] Normally, these lithiated<br />

species are not isolated but treated directly with an electrophile.<br />

− R 1 H<br />

Scheme 6 Lithiation of N,N-Dimethylbenzylamine [61]<br />

Ph NMe2<br />

BuLi, Et2O, hexane<br />

0 oC, then rt, 7 d<br />

87%<br />

A wide variety of benzylamines, aromatic amines, pyridines, <strong>and</strong> other amine-containing<br />

arenes have been lithiated <strong>and</strong> used successfully in synthesis, e.g. 14–17 (Scheme 7). [62–65]<br />

Other amine directing groups, such as dihydrooxazoles <strong>and</strong> imines, are discussed in Section<br />

8.1.14.2.8.<br />

Li<br />

13<br />

NMe2<br />

Scheme 7 Selected Amine-Directed Lithiation Reactions [62–65]<br />

MeN NMe2<br />

NMe 2<br />

BuLi, Et2O, hexane<br />

rt, 22 h<br />

50%<br />

BuLi, TMEDA, pentane, hexane<br />

rt, 2 d<br />

63%<br />

14 (dimer)<br />

NMe 2<br />

Li<br />

MeN NMe2<br />

15 (dimer)<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG<br />

Li<br />

Z<br />

12<br />

Li


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 363<br />

bt-BuLi (1.4 equiv)<br />

cumene, Et2O<br />

−78 oC, 3 h<br />

N Cl N Cl<br />

Li<br />

(MeS) 2<br />

62%<br />

SMe<br />

16<br />

17<br />

N Cl<br />

NMe2 BuLi<br />

hexane, Et2O<br />

NMe2 Li Me2N S NHMe<br />

rt, 48 h<br />

MeNCS<br />

85%<br />

Some in situ methods for the generation of amine directing groups are known, the most<br />

important of which is that developed by Comins, e.g. to give aldehyde 18 (Scheme 8). [25,66–68]<br />

Scheme 8 ortho-Lithiation Directed by Æ-Amino Alkoxides [66–68]<br />

BuLi (3 equiv), THF<br />

−20 o LiO<br />

CHO<br />

N<br />

Li NMe2 C<br />

Me<br />

Me2N NHMe<br />

R<br />

MeI<br />

62−90%<br />

1 R1 R1 R 1 = H, Me, OMe, Cl<br />

1. MeN NH<br />

CHO BuLi (3 equiv), THF<br />

reflux, 12 h<br />

2. MeI<br />

CHO<br />

76%<br />

2-Lithio-N,N-dimethylbenzylamine (13); Typical Procedure: [61]<br />

N,N-Dimethylbenzylamine (2.99 g, 22.1 mmol) <strong>and</strong> Et 2O (20 mL) were added to a dried <strong>and</strong><br />

N 2-flushed 100-mL storage flask equipped with a stopcock <strong>and</strong> a septum. The soln was<br />

cooled to 08C <strong>and</strong> 2.2 M BuLi in hexane (9.6 mL, 21.1 mmol) was added dropwise. The resulting<br />

yellow soln was kept at rt for 7 d, during which time transparent crystals formed.<br />

The supernatant was removed by cannula transfer <strong>and</strong> the crystals were washed with<br />

Et 2O (3 ” 15 mL); yield: 2.71 g (87%). The crystals were used for the preparation of NMR<br />

samples or dissolved in THF to give a stock soln (typically 1.0–1.5 M) used for subsequent<br />

reactions.<br />

Substituted Aryl Aldehydes 18; General Procedure: [68]<br />

To a soln of N,N,N¢-trimethylethylenediamine (0.41 mL, 3.2 mmol) in THF (8 mL) at –208C<br />

was added 2.2 M BuLi in hexane (1.4 mL, 3.1 mmol) dropwise. After 15 min, the aryl aldehyde<br />

(3.0 mmol) was added, the mixture was stirred for 15 min, <strong>and</strong> further BuLi (4 mL,<br />

CHO<br />

18<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


364 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

b9 mmol) was added via syringe. After the mixture was stirred (or placed in a refrigerator)<br />

for the designated time (–208C), the electrophile (18 mmol) was added (–428C). The mixture<br />

was stirred for the designated time, poured into cold stirred 10% HCl, <strong>and</strong> extracted<br />

with Et 2O. The Et 2O extracts were washed with brine, dried (MgSO 4), <strong>and</strong> concentrated to<br />

give the crude product. Purification by preparative layer chromatography (silica gel, acetone/hexane)<br />

gave the desired known aldehydes or lactols; yield: 60–90%.<br />

8.1.14.2.2 Variation 2:<br />

Amide Directed ortho-Lithiation Groups<br />

The seminal work by Beak, [19,57,69–72] Snieckus, [8,11,13,19,73] <strong>and</strong> Gschwend [16,74,75] demonstrates<br />

the importance of the amide directing group in aromatic lithiation. Examples 19,<br />

21, <strong>and</strong> 22 in Scheme 9 are representative. Further reaction of aryllithium compound 19<br />

with an electrophile, e.g. benzaldehyde, gives substituted benzamides such as 20. [73]<br />

Scheme 9 Selected Amide-Directed ortho-Lithiation Reactions [69,73,75]<br />

O NEt2 O NEt 2<br />

BuLi, TMEDA, THF<br />

−78 oC, 20 min<br />

19<br />

Li<br />

E +<br />

10−90%<br />

E = CO 2H, CO 2Me, CONEt 2, CHO, OH, Br, F, TMS, PPh 2, SH, SPh, SeMe, SePh, SnMe 3, CH(OH)Ph<br />

BuLi (2 equiv)<br />

THF, hexane<br />

0 o HN Bu<br />

C, 2 h<br />

N<br />

t<br />

O<br />

O<br />

O Bu t<br />

Cl Cl<br />

21<br />

OLi<br />

Li<br />

(MeS)2<br />

79%<br />

HN<br />

O NEt2<br />

O NEt 2 O NEt2 O NEt2<br />

s-BuLi, TMEDA, THF<br />

−78 oC, 1 h<br />

O<br />

Li<br />

MeI<br />

O<br />

O<br />

97%<br />

O<br />

22<br />

Similar alkyllithium reactions have led to the synthesis <strong>and</strong> subsequent reactions of the<br />

lithiated amides in Scheme 10. [76–80]<br />

Scheme 10 Selected Lithiated Amides [76–80]<br />

Li<br />

O O<br />

N<br />

Ph<br />

OLi<br />

Li<br />

OLi<br />

N<br />

Ph<br />

Li<br />

Cl<br />

O<br />

N<br />

Et<br />

20<br />

Bu t<br />

E<br />

SMe<br />

O OMe<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG<br />

Bu t


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 365<br />

OLi<br />

Bu t N<br />

bLi<br />

Li N Me OLi<br />

Li<br />

Substituted Benzamides, e.g. 20; General Procedure: [73]<br />

To a stirred soln of a N,N-diethylbenzamide (2.1 mmol) in THF (50 mL) under N 2 at –788C<br />

(dry ice/acetone bath) was injected sequentially through a septum inlet TMEDA<br />

(2.2 mmol) <strong>and</strong> s-BuLi (2.2 mmol). The soln was stirred at –788C for 1 h. To this soln, the<br />

electrophile (2.2 mmol) was added <strong>and</strong> the soln was allowed to warm to rt over 8–12 h,<br />

at which time the mixture was treated with sat. aq NH 4Cl soln followed by extraction<br />

with CH 2Cl 2. The organic extract was dried (Na 2SO 4) <strong>and</strong> the solvent was removed under<br />

reduced pressure to afford the crude product. Subsequent flash chromatography of the<br />

crude material followed by distillation or recrystallization afforded the pure product;<br />

yield: 10–90%.<br />

8.1.14.2.3 Variation 3:<br />

Alkoxy Directed ortho-Lithiation Groups<br />

The alkoxy group was one of the first directing groups to be recognized, as both Gilman<br />

<strong>and</strong> Wittig discovered this property of methoxy <strong>and</strong> other aryl ethers. [14,81,82] At least part<br />

of this property arises from the powerful inductive electron-withdrawing effect of oxygen<br />

that greatly acidifies ortho hydrogens. The myriad of natural products that contain methoxy<br />

groups often lend themselves to total synthesis via methoxy directed lithiation. A<br />

sampling of lithiated aryl ethers is shown in Scheme 11 [83–101] <strong>and</strong> an example of their<br />

use in Scheme 12 (e.g., to give 23).<br />

Scheme 11 Selected Lithiated Aryl Ethers <strong>and</strong> Related Oxygen Arenes [83–101]<br />

OMe<br />

OBn<br />

TBDMSO<br />

Li<br />

Li<br />

OMOM<br />

OMe<br />

OTHP<br />

Li<br />

CF3<br />

Li<br />

OMe<br />

O<br />

Cl<br />

O<br />

Li<br />

F 3C<br />

OEt<br />

O<br />

OMe<br />

Li<br />

OEt<br />

Li<br />

Li<br />

CF3<br />

X<br />

KO 2C<br />

OPh<br />

O<br />

Li<br />

OPh<br />

O<br />

OMe<br />

Li<br />

Li<br />

OMe<br />

F<br />

O<br />

O<br />

CF 3<br />

F<br />

O<br />

Li<br />

OMe<br />

Cl<br />

Li<br />

Li<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


366 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

bOMOM<br />

O<br />

O Li<br />

Li<br />

O<br />

O<br />

Me<br />

Et 2N<br />

S<br />

OMe<br />

Scheme 12 Synthesis of 3,5-Dimethoxy-4-methylbenzoic Acid [96]<br />

MeO<br />

CO 2H<br />

OMe<br />

1. t-BuOK, THF, −78 oC 2. BuLi, hexane, −78 oC, 40 min<br />

3. MeI, −78 oC, 1 h<br />

80%<br />

O<br />

MeO<br />

Li<br />

CO 2H<br />

23<br />

OMe<br />

( )<br />

O n OLi<br />

Li<br />

The ortho-lithiation of benzyl alcohols, [102,103] alkoxyphenols, [104] <strong>and</strong> phenol itself [105] has<br />

been described, as has ortho-dilithiation of anisole, [106] 1,2,4,5-tetramethoxybenzene, [107]<br />

diphenyl ether, [108,109] <strong>and</strong> oxygenated derivatives of 1,1¢-bi-2-naphthols. [110–112] The power<br />

of this methodology is illustrated with the facile synthesis of 25 from dilithio compound<br />

24 (Scheme 13). [109]<br />

Scheme 13 Synthesis <strong>and</strong> Reaction of 2,2¢-Dilithiodiphenyl Ether [109]<br />

BuLi (2 equiv)<br />

TMEDA, hexane<br />

rt, 90 min<br />

O O<br />

Extensive theoretical <strong>and</strong> experimental studies have been carried out on the lithiation of<br />

anisole, [113–119] naphthols, [120] <strong>and</strong> 1-methoxynaphthalene. [29] One interesting observation<br />

with the latter compound is that butyllithium affords the 2-lithiated (kinetic) product<br />

whereas tert-butyllithium yields the 8-lithiated (thermodynamic) product. [29] Likewise,<br />

the rate of anisole lithiation is dramatically affected by alkyllithium <strong>and</strong> N,N,N¢,N¢-tetramethylethylenediamine<br />

concentrations. [114–117]<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG<br />

Li Li<br />

24<br />

CO 2Et<br />

N<br />

91%<br />

HO<br />

n = 2−7<br />

O<br />

25<br />

N


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 367<br />

b3,5-Dimethoxy-4-methylbenzoic Acid (23); Typical Procedure: [96]<br />

CAUTION: Inhalation, ingestion, or skin absorption of iodomethane can be fatal.<br />

To a stirred soln of t-BuOK (0.246 g, 2.19 mmol) in THF (5 mL) was added a soln of 3,5-dimethoxybenzoic<br />

acid (0.100 g, 0.55 mmol) in THF (5 mL) at –788C under argon, followed<br />

by the addition of 1.6 M BuLi in hexanes (1.37 mL, 21.9 mmol). After stirring for 40 min<br />

at –788C, MeI (70 ìL, 1.10 mmol) was added <strong>and</strong> the mixture was stirred for 1 h (–788C)<br />

<strong>and</strong> was then allowed to warm to rt. It was quenched with aq NH 4Cl (3 mL) <strong>and</strong> washed<br />

with Et 2O (5 mL). The aqueous layer was acidified with 2 M HCl. The colorless precipitate<br />

obtained was extracted with Et 2O (2 ” 5 mL) <strong>and</strong> dried (Na 2SO 4). The solvent was removed<br />

under reduced pressure <strong>and</strong> the residue was recrystallized (CHCl 3/Et 2O) to give the title<br />

compound as a colorless crystalline solid; yield: 0.086 g (80%); mp 212–2148C.<br />

2,2¢-Dilithiodiphenyl Ether (24); Typical Procedure: [109]<br />

Diphenyl ether (1.7 g, 10 mmol) was placed in a dry, 100-mL round-bottomed flask <strong>and</strong><br />

then flushed with N 2. TMEDA (2.4 g, 20.7 mmol) was added via syringe followed by dry<br />

hexane (10 mL) <strong>and</strong> 1.65 M BuLi in hexane (13 mL, 21.5 mmol). The mixture was stirred<br />

at rt for 90 min or longer before the addition of an electrophile; yield: 89–91%.<br />

8.1.14.2.4 Variation 4:<br />

Halogen Directed ortho-Lithiation Groups<br />

Despite the reputation of halogens as weak Lewis bases, fluorine, chlorine, bromine, <strong>and</strong><br />

even iodine are potent ortho-directing groups. Indeed, the powerful inductive electronwithdrawing<br />

effect of fluorine greatly acidifies the ortho hydrogens in fluorobenzene.<br />

[121,122] Thus, these protons are kinetically more acidic than the para proton by a factor<br />

of 57 000. [121] While the lithiation directing ability of halogens has been known for<br />

many years, the work of Schlosser has clarified, <strong>and</strong> greatly exp<strong>and</strong>ed, the nature <strong>and</strong><br />

utility of the halogen directing ability. [123,124] The major difference between halogen <strong>and</strong><br />

other directing groups is that the former usually requires the use of lithium amide bases<br />

rather than alkyllithium compounds to avoid halogen–lithium exchange, especially with<br />

bromine <strong>and</strong> iodine. Other potential hazards are the often notorious “halogen dance” reaction<br />

[125] <strong>and</strong> aryne formation, which can occur at temperatures above –788C(I>Br>Cl<br />

> F). A selection of lithiated aryl halides is summarized in Table 2. [126–137] The results reveal<br />

that fluorine is most effective at directing ortho-lithiation (e.g., to give 26) <strong>and</strong> chlorine is<br />

slightly better than bromine. Multiple brominated substrates are severely plagued by bromine<br />

scrambling. [134] Such substrates are also prone to aryne formation. [138]<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


368 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

bTable 2 Selected Lithiated Aryl Halides [126–137]<br />

R 5<br />

R 4<br />

H<br />

R 3<br />

R 1<br />

R 2<br />

R 5<br />

R 4<br />

Li<br />

R 3<br />

R 1 R 2 R 3 R 4 R 5 Conditions Yield (%) a Ref<br />

F H H H H BuLi, t-BuOK, THF/hexane, –758C, 3 h 98 [126]<br />

CF 3 H H H H BuLi, t-BuOK, THF/hexane, –758C, 3 h 94 [126]<br />

OMe H H F H BuLi, THF, –758C, 50 h 50 [127]<br />

F H H OMe H BuLi, t-BuOK, THF 85 [127]<br />

F Li F H F t-BuLi (6 equiv), –758C 68 [128]<br />

F H H H F s-BuLi, THF/cyclohexane, –78 8C, 2 h 78 [129]<br />

F Me H H H BuLi, t-BuOK, THF, –758C 60 [130]<br />

F H Me H H BuLi, t-BuOK, THF, –758C 65 [130]<br />

F H H Cl H BuLi, t-BuOK, THF, –758C, 40 min 86 [131]<br />

F Br H Br H LTMP, THF/hexane, –758C, 2 h 82 [131]<br />

Cl H H Br H LTMP, THF/hexane, –758C, b [132]<br />

0.7 h 56<br />

Cl H H H Br LTMP, THF/hexane, –758C, 2 h 94 [132]<br />

Br H H CF 3 H LTMP, THF/hexane, –1008C, 6 h 85 [133]<br />

Br Br H Br F LTMP, THF/hexane, –758C 68 [134]<br />

F Br H H F LDA, THF/hexane, –788C, c [135]<br />

30 min 50<br />

Cl H H H H LTMP, THF, –788C, d [136]<br />

2 h 96<br />

Br H H H Br LDA, THF, –708C, e [137]<br />

30 min 70<br />

a Yield of carbonylation product unless otherwise specified.<br />

b 23% of 2-bromo-5-chlorobenzoic acid is formed.<br />

c Quenching with acetone.<br />

d Quenching with B(OiPr)3.<br />

e Quenching with DMF.<br />

The power of halogen directing groups is evident from the examples in Scheme 14, showing<br />

that nitro groups are compatible with lithium dialkylamide lithiation conditions (see<br />

27) [139] <strong>and</strong> iodine can direct ortho lithiation (<strong>and</strong> survive an aryne pathway) (see 28 <strong>and</strong><br />

29). [140,141] Moreover, the stability of 2-fluoroaryllithium compounds has allowed for a<br />

low-temperature X-ray crystal structure of 1,2,3,4-tetrafluorophenyllithium. [142]<br />

Scheme 14 Examples of Aryl Halide Lithiation [139–141]<br />

F F<br />

NO 2<br />

LiHMDS, THF<br />

−78 oC Li<br />

R 1<br />

R 2<br />

F F<br />

27<br />

NO 2<br />

TMSCl<br />

78%<br />

R 5<br />

R 4<br />

X<br />

R 3<br />

26<br />

R 1<br />

R 2<br />

TMS<br />

F F<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG<br />

NO 2


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 369<br />

bLTMP, THF<br />

−78 o O<br />

I O<br />

I<br />

C, 15 min I2<br />

O<br />

I<br />

I<br />

LDA (2 equiv)<br />

TMSCI, THF<br />

−75 oC, 30 min<br />

77%<br />

TMS<br />

2,6-Difluorobenzoic Acid (26,R 1 =R 5 =F;R 2 =R 3 =R 4 =H;X=CO 2H); Typical Procedure: [129]<br />

A soln containing 1,3-difluorobenzene (11 g, 0.10 mol) <strong>and</strong> s-BuLi (0.1 mol) in THF<br />

(0.20 mL) <strong>and</strong> cyclohexane (60 mL) was kept for 2 h at –788C before being poured onto an<br />

excess of freshly crushed dry ice. At 258C, 2.0 M HCl in Et 2O (0.12 mol) was added, the volatiles<br />

were evaporated, <strong>and</strong> the residue was dissolved in hot water <strong>and</strong> the soln, after concentration,<br />

was cooled to afford the product as colorless needles; yield: 12.3 g (78%); mp<br />

155–1578C.<br />

2,6-Dibromobenzaldehyde (26,R 1 =R 5 = Br; R 2 =R 3 =R 4 = H; X = CHO); Typical Procedure: [137]<br />

A 2 M soln of LDA in THF (30 mL, 60 mmol) was added dropwise to a soln of 1,3-dibromobenzene<br />

(11.8 g, 50 mmol) in THF (100 mL) at –70 8C. An orange precipitate formed. The<br />

mixture was stirred for 30 min at –758C <strong>and</strong> then DMF (4.4 g, 60 mmol) was added dropwise<br />

while maintaining the temperature at –708C. The purple soln was stirred for 30 min<br />

at –708C <strong>and</strong> then hydrolyzed with dil aq H 2SO 4. The yellow organic phase was separated.<br />

The aqueous phase was extracted with Et 2O (50 mL) <strong>and</strong> the extract was added to the organic<br />

phase. The solvents were concentrated to leave the crude product as a yellow-brown<br />

solid. It was washed with H 2O <strong>and</strong> petroleum ether, <strong>and</strong> recrystallized (cyclohexane,<br />

50 mL) to give pale yellow needles; yield: 9.2 g (70%); mp 89–91 8C.<br />

I<br />

I<br />

29<br />

O<br />

Li<br />

28<br />

TMS<br />

8.1.14.2.5 Variation 5:<br />

Sulfur-Based Directed ortho-Lithiation Groups<br />

A variety of sulfur-based directing groups are known. Among them, sulfonamides, sulfones,<br />

<strong>and</strong> sulfoxides are the most powerful of all directing groups; [5,8,11,13] however, the<br />

oxygen atom of these groups is the actual director of lithiation. The ortho-lithiation of<br />

benzenethiols <strong>and</strong> phenyl thioethers is well known <strong>and</strong> an X-ray crystal structure of<br />

tert-butyl 2-lithiophenyl sulfide has been reported. [143] Examples of sulfur-based lithiation<br />

reactions are shown in Scheme 15. [144–147] Other sulfur-based directing groups are<br />

sulfinamides, [148,149] sulfonamides, [5,150] sulfonates, [151–153] sulfonic acids, [154] <strong>and</strong> thioamides.<br />

[155]<br />

Scheme 15 Selected Sulfur-Based Directed ortho-Lithiation Reactions [144–147]<br />

BuLi<br />

TMEDA, cyclohexane<br />

0 o SH<br />

C to rt, 24 h<br />

SLi<br />

Li<br />

1. S8 2. LiAlH4 84%<br />

85%<br />

SH<br />

O<br />

O<br />

SH<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG<br />

I<br />

I


370 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

SO 2Bu t SO 2Bu t<br />

bBuLi, THF<br />

−78 oC, 30 min<br />

E = D, Me, allyl, CHO, CONHPh, CONEt2, TMS, OH, I, NH2<br />

Li<br />

E +<br />

35−97%<br />

LTMP, THF, Me2SiCl2<br />

0 o O O<br />

O O<br />

S<br />

C<br />

59%<br />

S<br />

Si<br />

Me2 SOBu t SOBu t<br />

BuLi, THF<br />

−78 oC, 1 h<br />

E = D, Me, Et, allyl, CH(OH)Ph, CONEt2, OH, Br, B(OH)2, TMS, SnMe3<br />

Li<br />

E +<br />

41−96%<br />

8.1.14.2.6 Variation 6:<br />

Other Carbonyl Directed ortho-Lithiation Groups<br />

SO 2Bu t<br />

SOBu t<br />

Like amides, other carbonyl groups (carbamates, carboxylates, esters, ureas) can engage in<br />

directed lithiation. The most widely utilized of these groups is the carbamate, usually as a<br />

tert-butoxycarbonylaniline or an O-aryl carbamate. The latter substrates have been extensively<br />

exploited, particularly as an anionic equivalent of the Fries rearrangement. [156–163]<br />

Examples of this transformation <strong>and</strong> the lithiation of tert-butoxycarbonylaniline are illustrated<br />

in Scheme 16. Lithiated carbamate 30 can be trapped with a variety of electrophiles.<br />

[156] Benzylic carbamates also undergo an anionic homo-Fries rearrangement, [164]<br />

variations on the original methodology have been reported, [165] <strong>and</strong> applications to 1,1¢bi-2-naphthols<br />

are known. [166]<br />

Scheme 16 Selected ortho-Lithiation Reactions of Carbamates [156,167]<br />

O<br />

O<br />

NEt 2<br />

s-BuLi, TMEDA<br />

THF, −78 oC, 1 h<br />

t-BuLi (3 equiv)<br />

Et2O, pentane<br />

−10 o NHBoc NHBoc<br />

C, 3 h<br />

Li<br />

O<br />

O NEt2 Li<br />

30<br />

(MeS)2<br />

89%<br />

−78 oC to rt<br />

75%<br />

E<br />

E<br />

OH<br />

NHBoc<br />

SMe<br />

Other carbonyl-based directing groups of note are summarized in Table 3. [168–172] Cyclic<br />

ureas also serve as (weak) directing functionalities. [173] The carboxylic acid (carboxylate)<br />

group is particularly effective at directing ortho-lithiation, [172,174] <strong>and</strong> competition experiments<br />

reveal this group to be intermediate in capacity to direct lithiation. [174] The carboxylate<br />

group is weaker than amides, sulfonamides, carbamates, <strong>and</strong> dihydrooxazole, but<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG<br />

O<br />

NEt 2


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 371<br />

bstronger than methoxy <strong>and</strong> amino groups. Similarly, the N-carboxylate group is an ortholithiation<br />

director. [175,176]<br />

Table 3 Selected Carbonyl-Based DIrected ortho-Lithiation Reactions [168–172]<br />

R 1<br />

O Z<br />

R 1<br />

O Z<br />

O Z<br />

E +<br />

R1 Li E<br />

Z R 1a Conditions E Yield (%) Ref<br />

NHNMe 2 H s-BuLi (2 equiv), THF, –708C, 10 min TMS 68 [168]<br />

NHNMe 2 H s-BuLi (2 equiv), THF, –708C, 10 min SnBu 3 77 [168]<br />

NHOMe H s-BuLi (2.4 equiv), THF, TMEDA,<br />

–208C, 45 min<br />

NHOMe H s-BuLi (2.4 equiv), THF, TMEDA,<br />

–208C, 45 min<br />

Me 91 [169]<br />

(CH 2) 7Me 64 [169]<br />

OCH 2t-Bu 4-Br LDA, THF, B(OiPr) 3 B(OiPr) 2 84 [170]<br />

OCH 2t-Bu 4-OMe LDA, THF, B(OiPr) 3 B(OiPr) 2 70 [170]<br />

NHCONMe 2 4-F BuLi, THF/heptane, 08C, 1.5 h D 88 [171]<br />

NHCONMe 2 4-F BuLi, THF/heptane, 08C, 1.5 h C(OH)Ph 2 78 [171]<br />

OLi H s-BuLi, THF, TMEDA, –908C, 30 min Me 65 [172]<br />

a Locants refer to starting material.<br />

8.1.14.2.7 Variation 7:<br />

Phosphorus Directed ortho-Lithiation Groups<br />

The di-tert-butylphosphoryl functionality is an excellent phosphorus-based directing<br />

group. [177] Inter- <strong>and</strong> intramolecular competition experiments show that di-tert-butylphosphoryl<br />

is superior to methoxy but inferior to diethylcarbamate <strong>and</strong> N,N-diethylamide.<br />

Scheme 17 illustrates the scope of the di-tert-butylphosphoryl directing group in the synthesis<br />

of ortho-substituted di-tert-butyl(phenyl)phosphine oxides 31.<br />

Scheme 17 Selective Di-tert-Butylphosphoryl-Directed ortho-Lithiation Reactions [177]<br />

Bu t<br />

Bu t<br />

P<br />

O<br />

t-BuLi, THF<br />

−78 oC, 80 min<br />

Bu t<br />

P O<br />

E = Me, Et, C(OH)Ph 2, CO 2H, CHO, B(OMe) 2, TMS, PPh 2, Cl, I<br />

Li<br />

E<br />

39−82%<br />

+<br />

Although dialkyl phenyl phosphates can be ortho-lithiated, they undergo facile rearrangement<br />

into dialkyl O-hydroxyphenylphosphonates, even at low temperature, thus precluding<br />

the obtention of ortho-lithiated products. [178–180] However, aryl tetramethylphosphorodiamidates<br />

are ortho-lithiated <strong>and</strong> can be trapped at –1058C to give ortho-substituted<br />

products (Scheme 18). [180] At –788C, O-to-C migration occurs to produce 2-hydroxyarylphosphonic<br />

tetramethyldiamides. Competition experiments reveal that the tetramethylphosphorodiamidate<br />

group is superior to carbamoyl, methoxymethoxy, tert-butylsulfonyl,<br />

<strong>and</strong> N,N-diethylamido groups in ortho-lithiation.<br />

Bu t<br />

Bu t<br />

Bu t<br />

P O<br />

31<br />

E<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


372 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

bScheme 18 ortho-Lithiation of Phenyl Tetramethylphosphorodiamidate [180]<br />

O<br />

O P NMe2 NMe2 s-BuLi, THF<br />

−105 oC, 1 h<br />

E = TMS, SPh, CH(OH)Me, CH(OH)Ar 1 , C(OH)Ph2, COAr 1<br />

O P<br />

O<br />

NMe2 NMe2 Li<br />

E<br />

55−94%<br />

+ , 105 oC O<br />

O P NMe2 NMe2 E<br />

Di-tert-butyl(2-iodophenyl)phosphine Oxide (31, E = I); Typical Procedure: [177]<br />

To a soln of di-tert-butyl(phenyl)phosphine oxide (302 mg, 1.27 mmol) in anhyd THF (8 mL)<br />

at < –708C (dry ice/acetone bath) was added a 1.4 M soln of t-BuLi in pentane (0.99 mL,<br />

1.39 mmol) dropwise <strong>and</strong> the mixture was stirred for 80 min. The yellow suspension was<br />

treated via cannula with a soln of I 2 (354 mg, 1.39 mmol) in THF (5 mL) <strong>and</strong> the resulting<br />

red soln was warmed to rt over 8–10 h. Addition of aq Na 2S 2O 3 <strong>and</strong> st<strong>and</strong>ard workup, followed<br />

by flash chromatography (silica gel, EtOAc/hexane 5:1) afforded the title compound<br />

as a colorless solid; yield: 352 mg (76%); mp 164.5–1658C (Et 2O/CH 2Cl 2).<br />

8.1.14.2.8 Variation 8:<br />

Other Nitrogen Directed ortho-Lithiation Groups<br />

Like amines (Section 8.1.14.2.1), several other nitrogen directing groups are important in<br />

organic synthesis. Of these, the dihydrooxazole group has seen the greatest utility since<br />

its initial discovery as a powerful ortho-directing group; [181,182] a review is available. [183] Simple<br />

imines [184] <strong>and</strong> dihydroimidazoles [185] are directing groups but have not been extensively<br />

used. Some examples of these directing groups are shown in Scheme 19.<br />

Scheme 19 ortho-Lithiation of Other Nitrogen Directing Groups [184,186,187]<br />

F<br />

N<br />

N N Li N<br />

O O<br />

LDA, TMEDA<br />

benzene, rt, 7 h<br />

O O<br />

O<br />

N<br />

Ar 1 = 6-methoxy-2-naphthyl<br />

BuLi, Et2O<br />

hexane<br />

−78 oC, 1 h<br />

F<br />

MeI<br />

98%<br />

Li<br />

O<br />

N<br />

N<br />

N<br />

O O<br />

Ar1CHO 76%<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG<br />

F<br />

Ar 1<br />

O<br />

O


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 373<br />

Cy<br />

bLTMP (2 equiv), THF<br />

−10 o N<br />

N<br />

C, 1 h MeI<br />

Li<br />

63%<br />

OMe<br />

A relatively new ortho-lithiation group is the tetrazole moiety <strong>and</strong> several examples are<br />

known (e.g., to give 32, Scheme 20). [188–191] Competition experiments indicate the tetrazol-5-yl<br />

group to be superior to methoxy but less effective than diethylcarbamate or tertbutylamido.<br />

[191]<br />

Scheme 20 ortho-Lithiation of 5-Aryltetrazoles [188,189]<br />

N<br />

N<br />

N NH<br />

N NLi<br />

E = Me, CH(OH)Me, CH(OH)CH CH 2<br />

Cy<br />

OMe<br />

s-BuLi, TMEDA, THF<br />

−30 oC, 45 min E +<br />

Li<br />

N NTr<br />

N NTr<br />

N N<br />

N N<br />

BuLi, TMEDA, THF<br />

−20 oC, 1 h<br />

N<br />

N<br />

Li<br />

51−95%<br />

1. B(OiPr)3<br />

2. H2O<br />

90%<br />

N<br />

N<br />

N<br />

N<br />

N<br />

32<br />

NH<br />

NTr<br />

N<br />

E<br />

Cy<br />

N<br />

B(OH)2<br />

5-(2-Tolyl)tetrazole (32, E = Me); Typical Procedure: [188]<br />

CAUTION: Inhalation, ingestion, or skin absorption of iodomethane can be fatal.<br />

A three-necked round-bottomed flask equipped with a low-temperature thermometer, N2 inlet, septum, <strong>and</strong> magnetic stirrer was charged with 5-phenyltetrazole (0.34 g,<br />

2.3 mmol), TMEDA (0.35 mL, 2.3 mmol), <strong>and</strong> dry THF (20 mL). The soln was cooled to<br />

–35 8C <strong>and</strong> a 1.3 M soln of s-BuLi in cyclohexane (5.4 mL, 7.0 mmol) was added over 2 min.<br />

The yellow soln was maintained at –35 to –308C for 45 min <strong>and</strong> freshly distilled MeI<br />

(0.43 mL, 6.9 mmol) was added in one portion. The cooling bath was removed; the mixture<br />

was adjusted to pH 2 with dil aq HCl <strong>and</strong> concentrated with a rotary evaporator. The residue<br />

was taken up in EtOAc (50 mL), washed with H2O (3 ” 20 mL), dried (MgSO4), <strong>and</strong> concentrated<br />

to give a colorless amorphous solid (0.35 g). Recrystallization (abs EtOH) gave<br />

the analytically pure title compound; yield: 0.29 g (78%); mp 156–1588C.<br />

8.1.14.2.9 Variation 9:<br />

Other Directed ortho-Lithiation Groups<br />

One other ortho-directing lithiation group of synthetic interest is cyano, <strong>and</strong> the efficient<br />

ortho-lithiation of phthalonitrile has been achieved (Scheme 21). [192] Lithiation is complete<br />

within 3 minutes at –968C.<br />

OMe<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


374 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

bScheme 21 ortho-Lithiation of Phthalonitrile [192]<br />

LDA, THF<br />

−96 o Li<br />

NC CN C, 3 min NC CN<br />

E = Me, Cl, Br, I, SPh, TMS<br />

8.1.14.3 Method 3:<br />

Furyllithium <strong>Compounds</strong><br />

E<br />

68−83%<br />

+<br />

E<br />

NC CN<br />

The importance of the furan ring as a vehicle in organic synthesis <strong>and</strong> its presence in<br />

many natural products has prompted extensive development of furyllithium syntheses.<br />

8.1.14.3.1 Variation 1:<br />

By Direct Deprotonation<br />

The powerful electronegativity of oxygen allows for regioselective C2 deprotonation of<br />

furan, which can be accomplished with alkyllithium reagents or lithium amides. Competitive<br />

C3 lithiation is never a problem. Deprotonation of 2-methylfuran with butyllithium<br />

(in diethyl ether/hexane, rt) affords 5-methyl-2-furyllithium, which adds to indan-1-one to<br />

give 1-(5-methyl-2-furyl)indene (79%); [193] 2-furyllithium reacts with ribose derivatives [194]<br />

<strong>and</strong> sugar nitrones [195] to give the expected 1,2-addition products. Transmetalation of<br />

2-furyllithium to a cuprate provides a route to 2-(trifluoroacetyl)furan by acylation with<br />

trifluoroacetic anhydride. [196] The presence of a potential directing group as in 33 does<br />

not necessarily divert 2-lithiation (Scheme 22). [197] Oxime hydrolysis of 34 provides a convenient<br />

2,5-disubstituted furan synthesis. Similarly, 2-(2-furyl)-1,3-dimethylimidazolidine<br />

is lithiated regioselectively at C5. [198] Dilithiation of furan leads to 2,5-dilithiofuran, [199]<br />

which affords 2,5-bis(butyltellanyl)furan (35), a compound useful in cross-coupling reactions.<br />

[200]<br />

Scheme 22 2-Furyllithium <strong>Compounds</strong> by Direct C2 Lithiation [197,200]<br />

BuLi (2 equiv)<br />

TMEDA, THF<br />

−78 o HO<br />

N<br />

C, 1 h<br />

HO<br />

N<br />

O<br />

E = D, Me, Et, Pr, Bu, TMS, SnBu3, CH(OH)Et, CH(OH)(CH2)4Me, CH(OH)Ph, C(OH)Ph2<br />

O<br />

33<br />

BuLi (2.5 equiv)<br />

TMEDA, THF<br />

reflux, 30 min<br />

Li<br />

O<br />

Li<br />

O<br />

1. Te<br />

2. BuBr<br />

90%<br />

Li<br />

E<br />

77−99%<br />

+<br />

HO<br />

N<br />

34<br />

O<br />

BuTe<br />

O<br />

35<br />

TeBu<br />

2,5-Bis(butyltellanyl)furan (35); Typical Procedure: [200]<br />

To a two-necked, round-bottomed flask under an argon atmosphere containing a soln of<br />

furan (1.36 g, 20 mmol) in freshly distilled dry THF (100 mL) <strong>and</strong> TMEDA (5.8 g, 50 mmol),<br />

at rt, was added a 1.5 M soln of BuLi in hexane (33.3 mL, 50 mmol). The mixture was re-<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG<br />

E


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 375<br />

bfluxed for 30 min <strong>and</strong> cooled to 258C. Elemental Te (6.35 g, 50 mmol) was added in one<br />

portion <strong>and</strong> the mixture was stirred until all the Te has disappeared. The reaction was<br />

cooled to 08C <strong>and</strong> then BuBr (6.86 g, 25 mmol) was added <strong>and</strong> the mixture was stirred for<br />

6 h at rt. After this period, the reaction was quenched with sat. NH 4Cl soln (50 mL) <strong>and</strong> extracted<br />

with EtOAc (3 ” 50 mL). The combined organic layers were dried (MgSO 4) <strong>and</strong> concentrated<br />

under reduced pressure. The residue was purified by flash chromatography<br />

(silica gel, hexane) to give the product; yield: 0.39 g (90%).<br />

8.1.14.3.2 Variation 2:<br />

By Halogen–Lithium Exchange<br />

The inherent greater stabilization of a 2-furyllithium over a 3-furyllithium allows for regioselective<br />

C2 bromine–lithium exchange (i.e., 36 to 37) (Scheme 23). [201] This sequence<br />

again illustrates that lithium amides (i.e., LDA) do not normally partake in bromine–lithium<br />

interchange. Moreover, the 3-furyllithium generated by bromine–lithium exchange,<br />

e.g. 38, do not rearrange to the more stable 2-furyllithium. [202]<br />

Scheme 23 Furyllithium by Bromine–Lithium Exchange [201,202]<br />

O<br />

Br<br />

Br<br />

LDA<br />

TMSCl, THF<br />

86%<br />

1. BuLi, Et2O<br />

−78<br />

84%<br />

o Br<br />

C, 3 min<br />

2. H2O Br<br />

TMS<br />

O<br />

Br<br />

TMS<br />

O<br />

36<br />

37<br />

Br<br />

BuLi, Et2O Li<br />

1. S8<br />

SBz<br />

−78 2. Bz2O oC, 30 min<br />

O O 80%<br />

O<br />

8.1.14.3.3 Variation 3:<br />

By Directed ortho-Lithiation<br />

If steric effects from the use of ostensibly bulky alkyllithium reagents do not intervene,<br />

directing lithiation groups at the furan C3 position invariably effect C2 lithiation. Thus,<br />

under the Comins amino alkoxide conditions, furan-3-carbaldehyde is lithiated at C2 to<br />

give 39 upon methylation in high yield with greater than 96% regioselectivity (Scheme<br />

24). [203] However, with bulkier lithium amides, C5 lithiation of furan-3-carbaldehyde occurs,<br />

e.g. to give 40. [204] Lithiation at C4 does not occur.<br />

Scheme 24 Directed ortho-Lithiation Reactions of<br />

Furan-3-carbaldehyde [203,204]<br />

CHO 1. BuLi, TMEDA<br />

2. BuLi (2 equiv)<br />

3. MeI<br />

CHO<br />

O<br />

83%<br />

O<br />

38<br />

39<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


376 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

CHO 1. morpholine<br />

2. s-BuLi, THF, −78<br />

CHO<br />

oC, 7 h<br />

3. E +<br />

bO<br />

30−73% E<br />

O<br />

40<br />

E = CH(OH)(CH2)5Me, (CH2)7Me, 4-BrC6H4CH(OH), TMS, TES, TBDMS, SnBu3<br />

Suitably powerful directing groups at the C2 furan position will effect lithiation at C3.<br />

Weaker groups will not prevent the “default” C5 lithiation. [198] Examples of the former situation<br />

are illustrated in Scheme 25. [205–207] One of the most effective such directing groups<br />

is the rare (tetramethyldiamido)phosphate (e.g., 41 fi 42). [207] Dihydrooxazoles [208–210] are<br />

also useful in this context, <strong>and</strong> 3,5-dilithiated furans are generated using the 4,4-dimethyloxazolin-2-yl<br />

directing group. [209] The dihydroimidazole group is also an effective C3 director<br />

in furans. [211] The generation <strong>and</strong> trapping of 2-(tert-butyldimethylsilyl)-3-(hydroxymethyl)-4-furyllithium<br />

provides access to 3,4-disubstituted furans. [212]<br />

Scheme 25 Directed ortho-Lithiation Reactions of 2-Substituted Furans [205–207]<br />

1. t-BuLi (3 equiv), TMEDA, THF, −78 o C<br />

O<br />

2. MeCHO<br />

O<br />

52%<br />

O<br />

NHEt<br />

1. s-BuLi (2 equiv), DME, −78<br />

O O<br />

oC, 1 h<br />

O<br />

NHBu<br />

2. MeOD<br />

91%<br />

t<br />

O<br />

HO<br />

D<br />

O<br />

NHEt<br />

O<br />

NHBu t<br />

1. BuLi, THF, −78 oC 2. E +<br />

O<br />

O<br />

P<br />

40−95%<br />

O<br />

O<br />

41 42<br />

P<br />

E<br />

NMe2 NMe2<br />

O<br />

NMe2 NMe2<br />

E = Me, Bn, TMS, SPh, CHO, C(OH)Me 2, C(OH)MePh, Bz<br />

8.1.14.4 Method 4:<br />

Thienyllithium <strong>Compounds</strong><br />

Lithiated thiophenes have assumed special importance in recent years owing to their role<br />

in conducting polymers <strong>and</strong> other materials. Moreover, unlike oxygen <strong>and</strong> nitrogen heterocycles,<br />

thiophenes can be reductively desulfurized to afford novel compounds that are<br />

not available, for example, from furans <strong>and</strong> pyrroles.<br />

8.1.14.4.1 Variation 1:<br />

By Direct Deprotonation<br />

Although the C2 lithiation of thiophene by deprotonation has been known for a long<br />

time, several new developments <strong>and</strong> applications have been described in recent years.<br />

Typical reaction conditions for thiophene itself are butyllithium, hexane/tetrahydrofuran,<br />

08C, 30 minutes, to give 2-thienyllithium, which undergoes reaction with, for example,<br />

ribose derivatives to give the corresponding C-nucleosides in high yields. [194,213] The<br />

C2 lithiation of bis-thiophenes [214] <strong>and</strong> thieno[3,2-b]thiophenes [215] en route to polythio-<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 377<br />

bphenes has been reported. The synthesis <strong>and</strong> a reaction of 2-iodo-5-thienyllithium (43) are<br />

illustrated in Scheme 26. [216] Dilithiation of thiophene is readily achieved <strong>and</strong> provides access<br />

to 2,5-disubstituted thiophenes, e.g. 44. [217] Thiophene C2 lithiation has been used in<br />

syntheses of 7-hydroxybenzo[b]thiophenes. [218]<br />

Scheme 26 Lithiation <strong>and</strong> Reactions of Thiophenes [216,217]<br />

I<br />

S<br />

LDA, THF<br />

−40 to −10 oC I<br />

S<br />

Li<br />

43<br />

E = CHO, CO 2H, Ac, SnBu 3, CO(CH 2) 7Me, CH(OH)(CH 2) 7Me<br />

BuLi (2 equiv)<br />

TMEDA, hexane<br />

40 oC to reflux, 30 min<br />

S<br />

Li<br />

S<br />

Li<br />

8.1.14.4.2 Variation 2:<br />

By Halogen–Lithium Exchange<br />

E +<br />

63−85%<br />

O<br />

H NMe 2<br />

75%<br />

I<br />

S<br />

E<br />

OHC<br />

S<br />

CHO<br />

Bromothiophenes have proven to be extraordinarily useful in organic synthesis, particularly<br />

via bromine–lithium exchange <strong>and</strong> subsequent chemistry. The observed regioselectivity<br />

(C2 bromine is exchanged faster than C3 bromine) is especially significant. The<br />

readily available 2,5-dibromothiophenes (by electrophilic bromination) undergo smooth<br />

lithiation with alkyllithium reagents to give 2,5-dilithiothiophenes. [219–221] Highly hindered<br />

2,5-disilylated 3,4-di-tert-butylthiophenes have been prepared this way, [220] <strong>and</strong><br />

this inherent regioselectivity allows for the synthesis of bis-thiophene 45 by sequential<br />

bromine–lithium exchange (Scheme 27). [221] Applications to the construction of chiral<br />

3,3¢-bithiophenes [222] <strong>and</strong> polymer-supported oligo(3-arylthiophenes) [223] are known. In<br />

cases where direct deprotonation with alkyllithium is not feasible, as for 46, a halogen–<br />

lithium sequence is necessary, as shown for 47 to 48. [224] The synthetic power inherent in<br />

thiophene bromine–lithium exchange reactions is seen in the conversion of 2,3-, 3,4-, <strong>and</strong><br />

2,5-dibromothiophenes into acetyl- <strong>and</strong> (trifluoroacetyl)azidothiophenes by sequential reactions<br />

(e.g., 49 to 50). [225]<br />

Scheme 27 Thienyllithium <strong>Compounds</strong> by Bromine–Lithium Exchange [221,224]<br />

Ph Br<br />

Ph Br<br />

1. BuLi, Et2O 2. H<br />

Br<br />

S<br />

Br<br />

S<br />

+<br />

Ar 1 CO 2Et<br />

S<br />

46<br />

Ar 1 = 4-FC6H4<br />

Pr i<br />

Br2, py<br />

94%<br />

Br<br />

Ar 1 CO 2Et<br />

S<br />

47<br />

Pr i<br />

1. BuLi<br />

Et2O, hexane<br />

−70 oC, 1 h<br />

2. SCl2 52%<br />

1. t-BuLi (2 equiv)<br />

THF, −78<br />

quant<br />

oC, 30 min<br />

2. HCHO<br />

44<br />

Ph Ph<br />

S<br />

S<br />

HO<br />

45<br />

S<br />

S<br />

Ar 1 CO 2Et<br />

48<br />

Pr i<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


378 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

bS<br />

49<br />

Br<br />

Br<br />

1. BuLi, Et2O, −70 oC, 45 min<br />

2. CF3CONEt2 3. BuLi, −70 oC, 1 h<br />

4. TsN3 45%<br />

S<br />

N3<br />

O<br />

50<br />

Ethyl 4-(4-Fluorophenyl)-5-(hydroxymethyl)-2-isopropylthiophene-3-carboxylate<br />

(48,Ar 1 = 4-FC 6H 4); Typical Procedure: [224]<br />

CAUTION: Formaldehyde is a probable human carcinogen, a severe eye, skin, <strong>and</strong> respiratory<br />

tract irritant, <strong>and</strong> a skin sensitizer.<br />

To a soln of 47 (Ar 1 = 4-FC 6H 4; 3.4 g, 9.2 mmol) in THF (35 mL) at –788C under argon was<br />

added a 1.7 M soln of t-BuLi in pentane (11 mL, 18.7 mmol) dropwise. The soln was stirred<br />

at –788C for 30 min then the temperature was raised to –258C, at which point excess<br />

HCHO (generated from cracking paraformaldehyde) was introduced over a period of 1 h.<br />

The mixture was quenched with sat. NH 4Cl <strong>and</strong> was extracted with t-BuOMe. The organic<br />

phase was dried (Na 2SO 4) <strong>and</strong> the solvent removed under reduced pressure to give an oil;<br />

yield: 3.0 g (quant).<br />

8.1.14.4.3 Variation 3:<br />

By Directed ortho-Lithiation<br />

Since the pioneering work of Slocum, [226] the lithiation of thiophenes substituted at C2 or<br />

C3 with st<strong>and</strong>ard directing groups has been widely explored (dihydrooxazole, [209,227]<br />

amides, [205,206,226,228,229] dihydroimidazoles, [198,211] amino alkoxides, [203] aminoalkyl, [226] alkoxyalkyl,<br />

[226] carboxy, [205] <strong>and</strong> sulfonamides [230] ). Depending on the conditions (base, solvent,<br />

directing group), with C2 thienyl directing groups one can achieve C3 or C5 monosubstitution<br />

or C3+C5 disubstitution. Generally, alkyllithium reagents will deprotonate<br />

C3 (kinetic) while amide bases will deprotonate C5 (thermodynamic). [230] Thiophenes substituted<br />

at C3 with directing groups (aminoalkyl, [226] amide, [226,231] or carboxy [205] ) generally<br />

afford C2 substitution. Selected examples are shown in Scheme 28. The order of deprotonation<br />

in 51 is C5 > C3, which allows for t<strong>and</strong>em selective electrophile addition. [228] The<br />

conversion 52 into 53 is a powerful quinone synthesis applicable to a range of structures.<br />

[231]<br />

Scheme 28 Directed ortho-Lithiation Reactions in Thiophenes [205,209,228,231]<br />

S<br />

51<br />

O<br />

NEt 2<br />

s-BuLi (2.2 equiv)<br />

TMEDA, THF<br />

−78 oC E 1 = E 2 = H, D, Me, CONEt2, CH(OH)Ph, SMe, TMS<br />

Li<br />

S<br />

Li<br />

CF 3<br />

1. (E 1 ) +<br />

2. (E 2 ) +<br />

26−85%<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG<br />

O<br />

NEt 2<br />

E 2<br />

S<br />

E 1<br />

O<br />

NEt 2


S<br />

8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 379<br />

O<br />

N<br />

E = CO2H, SMe, TMS<br />

S<br />

S<br />

O<br />

CO2H<br />

52<br />

NEt 2<br />

s-BuLi (3.3 equiv), THF<br />

−20 oC, 30 min<br />

1. t-BuLi (3 equiv), TMEDA<br />

THF, −78 oC 2. MeCHO<br />

quant<br />

1. s-BuLi, TMEDA<br />

Et2O, −78 oC, 1 h<br />

2.<br />

S<br />

CHO<br />

3. s-BuLi, rt, 12 h<br />

77%<br />

S<br />

Li<br />

CO2H<br />

OH<br />

S<br />

E +<br />

Li<br />

89−97%<br />

Bromothiophenes undergo rapid lithiation with lithium diisopropylamide (THF, –708C)<br />

but are prone to halogen dance rearrangements, a situation not without controversy<br />

<strong>and</strong> misassignments. [232–234] Thus, treatment of 2,5-dibromothiophene with lithium diisopropylamide<br />

(THF, –808C, 30 min) <strong>and</strong> quenching with electrophiles affords the 2-substituted<br />

3,5-dibromothiophene. [234] Likewise, lithium diisopropylamide treatment of 2,3-dibromothiophene<br />

<strong>and</strong> quenching with iodomethane yields 2,4-dibromo-5-methylthiophene<br />

in 89% yield. [235]<br />

8.1.14.5 Method 5:<br />

Pyrrolyllithium <strong>Compounds</strong><br />

The intrinsic greater acidity of the C2 over the C3 proton in pyrrole is amplified by the<br />

presence of an electron-withdrawing protecting group on the nitrogen, such as phenylsulfonyl,<br />

tert-butoxycarbonyl, trialkylsilyl, carboxy, <strong>and</strong> others. [236] Such groups also act<br />

as directing groups to the C2 position, so that C2 lithiation in N-substituted pyrroles is<br />

particularly facile.<br />

8.1.14.5.1 Variation 1:<br />

By Direct Deprotonation<br />

Since the C2 proton of 1-methylpyrrole is less acidic than that of furan (oxygen more electronegative<br />

than nitrogen; pK a 39.5 vs 35.6 for 1-methylpyrrole <strong>and</strong> furan, respectively<br />

[237] ), tert-butyllithium (tetrahydrofuran/pentane, –788C to rt) is normally required to<br />

generate 1-methylpyrrol-2-yllithium, <strong>and</strong> many synthetic examples of this species are<br />

known, [238] including those resulting from transmetalation with magnesium or zinc. [239]<br />

The structure of 1-propylpyrrol-2-yllithium is dimeric by X-ray crystallography, [240] <strong>and</strong><br />

S<br />

O<br />

O<br />

53<br />

S<br />

O<br />

N<br />

E<br />

S<br />

E<br />

O<br />

N<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


380 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

b1-methylpyrrole-2,5-diyldilithium is known. [199] Two examples are shown in Scheme<br />

29. [236,241] Deprotection of 54 is accomplished with lithium hydroxide–methanol.<br />

Scheme 29 C2 Lithiation of N-Protected Pyrroles [236,241]<br />

N<br />

O NHBu t<br />

E = D, CH(OH)Ph, CH(OH)iPr, TMS<br />

N<br />

H<br />

1. t-BuLi (2.2 equiv), THF<br />

−78 o C, 30−90 min<br />

2. E +<br />

45−78%<br />

1. BuLi, THF, hexane, −70 oC to rt<br />

2. CO2 3. t-BuLi, THF, pentane, −70 oC to rt, 1 h<br />

E = CO2H, CONHPh, C(OH)Ph2, CHO, Ts<br />

N<br />

E<br />

O NHBu t<br />

54<br />

N<br />

Li<br />

CO2Li<br />

E +<br />

50−95%<br />

Studies with N-arylpyrroles indicate that lithiation occurs either at C2 of pyrrole or in the<br />

aryl ring, depending on reaction conditions <strong>and</strong> phenyl ring substitution. [242–244]<br />

8.1.14.5.2 Variation 2:<br />

By Halogen–Lithium Exchange<br />

Halogen–lithium exchange is an important route to lithiated pyrroles. The reaction is extremely<br />

useful for the synthesis of 3-substituted pyrroles since bulky N-trialkylsilyl<br />

groups (e.g., triisopropylsilyl) undergo bromination regioselectively at C3. This sequence<br />

is shown for 55 to 56 (Scheme 30). [245,246] The N-silyl group is readily removed with fluoride,<br />

e.g. to give 57. Bromine–lithium exchange at C3 has been employed in syntheses of<br />

benzodipyrrole analogues, [247] 3,4-disubstituted pyrroles, [246,248] <strong>and</strong> the lamellarin [249] <strong>and</strong><br />

lukianol [249,250] marine alkaloids. As expected, selective C2 bromine–lithium exchange is<br />

possible in polybrominated pyrroles, [246,249] as for 58 to 59, both of which are natural products.<br />

[251] Bromine–lithium exchange has been used to synthesize 1-(tert-butoxycarbonyl)pyrrol-2-yllithium,<br />

-pyrrole-2,5-diyldilithium, <strong>and</strong> -5-bromopyrrol-2-yllithium. [252] Sequential<br />

replacement of the bromines in 3,4-dibromo-1-(triisopropylsilyl)pyrrole affords a synthesis<br />

of verrucarin E. [246] The dimer of 3-bromo-6-(dimethylamino)-1-azafulvene functions<br />

as a formal equivalent of either 4-lithio- or 4,5-dilithiopyrrole-2-carbaldehyde. [253,254]<br />

Scheme 30 Pyrrole C3 Lithiation by Halogen–Lithium Exchange [246,251]<br />

N<br />

TIPS<br />

Br<br />

t-BuLi (2 equiv), THF<br />

−78 oC, 30 min<br />

E = Me, (CH 2) 17Me, (CH 2) 2iPr, CO 2H, CH 2OH, Ac, TMS<br />

Li<br />

N<br />

TIPS<br />

E +<br />

40−92%<br />

N<br />

TIPS<br />

55 56<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG<br />

E<br />

TBAF<br />

N<br />

H<br />

N<br />

H<br />

57<br />

E<br />

E


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 381<br />

b1. BuLi, −78 o Br Br<br />

C<br />

Me<br />

2. C2Cl6 N<br />

Br<br />

Br<br />

N<br />

80%<br />

Me<br />

Br<br />

58<br />

Br<br />

3-Allylpyrrole (57,E=CH 2CH=CH 2); Typical Procedure: [245]<br />

To a soln of 3-bromo-1-(triisopropylsilyl)pyrrole (247 mg, 0.82 mmol) in dry THF (10 mL),<br />

cooled to –238C (dry ice/CCl 4 bath), was added dropwise a 1.5 M soln of BuLi in hexanes<br />

(1.1 mL, 1.65 mmol). The mixture was kept at –238C for 2 h, <strong>and</strong> then a soln of allyl bromide<br />

(ca. 350 mg, ca. 3 mmol, 3–4 equiv) in THF (10 mL) was added. The mixture was allowed<br />

to warm to rt over a 20-min period <strong>and</strong> quenched with H 2O (2 mL). The mixture<br />

was extracted with Et 2O, <strong>and</strong> the combined extracts were dried (MgSO 4) <strong>and</strong> concentrated.<br />

The residue was passed through a short silica gel column to afford a mixture (198 mg) of<br />

the starting pyrrole <strong>and</strong> the title compound (ratio » 1:6). This mixture was conveniently<br />

separated by chromatography (silica gel, hexane) after desilylation (TBAF, THF) to provide<br />

the pure product; yield: 173 mg (80%).<br />

8.1.14.5.3 Variation 3:<br />

By Directed ortho-Lithiation<br />

Given the successes cited in Sections 8.1.14.5.1 <strong>and</strong> 8.1.14.5.2, directed lithiation procedures<br />

with pyrroles have not been extensively pursued. However, both the dihydrooxazole<br />

[208] <strong>and</strong> the N-ethylcarboxamide [205] groups at C2 direct lithiation to C3 of 1-methylpyrrole<br />

in modest yields, whereas amino alkoxide affords C5 or N-methyl lithiation. [203]<br />

Lithiation of the pyrrole alcohol 61 under kinetic conditions gives diol 60, whereas under<br />

thermodynamic conditions the diol 62 is obtained (Scheme 31). [255] Diol 62 has been employed<br />

in a synthesis of the furo[3,4-b]pyrrole ring system.<br />

Scheme 31 Directed Lithiation in Pyrroles [255]<br />

HO<br />

N<br />

Et<br />

SO2Ph<br />

60<br />

OH<br />

1. LDA, −78 oC 2. MeCHO<br />

60%<br />

8.1.14.6 Method 6:<br />

Imidazolyllithium <strong>Compounds</strong><br />

N<br />

Et<br />

SO 2Ph<br />

61<br />

Cl<br />

Br<br />

OH<br />

N<br />

Me<br />

Br<br />

Br<br />

59<br />

1. LDA<br />

Me<br />

N<br />

Br<br />

−78 to −20 oC 2. MeCHO<br />

90%<br />

Cl<br />

N<br />

Et<br />

SO 2Ph<br />

The presence of the imidazole ring in a multitude of natural products (e.g., histidine) <strong>and</strong><br />

the pronounced acidity of the C2 proton (between two stabilizing nitrogens) has led to extensive<br />

lithiation studies of this molecule, via both direct deprotonation <strong>and</strong> halogen–<br />

lithium exchange.<br />

8.1.14.6.1 Variation 1:<br />

By Direct Deprotonation<br />

Chadwick has pioneered the exploration of imidazole C2 lithiation by direct deprotonation<br />

with a variety of N-protecting groups [Bn, CH 2OR 1 , Tr, SO 2Ar 1 , CH(OR 1 ) 2, TMS,<br />

SO 2NMe 2] <strong>and</strong> subsequent reactions with electrophiles. [256,257] Other N-protecting groups<br />

62<br />

OH<br />

OH<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


382 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

bfunctioning in this capacity are alkoxymethyl, [258,259] methyl, [259–263] 2-(trimethylsilyl)ethoxymethyl,<br />

[264,265] 1-ethoxyethyl, [266] <strong>and</strong> benzyloxy. [267] Examples of C2 imidazole lithiation–quenching<br />

are listed in Table 4. Mono- <strong>and</strong> dilithiation at C2 of bis(imidazol-1-yl)methane<br />

have been reported; [268] if C2 is blocked (protected), then lithiation at C5 occurs.<br />

[257,260,261,265,266,269,270] This latter sequence is particularly effective for the synthesis of<br />

4(5)-substituted imidazoles. [257]<br />

Table 4 C2 Lithiation <strong>and</strong> Reactions of Imidazoles [256,259,262–268]<br />

N R 1<br />

N<br />

E +<br />

E<br />

N<br />

N<br />

1 R 2 E1 R 1 Conditions E + E 1 E 2 Yield (%) Ref<br />

Bn BuLi, Et2O, 208C, 2 h MeI Me H 64 [256]<br />

Tr BuLi, Et2O, 208C, 2 h Ph2CO C(OH)Ph2 H 98 [256]<br />

SO2NMe2 BuLi, Et2O, –788C, 15 min MeI Me H 82 [256]<br />

CH 2OMe BuLi (2 equiv), Et 2O, TMEDA MeI Me Me 86 [256]<br />

CH 2OMe BuLi (2 equiv), Et 2O, TMEDA PhCHO CH(OH)Ph CH(OH)Ph 84 [256]<br />

SO 2NMe 2 BuLi, hexane/THF, –788C PhOCN CN H 69 [268]<br />

Me BuLi, hexane, 0 8C TBDMSCl TBDMS H – [259]<br />

CH 2OMe BuLi, hexane, 0 8C TBDMSCl TBDMS H – [259]<br />

Me BuLi, hexane/THF, –788C, 30 min S SH H 42 [262]<br />

Me BuLi, hexane/THF, –788C, 35 min Se SeH H 58 [262]<br />

Me BuLi, THF, –708C CCl 4 Cl H 75 [263]<br />

SEM BuLi, hexane/THF, –408C, 15 min DMF CHO H 96 [264]<br />

SEM BuLi, hexane/THF, –788C (TMSO) 2 OH H 98 [265]<br />

CH(Me)OEt BuLi, hexane/THF, –408C, 30 min DMF CHO H 90 [266]<br />

CH(Me)OEt BuLi, hexane/THF, –408C, 30 min Ph 2CO C(OH)Ph 2 H 88 [266]<br />

OBn BuLi, hexane/THF, –788C, 7 min MeI Me H 95 [267]<br />

OBn BuLi, hexane/THF, –788C, 7 min C 2Cl 6 Cl H 93 [267]<br />

8.1.14.6.2 Variation 2:<br />

By Halogen–Lithium Exchange<br />

Polyhalogenated imidazoles have been extensively utilized in synthesis, most notably by<br />

exploiting the decreasing halogen–lithium exchange reactivity trend: C2 > C5 > C4 (anion<br />

stability order in N-substituted imidazoles); a review is available. [271] Iddon has been the<br />

pioneer in this exploration; [271–275] he has shown that, by sequential lithiation <strong>and</strong> electrophile<br />

addition, a variety of mono-, di-, <strong>and</strong> trisubstituted imidazoles can be prepared. The<br />

power of this method is illustrated in Scheme 32, including a simple synthesis of a precursor<br />

63 (R 1 = Me; E 1 = SMe; E 2 =E 3 = CHO) of the antitumor agent carmethizole. [276] This selective<br />

bromine–lithium exchange tactic has been used in a synthesis of the nortopsentin<br />

marine alkaloids. [277,278] The triiodo compound 64 can be manipulated similarly. [279] In<br />

both cases one can stop at mono- or disubstitution, <strong>and</strong> several such studies are known<br />

with both brominated <strong>and</strong> iodinated imidazoles. [280–283] For example, monolithiation of<br />

1-benzyl-4,5-dibromo-2-phenylimidazole (BuLi, Et 2O/hexane, –408C, 15 min) followed by<br />

quenching with dimethylformamide affords 1-benzyl-4-bromo-2-phenylimidazole-5-carbaldehyde<br />

(82% yield). [280]<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 383<br />

bScheme 32 Sequential Halogen–Lithium Exchange in 2,4,5-Trihaloimidazoles [276,279]<br />

Br<br />

Br<br />

N<br />

N<br />

R1 Br<br />

1. BuLi, THF, −78 oC, 5 min<br />

2. (E1 ) +<br />

3. BuLi, THF, −78 oC, 15 min<br />

4. (E2 ) +<br />

5. BuLi, THF, −78 oC, 15 min<br />

6. (E3 ) +<br />

40−71%<br />

R1 = Me, Bn<br />

E1 = SMe, SPh; E2 = H, TMS; E3 = C(OH)Me2, CH(OH)(CH2) 5Me, CH(OH)Ph, CHO, CH(OH)(CH2) 4Me, SnBu3, Cl<br />

I<br />

N<br />

I<br />

N<br />

I<br />

OBn<br />

64<br />

1. BuLi, −78 oC 2. TMSCl<br />

3. BuLi, −78 oC 4. Me2NN(Me)CHO 5. BuLi, −78 oC 6. (MeO2C)2O<br />

25%<br />

MeO2C<br />

1-Benzyl-4-(2-hydroxyprop-2-yl)-2-(methylsulfanyl)imidazole [63,E 1 = SMe; E 2 =H;<br />

E 3 = C(OH)Me 2;R 1 = Bn]; Typical Procedure: [276]<br />

1-Benzyl-2,4,5-tribromoimidazole (200 mg, 0.51 mmol), dried azeotropically with toluene,<br />

was dissolved in THF (5 mL), cooled to –788C, <strong>and</strong> then a 2.45 M soln of BuLi in hexane<br />

(0.21 mL, 0.51 mmol) was added via syringe <strong>and</strong> the soln was stirred for 5 min at –788C.<br />

(MeS) 2 (45.6 ìL, 0.51 mmol) was then added <strong>and</strong> the mixture was stirred for 5 min at<br />

–78 8C. The second aliquot of BuLi (0.21 mL, 0.51 mmol) was then added <strong>and</strong> stirred for<br />

15 min at –788C prior to the introduction of iPrOH (38.8 ìL, 0.51 mmol). After another<br />

5 min at –788C, the third aliquot of BuLi (0.21 mL, 0.51 mmol) was added <strong>and</strong> following<br />

another 15 min period at –788C, acetone (37.2 ìL, 0.51 mmol) was added <strong>and</strong> the soln<br />

was stirred for 15 min at –788C. The mixture was poured into sat. aq NH 4Cl (30 mL) <strong>and</strong><br />

the whole was extracted with EtOAc (3 ” 30 mL) <strong>and</strong> dried (Na 2SO 4). The solvent was removed<br />

under reduced pressure to give an orange oil (169 mg), which was purified by flash<br />

chromatography (silica gel, hexane/EtOAc 4:1) to give the title compound as a colorless<br />

oil; yield: 94.8 mg (71%).<br />

OHC<br />

E 2<br />

N<br />

N<br />

E 3<br />

OBn<br />

8.1.14.7 Method 7:<br />

Oxazolyllithium <strong>and</strong> Isoxazolyllithium <strong>Compounds</strong><br />

The lithiation of oxazoles <strong>and</strong> isoxazoles has been extensively reviewed by Iddon. [284,285]<br />

Gilchrist has summarized the propensity of metalated heterocycles in general to undergo<br />

ring opening, [286] which can be a problem with oxazol-2-yllithium, although it is a reversible<br />

transformation. [287–291]<br />

8.1.14.7.1 Variation 1:<br />

Lithiation of Oxazoles<br />

Oxazoles undergo preferential C2 lithiation with alkyllithium reagents <strong>and</strong> numerous<br />

examples are known; [284] a typical case is shown in Scheme 33. [292] Transmetalation with<br />

zinc(II) chloride [289,293,294] or copper(I) iodide [293] is described; the latter reaction affords a<br />

useful oxazole acylation with acid chlorides, as shown for the synthesis of 65. This se-<br />

N<br />

N<br />

R1 63<br />

E 1<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


384 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

bquence circumvents the ring-opening process that previously thwarted attempts to synthesize<br />

2-acyloxazoles. If the C2 position of the oxazole is occupied, lithiation can occur<br />

at C4 or C5; [288,295] if a methyl group is present at C2, lateral methyl lithiation is known to<br />

occur. [288,296] An elegant solution to the oxazol-2-yllithium ring-opening problem is provided<br />

by Vedejs. [290] Thus, Lewis acid complexation with borane at the N-atom allows for<br />

smooth C2 lithiation <strong>and</strong> trapping with electrophiles, as for 66 to 67. However, it must<br />

be noted that the ring opening to the acyclic valence bond tautomer can be exploited to<br />

introduce electrophiles to the C4 position. [291,297]<br />

Scheme 33 Lithiation of Oxazoles [292,293]<br />

Pr i<br />

R 1<br />

OTBDMS<br />

O<br />

O<br />

N<br />

N<br />

1. BuLi, THF, −78 oC 2. I2 90%<br />

1. BuLi, THF, −70 oC, 20 min<br />

2. ZnCl2 3. Cul<br />

4. R2COCl 54−80%<br />

R H<br />

1 = H, Ph; R2 = iPr, t-Bu, Ph, 4-MeOC6H4, 4-O2NC6H4, C<br />

Ph<br />

O<br />

N<br />

BH3 THF, THF, rt<br />

98%<br />

E = Me, CH 2CH 2Ph, CH(OH)Ph, Cl, TMS<br />

.1.14.7.2 Variation 2:<br />

Lithiation of Isoxazoles<br />

Ph<br />

>− 8<br />

O<br />

66<br />

Pr i<br />

R 1<br />

CHPh<br />

−<br />

BH3 +<br />

N<br />

OTBDMS<br />

O<br />

O<br />

N<br />

N<br />

65<br />

I<br />

R 2<br />

O<br />

1. BuLi, THF, −78 o C<br />

2. E +<br />

65−88%<br />

The metalation of isoxazoles has been reviewed in depth. [285] A route to the pharmacologically<br />

important isoxazolamines employs lithiation of N-(tert-butoxycarbonyl)-5-methylisoxazol-3-amine<br />

(68) (Scheme 34). [298]<br />

Scheme 34 Lithiation of Isoxazoles [298]<br />

N<br />

O<br />

68<br />

NHBoc<br />

E = Me, Et, allyl, Bn, CO 2H, CHO, SPh, TMS<br />

8.1.14.8 Method 8:<br />

Pyrazolyllithium <strong>Compounds</strong><br />

1. BuLi (2.3 equiv), THF, −78 to −30 o C<br />

2. E +<br />

50−97%<br />

N<br />

O<br />

NHBoc<br />

Suitably N-protected pyrazoles undergo lithiation at C5, the position corresponding to C2<br />

in pyrroles. Lithiation of 1-tosylpyrazole (69) <strong>and</strong> trapping with electrophiles proceeds<br />

smoothly (Scheme 35). [299] Related examples are known, [268,300,301] e.g. to introduce cya-<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG<br />

E<br />

Ph<br />

O<br />

67<br />

N<br />

E


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 385<br />

bno [268] or tosyl [301] at C5. Lithiation <strong>and</strong> transmetalation of 1-(benzyloxy)pyrazole with butyllithium–zinc(II)<br />

halides, followed by palladium cross coupling, yields 5-aryl-, 5-hetaryl-,<br />

<strong>and</strong> 5-acylpyrazoles in good to excellent yields. [302] Lithiation of 1-(benzyloxy)pyrazole <strong>and</strong><br />

direct quenching with a variety of electrophiles proceeds to give 5-substituted derivatives<br />

in high yield. [303] Debenzylation affords the 1-hydroxypyrazoles.<br />

Scheme 35 Lithiation of 1-Tosylpyrazole [299]<br />

N<br />

N<br />

Ts<br />

69<br />

1. t-BuLi, THF, −78 o C, 10 min<br />

2. E +<br />

55−100%<br />

E = Me, allyl, C(OH)Me2, CO2Me, Bn, I, TMS,<br />

8.1.14.9 Method 9:<br />

Thiazolyllithium <strong>Compounds</strong><br />

OH<br />

E<br />

N<br />

N<br />

Ts<br />

Thiazole is easily lithiated at C2 with butyllithium or via 2-bromothiazole, which is readily<br />

available, with butyllithium. Several examples of each method are known. [304] Treatment<br />

of thiazole with butyllithium (Et 2O, –788C), followed by addition of an electrophile,<br />

affords the expected 2-substituted thiazole (trimethylsilyl, 93%; [305] trimethylstannyl,<br />

96%; [306] chloro, 90%; [263] bromo, 80%). [263] Lithiation of 2-methyl-4-phenylthiazole under<br />

the same conditions <strong>and</strong> subsequent reaction with iodomethane gives 2,5-dimethyl-4phenylthiazole<br />

(95%). [307] A small amount of lateral lithiation product (2-ethyl-4-phenylthiazole,<br />

5%) is also obtained. Lithiation of 2-(trimethylsilyl)thiazole <strong>and</strong> quenching with<br />

chlorotrimethylstannane leads to 2-(trimethylsilyl)-5-(trimethylstannyl)thiazole (90%). [306]<br />

Despite the excellent yields <strong>and</strong> clean regioselectivity observed for direct C2 thiazole lithiation,<br />

another route to lithiated thiazoles is bromine–lithium exchange. Treatment of<br />

2-bromothiazole (70) with butyllithium (–788C) followed by chlorotrimethylsilane gives<br />

2-(trimethylsilyl)thiazole in 95% yield, [305] comparable to the yield obtained by deprotonation<br />

of thiazole (vide supra). The 2-thiazolyllithium thus generated from 70 adds to sugar<br />

nitrones, e.g. to give 71 (Scheme 36). [195,308,309] Sequential replacement of the bromines in<br />

2,4-dibromothiazole (C2 > C4) is facile [305,306] <strong>and</strong> has been employed in regioselective Negishi,<br />

Sonogashira, <strong>and</strong> Stille reactions, [310] <strong>and</strong> in the synthesis of micrococcinic acid, a<br />

sequence that features conversion of 72 to 73. [311,312]<br />

Scheme 36 Lithiation of Thiazoles [308,311]<br />

Br<br />

S<br />

N<br />

70<br />

N<br />

S<br />

72<br />

Br<br />

Br<br />

1. BuLi, Et2O, hexane, −70 oC N<br />

O<br />

BnO OBn<br />

−<br />

2.<br />

BnO<br />

OH Bn<br />

+<br />

1. BuLi, Et 2O<br />

−78 oC 2. TMSCl<br />

86%<br />

75%<br />

Br<br />

S<br />

N<br />

TMS<br />

BnO<br />

OH<br />

BnO<br />

71<br />

1. BuLi, Et 2O<br />

−78 oC 2. t-BuNCO<br />

73%<br />

OBn<br />

BnN<br />

N<br />

OH<br />

S<br />

Bu t HN<br />

O<br />

S<br />

73<br />

N<br />

TMS<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


386 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

b8.1.14.10 Method 10:<br />

Benzofuryllithium <strong>Compounds</strong><br />

Like furan, benzo[b]furan is readily lithiated at C2, [313] with either butyllithium [196,301,314] or<br />

lithium diisopropylamide, [315] although yields are only fair to good. Treatment of benzo[b]furan<br />

with lithium diisopropylamide (THF, –708C) <strong>and</strong> quenching with carbon dioxide affords<br />

the 2-carboxylic acid (60%). Further treatment with lithium diisopropylamide <strong>and</strong><br />

then carbon dioxide affords the 2,3-dicarboxylic acid, plus some of the ring-cleaved product.<br />

[286] Treatment of benzo[b]furan-2-yllithium with 4-toluenesulfonyl fluoride gives the<br />

2-tosyl compound in 30% yield, [301] <strong>and</strong> exposure of benzo[b]furan-2-yllithium to copper(I)<br />

bromide <strong>and</strong> then trifluoroacetic anhydride furnishes 2-(trifluoroacetyl)benzo[b]furan<br />

(68%). [196] Reaction of the lithiated species with sulfur leads to the novel heterocycle 74<br />

(Scheme 37). [314]<br />

Scheme 37 Lithiation of Benzo[b]furan <strong>and</strong> Reaction with Sulfur [314]<br />

O<br />

1. BuLi, THF, −78 oC 2. S8 35%<br />

8.1.14.11 Method 11:<br />

Benzothienyllithium <strong>Compounds</strong><br />

S S<br />

S S<br />

O O<br />

Benzo[b]thiophenes undergo C2 lithiation with various alkyllithium reagents <strong>and</strong> the resulting<br />

2-lithiated species react smoothly with electrophiles such as sulfur (68%), [316] trifluoro-N,N-dimethylacetamide<br />

(75%) [317] [85% with added copper(I) bromide], [196] acetaldehyde<br />

(84%), [318] <strong>and</strong> 4-toluenesulfonyl fluoride (55%). [301] The potential interfering directing<br />

groups, methoxy <strong>and</strong> N,N-diethylcarboxamido, at C4 in benzo[b]thiophene do not deter<br />

C2 lithiation. [319] If the C2 position contains a potential directing group, then C3 lithiation<br />

is achieved. [320–322] Two examples of these strategies are illustrated in Scheme 38. Even 4,6dimethoxybenzo[b]thiophene<br />

undergoes C2 lithiation, [320] indicative of the high acidity of<br />

the C2 proton.<br />

Scheme 38 ortho-Lithiation of Benzo[b]thiophenes [320–322]<br />

S S<br />

N<br />

O<br />

1. BuLi, Et 2O<br />

2. E +<br />

E = I 95%<br />

E = SnBu3 91%<br />

74<br />

E<br />

S S<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG<br />

N<br />

O


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 387<br />

b1. s-BuLi, TMEDA<br />

THF, −78 o OMe<br />

C<br />

2. Et2NCOCl<br />

71%<br />

S<br />

OMe<br />

S<br />

1. s-BuLi, CuBr<br />

THF, −78 oC 2. Br<br />

Halogen–lithium exchange is also used for accessing lithiated benzo[b]thiophenes. For example,<br />

3-bromobenzo[b]thiophene <strong>and</strong> butyllithium at low temperature, followed by<br />

exposure to trifluoroacetamide [317] or trifluoroacetic anhydride, [196] affords 3-(trifluoroacetyl)benzo[b]thiophene<br />

(61 <strong>and</strong> 78%, respectively). 3-Iodobenzo[b]thiophenes behave similarly.<br />

[318] As anticipated, 2,3-dibromobenzo[b]thiophene undergoes regioselective sequential<br />

bromine–lithium exchange, the C2 bromine being more reactive than the C3 bromine.<br />

[317]<br />

8.1.14.12 Method 12:<br />

Indolyllithium <strong>Compounds</strong><br />

Lithiation of indole (one of nature s beloved heterocycles) has been extensively studied,<br />

to become one of the most important reactions of indole. Deprotonation at the acidic C2<br />

position, halogen–lithium exchange, <strong>and</strong> directed lithiation all play significant roles in<br />

the functionalization of the indole ring.<br />

8.1.14.12.1 Variation 1:<br />

By Direct Deprotonation<br />

Like pyrrole (see Section 8.1.14.5.1), N-substituted indoles are preferentially deprotonated<br />

at C2, a position acidified by the inductive electron-withdrawing ability of nitrogen. Following<br />

studies on the lithiation of 1-methylindole with butyllithium (Et 2O, reflux, 8 h)<br />

<strong>and</strong> carboxylation to give 1-methylindole-2-carboxylic acid (78%), [323] Sundberg explored<br />

the use of N-protecting/activating groups that permit C2 lithiation under milder conditions<br />

<strong>and</strong> whereby the N-protecting group can be removed (unlike N-methyl). [324] Snieckus<br />

has summarized the use of indole N-protecting groups in C2 lithiation, [236] <strong>and</strong> a selected<br />

list of indole C2 lithiation reactions (e.g., to give 75) is shown in Table 5. This list is not<br />

complete, but depicts only a few examples with each N-protecting group. Depending on<br />

the end use, all of these N-protecting groups have utility in synthesis; with the exception<br />

of N-methyl, all of the protecting groups are usually easily removed.<br />

O<br />

NEt 2<br />

82%<br />

OMe<br />

S<br />

O<br />

NEt2<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


388 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

bTable 5 C2 Lithiation Reactions of Indole [236,323–344]<br />

N<br />

R 1<br />

lithiation<br />

N<br />

R 1<br />

Li<br />

R 1 Conditions E + E Yield (%) Ref<br />

Me BuLi, Et2O, reflux, 8 h CO2 CO2H 78 [323]<br />

Me BuLi, Et2O/hexane, reflux, 5 h (CO2Et) 2 COCO2H a 59 [325]<br />

Me BuLi, Et 2O/hexane, reflux, 3 h I 2 I 77 [326]<br />

Me BuLi, Et 2O/hexane, reflux, 6 h acetone C(OH)Me 2 80 [327]<br />

SO 2Ph t-BuLi, pentane, TMEDA, rt, 20 min PhCHO CH(OH)Ph 55 [324]<br />

SO 2Ph t-BuLi, pentane, TMEDA, –11 8C, 20 min MeCOCO 2Et C(OH)MeCO 2Et 64 [328]<br />

SO 2Ph LDA, THF/hexane, –75 to 5 8C, 1 h MeI Me 85 [329]<br />

SO 2Ph LDA, THF/hexane, –75 to 5 8C, 1 h MeCHO CH(OH)Me 93 [329]<br />

SO 2Ph LDA, THF/hexane, –75 to –5 8C, 1 h t-BuNCO CONHt-Bu 83 [330]<br />

SO 2Ph LDA, THF/hexane, –78 to 0 8C, 1 h BrCN Br 85 [331]<br />

SO 2Ph LDA, THF/hexane, –70 to 5 8C, 1 h PhSO 2Cl Cl 93 [332]<br />

SO 2Ph s-BuLi, THF/cyclohexane, –708C to rt, 4 h Ac 2O Ac 76 [333]<br />

SO 2Ph t-BuLi, THF, –788C, 1 h N 2O 4 NO 2 67 [334]<br />

CH 2OMe t-BuLi, hexane/Et 2O, 0 8C to rt, 1 h PhCN Bz 84 [324]<br />

CH 2OMe t-BuLi PhN(Me)CHO CHO 53 [335]<br />

CH(OEt) 2 t-BuLi, pentane/THF, 0 8C to rt, 30 min PhCH=CHNO 2 CH(Ph)CH 2NO 2 46 [336]<br />

Boc t-BuLi, hexane/THF, –788C, 40 min (CO 2Me) 2 COCO 2Me 66 [337]<br />

Boc s-BuLi, TMEDA, –788C Bu 3SnCl SnBu 3 97 [338]<br />

Boc t-BuLi, THF, –788C, 1 h N 2O 4 NO 2 78 [336]<br />

Boc BuLi, pentane/THF, –78 8C, 1 h ClCO 2Me CO 2Me 84 [339]<br />

Boc LDA, THF, 0–58C, 1 h B(OiPr) 3 B(OH) 2 96 [340]<br />

CH 2NMe 2 BuLi, Et 2O, rt, 2 h Ph 2CO C(OH)Ph 2 71 [341]<br />

CH 2NMe 2 BuLi, hexane/THF, –78 to 0 8C, 40 min (PhS) 2 SPh 87 [342]<br />

CO 2Li BuLi, hexane/THF, –708C; then CO 2,<br />

then t-BuLi, –708C, 1 h<br />

E +<br />

75<br />

N<br />

R 1<br />

E<br />

BzCl Bz 59 [343]<br />

CONHt-Bu t-BuLi (2.2 equiv), THF, –78 to 08C, 90 min TMSCl TMS 95 [236]<br />

COCEt 3 s-BuLi, t-BuOK, THF, –788C, 1 h MeI Me 93 [344]<br />

a The initial ester product was saponified.<br />

Numerous applications of these indole C2 lithiations in synthesis are known, including<br />

the synthesis of 2-iodotryptamines, [345] ellipticine <strong>and</strong> other pyridocarbazoles, [346–350] benzocarbazoles,<br />

[351] 2,2¢-biindolyls, [326] 2-(2-pyridyl)indoles, [352] yuehchukene, [353] carbazole-<br />

3,4-quinones, [354] furo[3,4-b]indoles, [355–358] â-carbolines, [359] pentathiepino[6,7-b]indoles, [360]<br />

2,3-dihaloindoles, [329,332,361–363] 2-substituted 4-azaindoles, [364] <strong>and</strong> 2,3-disubstituted indoles<br />

that might be difficult to prepare otherwise. [361,365–368] For example, C2 lithiation of<br />

N-protected indole-3-carboxylic acid or indole-3-carboxamides followed by electrophilic<br />

quench gives the corresponding 2-substituted indoles [TMS, Me, CH(OH)Ph, C(OH)Ph 2,<br />

C(OH)Me 2, Et, C(OH)MePh] in very good to excellent yields. [367] Lithiations at C2 are generally<br />

not perturbed by substituents in the benzene ring, e.g. 4-Cl, 5-Cl, 5-Br, 5-OMe, 5-CN,<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 389<br />

b5-F [1-(tert-butoxycarbonyl)indole with lithium diisopropylamide], [340] but 5-methoxy-1methylindole<br />

with butyllithium (but not tert-butyllithium) undergoes lithiation at C2,<br />

C4, <strong>and</strong> C6. [369] A cautionary note with 1-(phenylsulfonyl)indole <strong>and</strong> alkyllithium reagents<br />

is that the phenylsulfonyl group can be lithiated ortho to sulfonyl, [324,370] a side reaction<br />

avoided with lithium diisopropylamide. [329] The 2-lithiated indoles are readily transmetalated<br />

with boron, [371,372] zinc, [373] <strong>and</strong> tin [374] for cross-coupling reactions.<br />

1-[1-(Phenylsulfonyl)indol-2-yl]ethanol [75,R 1 =SO 2Ph; E = CH(OH)Me];<br />

Typical Procedure: [329]<br />

To a soln of LDA (8.40 mmol) [prepared from iPr 2NH (9.00 mmol) <strong>and</strong> a 1.58 M soln of BuLi<br />

in hexane (5.32 mL, 8.40 mmol) in dry THF (20 mL) under argon at –788C] was added dropwise,<br />

via syringe, over 5 min a soln of 1-(phenylsulfonyl)indole (2.06 g, 8.01 mmol) in dry<br />

THF (22 mL), keeping the internal temperature below –608C. The mixture was stirred for<br />

1.5 h below –708C <strong>and</strong> then allowed to warm slowly to 58C over 1 h. The resulting bright<br />

red soln was cooled to –788C. A magnetically stirred soln of the 1-(phenylsulfonyl)indol-2yllithium<br />

(11.66 mmol) in dry THF (40 mL) at –658C under argon was treated rapidly via<br />

syringe with a soln of freshly distilled MeCHO (1.00 g, 22.7 mmol) in dry THF (5 mL). The<br />

mixture was allowed to warm slowly to rt overnight, poured into 1% aq HCl (350 mL), <strong>and</strong><br />

the whole was extracted with CH 2Cl 2 (3 ” 250 mL). The combined extracts were washed<br />

with H 2O (400 mL) <strong>and</strong> brine (2 ” 400 mL), dried (K 2CO 3), <strong>and</strong> rotary evaporated to afford<br />

a light orange oil. Flash chromatography (silica gel, CH 2Cl 2) gave a light amber viscous<br />

oil which was further dried (608C/0.5 Torr) for 6 h to provide the analytically pure title<br />

compound as colorless crystals; yield: 3.28 g (93%); mp 101–1028C.<br />

8.1.14.12.2 Variation 2:<br />

By Halogen–Lithium Exchange<br />

The ease of indole C3 electrophilic halogenation begs for halogen–lithium exchange <strong>and</strong><br />

subsequent chemistry at this site. The first example of a 3-indolyllithium was described<br />

by Gribble, as summarized in Scheme 39. [329] Quenching of 77 at low temperatures<br />

(


390 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

bN-Silylated 3-indolyllithiums, prepared by halogen–lithium exchange, do not undergo rearrangement<br />

to the 2-lithio species [380,381] <strong>and</strong> have found wide applicability in synthesis<br />

(Scheme 40). Both triisopropylsilyl <strong>and</strong> tert-butyldimethylsilyl substitution work well.<br />

N-Silylated 3-indolyllithiums have been used to synthesize secodine, [382] nortopsentin, [278]<br />

<strong>and</strong> grossularine [383] alkaloids, â-methyltryptophan via a boronic acid, [261,384] oxygenated<br />

tryptamines, [385] homotryptophan, [386] 3-(arylaminomethyl)indoles, [387] <strong>and</strong> 5H-pyrido-<br />

[4,3-b]indole. [388] Extension to 4-, 5-, <strong>and</strong> 6-methoxy-substituted 1-silylindol-3-yllithium<br />

compounds is known, [389] <strong>and</strong> transmetalation to 3-indolylzinc chlorides is facile. [389,390]<br />

Regioselective C3 bromine–lithium exchange is observed with 3,6-dibromo-1-(tert-butyldimethylsilyl)indole,<br />

[278] <strong>and</strong> regioselective C2 bromine–lithium exchange is the case<br />

with 2,3-dibromo-1-methylindole. [391] The latter compound lends itself to sequential replacement<br />

of the C2 <strong>and</strong> C3 bromines, with concomitant electrophilic quenching. For<br />

example, in one pot, 2,3-dibromo-1-methylindole is converted into 1,2-dimethylindole-3carbaldehyde<br />

(88% yield) by sequential treatment with tert-butyllithium, iodomethane,<br />

tert-butyllithium, <strong>and</strong> dimethylformamide. [391]<br />

Scheme 40 Reactions of N-Silylated 3-Indolyllithiums [380,381]<br />

N<br />

Br<br />

TIPS<br />

1. t-BuLi, THF, pentane<br />

−78 o C, 10 min<br />

2. E +<br />

65−90%<br />

E = Me, Et, Bu, CHO, CO 2Me, CO 2H, Bz, CH(OH)Ph, CH 2CH 2OH<br />

Initial attempts to generate a 2,3-dilithioindole, from 2,3-diiodo-1-(phenylsulfonyl)indole<br />

<strong>and</strong> tert-butyllithium, were thwarted by indole ring fragmentation, even at temperatures<br />

as low as –1008C. [392] However, 2,3-dibromo-1-methylindole undergoes bis-bromine–lithium<br />

exchange to give dilithioindole 78, which reacts smoothly with electrophiles to give<br />

2,3-disubstituted indoles 79 (Scheme 41). [393] Reaction of 78 with phthalic anhydride gives<br />

5-methyl-5H-benzo[b]carbazole-6,11-dione (41% yield). Treatment of 2-iodoindole with excess<br />

butyllithium (3 equiv, –708C) generates 1,2-dilithioindole, which, upon quenching<br />

with electrophiles, leads to 2-substituted indoles (CO 2H, CONHPh, CONHBu, Cl, CHO,<br />

Me; 17–62%). [394]<br />

Scheme 41 Reactions of 2,3-Dilithioindole [393]<br />

Br<br />

N<br />

Me<br />

Br<br />

E = H, CHO, CO2H, CO2Me<br />

t-BuLi (5−10 equiv)<br />

THF , −78 oC, 20 min<br />

N<br />

Li<br />

N<br />

Me<br />

78<br />

E<br />

TIPS<br />

Li<br />

E +<br />

66−99%<br />

Several studies demonstrate that C4, C5, C6, <strong>and</strong> C7 bromine–lithium exchange is feasible<br />

with brominated indoles. [395–397] N-Unsubstituted indoles are conveniently protected as<br />

the potassium salt with potassium hydride, allowing for clean bromine–lithium exchange<br />

with tert-butyllithium <strong>and</strong> subsequent reactions with electrophiles. [395,397] For example,<br />

4-, 5-, 6-, <strong>and</strong> 7-bromoindoles can be formylated with dimethylformamide to give<br />

the respective indolecarbaldehydes in 53–61% yields. [395] The same protocol applied to<br />

5-bromoindole affords a range 5-substituted indoles [CHO, Ac, C(OH)Me 2, CONH 2, TMS,<br />

SMe, B(OH) 2, SnMe 3] in 18–94% yields. [397]<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG<br />

E<br />

N<br />

Me<br />

79<br />

E


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 391<br />

b8.1.14.12.3 Variation 3:<br />

By Directed ortho-Lithiation<br />

Given the success of both indole C2 deprotonation <strong>and</strong> C3 halogen–lithium exchange<br />

methods (see Sections 8.1.14.12.1 <strong>and</strong> 8.1.14.12.2), only a few directed lithiation strategies<br />

have been pursued. The first example of an indole C2 directing group effecting lithiation<br />

at C3 is the 2-pyridyl group, as shown for 80 to 81 (Scheme 42). [398] Indole ring fragmentation<br />

of 81 occurs only at higher temperatures (508C) <strong>and</strong> is not a problem. Reaction of 81<br />

with bromoacetaldehyde affords a simple route to the indolo[2,3-a]quinolizine alkaloids,<br />

including flavopereirine, [399] sempervirine, [330] <strong>and</strong> analogues. [400] Other indole C2 directing<br />

groups that lithiate C3 are CONHt-Bu, [398] CONEt 2, [205] CONHEt, [205] carboxy, [401] amino<br />

alkoxide, [203] <strong>and</strong> hydrazides. [402] The last study is the most extensive <strong>and</strong> affords the highest<br />

yields, as for 82 to 83. However, a C2 carboxamide group on 1-(phenylsulfonyl)indole<br />

leads to indole ring opening at –788C. [398]<br />

Scheme 42 Directed Lithiation of Indoles [398,402]<br />

N<br />

SO2Ph<br />

80<br />

N<br />

E = Me, Ac, CO 2H, CO 2Et, CH(OH)Me, TMS<br />

N<br />

Me<br />

82<br />

BuLi, THF<br />

−78 oC N<br />

Li<br />

SO 2Ph<br />

81<br />

E +<br />

N<br />

51−74%<br />

t-BuLi (3 equiv)<br />

TMEDA, THF<br />

−78 o Li<br />

H H<br />

N NMe2 N<br />

C, 3 h<br />

O<br />

E = Me, Et, TMS, CH(OH)Me, COt-Bu, CH(OH)t-Bu, CH(OH)(CH 2) 4Me, 4-MeOC 6H 4<br />

E +<br />

59−85%<br />

N O<br />

Me<br />

NMe 2<br />

E<br />

N<br />

E<br />

SO 2Ph<br />

H<br />

N<br />

N O<br />

Me<br />

The bulky N-protecting groups 2,2-diethylbutanoyl [344] <strong>and</strong> triisopropylsilyl [403] undergo direct<br />

C3 lithiation with sec-butyllithium (hexane, N,N,N¢,N¢¢,N¢¢-pentamethyldiethylenetriamine,<br />

–788C, 1 hour) <strong>and</strong> tert-butyllithium (hexane, N,N,N¢,N¢-tetramethylethylenediamine,<br />

08C, 3 h), respectively. In the latter case, yields of C3 substitution products are<br />

69–92% (Me, TMS, Br, CHO, CO 2H, CO 2Et, CONEt 2, CONHt-Bu), <strong>and</strong> this method represents<br />

an excellent C3 lithiation technique. Yields of C3 substitution products from 1-(2,2-diethylbutanoyl)indol-3-yllithium<br />

are lower (34–59%). Interestingly, lithiation of 1-(2,2-diethylbutanoyl)-3-methylindole<br />

using sec-butyllithium (diethyl ether, N,N,N¢,N¢-tetramethylethylenediamine,<br />

–788C, 1 h) affords the indol-7-yllithium <strong>and</strong>, following electrophilic<br />

83<br />

N<br />

NMe2<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


392 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

bquenching, good yields of 7-substituted indoles (Me, CHO, CO 2H, CO 2Et, Cl, Br, TMS, SPh;<br />

17–81%). [404] Lithiation at C7 is also the case with indoletricarbonylchromium(0) complexes,<br />

<strong>and</strong> the corresponding N-[(2-trimethylsilyl)ethoxymethyl] protecting group appears<br />

to be the most useful in synthesis, affording 7-substituted indoles in 65–95% yields<br />

(Me, CHO, allyl, TMS, CO 2Et, SnMe 3). [405]<br />

Iwao was the first to achieve C4 lithiation from a C3 directing group. Thus, 1-(triisopropylsilyl)gramine<br />

(84) undergoes efficient C4 lithiation to give 85, which, upon electrophilic<br />

quenching, affords 86 (Scheme 43). [406–412] This strategy has led to syntheses of<br />

clavicipitic acids, [408,409] ergot alkaloid analogues, [398] 4-substituted tryptophans, [410] <strong>and</strong><br />

4-arylated gramines by cross-coupling methodologies. [411] This last study also discloses a<br />

retro-Mannich fragmentation to afford 4-substituted 3-haloindoles. Other C3 potential<br />

directing groups, such as CH 2CH 2NMe 2,CH 2OMe, CH 2CH 2OMe, CONEt 2, <strong>and</strong> CON(iPr) 2,<br />

are decidedly less successful than CH 2NMe 2. [412] If a C5 directing group is present<br />

(OCONEt 2, [412,413] carboxy [414] ), then lithiation occurs preferentially at C4. These directing<br />

groups have been applied to the solid phase [414] <strong>and</strong> to the first generation of indolo-4,5quinodimethane.<br />

[415]<br />

Scheme 43 C4 Lithiation of Gramine [406–412]<br />

84<br />

N<br />

TIPS<br />

NMe2<br />

t-BuLi, Et2O 0 oC, 1 h<br />

Li N<br />

Me2 85<br />

N<br />

TIPS<br />

E +<br />

20−98%<br />

E = Me, Et, Pr, allyl, CHO, Bn, CH(OH)CH CMe2, CH(OH)Me, CH2CH(OH)Me, CH(OH)CH CH2<br />

CH 2CH CMe 2, Br, Cl, I, OH, TMS<br />

8.1.14.13 Method 13:<br />

Pyridyllithium <strong>Compounds</strong><br />

Unlike pyrrole <strong>and</strong> indole that have enhanced C2 proton acidity due to the inductive electron-withdrawing<br />

effect of nitrogen, the relative kinetic acidity of pyridine is C4 > C3 ><br />

C2 (12:9.3:1). [415,416] This reversal of relative acidities is thought to arise from a combination<br />

of decreased percent s character in the C2 <strong>and</strong> C6 C-H bonds <strong>and</strong> nitrogen lonepair<br />

repulsion in the developing carbanionic transition state. Consequently, direct base<br />

deprotonation of pyridine is difficult <strong>and</strong> not regioselective. [417] Moreover, alkyllithium<br />

reagents tend to add to the electron-deficient C2 <strong>and</strong> C4 positions. [418] Pyridinium salts<br />

<strong>and</strong> pyridine N-oxides show the well-known opposite acidity order: C2 > C3 > C4. [419,420]<br />

Caub›re <strong>and</strong> Fort have developed the first efficient deprotonation system for pyridine<br />

not involving heteroatom assistance. [421,422] The base system butyllithium–lithium 2-(dimethylamino)ethanolate<br />

lithiates pyridine, to give, after electrophilic addition, 87, <strong>and</strong><br />

4-(dimethylamino)pyridine cleanly at C2 (Scheme 44), <strong>and</strong> would appear to be a solution<br />

to the problem of regioselective, efficient pyridine lithiation. Noteworthy is that this base<br />

system lithiates C6, rather than the more usual C3, of 2-chloro- <strong>and</strong> 2-methoxypyridine<br />

(see Section 8.1.14.13.2). [423]<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG<br />

E<br />

86<br />

N<br />

TIPS<br />

NMe2


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 393<br />

bScheme 44 Lithiation of Pyridines [421,422]<br />

N<br />

BuLi, Me2N(CH2)2OLi<br />

hexane, −78 oC, 1 h<br />

E = D, Me, (CH2)5Me, Bn, CH(OH)(CH2)4Me, CH(OH)Ph, C(OH)Me2, CHO, Bz, Br, SMe, TMS<br />

NMe2<br />

N<br />

1. BuLi, Me2N(CH2)2OLi<br />

hexane, 0 oC, 1 h<br />

2. E +<br />

65−94%<br />

E = D, Bz, PPh2, Cl, Br, I, SnBu3<br />

E +<br />

25−80%<br />

N Li N<br />

87<br />

E<br />

NMe 2<br />

N E<br />

2-Substituted Pyridines 87; General Procedure: [421]<br />

A 1.6 M soln of BuLi in hexane (10 mL, 16 mmol) was cooled to 0 8C under N 2 <strong>and</strong> a soln of<br />

N,N-dimethylaminoethanol (0.72 g, 8 mmol) in anhyd hexane (10 mL) was added dropwise<br />

over 15 min. The mixture was then cooled to –788C, after which a soln of pyridine (0.32 g,<br />

4 mmol) in hexane (5 mL) was added dropwise. After 1 h, an orange soln was obtained <strong>and</strong><br />

an appropriate electrophile (10–40 mmol), as a soln in anhyd THF (25 mL), was added rapidly<br />

to it. After 1 h at –788C the mixture was treated with 10% aq HCl (20 mL). The aqueous<br />

layer was separated <strong>and</strong> extracted with Et 2O (20 mL). The combined extracts were dried<br />

(MgSO 4) <strong>and</strong> concentrated, <strong>and</strong> the crude product was purified on a Chromatotron<br />

(EtOAc/hexane); yield: 25–80%.<br />

8.1.14.13.1 Variation 1:<br />

By Halogen–Lithium Exchange<br />

Prior to the discovery of lithium amide bases <strong>and</strong> directed lithiation concepts, the sole efficient<br />

route to pyridyllithium compounds was halogen–lithium exchange. This wellknown<br />

reaction [125,424] is normally performed on bromo- or iodopyridines <strong>and</strong> the resulting<br />

pyridyllithium compounds are stable. An excellent typical example, which is suitable<br />

on a kilogram scale, is shown in Scheme 45 for the preparation of compounds 88. [425] If<br />

dihalopyridines are subjected to halogen–lithium exchange conditions with butyllithium,<br />

then halogen-dance rearrangements can occur.<br />

Scheme 45 Halogen–Lithium Exchange of Halopyridines [425]<br />

N<br />

Br<br />

1. BuLi, toluene, hexane, −60 oC 2. E + , THF<br />

87−94%<br />

E = CHO, C(OH)Ph 2, , C(OH)EtPh, B(OiPr) 2<br />

N<br />

OH<br />

Other pyridyllithium compounds, as generated by bromine– or iodine–lithium exchange,<br />

include 6-fluoro-3-pyridyllithium, [426] 5-(trifluoromethyl)-3-pyridyllithium, [427] 2-(trifluoromethyl)-3-pyridyllithium,<br />

[427] 2-chloro-5-(trifluoromethyl)-3-pyridyllithium, [427] 2-chloro-5-<br />

(trifluoromethyl)-4-pyridyllithium, [427] 5-(trifluoromethyl)-2-pyridyllithium, [427] 4-(trifluoromethyl)-2-pyridyllithium,<br />

[427] 3-(trifluoromethyl)-2-pyridyllithium, [427] 6-(trifluoromethyl)-2-pyridyllithium,<br />

[427] 6-(trifluoromethyl)-3-pyridyllithium, [427] 2-(trifluoromethyl)-4-pyr-<br />

N<br />

88<br />

E<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


394 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

bidyllithium, [427] 2-chloro-5-(trifluoromethyl)-4-pyridyllithium, [427] <strong>and</strong> 5-bromo-2-pyridyllithium.<br />

[427,428] Although the last species is thermodynamically favored, 2,5-dibromopyridine<br />

is lithiated to 6-bromo-3-pyridyllithium with butyllithium in diethyl ether. [428,429]<br />

Each of these pyridyllithium compounds reacts smoothly with electrophiles. Also, 6-bromo-2-pyridyllithium,<br />

[430] 6-chloro-3-pyridyllithium, [429,431] 6-methoxy-3-pyridyllithium, [429]<br />

2-fluoro-4-pyridyllithium, [432] 2-chloro-4-pyridyllithium, [432] 2-bromo-4-pyridyllithium, [432]<br />

2-chloro-3-pyridyllithium, [433] 2-bromo-3-pyridyllithium, [433] <strong>and</strong> 2-fluoro-3-pyridyllithium<br />

[433] are readily generated by halogen–lithium exchange. These species can be converted<br />

to boronic acids [432–435] or transmetalated with zinc(II) chloride. [426,431,436] Synthetic applications<br />

of these pyridyllithium compounds are multifold, <strong>and</strong> include intermediates<br />

in the synthesis of camptothecin, [437,438] azatetralone, [439] harzianopyridone, [440] caerulomycins,<br />

[441,442] collismycins, [442] naphthyridines, [443] planar polypyridines, [444] pyridine–zirconium<br />

complexes, [193] polyhalopyridines, [445,446] <strong>and</strong> 3,4,5-trisubstituted pyridines. [447]<br />

Although butyllithium is routinely used to effect halogen–lithium exchange, mesityllithium<br />

has been advocated for this transformation, at least in the synthesis of a camptothecin<br />

intermediate. [448] Obviously, the mesityl halide byproduct cannot engage in the side<br />

reactions that are typical of butyl bromide. Moreover, mesityllithium is less nucleophilic<br />

than butyllithium, e.g. toward carbonyl groups. A second important new development in<br />

this field is that chlorine–lithium exchange can be effected using lithium naphthalenide<br />

(THF, –788C, 1 h), [449] based on earlier work with this reagent by Yus. [450–452] The resulting<br />

2-, 3-, <strong>and</strong> 4-pyridyllithium compounds react smoothly with electrophiles, although yields<br />

are higher for C2 <strong>and</strong> C4 substitution (10–93%) than for C3 substitution (6–69%). Successful<br />

electrophiles include iodine, aldehydes (e.g., PhCHO to give 89), ketones, nitriles, <strong>and</strong><br />

acyl sources (Scheme 46).<br />

Scheme 46 Lithiation of 2-Chloropyridines [449]<br />

N<br />

Cl<br />

1. Li, naphthalene, THF, rt, 12 h, then −78 oC, 6 h<br />

2. PhCHO, −78 oC, 10 min<br />

3. aq NH4Cl 72%<br />

3-Substituted Pyridines 88; General Procedure: [425]<br />

Toluene (600 mL) in a 2-L three-necked flask, equipped with an overhead stirrer, was<br />

cooled to –608C. A 2.5 M soln of BuLi in hexane (220 mL, 0.55 mol) was mixed with the toluene.<br />

After the internal temperature reached –608C, a soln of 3-bromopyridine (79.0 g,<br />

48.2 mL, 0.50 mol) in toluene (200 mL) was added. The internal temperature was maintained<br />

at


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 395<br />

b8.1.14.13.2 Variation 2:<br />

By Directed ortho-Lithiation<br />

The development of directed lithiation groups in arene chemistry was soon extended to<br />

pyridines, <strong>and</strong> this area has been extensively reviewed. [6,12,453] The three main directing<br />

groups used on pyridines are halogens, amides, <strong>and</strong> alkoxy groups. Given that alkyllithium<br />

compounds add to the ð-deficient pyridine ring, early attempts to effect ortho-lithiation<br />

of halopyridines with alkyllithium reagents were generally not successful. [12,453]<br />

Gribble [454,455] <strong>and</strong> QuØguiner [456,457] independently discovered that lithium diisopropylamide<br />

effects ortho-lithiation of halopyridines, which leads to excellent syntheses of disubstituted<br />

pyridines following electrophilic quenching. For example, 3-halopyridines are regioselectively<br />

lithiated at C4, as expected from the acidifying effect of halogen [121–124] <strong>and</strong><br />

the fact that the C4 proton is more acidic than the C2 proton in pyridine. [416] Since halopyridyllithium<br />

compounds are prone to pyridyne formation, [455] electrophilic quenching<br />

must be performed at low temperature. For example, 3-bromo-4-pyridyllithium is only<br />

stable for 10–15 minutes at –788C <strong>and</strong> must be cooled to –1008C prior to quenching, <strong>and</strong><br />

3-iodo-4-pyridyllithium is only fleetingly stable at –958C. Some reactions of 3-halo-4-pyridyllithium<br />

compounds are summarized in Scheme 47. [454,455] The regioselectivity is 96%<br />

C4 <strong>and</strong> about 2% each at C2 <strong>and</strong> C5. [454,455] Reaction of 3-chloro-4-pyridyllithium (90,<br />

X = Cl) with iodobutane gives a mixture of 4-butyl-3-chloropyridine (91, E = Bu) <strong>and</strong> 3-chloro-4-(oct-4-yl)pyridine,<br />

the product of deprotonation of the acidic benzylic methylene<br />

group <strong>and</strong> subsequent alkylation. Likewise, iodomethane quenching affords some 3-chloro-4-ethylpyridine.<br />

[457]<br />

Scheme 47 Reactions of 3-Halo-4-pyridyllithium <strong>Compounds</strong> [454,455]<br />

N<br />

X<br />

LDA, THF, −78 o C<br />

Li<br />

N<br />

90<br />

X<br />

E +<br />

36−96%<br />

E = Et, Bu, CH(OH)Ph, C(OH)Ph2, CH(OH)Me, C(OH)MePh, SO 2Ph, I, SPh, TMS; X = F, Cl, Br<br />

The generation of ortho-substituted halopyridyllithium compounds with lithium diisopropylamide<br />

has found extensive use in organic synthesis. Examples include applications<br />

to the synthesis of 2-amino-3-aroylpyridines, [456] other 2,3-disubstituted pyridines, [457] annulated<br />

nicotine analogues, [458] furopyridines, [459] naphthyridines, [443,460] other fused pyridines,<br />

[460] louisianin C, [461] azaindoles, [462] acylindoles, [463] camptothecin, [438] harzianopyridone,<br />

[440] caerulomycins. [441,442] collismycins, [442] 4-substituted 3,5-dibromopyridines, [447]<br />

pyridinecarboxylic acids, [427,464] pyridylzincates, [426,465–467] iodopyridines, [468] pyridynes,<br />

[454,455,469] pyridineboronic acids, [426,432,433] pyrido prostagl<strong>and</strong>ins, [470] <strong>and</strong> pyridotropanes.<br />

[471]<br />

Synthetic applications of halogen-dance (“homotransmetalation”) reactions of halopyridines<br />

have been pioneered by QuØguiner. [472–477] These reactions can occur in the<br />

halogen–lithium exchange mode [472–474] or via lithium diisopropylamide deprotonation<br />

of a halopyridine. [475–477] This novel transformation (Scheme 48) has been utilized in syntheses<br />

of 5H-pyrido[4,3-b]indole, [475] perlolidine, [475] diazaphenanthrenes, [475] meridine<br />

analogues, [476] pyridoacridine alkaloids, [477] camptothecin, [438] mappicine, [478] <strong>and</strong> iodopyridines<br />

(e.g., 92). [468]<br />

E<br />

N<br />

91<br />

X<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


396 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

bScheme 48 Halogen-Dance Reactions of an Iodopyridine [476]<br />

N<br />

I<br />

O<br />

NPr i 2<br />

E = H, D, Et, CH(OH)Ph, CHO, TMS, I<br />

1. LDA (2 equiv), THF, −75 oC, 1 h<br />

2. E +<br />

3. H2O<br />

80−97%<br />

The amide group has also been employed extensively as a directed lithiation group on the<br />

pyridine ring, <strong>and</strong> both N-acylpyridines <strong>and</strong> pyridinecarboxamides are smoothly ortholithiated<br />

with alkyllithium reagents (Scheme 49). [479,480] This pyridine lithiation strategy,<br />

first described by Snieckus [231] <strong>and</strong> Katritzky, [481] has been used to synthesize substituted<br />

pyridines, [440,482–488] pyridoacridines, [477] polycyclic aromatic quinones, [231] sesbanine, [489]<br />

bostrycoidin, [490] nevirapine <strong>and</strong> derivatives, [491] berninamycinic acid, [492] azaphenoxathiines,<br />

[493] thiazolo[5,4-c]pyridines, [494] <strong>and</strong> thiazolo[4,5-b]pyridines. [495] Similarly, O-pyridyl<br />

carbamates are lithiated with alkyllithium reagents <strong>and</strong> behave similarly to their arene<br />

counterparts. [496,497]<br />

Scheme 49 Directed ortho-Lithiation of Pyridine Amides [479,480]<br />

HN<br />

N<br />

E = D, Me, CHO, SMe, TMS<br />

N<br />

O<br />

Bu t<br />

O<br />

NHPh<br />

1. BuLi (2 equiv), THF, 0 o C<br />

2. E +<br />

60−94%<br />

1. BuLi, THF, −78 oC 2. (BnS) 2<br />

77%<br />

Alkoxypyridines can be ortho-lithiated with butyllithium; [498,499] however, in the case of<br />

simple 2-, 3-, <strong>and</strong> 4-methoxypyridines, mesityllithium is the preferred base (e.g., Scheme<br />

50). [500,501] Phenyllithium is also excellent for the lithiation of 4-methoxypyridine, <strong>and</strong> butyllithium<br />

is a better choice than mesityllithium for the lithiation (at C2) of 3,4-dimethoxypyridine<br />

(Scheme 50). [502] The power of this method is illustrated by the one-pot conversion<br />

of 2-chloro-6-methoxypyridine into 2-chloro-4-iodo-6-methoxypyridine-5-carbaldehyde<br />

by sequential stages of lithiation <strong>and</strong> electrophilic quenching. [437] Such a t<strong>and</strong>em<br />

lithiation sequence is the starting point in a short synthesis of camptothecin. [501] In some<br />

cases, lithium diisopropylamide can effect lithiation of methoxypyridines. [441]<br />

HN<br />

N<br />

N<br />

O<br />

I<br />

N<br />

Bu<br />

E<br />

t<br />

SBn<br />

O<br />

92<br />

NHPh<br />

E<br />

O<br />

NPr i 2<br />

Scheme 50 Directed ortho-Lithiation of Methoxypyridines [500,502]<br />

OMe<br />

N<br />

E = CHO, CH(OH)Ph, SMe, SePh<br />

1. MesLi (1.3 equiv), THF, −23 o C, 3 h<br />

2. E +<br />

65−84%<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG<br />

OMe<br />

N<br />

E


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 397<br />

OMe<br />

b1. BuLi (2.2 equiv), THF, −70 oC (or 0 oC), 1 h<br />

2. E +<br />

OMe<br />

N<br />

45−90%<br />

E = D, Me, CHO, CH(OH)Ph, CH(OH)Me, TMS, Br, I<br />

Other directing groups used to lithiate pyridines include dihydrooxazole, [503,504] amino<br />

alkoxides, [437,501,505] sulfonamides, [506,507] sulfoxides, [508] carboxy, [509,510] arylcarbonyl, [511]<br />

<strong>and</strong> trifluoromethyl groups. [512] The C4 lithiation of nicotinic acid (as the lithium salt) proceeds<br />

cleanly with lithium 2,2,6,6-tetramethylpiperidide (e.g., to give 93), but not with<br />

the less basic lithium diisopropylamide (Scheme 51). [510]<br />

Scheme 51 Directed ortho-Lithiation of Nicotinic Acid [510]<br />

CO2H<br />

1. LTMP, hexane, THF, −78 oC, 10 min<br />

2. E + , THF<br />

3. Amberlyst IR-120<br />

E = Cl 75%<br />

N E = I unstable<br />

N<br />

93<br />

The superbase system butyllithium–lithium 2-(dimethylamino)ethoxide effects a novel<br />

C6 lithiation of 2-chloropyridine (25–100% with assorted electrophiles), [513] an unusual<br />

result previously observed with 2-methoxypyridine. [514] Similar results are seen with 3<strong>and</strong><br />

4-chloropyridines, [515] <strong>and</strong> with 2-bromopyridine under slightly different conditions<br />

(LTMP, Et 2O). [467] A discussion of these phenomena with regard to the mechanism of the<br />

lithiation of 2-chloro- <strong>and</strong> 2-methoxypyridines with lithium amides has been advanced.<br />

[516] The lithiation of various pyridine N-oxides has been pursued [517] <strong>and</strong> applied<br />

to the synthesis of the caerulomycins <strong>and</strong> collismycins. [442] As expected, the greatly enhanced<br />

acidity of the C2 proton leads to lithiation at this site in pyridine N-oxides.<br />

3-Chloro-4-(trimethylsilyl)pyridine (91, E = TMS; X = Cl); Typical Procedure: [454,455]<br />

An oven-dried, 100-mL, three-necked, round-bottomed flask fitted with an internal thermometer,<br />

an addition funnel, a N 2 adapter, a rubber septum, <strong>and</strong> a magnetic stirring bar<br />

was charged with dry THF (20 mL) <strong>and</strong> dry iPr 2NH (3.70 mL, 26.4 mmol). To this was added<br />

a 1.6 M soln of BuLi in hexane (16.5 mL, 30 mmol) at –788C under N 2 with magnetic stirring.<br />

This soln was stirred at –788C for 20 min <strong>and</strong> then to this soln of LDA was added,<br />

over 15 min, a soln of 3-chloropyridine (2.51 mL, 26.4 mmol) in dry THF (5 mL) with magnetic<br />

stirring <strong>and</strong> keeping the temperature below –78 8C. The resulting 3-chloro-4-pyridyllithium<br />

precipitated as a white solid in a light yellow soln. The mixture was stirred for<br />

30 min at –788C <strong>and</strong> then treated over 5–10 min with a soln of TMSCl (3.60 mL,<br />

28.4 mmol) in dry THF (15 mL), keeping the temperature at –788C. The mixture was allowed<br />

to warm to rt overnight, partially concentrated under reduced pressure, poured<br />

into 5% aq NaHCO 3 (50 mL), <strong>and</strong> extracted with Et 2O (3 ” 100 mL). The Et 2O extracts were<br />

washed with H 2O (75 mL) <strong>and</strong> brine (2 ” 75 mL), dried (K 2CO 3), <strong>and</strong> concentrated under reduced<br />

pressure to afford a light amber oil (5.37 g). Distillation gave the pure product;<br />

yield: 4.72 g (96%); bp 75–77 8C/1 Torr.<br />

Isomerized Iodopyridines 92; General Procedure: [476]<br />

3-Iodo-N,N-diisopropylpyridine-2-carboxamide (0.010 mol) in THF (100 mL) was slowly<br />

added to a cold (–758C) soln of LDA (0.020 mol) in THF (100 mL). The resulting mixture<br />

was stirred for 1 h at –788C before addition of the required electrophile (0.020 mol) in<br />

THF (10 mL). Stirring was continued for 2 h at the same temperature before hydrolysis at<br />

E<br />

OMe<br />

N<br />

CO2H<br />

OMe<br />

E<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


398 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

b–78 8C byH 2O (50 mL) <strong>and</strong> further addition of H 2O (100 mL) at rt. Extraction with Et 2O<br />

(3 ” 150 mL), drying (MgSO 4), <strong>and</strong> removal of solvent afforded a crude product, which<br />

was purified by flash chromatography (silica gel); yield: 80–97%.<br />

Nicotinic Acid Derivatives 93; General Procedure: [510]<br />

A 2.5 M soln of BuLi in hexane (16 mL, 40 mmol) <strong>and</strong>, 15 min later, nicotinic acid (1.2 g,<br />

10 mmol) were added at –788C to a soln of 2,2,6,6-tetramethylpiperidine (5.1 mL,<br />

30 mmol) in THF (50 mL). After 10 min at –788C, the mixture was stirred for 30 min at<br />

–55 8C <strong>and</strong> transferred dropwise to a cooled (–558C) soln of the required electrophile<br />

(30 mmol) in THF (50 mL). After 15 min at –558C, the mixture was allowed to reach rt before<br />

hydrolysis (5 mL) <strong>and</strong> removal of the solvents under reduced pressure. The residue<br />

was dissolved in H 2O (20 mL) <strong>and</strong> the resulting soln washed with CH 2Cl 2 (30 mL) <strong>and</strong> Et 2O<br />

(2 ” 30 mL). The aqueous phase was then evaporated to dryness <strong>and</strong> the residue chromatographed<br />

(silica gel, CH 2Cl 2 then CH 2Cl 2/MeOH 7:3) to give the crude product. This was dissolved<br />

in MeOH (30 mL) <strong>and</strong> treated for 15 min with Amberlyst IR-120 (25 g). The resin was<br />

removed by filtration; the solvents were evaporated, <strong>and</strong> the residue washed with acetone<br />

(20 mL) to give, after drying, the pure nicotinic acid derivative; yield: 45–80%.<br />

8.1.14.14 Method 14:<br />

Quinolyllithium <strong>Compounds</strong><br />

The lithiation of quinolines, [6,12] either by deprotonation or halogen–lithium exchange,<br />

parallels those reactions encountered with pyridines. Both 3- [434] <strong>and</strong> 7-bromoquinoline<br />

[518] undergo halogen–lithium exchange with butyllithium <strong>and</strong> are converted into<br />

their respective boronic acids (79 <strong>and</strong> 60% yields, respectively). Likewise, 2-chloroquinolines<br />

are converted into quinolin-2-yllithium compounds under Yus conditions, [450] <strong>and</strong><br />

more highly substituted bromo- <strong>and</strong> iodoquinolines undergo halogen–lithium exchange<br />

<strong>and</strong> subsequent chemistry. [427,519,520] For example, 4,8-dibromo-2-(trifluoromethyl)quinoline<br />

undergoes double metal–halogen exchange with butyllithium <strong>and</strong> is quenched with<br />

iodine to give 4,8-diiodo-2-(trifluoromethyl)quinoline in 69% yield. [520] Halogenated quinolines<br />

also undergo directed ortho-lithiation reactions. Whereas 2-, 3-, 5-, 6-, <strong>and</strong> 7-fluoroquinolines<br />

suffer C2 nucleophilic addition with butyllithium, lithium diisopropylamide<br />

smoothly removes a proton adjacent to fluorine. [521,522] Similar regiochemistry is observed<br />

with 2-, 3-, <strong>and</strong> 4-chloroquinolines <strong>and</strong> lithium diisopropylamide, [523] <strong>and</strong> more highly<br />

substituted quinolines (Scheme 52). [427,520] The lithiation of (trifluoromethyl)quinolines is<br />

markedly base dependent. [512]<br />

Scheme 52 Directed ortho-Lithiation of Halogenated Quinolines [520,523]<br />

R 1<br />

Br<br />

N<br />

CF 3<br />

R 1 = H, 6-Me, 6-CF3, 7-OMe, 6-F, 8-F, 8-Br, 8-I<br />

1. LDA, THF, hexane, −75 oC, 2 h<br />

2. CO2 62−89%<br />

1. LDA, THF, hexane, −75 E<br />

45−85%<br />

N Cl N Cl<br />

oC, 2 h<br />

2. E +<br />

R 1 = TMS, CH(OH)Ph, CHO, CO 2H, B(OH) 2, I<br />

R 1<br />

Br<br />

N<br />

CO 2H<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG<br />

CF 3


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 399<br />

b8.1.14.15 Method 15:<br />

Diazinyllithium, Benzodiazinyllithium, <strong>and</strong> Other Azinyllithium <strong>Compounds</strong><br />

Although the lithiation of the diazines (pyrazines, pyrimidines, <strong>and</strong> pyridazines) is much<br />

less developed than that of pyridines, some important studies have been performed,<br />

mainly by QuØguiner, <strong>and</strong> excellent reviews are available. [7,12] As with other ð-deficient<br />

nitrogen heterocycles, nucleophilic addition to the azine ring is always a threat. An important<br />

property of diazines that is often overlooked is that they are extremely weak bases<br />

compared to pyridine (3–4 orders of magnitude). This property of diazines may explain<br />

the lack of Lewis base nitrogen complexation as a factor in controlling the regiochemistry<br />

of lithiation.<br />

8.1.14.15.1 Variation 1:<br />

Pyrazinyllithium <strong>Compounds</strong><br />

The symmetrical pyrazine ring has an inherent advantage in lithiation chemistry since all<br />

four positions are equivalent. Conditions for monolithiation of pyrazines are lithium<br />

2,2,6,6-tetramethylpiperidide in tetrahydrofuran at –758C, to give the expected products<br />

after quenching with an electrophile (PhCHO, MeCHO, I 2) in 44–65% yield. [524] As predicted,<br />

lithiation of 2-chloropyrazine with lithium diisopropylamide or lithium 2,2,6,6-tetramethylpiperidide<br />

(–708C, THF) gives 2-chloropyrazin-3-yllithium, which, upon reaction<br />

with electrophiles, affords the 3-substituted 2-chloropyrazines in 30–90% yield. [525] Other<br />

pyrazine C2 substituents direct lithiation to the C3 position, including methoxy, [526,527]<br />

methylsulfanyl, [527] fluorine, [528] <strong>and</strong> iodine [529] (Scheme 53). This methodology has been<br />

applied to the synthesis of multisubstituted pyrazine C-nucleosides by employing sequential<br />

dilithiation–quenching of 2,6-dichloropyrazine. [530] Halogen–lithium exchange chemistry<br />

of halopyrazines is seen with 2-chloropyrazine <strong>and</strong> 2-chloro-6-methylpyrazine to<br />

give the 2-pyrazinyllithium compounds under Yus conditions (Li, naphthalene, THF,<br />

–78 8C) [450] <strong>and</strong> under Barbier conditions (Li, THF, rt, ultrasound) with 2-iodopyrazines<br />

(e.g., 94 to 95) (Scheme 53). [531]<br />

Scheme 53 Lithiation of 2-Iodopyrazines [529,531]<br />

N<br />

N<br />

1. LTMP, THF, −78 oC, 5 min<br />

2. E +<br />

N<br />

24−82%<br />

I N<br />

E = Me, CO2H, I, TMS, CHO, SPh, CH(OH)Ph, C(OH)Ph2, CH(OH)Ph<br />

N<br />

X<br />

1. Li (2.2 equiv), THF, ))), rt, 30 min<br />

2. E +<br />

33−70%<br />

N I N<br />

94 95<br />

E = CH(OH)Ph, CH(OH)(CH 2) 4Me, SPh; X = H, Cl<br />

Substituted Pyrazines 95: [531]<br />

The diazine 94 (1.0 mmol), Li powder (2.2 mmol), <strong>and</strong> the electrophile (1.1 mmol) were introduced<br />

in THF (3 mL) under dry argon. The reaction medium was placed in the ultrasound<br />

cleaning bath for 30 min. Decomposition of the remaining Li was then carried out<br />

using EtOH (3 mL). The reaction medium was diluted with H 2O (3 mL) <strong>and</strong> concentrated.<br />

The aqueous layer was extracted with EtOAc (4 ” 10 mL). The organic layer was then dried<br />

(MgSO 4) <strong>and</strong> concentrated. The crude product was purified by column chromatography<br />

(silica gel, CH 2Cl 2); yield: 33–70%.<br />

E<br />

I<br />

N<br />

X<br />

E<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


400 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

b8.1.14.15.2 Variation 2:<br />

Pyrimidyllithium <strong>Compounds</strong><br />

Given that the pyrimidine ring is present in DNA <strong>and</strong> RNA, an enormous amount of chemistry<br />

has been devoted to this heterocycle, including lithiation studies. [7] Although most<br />

pyrimidine lithiations involve a directing group (chlorine, methoxy), pyrimidine itself is<br />

lithiated with difficulty (LTMP, THF, –758C, 2 h) <strong>and</strong> using the in situ electrophilic<br />

quenching technique, lest the 4,4¢-bipyrimidine dimer becomes the major product. [524]<br />

Under these conditions, for example, 4-(trimethylsilyl)pyrimidine is isolated in 54% yield.<br />

Other electrophiles (benzaldehyde, benzophenone) afford lower yields. Lithiation at C4 is<br />

consistent with the acidity order of C4 > C2. [532] Similar C4 lithiation is observed with<br />

2-chloro-, 2-methoxy-, <strong>and</strong> 2-(4-methoxyphenyl)pyrimidine using the in situ or normal<br />

electrophilic quench, but yields are usually below 50% [4-substituted 2-methoxypyrimidines:<br />

CH(OH)Ph (29%), CH(OH)Me (26%), 2,3,4-(MeO) 3C 6H 2 (28%), D (56%), CHO (16%),<br />

C(OH)Ph 2 (48%)]. Although dimerization can still intrude, lithiations of 4- <strong>and</strong> 5-substituted,<br />

2,4- <strong>and</strong> 4,6-disubstituted, <strong>and</strong> 2,4,6-trisubstituted pyrimidines are generally more successful.<br />

Directing substituents include methoxy, [526,533] chlorine, [534,535] fluorine, [536] <strong>and</strong> trifluoromethyl<br />

(e.g. reaction of 96 to give 97) [537] (Scheme 54). The last result appears to be<br />

due to a steric effect. The importance of these results is that the substituted pyrimidines<br />

can be hydrolyzed to uracils or elaborated to pyrimidine-fused indoles. [536]<br />

Scheme 54 Directed ortho-Lithiation Reactions of Substituted Pyrimidines [526,535–537]<br />

MeO<br />

N<br />

N<br />

E = Me, TMS, CH(OH)Ph<br />

OMe<br />

N<br />

MeO N OMe<br />

E = Me, TMS, CH(OH)Ph, Bz<br />

N<br />

Cl N Cl<br />

F<br />

N<br />

Cl<br />

N SMe<br />

1. LTMP, THF, −78 o C, 15 min<br />

2. E +<br />

47−49%<br />

1. LTMP, THF, −78 oC, 15 min<br />

2. E +<br />

91−99%<br />

1. LDA, THF, −80 o C, 30 min<br />

2. E +<br />

E = CH(OH)Ph 84%<br />

E = TMS 67%<br />

1. LDA (2.3 equiv), THF, −70 o C, 30 min<br />

2. E +<br />

48−87%<br />

E = CHO, CO 2H, CH(OH)Me, CH(OH)Ph, 2-MeOC6H4CH(OH), I<br />

MeO<br />

E<br />

E<br />

N<br />

E<br />

N<br />

OMe<br />

N<br />

MeO N OMe<br />

Cl<br />

N<br />

Cl N Cl<br />

E<br />

F<br />

N<br />

N SMe<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 401<br />

CF3<br />

b19−98%<br />

N SMe<br />

N<br />

96<br />

TMP (3 equiv), E + , THF<br />

−100 oC E = TMS, SPh, CH(OH)Ph, C(OH)Ph 2, Cl, I<br />

E<br />

CF3<br />

N<br />

N SMe<br />

Halogen–lithium exchange has been employed to convert 5-bromopyrimidine, [434,538] a<br />

4-iodopyrimidine, [539] a 4-chloropyrimidine, [450] <strong>and</strong> stannylpyrimidines (via tin–lithium<br />

exchange) [539] into the respective lithiated pyrimidines. In this fashion, pyrimid-5-ylboronic<br />

acid is crafted in 76% yield. [434]<br />

Substituted Pyrimidines 97; General Procedure: [537]<br />

A mixture of 96 (0.51 mmol) in THF (5 mL) <strong>and</strong> the required electrophile (1.5 mmol) in THF<br />

(15 mL) were added simultaneously to a cold (–1008C) soln of LTMP (1.5 mmol) in dry THF<br />

(20 mL) over 30 min. The mixture was stirred for 1 h at –1008C, then for 1 h at –75 8C, before<br />

hydrolysis by a mixture of 35% HCl (1 mL), EtOH (2 mL), <strong>and</strong> THF (2 mL). The soln was<br />

gently warmed to rt, treated with sat. NaHCO 3 (5 mL), <strong>and</strong> concentrated under reduced<br />

pressure to near dryness. The residue was extracted with CH 2Cl 2 (3 ” 20 mL). The organic<br />

extract was dried (MgSO 4) <strong>and</strong> evaporated. The crude product was purified by column<br />

chromatography (silica gel); yield: 19–98%.<br />

8.1.14.15.3 Variation 3:<br />

Pyridazinyllithium <strong>Compounds</strong><br />

Unlike their more famous pyrazine <strong>and</strong> pyrimidine cousins, the lithiation chemistry of<br />

pyridazines is underexplored; [7] however, a few important studies are known. Lithiation<br />

of pyridazine with lithium 2,2,6,6-tetramethylpiperidide (THF, –75 8C), followed by electrophilic<br />

quenching (or in situ technique), affords the C3 products in most cases (7–47%,<br />

with benzaldehyde, benzophenone, diphenyl disulfide, [ 2 H]hydrogen chloride, acetaldehyde,<br />

iodine). [524] Lithiation yields are much higher if methoxy or chlorine is present on<br />

the ring (Scheme 55). Further lithiation of the C5 position of 98 is facile [538,540] <strong>and</strong> affords<br />

tetrasubstituted pyrazines. [538] Likewise, 99 can be desilylated in the presence of aldehydes<br />

<strong>and</strong> the resulting alcohols further elaborated by lithiation, as for 99 to 100. [540]<br />

Scheme 55 Directed ortho-Lithiation of Substituted Pyridazines [526,538,540]<br />

MeO<br />

N N<br />

OMe<br />

E = Me, TMS, CH(OH)Ph, SO-4-Tol<br />

1. LTMP, THF, −78 oC, 15 min<br />

2. E +<br />

76−86%<br />

97<br />

E<br />

MeO<br />

N N<br />

98<br />

OMe<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


402 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

bLDA, TMSCl, THF<br />

−70 oC, 2 h<br />

88%<br />

N N<br />

OMe<br />

Cl<br />

Cl<br />

HO Ph<br />

N N<br />

OMe<br />

8.1.14.15.4 Variation 4:<br />

Benzodiazinyllithium <strong>Compounds</strong><br />

Cl<br />

N N<br />

TMS PhCHO (5 equiv)<br />

OMe<br />

TBAF, THF<br />

20 oC, 2 h<br />

71%<br />

99<br />

1. LTMP (4 equiv), THF<br />

−30 oC, 3 min<br />

2. MeCHO<br />

91%<br />

HO Ph<br />

HO<br />

Lithiation of benzodiazines (quinoxalines, quinazolines, cinnolines) has seen limited attention,<br />

<strong>and</strong> generally mimics their azine parents. [7] Lithiation of 2-methoxy- <strong>and</strong> 2-(methylsulfanyl)quinoxaline<br />

(LTMP, THF/hexane, –788C, 20 min) <strong>and</strong> quenching with a Weinreb<br />

amide gives the respective 3-benzoylquinoxalines in 42–43% yield, [527] <strong>and</strong> similar lithiation–quenching<br />

of 2-chloroquinoxaline yields 3-substitution (with acetaldehyde <strong>and</strong><br />

benzaldehyde, 66 <strong>and</strong> 52% yields). [541] This latter study also describes the ortho-lithiation<br />

of 2-(pivaloylamino)quinoxaline <strong>and</strong> quenching with acetaldehyde, benzaldehyde, carbon<br />

dioxide, <strong>and</strong> iodine (32–65%). The lithiation of 3-(acylamino)-4(3H)-quinazolinones<br />

101 is exceptionally efficient (Scheme 56). [542] Lithiation of 3- <strong>and</strong> 4-chloro- <strong>and</strong> 3- <strong>and</strong><br />

4-methoxycinnolines affords good yields of the expected products. [543] In the case of<br />

4-chloro-4-methoxycinnoline, lithiation occurs at C8 to afford the corresponding iodinated<br />

compound using iodine as an electrophile (83% yield).<br />

Scheme 56 Lithiation of Quinazolinones [542]<br />

O<br />

N<br />

N<br />

101<br />

H<br />

N<br />

1. LDA (2.2 equiv), THF, −78 oC, 1 h<br />

2. E +<br />

76−92%<br />

R 1 = Me, t-Bu; E = D, Me, C(OH)Ph 2, C(OH)MePh, CONHPh, 1-hydroxycyclohexyl<br />

8.1.14.15.5 Variation 5:<br />

Other Azinyllithium <strong>Compounds</strong><br />

O<br />

R 1<br />

A few studies have described the lithiation of other azines <strong>and</strong> fused azines. The Yus naphthalene-catalyzed<br />

reductive lithiation of 2-chloro-4,6-dimethoxytriazine (102) <strong>and</strong> electrophilic<br />

trapping leads to the products 103, [450] <strong>and</strong> 3-phenyl-1,2,4,5-tetrazine (104) is<br />

lithiated at C6 with lithium 2,2,6,6-tetramethylpiperidide to give low yields of desired<br />

products (in situ trapping), accompanied by lithium 2,2,6,6-tetramethylpiperidide addition<br />

<strong>and</strong> ring-opening side products (Scheme 57). [544] Lithiated 1,2,3-triazines <strong>and</strong> 1,2,4-triazines<br />

[545,546] are also known. Both halogen–lithium exchange <strong>and</strong> ortho-lithiation have<br />

been studied in imidazo[1,2-a]pyrazines, [547] <strong>and</strong> telluride intermediates, via chlorine–tellurium<br />

exchange, have afforded routes to lithiated pyrazolo[3,4-d]pyrimidines (Scheme<br />

57), [548,549] purines, [549] <strong>and</strong> other heterocycles. [549]<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG<br />

O<br />

N<br />

Cl<br />

N<br />

H<br />

N<br />

E<br />

N N<br />

100<br />

O<br />

R 1<br />

OMe


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 403<br />

bScheme 57 Lithiation of Miscellaneous Azines [450,544,548,549]<br />

MeO<br />

N<br />

N<br />

102<br />

OMe<br />

N<br />

Cl<br />

E = C(OH)Me2, C(OH)Et2<br />

N<br />

N<br />

N N<br />

104<br />

Ph<br />

Li, naphthalene, THF, −78 oC 13−50%<br />

LTMP, E + , THF<br />

−100 oC 8−30%<br />

N N<br />

E = CH(OH)Me, CH(OH)Ph, C(OH)Ph 2, 4-BrC 6H 4CH(OH), CH(OH)-4-Tol<br />

N<br />

Cl<br />

N<br />

N<br />

N<br />

Ph<br />

1. BuTeLi, THF, rt<br />

2. BuLi, −78 oC E<br />

N<br />

N<br />

N<br />

Li<br />

N<br />

Ph<br />

N<br />

N<br />

Ph<br />

MeO<br />

E = CHO, CH(OH)t-Bu, CH(OH)Ph, C(OH)Me2, C(OH)Ph 2, C(OH)MeCH CH 2<br />

8.1.14.16 Method 16:<br />

Other Azolyllithium <strong>Compounds</strong><br />

N<br />

N<br />

103<br />

OMe<br />

E +<br />

N<br />

48−82%<br />

Besides pyrrole, imidazole, pyrazole, <strong>and</strong> indole, other azoles have been lithiated. Lithiation<br />

of 1-(benzyloxy)-1,2,3-triazole (105), followed by an electrophile quench, affords excellent<br />

yields of C5 products (Scheme 58). [550] Catalytic debenzylation gives the corresponding<br />

1,2,3-triazol-1-ols. Lithiation of N2-protected tetrazole 106 gives rise to the desired<br />

107, whereas lithiation of the corresponding N1 isomer results in ring fragmentation<br />

<strong>and</strong> loss of nitrogen, even at –1008C. [551] Clean lithiation of 1,2,4-triazole 108 is<br />

known. [552] N-Methylbenzimidazole is lithiated at C2 with butyllithium, [263] <strong>and</strong> 1-(tertbutoxycarbonylamino)benzotriazole<br />

is lithiated at C6 to give, after electrophilic quenching,<br />

a variety of C7 products (65–95%; with tributylchlorostannane, benzaldehyde, dimethylformamide,<br />

deuterium oxide, trimethyl borate, hexanal, 4-methoxybenzaldehyde,<br />

hex-2-enal). [553,554] These aminobenzotriazoles are potential aryne precursors.<br />

Scheme 58 Lithiation of Miscellaneous Azoles [550–552]<br />

1. BuLi, THF, −78 oC, 5 min<br />

2. E +<br />

E<br />

N<br />

N<br />

N<br />

105<br />

OBn 67−97%<br />

N<br />

N<br />

N<br />

OBn<br />

E = D, Me, CHO, CO2Me, CONMe2, Cl, Br, I, SMe, TMS, SnBu3<br />

N<br />

N N<br />

N<br />

106<br />

1. BuLi, TMEDA, Et2O, −78 oC, 5 min<br />

2. Bu3SnCl 67%<br />

BOM BOM<br />

SnBu3 N<br />

N N<br />

N<br />

107<br />

E<br />

N<br />

E<br />

N<br />

N<br />

N<br />

Ph<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


404 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

b1. BuLi, THF, −78 o N<br />

C<br />

Cl<br />

2. PhOCN<br />

N N<br />

75%<br />

O<br />

108<br />

S<br />

O<br />

NMe2<br />

Cl<br />

N<br />

N N<br />

CN<br />

O S<br />

O<br />

NMe2 2-(Benzyloxymethyl)-5-(tributylstannyl)tetrazole (107); Typical Procedure: [551]<br />

To a soln of tetrazole 106 (2.00 g, 10.5 mmol) <strong>and</strong> TMEDA (3.2 mL, 21 mmol) in Et 2O<br />

(30 mL) at –788C was added a 2.5 M soln of BuLi in hexanes (4.2 mL, 10.5 mmol) <strong>and</strong> a<br />

dark red soln resulted. This was stirred for 5 min at –788C <strong>and</strong> then added via cannula<br />

needle to a precooled (–788C) soln of Bu 3SnCl (3.42 g, 10.5 mmol) in Et 2O (20 mL). The resulting<br />

pale yellow soln was stirred at –788C for 30 min <strong>and</strong> then diluted with H 2O <strong>and</strong><br />

Et 2O. The Et 2O layer was separated, washed with brine, dried (MgSO 4), <strong>and</strong> concentrated.<br />

The residue was subjected to chromatography (silica gel, hexane/EtOAc) to provide the<br />

product as a colorless oil; yield: 3.35 g (67%).<br />

8.1.14.17 Method 17:<br />

Dibenzo-Fused <strong>Hetaryllithium</strong> <strong>Compounds</strong><br />

With dibenzo-fused heterocycles, such as dibenzofurans, dibenzothiophenes, carbazoles,<br />

<strong>and</strong> others, the heteroatom can direct lithiation to one or both flanking positions on the<br />

benzene rings. This strategy has led to a rich array of substituted heterocycles unavailable<br />

by conventional methods such as electrophilic substitution.<br />

8.1.14.17.1 Variation 1:<br />

Dibenzofuryllithium <strong>Compounds</strong><br />

As Gilman found many years ago, dibenzofuran is regioselectively lithiated at C4 with butyllithium<br />

or sec-butyllithium (diethyl ether, room temperature or reflux) <strong>and</strong> the lithio<br />

species can be quenched with various electrophiles to give the C4 products (carbon dioxide,<br />

75%; [555] oxygen, 50–60%; [556] dimethylformamide, 79%; [557] tosyl fluoride, 49% [301] ). This<br />

topic has been reviewed. [558] A second lithiation sequence usually affords the C6 lithio species.<br />

[555–557] Lithiation of 4-methoxybenzofuran <strong>and</strong> quenching with sulfur gives 6-methoxy-4-sulfanylbenzofuran<br />

(43% yield), a compound used in solid-phase peptide synthesis.<br />

[556] However, lithiation of pivaloylamino-substituted dibenzofurans can give amide-directed<br />

products, depending on the position of the pivaloylamino group; nevertheless, 109<br />

is obtained cleanly (Scheme 59). [559]<br />

Scheme 59 Lithiation of a Dibenzofuran [559]<br />

O<br />

HN<br />

O<br />

Bu t<br />

1. BuLi, hexane, THF<br />

0<br />

O<br />

H NMe2 oC, 1 h<br />

2.<br />

67%<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG<br />

OHC<br />

O<br />

109<br />

HN<br />

O<br />

Bu t


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 405<br />

b8.1.14.17.2 Variation 2:<br />

Dibenzothienyllithium <strong>Compounds</strong><br />

Gilman discovered the C4 lithiation of dibenzothiophene many years ago; [560] more recently,<br />

this has been extended by Katritzky to C4 <strong>and</strong> C6 disubstitution by two sequential<br />

steps of monolithiation <strong>and</strong> quenching, rather than a single dilithiation–quenching operation.<br />

[561] The range of C4 dibenzothiophenes obtained by lithiation is illustrated in<br />

Scheme 60, <strong>and</strong> the method has been applied to the synthesis of potential amino acid receptors<br />

111 from dibenzothiophene 110. [555]<br />

Scheme 60 Lithiation of Dibenzothiophenes [555,561]<br />

1. BuLi (2 equiv), THF, 5 h, rt<br />

2. E +<br />

52−93%<br />

S S<br />

E = Me, Et, Pr, Cl, Br, CH 2OH, CO 2H<br />

Ph<br />

O<br />

Ph<br />

O<br />

NH<br />

110<br />

E = CHO, CONHPh, CONHBn, P(O)Ph 2<br />

S<br />

1. s-BuLi (3 equiv), TMEDA, Et2O, rt, 4 h<br />

2. E +<br />

50−56%<br />

2-Oxo-N,4,4-triphenyl-1,4-dihydro-2H-[1]benzothieno[3,2-g][3,1]benzoxazine-9-carboxamide<br />

(111, E = CONHPh); Typical Procedure: [555]<br />

CAUTION: Phenyl isocyanate is a skin, eye, <strong>and</strong> respiratory tract irritant. Chronic exposure can<br />

cause sensitization of the respiratory tract.<br />

Dibenzothiophene 110 (200 mg, 0.49 mmol) was suspended in Et 2O (2 mL) <strong>and</strong> TMEDA<br />

(0.22 mL, 1.47 mmol) was added with stirring at rt. The soln was cooled to –788C <strong>and</strong> a<br />

1.3 M soln of s-BuLi in cyclohexane (1.3 mL, 1.47 mmol) was added dropwise, warming to<br />

rt <strong>and</strong> stirring for 4 h to give a dark red soln. The soln was cooled to –788C <strong>and</strong> PhNCO<br />

(0.21 mL, 1.96 mmol) in Et 2O (2 mL) was added dropwise <strong>and</strong> the mixture allowed to<br />

warm to rt. After 1 h the reaction was quenched by addition of sat. aq NH 4Cl (10 mL) <strong>and</strong><br />

the aqueous phase was extracted with EtOAc (3 ” 10 mL). The combined organic extracts<br />

were dried (Na 2SO 4) <strong>and</strong> the solvent removed under reduced pressure. Purification by<br />

flash chromatography (silica gel, EtOAc/petroleum ether 1:9 to 1:1, then Et 2O/CH 2Cl 2 0:1<br />

to 1:19) gave the product; yield: 129 mg (50%).<br />

8.1.14.17.3 Variation 3:<br />

Carbazolyllithium <strong>Compounds</strong><br />

The lithiation of carbazole is difficult <strong>and</strong> very low yields of C1 substitution products are<br />

invariably obtained, deuteration being the sole exception. [562] However, certain N-directing<br />

groups make carbazole lithiation synthetically useful. [563] The best of these groups appears<br />

to be pyrrolidin-1-ylmethyl (Scheme 61). Dilute acid readily hydrolyses the aminal<br />

directing group. This method can be applied to benzo[c]carbazole <strong>and</strong> dibenzo[c,g]carbazole<br />

to afford aminal-directed lithiation products. In contrast, the aminal of benzo[a]carbazole<br />

(112) could not be prepared; however, as shown, direct lithiation is possible.<br />

Ph<br />

E<br />

O<br />

Ph<br />

O<br />

NH<br />

111<br />

S<br />

E<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


406 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

bScheme 61 Lithiation of Carbazoles [563]<br />

N<br />

N<br />

1. t-BuLi, hexane, rt, 16 h<br />

2. E +<br />

38−100%<br />

E = Me, Pr, CO2H, Cl, OH, NO2, Bz, C(OH)Ph2<br />

N<br />

H<br />

112<br />

1. BuLi (2.5 equiv), Et2O, rt, 28 h<br />

2. E +<br />

E = CO2H 70%<br />

E = Cl 100%<br />

8.1.14.17.4 Variation 4:<br />

Dibenzo[1,4]dioxinyllithium <strong>Compounds</strong><br />

Whilst the lithiation of dibenzo[1,4]dioxin (oxanthrene) has been known for many years,<br />

only recently has this reaction been made synthetically useful (Scheme 62). [564] Lithiation<br />

[t-BuLi (2 equiv), TMEDA, THF, –788C, 1 h] of dibenzo[1,4]dioxin-1-carboxylic acid 113<br />

(E 1 =CO 2H) leads to 9-substitution (e.g., to give 114) upon quenching with carbon dioxide<br />

(75%), iodomethane (73%), chlorotrimethylsilane (60%), N-chlorosuccinimide (74%), hexachloroethane<br />

(68%), bromine (62%), or acetaldehyde (56%). [564,565]<br />

Scheme 62 Lithiation of Dibenzo[1,4]dioxin [564]<br />

O<br />

O<br />

1. BuLi, TMEDA, THF, −30 o C, 1 h<br />

2. (E 1 ) +<br />

80−84%<br />

E 1 = Me, CO 2H, CHO; E 2 = Me, CO 2H, TMS, Cl, Br, CH(OH)Me<br />

1. t-BuLi (2 equiv), TMEDA, THF, −78 o C, 1 h<br />

2. (E 2 ) +<br />

N<br />

E 1 = CO2H 56−75%<br />

Dimethyl Dibenzo[1,4]dioxin-1,9-dicarboxylate (114,E 1 =E 2 =CO 2H); Typical Procedure: [564]<br />

A soln of the acid 113 (E 1 =CO 2H; 1.00 g, 4.38 mmol) <strong>and</strong> TMEDA (0.73 mL, 4.82 mmol) in<br />

THF (50 mL) was cooled to –788C <strong>and</strong> treated with a 1.7 M soln of t-BuLi in pentane<br />

(5.28 mL, 8.98 mmol) <strong>and</strong> the soln was stirred at this temperature for 1 h. CO 2 gas was bubbled<br />

through as the mixture warmed to rt, <strong>and</strong> the soln was then concentrated to dryness<br />

under reduced pressure. The residue was dissolved in MeOH (30 mL) containing concd<br />

H 2SO 4 (3 mL) <strong>and</strong> refluxed for 3 h before being poured into sat. aq NaHCO 3 <strong>and</strong> extracted<br />

with EtOAc. Workup gave a solid that was chromatographed (silica gel, EtOAc/petroleum<br />

ether 1:50) to give the product, which crystallized as rods (acetone); yield: 1.12 g (75%); mp<br />

149–1528C.<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG<br />

N<br />

E<br />

O<br />

O<br />

N<br />

H<br />

113<br />

E<br />

E 1<br />

E 2<br />

O<br />

O<br />

114<br />

E 1


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 407<br />

b8.1.14.17.5 Variation 5:<br />

Thianthrenyllithium <strong>Compounds</strong><br />

Similar to dibenzo[1,4]dioxin, the sulfur analogue, thianthrene, is smoothly lithiated at<br />

C1 with tert-butyllithium at –788C (Scheme 63). [566] By comparison, butyllithium affords<br />

poor yields of lithiation products. [567] Metal–halogen exchange of 2-bromothianthrene<br />

with butyllithium (–788C) affords 2-thianthrenyllithium, which isomerizes to the more<br />

stable 1-lithio isomer. Treatment of thianthrene with lithium <strong>and</strong> catalytic 4,4¢-di-tert-butylbiphenyl<br />

(THF, –90 to –788C) cleaves the central ring to afford various products after<br />

workup or quenching with aldehydes or ketones. [568] Thus, quenching with water gives<br />

2-(phenylsulfanyl)benzenethiol (98% yield).<br />

Scheme 63 Lithiation of Thianthrene [566]<br />

S<br />

S<br />

1. t-BuLi, THF, −78 o C to rt, 30 min<br />

2. E +<br />

35−84%<br />

E = Me, CO2H, Br, I, B(OH)2, SnBu3, CHO, CH(OH)Ph, C(OH)Ph2<br />

8.1.14.17.6 Variation 6:<br />

Phenothiazinyllithium <strong>Compounds</strong><br />

Whereas the dilithiation of phenothiazine <strong>and</strong> quenching to give 1-substituted phenothiazines<br />

has been known for many years, [569,570] the lithiation of N-alkylphenothiazines<br />

leads to 4-substitution, as shown in Scheme 64, [571] a method which is an improvement<br />

over previous reports. Lithiation of N-methylphenothiazine with lithium [catalytic 4,4¢di-tert-butylbiphenyl<br />

(DTBB), THF, –90 8C] ruptures the central ring to afford 2-(N-methylanilino)benzenethiol<br />

in 95% yield. [568] A bromine–lithium exchange reaction of 3-bromo-<br />

10-hexylphenothiazine affords the stable 3-lithio species, which can be trapped with iodine.<br />

[572]<br />

Scheme 64 Lithiation of Phenothiazines [571]<br />

1. s-BuLi (2.5 equiv), TMEDA, Et2O, rt, 30 min<br />

2. E +<br />

Et Et<br />

N<br />

N<br />

S<br />

50−72%<br />

E = Me, CHO, CO 2H, CH(OH)t-Bu, Cl, I, TMS, SMe, CH 2OH<br />

8.1.14.17.7 Variation 7:<br />

Dibenzo[b,f ]azepinyllithium <strong>Compounds</strong><br />

Both 5H-dibenzo[b,f ]azepine <strong>and</strong> its 10,11-dihydro derivative are dilithiated to afford<br />

4-substituted products after quenching with electrophiles (Scheme 65). [573,574] Both C4<br />

<strong>and</strong> C6 can be deuterated in 93% yield using five repetitions of lithiation–quenching. [574]<br />

S<br />

S<br />

E<br />

S<br />

E<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


408 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

bScheme 65 Lithiation of 5H-Dibenzo[b,f ]azepine [573]<br />

N<br />

H<br />

E = CHO, Bz, 4-MeOC6H4CO, 3-pyridylmethyl<br />

1. BuLi, EtO2, rt, 24 h<br />

2. E +<br />

40−61%<br />

8.1.14.17.8 Variation 8:<br />

Pyrido[3,4-b]indolyllithium <strong>Compounds</strong><br />

Lithiation of the ubiquitous 9H-pyrido[3,4-b]indoles has been little studied. However, C3<br />

amide directing groups, such as the phenylamide on 115, direct lithiation at C4, to give<br />

116, as shown in Scheme 66. [575,576] Only methyllithium is satisfactory in this lithiation.<br />

Scheme 66 Directed ortho-Lithiation of a 9H-Pyrido[3,4-b]indole [576]<br />

N<br />

O<br />

S<br />

NMe2 O<br />

115<br />

O<br />

N<br />

E = N3, Br, 4-MeOC6H4CH(OH)<br />

NHPh<br />

1. MeLi (2.5 equiv), THF<br />

−78 oC, 45 min<br />

2. E +<br />

90−100%<br />

N<br />

H<br />

E<br />

E<br />

N<br />

O<br />

S<br />

NMe2 O<br />

116<br />

O<br />

N<br />

NHPh<br />

4-Bromo-9-[(dimethylamino)sulfonyl]-N-phenyl-9H-pyrido[3,4-b]indole-3-carboxamide<br />

(116, E = Br); Typical Procedure: [576]<br />

CAUTION: Bromine is a severe irritant of the eyes, mucous membranes, lungs, <strong>and</strong> skin. Liquid<br />

bromine causes severe <strong>and</strong> painful burns on contact with eyes <strong>and</strong> skin.<br />

A soln of compound 115 (200 mg, 0.51 mmol) in THF (40 mL) was treated dropwise at<br />

–78 8C under argon with a 1 M soln of MeLi in THF (1.1 mL, 1.1 mmol). The mixture was<br />

stirred for 1 h at –788C, then Br 2 (57 ìL, 1.1 mmol) was added dropwise, <strong>and</strong> stirring was<br />

continued for 15 min. After addition of H 2O (10 mL), the soln was allowed to warm to rt,<br />

<strong>and</strong> was then concentrated to one-half of its volume <strong>and</strong> diluted with Et 2O (50 mL). The<br />

soln was washed with sat. aq NH 4Cl (20 mL) <strong>and</strong> H 2O (20 mL). The organic phase was dried<br />

(Na 2SO 4) <strong>and</strong> evaporated to dryness under reduced pressure. The residual solid was suspended<br />

in MeOH (5 mL) <strong>and</strong> collected by filtration, affording the product as a colorless<br />

powder; yield: 241 mg (quant); mp 2208C.<br />

Applications of Product Subclass 14 in Organic Synthesis<br />

Of the myriad applications of aryllithium <strong>and</strong> hetaryllithium compounds in organic synthesis,<br />

many of which are illustrated earlier, only a small number can be presented here.<br />

The reader is referred to the excellent reviews cited at the beginning of this article. It is no<br />

exaggeration to say that aryllithium compounds (<strong>and</strong> hetaryllithium compounds) have<br />

become a dominant force in the methodology of organic synthesis <strong>and</strong> will remain so in<br />

the future.<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


8.1.14.18 Method 18:<br />

Aryne Formation<br />

8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 409<br />

It was recognized early that ortho-lithiated aryl halides readily lose lithium halide to form<br />

arynes. While this reaction is prevented or minimized at low temperature (depending on<br />

the halide), it represents a powerful aryne generation method <strong>and</strong> has been used in Diels–<br />

Alder reactions to construct naphthalenes, [577,578] anthracenes, [578,579] phenanthrenes, [580]<br />

naphthacenes, [581] chrysenes, [582] benzo[a]anthracenes, [583] iptycenes, [584] biphenylenes, [577]<br />

<strong>and</strong> benzonorbornadienes (e.g., 117 to 118) (Scheme 67). [585] Benzyne, which is easily generated<br />

from iodobenzene <strong>and</strong> lithium 2,2,6,6-tetramethylpiperidide, can also be trapped<br />

with nucleophiles. [586]<br />

Scheme 67 Generation <strong>and</strong> Trapping of Arynes [585]<br />

Br<br />

BuLi, Et2O, hexane<br />

−78 oC to rt<br />

94%<br />

F F<br />

F F<br />

117<br />

6-Fluoro-9-oxabenzonorbornadiene (118); Typical Procedure: [585]<br />

A 1000-mL, four-necked, round-bottomed flask, equipped with an overhead stirrer, condenser,<br />

thermometer, rubber septum, gas adapter, <strong>and</strong> stirring bar, was flame-dried under<br />

argon <strong>and</strong> charged with Et 2O (400 mL) <strong>and</strong> 1-bromo-2,4-difluorobenzene (17.6 mL,<br />

0.156 mol). To the soln, which was cooled to –788C in an acetone/dry ice bath, was added,<br />

via a gas-tight syringe, a 2.5 M soln of BuLi in hexanes (72 mL, 0.180 mol) over a 1-h period<br />

at such a rate as to keep the reaction temperature below –708C. The mixture was stirred<br />

for 35 min at –788C before furan (120 mL, 1.65 mol) was added over 20 min at such a rate<br />

as to keep the temperature below –738C. It was then allowed to warm slowly to rt overnight.<br />

The cloudy orange mixture was poured into stirred deionized water (600 mL), vacuum<br />

filtered, separated, <strong>and</strong> the aqueous phase was washed (2 ” 75 mL) with Et 2O. The<br />

combined organic phases were dried (MgSO 4), vacuum filtered, <strong>and</strong> concentrated by rotary<br />

evaporation under reduced pressure to give a clear gold liquid; yield: 23.76 g (94%); this<br />

was purified by Kugelrohr distillation to give a clear yellow liquid, bp 1008C/0.25 Torr.<br />

8.1.14.19 Method 19:<br />

Functional Group Interchange<br />

An important application of aryllithium compounds in synthesis is the site-specific<br />

replacement of lithium with other functional groups that are otherwise difficult or impossible<br />

to introduce. These groups include fluorine, [587,588] iodine, [589,590] amino, [591,592]<br />

nitro, [593,594] hydroxy, [595–597] cyano, [598] <strong>and</strong> phosphorus. [599] An example of each is shown<br />

in Scheme 68.<br />

O<br />

118<br />

O<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


410 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

bScheme 68 Functionalization of ortho-Lithiated Aromatic <strong>Compounds</strong> [587,591,594,596,598,599]<br />

MeO<br />

Br<br />

Z<br />

O<br />

O<br />

O<br />

NPr i 2<br />

N<br />

NEt 2<br />

BuLi, Et2O<br />

−78 oC A: BuLi, Et2O B: t-BuLi, THF<br />

s-BuLi, THF<br />

−78 oC s-BuLi, TMEDA<br />

THF, −78 oC, 1 h<br />

s-BuLi, TMEDA<br />

THF, −78 oC, 20 min<br />

Z = CON(iPr) 2, dihydrooxazolyl, OMOM, SO 2NEt 2, NHBoc<br />

BuLi, TMEDA<br />

THF, rt, 2 h<br />

Li<br />

OMOM OMOM<br />

MeO<br />

Li<br />

(PhSO2)2NF<br />

78%<br />

Li<br />

82%<br />

O<br />

O<br />

1. TsN3<br />

2. NaBH 4, Bu 4NHSO 4<br />

N<br />

NEt2<br />

MeO<br />

MeNO3 55%<br />

F<br />

NH 2<br />

Li O<br />

NO2 NPr i 2<br />

Li OTMS<br />

OH<br />

Z<br />

Li<br />

(TMSO) 2<br />

Et 2O, rt, 3 h<br />

8.1.14.20 Method 20:<br />

Transmetalation <strong>and</strong> Coupling Reactions<br />

PhOCN<br />

40−98%<br />

P(OPh)3<br />

0<br />

73%<br />

oC Z<br />

HCl<br />

MeOH<br />

CN<br />

OMOM<br />

3<br />

P<br />

Another important synthetic application of aryllithium compounds is their conversion<br />

into various metalated arenes, i.e. transmetalation, for subsequent chemistry. Grignard<br />

reagents are accessible in this fashion, [600–602] as are cuprates, [603] mercury reagents, [601]<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG<br />

O<br />

N<br />

O<br />

O<br />

NEt 2<br />

NPr i 2<br />

83%


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 411<br />

bmanganese reagents, [604] zinc reagents, [605–607] tin reagents, [601,608–610] <strong>and</strong> boron reagents.<br />

[611–613] The latter three reagents are the starting points for the palladium-catalyzed<br />

cross-coupling Negishi, Stille, <strong>and</strong> Suzuki reactions, respectively.<br />

Whereas lithiated bis(trifluoromethyl)benzene 119 fails to react with allyl bromide,<br />

the corresponding Grignard reagent 120 reacts with this electrophile to give the allyl derivative<br />

in 75% yield (Scheme 69). [602] A useful aryl ketone synthesis employs arylmanganese<br />

halides (e.g., 121 to 122). [604] This method is applicable to halogenated benzonitriles<br />

<strong>and</strong> to the synthesis of esters. The previously unknown 1,3,5-tris(bromomagnesio)benzene<br />

<strong>and</strong> 1,3,5-tris(trimethylstannyl)benzene are accessible via transmetalation of 1,3,5trilithiobenzene.<br />

[601] The readily available arylboronic acid 123 undergoes facile Suzuki<br />

coupling to afford unsymmetrical biaryls 124. [611] This protocol has been developed into<br />

an efficient syntheses of oxygenated dibenzo[b,d]pyran-6-ones, [612] kinamycin antibiotics,<br />

[613] the fluorenone dengibsin, [614] phenanthrenes, [615] <strong>and</strong> the Amaryllidaceae alkaloid<br />

buflavine. [616] Application of the Negishi reaction to a substrate prepared by transmetalation<br />

with zinc(II) chloride affords an efficient route to 4-hydroxy-2H-1-benzopyran-2-ones<br />

(4-hydroxycoumarins) <strong>and</strong> a synthesis of isoeugenetin derivatives. [617] The power of this<br />

t<strong>and</strong>em directed-lithiation, palladium-catalyzed Suzuki cross-coupling reaction is further<br />

revealed by the construction of highly conjugated molecular materials such as p-quinquephenyls,<br />

[618] poly(p-phenylene) derivatives, [619] <strong>and</strong> kinked oligophenylenes. [620]<br />

Scheme 69 Transmetalation of ortho-Lithiated Aromatic <strong>Compounds</strong> [602,604,611]<br />

Cl<br />

CF3<br />

BuLi, TMP, THF<br />

−78 oC, 1.5 h<br />

Li<br />

CF3<br />

MgCl2, THF<br />

−78 oC to rt<br />

CF 3 CF 3 CF 3<br />

I<br />

1. BuLi, Et2O<br />

−78 oC 2. MnI2, −40 oC R 1 = (CH 2) 6Me, (CH 2) 3Cl, (CH 2) 10Br, OEt<br />

O<br />

NPr i 2<br />

1. s-BuLi, TMEDA<br />

THF, −78 oC 2. B(OMe) 3<br />

3. aq HCl<br />

80%<br />

Cl<br />

MgCl<br />

119 120<br />

121<br />

(HO) 2B<br />

MnI<br />

Ar 1 = Ph, 2-MeOC6H4, 6-methoxy-2-naphthyl, 2-thienyl, 3-pyridyl, 2-thiazolyl<br />

123<br />

O<br />

NPr i 2<br />

R 1 COCl<br />

74−82%<br />

Cl<br />

Ar 1 Br, Pd(PPh 3) 4<br />

Na2CO3<br />

toluene, H 2O<br />

44−95%<br />

Ar 1<br />

122<br />

O<br />

124<br />

CF 3<br />

O<br />

R 1<br />

NPr i 2<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


412 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

b8.1.14.21 Method 21:<br />

<strong>Aryllithium</strong> <strong>Compounds</strong> in Ring Formation <strong>and</strong> Heterocycle Construction<br />

An inherent benefit with aryllithium compounds prepared via the directed ortho-lithiation<br />

protocol is the possibility of ring formation, since the ortho-disubstituted product is<br />

often ideally predisposed for cyclization. This tactic leads to syntheses of phthalides, [621–623]<br />

including applications to the solid phase, [623] benzo[b]furans, [624–627] including solid-phase<br />

variations, [626] dihydrobenzo[b]furans, [628] indoles, [625,627] isatins, [629] oxindoles, [630] benzo[b]thiophenes,<br />

[625,631] benzothiazoles, [632,633] benzoisothiazoles, [634] benzo[e][1,3]thiazines, [635]<br />

benzo[d]isoselenazol-3-ones, [635] 2H-1-benzopyran-2-one, [636,637] 8aH-1-benzopyrans, [638]<br />

3,4-dihydro-1H-2-benzopyrans, [639] quinolines, [640] isoquinolines, [641,642] benzocyclobutenes,<br />

[643] acridones, [644] anthraquinones, [645] thioxanthen-9-ones, [646] benzazepines, [647]<br />

benzazocines, [647] benzodiazepines (such as 125), [648] <strong>and</strong> biscavit<strong>and</strong>s. [649] Illustrative examples<br />

of these ring-forming reactions are shown in Scheme 70.<br />

Scheme 70 Ring-Forming Reactions from <strong>Aryllithium</strong> <strong>Compounds</strong> [629,635]<br />

R 1<br />

Br<br />

O<br />

N<br />

H<br />

R 1 = H, Me, iPr, F, Cl<br />

O<br />

O<br />

NHMe<br />

NHMe<br />

NMe2<br />

1. MeLi, 0 oC 2. t-BuLi, 0 oC 3. CO<br />

4. H3O +<br />

71−79%<br />

1. BuLi (2 equiv)<br />

THF, hexane<br />

−78 to 0 oC 2. Se, 50 oC 1. BuLi (2.2 equiv), THF<br />

−78 to 0 o C, 30 min<br />

2.<br />

Ar1 3. H 3O +<br />

Ar 1<br />

Ar 1 = Ph, 3-MeOC6H4, 4-MeOC6H4, 4-Tol, 4-FC6H4, 4-BrC6H4<br />

O<br />

O<br />

R 1<br />

O<br />

Li<br />

N<br />

Me<br />

SeLi<br />

O<br />

O<br />

N<br />

H<br />

O<br />

CSCl 2<br />

72%<br />

NMe<br />

OH<br />

Ar1 Ar1 OH<br />

TMSCl<br />

NaI, MeCN<br />

84−92%<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG<br />

O<br />

O<br />

NMe<br />

Se S<br />

Ar 1<br />

NMe<br />

Ar 1


8.1.14 <strong>Aryllithium</strong> <strong>and</strong> <strong>Hetaryllithium</strong> <strong>Compounds</strong> 413<br />

b1. BuLi, THF, −10 oC 2. ZnBr2<br />

NHR1 O<br />

R<br />

3. Bt N Bt<br />

2<br />

36−82%<br />

R 1 = Me, t-Bu, Ph, 4-ClC6H4; R 2 = Bu, Ph, (CH2)2Ph, Cy<br />

2,4-Disubstituted 2,3,4,5-Tetrahydro-1H-2,4-benzodiazepin-1-ones (125);<br />

General Procedure: [648]<br />

The N-substituted benzamide (3 mmol) was dissolved in THF (30 mL) <strong>and</strong> BuLi (6.6 mmol)<br />

was added dropwise at –108C. The mixture was gradually warmed to 0 8C <strong>and</strong> stirred for<br />

30 min. After the mixture was cooled to –108C, ZnBr 2 (7 mmol) was added to the mixture,<br />

followed by the addition of the N,N-bis(benzotriazolyl)amine (3 mmol). The resulting mixture<br />

was allowed to warm to rt <strong>and</strong> stirred for 24 h. The reaction was quenched with 2 M<br />

NaOH <strong>and</strong> the whole was washed with brine <strong>and</strong> extracted with EtOAc. Column chromatography<br />

(alumina, hexanes/EtOAc 10:1 to 6:1) afforded the analytically pure benzodiazepinones;<br />

yield: 36–82%.<br />

8.1.14.22 Method 22:<br />

Natural Product Synthesis<br />

Applications of halogen–lithium exchange <strong>and</strong> directed-lithiation methodologies to the<br />

synthesis of natural products are too numerous to describe here. A few examples for<br />

which a crucial reaction step or a key intermediate involves an aryllithium species are anthraquinone<br />

natural products, [650] phthalideisoquinoline alkaloids, [651] cryptopleurine <strong>and</strong><br />

antofine, [652] isoochracinic acid, [653] resistomycin, [654] anthracyclinones, [655,656] vineomycinone<br />

B2, [657] catechin, [658] xanthen-9-one natural products, [659] gossypol, [660] Æ-herbertenol,<br />

[661] lunularic acid, [662] radulanin A <strong>and</strong> helianane, [663] complement inhibitor K-76, [664]<br />

<strong>and</strong> semivioxanthin. [320]<br />

<strong>Aryllithium</strong> compounds also play an essential role in the synthesis of many important<br />

commercial products. The first step in the synthesis of the antiinflammatory drug<br />

etodolac is directed lithiation of 3-methoxy-2,3-dimethylpropionanilide, [665] <strong>and</strong> the<br />

breast cancer drug fluorotamoxifen is synthesized by ortho-lithiation <strong>and</strong> quenching<br />

with perchloryl fluoride. [666] <strong>Aryllithium</strong> methodology is used to prepare crixivan HIV protease<br />

inhibitors, [667] salicylic acids, [668] naphthoquinones, [669] <strong>and</strong> compounds derived from<br />

2,6-dichlorophenol, which have extensive commercial applications. [670,671]<br />

O<br />

125<br />

NR 1<br />

NR 2<br />

for references see p 414<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


414 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

bReferences<br />

[1] Sotomayor, N.; Lete, E., Curr. Org. Chem., (2003) 7, 275.<br />

[2] Nµjera, C.; Sansano, J. M.; Yus, M., Tetrahedron, (2003) 59, 9255.<br />

[3] Organometallics in Synthesis: A Manual, Schlosser, M., Ed.; Wiley: New York, (2002).<br />

[4] Clayden, J., Organolithiums: Selectivity for Synthesis, Pergamon: Oxford, (2002).<br />

[5] Familoni, O. B., Synlett, (2002), 1181.<br />

[6] Mongin, F.; QuØguiner, G., Tetrahedron, (2001) 57, 4059.<br />

[7] Turck, A.; PlØ, N.; Mongin, F.; QuØguiner, G., Tetrahedron, (2001) 57, 4489.<br />

[8] Green, L.; Chauder, B.; Snieckus, V., J. Heterocycl. Chem., (1999) 36, 1453.<br />

[9] Bailey, W. F.; Longstaff, S. C., Chimica Oggi, (2001) 19 (1/2), 27; Chem. Abstr., (2001) 135, 76908.<br />

[10] Ramón, D. J.; Yus, M., Eur. J. Org. Chem., (2000), 225.<br />

[11] Snieckus, V., Chem. Rev., (1990) 90, 879.<br />

[12] QuØguiner, G.; Marsais, F.; Snieckus, V.; Epsztajn, J., Adv. Heterocycl. Chem., (1991) 52, 187.<br />

[13] Hartung, C.; Snieckus, V., In Modern Arene Chemistry, Astruc, D., Ed.; Wiley: New York, (2002);<br />

p 330.<br />

[14] Eisch, J. J., Organometallics, (2002) 21, 5439.<br />

[15] Mallan, J. M.; Bebb, R. L., Chem. Rev., (1969) 69, 693.<br />

[16] Gschwend, H. W.; Rodriguez, H. R., Org. React. (N. Y.), (1979) 26, 1.<br />

[17] Omae, I., Chem. Rev., (1979) 79, 287.<br />

[18] Parham, W. E.; Bradsher, C. K., Acc. Chem. Res., (1982) 15, 300.<br />

[19] Beak, P.; Snieckus, V., Acc. Chem. Res., (1982) 15, 306.<br />

[20] Narasimhan, N. S.; Mali, R. S., Synthesis, (1983), 957.<br />

[21] Beak, P.; Meyers, A. I., Acc. Chem. Res., (1986) 19, 356.<br />

[22] Bailey, W. F.; Patricia, J. J., J. Organomet. Chem., (1988) 352,1.<br />

[23] Wakefield, B. J., Organolithium Methods, Academic: London, (1990).<br />

[24] Wakefield, B. J., The Chemistry of Organolithium <strong>Compounds</strong>, 2nd ed., Pergamon: New York, (1990).<br />

[25] Comins, D. L., Synlett, (1992), 615.<br />

[26] Wiberg, K. B.; Sklenak, S.; Bailey, W. F., J. Org. Chem., (2000) 65, 2014.<br />

[27] van Eikema Hommes, N. J. R.; Schleyer, P. v. R., Angew. Chem., (1991) 104, 768; Angew. Chem. Int.<br />

Ed. Engl., (1992) 31, 755.<br />

[28] Chadwick, S. T.; Rennels, R. A.; Rutherford, J. L.; Collum, D. B., J. Am. Chem. Soc., (2000) 122, 8640.<br />

[29] Betz, J.; Bauer, W., J. Am. Chem. Soc., (2002) 124, 8699.<br />

[30] Saµ, J. M., Helv. Chim. Acta, (2002) 85, 814.<br />

[31] Slocum, D. W.; Dumbris, S.; Brown, S.; Jackson, G.; LaMastus, R.; Mullins, E.; Ray, J.; Shelton, P.;<br />

Walstrom, A.; Wilcox, J. M.; Holman, R. W., Tetrahedron, (2003) 59, 8275.<br />

[32] van Eikema Hommes, N. J. R.; Schleyer, P. v. R., Tetrahedron, (1994) 50, 5903.<br />

[33] Saµ, J. M.; Martorell, G.; Frontera, A., J. Org. Chem., (1996) 61, 5194.<br />

[34] Bachrach, S. M.; Hare, M.; Kass, S. R., J. Am. Chem. Soc., (1998) 120, 12 646.<br />

[35] Collum, D. B., Acc. Chem. Res., (1992) 25, 448.<br />

[36] Thurner, A.; Faigl, F.; Agai, B.; Töke, L., Synth. Commun., (1998) 28, 443.<br />

[37] Lucht, B. L.; Collum, D. B., J. Am. Chem. Soc., (1996) 118, 2217.<br />

[38] Stanetty, P.; Mihovilovic, M. D., J. Org. Chem., (1997) 62, 1514.<br />

[39] Guijarro, D.; Yus, M., Tetrahedron, (2000) 56, 1135.<br />

[40] Yus, M.; Ramón, D. J.; Gómez, I., Tetrahedron, (2003) 59, 3219.<br />

[41] Baran, J. R., Jr.; Hendrickson, C.; Laude, D. A., Jr.; Lagow, R. J., J. Org. Chem., (1992) 57, 3759.<br />

[42] Ruhl<strong>and</strong>t-Senge, K.; Ellison, J. J.; Wehmschulte, R. J.; Pauer, F.; Power, P. P., J. Am. Chem. Soc.,<br />

(1993) 115, 11 353.<br />

[43] Olmstead, M. M.; Power, P. P., J. Organomet. Chem., (1991) 408,1.<br />

[44] Girolami, G. S.; Riehl, M. E.; Suslick, K. S.; Wilson, S. R., Organometallics, (1992) 11, 3907.<br />

[45] Chen, L. S.; Chen, G. J.; Tamborski, C., J. Organomet. Chem., (1980) 193, 283.<br />

[46] Stephens, E. B.; Kinsey, K. E.; Davis, J. F.; Tour, J. M., Macromolecules, (1993) 26, 3519.<br />

[47] Tamborski, C.; Chen, L. S., J. Fluorine Chem., (1995) 75, 117.<br />

[48] Green, K., J. Org. Chem., (1991) 56, 4325.<br />

[49] Prabhu, U. D. G.; Eapen, K. C.; Tamborski, C., J. Org. Chem., (1984) 49, 2792.<br />

[50] Nwokogu, G. C.; Hart, H., Tetrahedron Lett., (1983) 24, 5725.<br />

[51] Farnham, W. B.; Calabrese, J. C., J. Am. Chem. Soc., (1986) 108, 2449.<br />

[52] Reich, H. J.; Phillips, N. H.; Reich, I. L., J. Am. Chem. Soc., (1985) 107, 4101.<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


References 415<br />

b[53] Reich, H. J.; Green, D. P.; Phillips, N. H., J. Am. Chem. Soc., (1989) 111, 3444.<br />

[54] Crittendon, R. C.; Beck, B. C.; Su, J.; Li, X.-W.; Robinson, G. H., Organometallics, (1999) 18, 156.<br />

[55] Bachrach, S. M.; Miller, J. V., Jr., J. Org. Chem., (2002) 67, 7389.<br />

[56] Slocum, D. W.; Jennings, C. A., J. Org. Chem., (1976) 41, 3653.<br />

[57] Beak, P.; Brown, R. A., J. Org. Chem., (1979) 44, 4463.<br />

[58] Meyers, A. I.; Lutomski, K., J. Org. Chem., (1979) 44, 4464.<br />

[59] Shimano, M.; Meyers, A. I., J. Am. Chem. Soc., (1994) 116, 10 815.<br />

[60] Reich, H. J.; Goldenberg, W. S.; S<strong>and</strong>ers, A. W.; Tzschucke, C. C., Org. Lett., (2001) 3, 33.<br />

[61] Reich, H. J.; Goldenberg, W. S.; Gudmundsson, B. Ö.; S<strong>and</strong>ers, A. W.; Kulicke, K. J.; Simon, K.;<br />

Guzei, I. A., J. Am. Chem. Soc., (2001) 123, 8067.<br />

[62] Belzner, J.; Schär, D.; Dehnert, U.; Noltemeyer, M., Organometallics, (1997) 16, 285.<br />

[63] Fort, Y.; Rodriguez, A. L., J. Org. Chem., (2003) 68, 4918.<br />

[64] Kirby, A. J.; Percy, J. M., Tetrahedron, (1988) 44, 6903.<br />

[65] Kiefl, C.; Mannschreck, A., Synthesis, (1995), 1033.<br />

[66] Comins, D. L.; Brown, J. D.; Mantlo, N. B., Tetrahedron Lett., (1982) 23, 3979.<br />

[67] Comins, D. L.; Brown, J. D., Tetrahedron Lett., (1983) 24, 5465.<br />

[68] Comins, D. L.; Brown, J. D., J. Org. Chem., (1984) 49, 1078.<br />

[69] Beak, P.; Brown, R. A., J. Org. Chem., (1982) 47, 34.<br />

[70] Beak, P.; Tse, A.; Hawkins, J.; Chen, C.-W.; Mills, S., Tetrahedron, (1983) 39, 1983.<br />

[71] Beak, P.; Kerrick, S. T.; Gallagher, D. J., J. Am. Chem. Soc., (1993) 115, 10628.<br />

[72] Anderson, D. R.; Faibish, N. C.; Beak, P., J. Am. Chem. Soc., (1999) 121, 7553.<br />

[73] de Silva, S. O.; Reed, J. N.; Billedeau, R. J.; Wang, X.; Norris, D. J.; Snieckus, V., Tetrahedron, (1992)<br />

48, 4863.<br />

[74] Barsky, L.; Gschwend, H. W.; McKenna, J.; Rodriguez, H. R., J. Org. Chem., (1976) 41, 3651.<br />

[75] Fuhrer, W.; Gschwend, H. W., J. Org. Chem., (1979) 44, 1133.<br />

[76] Katritzky, A. R.; Fan, W.-Q., Org. Prep. Proced. Int., (1987) 19, 263.<br />

[77] Metallinos, C.; Nerdinger, S.; Snieckus, V., Org. Lett., (1999) 1, 1183.<br />

[78] Phillion, D. P.; Walker, D. M., J. Org. Chem., (1995) 60, 8417.<br />

[79] Simig, G.; Schlosser, M., Tetrahedron Lett., (1988) 29, 4277.<br />

[80] Kawase, T.; Asai, N.; Ogawa, T.; Oda, M., J. Chem. Soc., Chem. Commun., (1990), 339.<br />

[81] Gilman, H.; Young, R. V., J. Am. Chem. Soc., (1934) 56, 1415.<br />

[82] Wittig, G.; Pockels, U.; Dröge, H., Chem. Ber., (1938) 71, 1903.<br />

[83] Slocum, D. W.; Reed, D.; Jackson, F., III; Friesen, C., J. Organomet. Chem., (1996) 512, 265.<br />

[84] Rennels, R. A.; Maliakal, A. J.; Collum, D. B., J. Am. Chem. Soc., (1998) 120, 421.<br />

[85] Geneste, H.; Schäfer, B., Synthesis, (2001), 2259.<br />

[86] Yamamoto, H.; Maruoka, K., J. Org. Chem., (1980) 45, 2739.<br />

[87] Smith, J. R. L.; O Brien, P.; Reginato, G., Tetrahedron: Asymmetry, (1997) 8, 3415.<br />

[88] Castagnetti, E.; Schlosser, M., Eur. J. Org. Chem., (2001), 691.<br />

[89] Simas, A. B. C.; Coelho, A. L.; Costa, P. R. R., Synthesis, (1999), 1017.<br />

[90] Lukµcs, G.; Porcs-Makkay, M.; Simig, G., Tetrahedron Lett., (2003) 44, 3211.<br />

[91] Wada, A.; Kanatomo, S.; Nagai, S., Chem. Pharm. Bull., (1985) 33, 1016.<br />

[92] Campbell, A. L.; Khanna, I. K., Tetrahedron Lett., (1986) 27, 3963.<br />

[93] Schlosser, M.; Gorecka, J.; Castagnetti, E., Eur. J. Org. Chem., (2003), 452.<br />

[94] Trost, B. M.; Saulnier, M. G., Tetrahedron Lett., (1985) 26, 123.<br />

[95] Dmowski, W.; Piasecka-Maciejewska, K., J. Fluorine Chem., (1996) 78, 59.<br />

[96] Sinha, S.; M<strong>and</strong>al, B.; Ch<strong>and</strong>rasekaran, S., Tetrahedron Lett., (2000) 41, 3157.<br />

[97] Slocum, D. W.; Dietzel, P., Tetrahedron Lett., (1999) 40, 1823.<br />

[98] Reddy, T. J.; Iwama, T.; Halpern, H. J.; Rawal, V. H., J. Org. Chem., (2002) 67, 4635.<br />

[99] Ronald, R. C.; Winkle, M. R., Tetrahedron, (1983) 39, 2031.<br />

[100] Davis, S. E.; Davis, A. O.; Kuyper, L. F., Synth. Commun., (1997) 27, 2487.<br />

[101] Salteris, C. S.; Kostas, I. D.; Micha-Screttas, M.; Heropoulos, G. A.; Screttas, C. G., J. Org. Chem.,<br />

(1999) 64, 5589.<br />

[102] Meyer, N.; Seebach, D., Chem. Ber., (1980) 113, 1304.<br />

[103] Perozzi, E. F.; Martin, J. C., J. Am. Chem. Soc., (1979) 101, 1591.<br />

[104] Morey, J.; Costa, A.; Deyµ, P. M.; Suæer, G.; Saµ, J. M., J. Org. Chem., (1990) 55, 3902.<br />

[105] Posner, G. H.; Canella, K. A., J. Am. Chem. Soc., (1985) 107, 2571.<br />

[106] Crowther, G. P.; Sundberg, R. J.; Sarpeshkar, A. M., J. Org. Chem., (1984) 49, 4657.<br />

[107] Bringmann, G.; Geuder, T.; Harmsen, S., Synthesis, (1994), 1143.<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


416 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

b[108] Kranz, M.; Dietrich, H.; Mahdi, W.; Müller, G.; Hampel, F.; Clark, T.; Hacker, R.; Neugebauer, W.;<br />

Kos, A. J.; Schleyer, P. v. R., J. Am. Chem. Soc., (1993) 115, 4698.<br />

[109] Birman, V. B.; Chopra, A.; Ogle, C. A., Tetrahedron Lett., (1996) 37, 5073.<br />

[110] Cox, P. J.; Wang, W.; Snieckus, V., Tetrahedron Lett., (1992) 33, 2253.<br />

[111] Stock, H. T.; Kellogg, R. M., J. Org. Chem., (1996) 61, 3093.<br />

[112] Kitajima, H.; Ito, K.; Aoki, Y.; Katsuki, T., Bull. Chem. Soc. Jpn., (1997) 70, 207.<br />

[113] Bauer, W.; Schleyer, P. v. R., J. Am. Chem. Soc., (1989) 111, 7191.<br />

[114] Slocum, D. W.; Moon, R.; Thompson, J.; Coffey, D. S.; Li, J. D.; Slocum, M. G.; Siegel, A.;<br />

Gayton-Garcia, R., Tetrahedron Lett., (1994) 35, 385.<br />

[115] Slocum, D. W.; Thompson, J.; Friesen, C., Tetrahedron Lett., (1995) 36, 8171.<br />

[116] Slocum, D. W.; Hayes, G.; Kline, N., Tetrahedron Lett., (1995) 36, 8175.<br />

[117] Stratakis, M., J. Org. Chem., (1997) 62, 3024.<br />

[118] Maggi, R.; Schlosser, M., Tetrahedron Lett., (1999) 40, 8797.<br />

[119] Napolitano, E.; Fiaschi, R., Tetrahedron Lett., (2000) 41, 4663.<br />

[120] Suæer, G. A.; Deyµ, P. M.; Saµ, J. M., J. Am. Chem. Soc., (1990) 112, 1467.<br />

[121] Streitwieser, A., Jr.; Mares, F., J. Am. Chem. Soc., (1968) 90, 644.<br />

[122] Streitwieser, A., Jr.; Hudson, J. A.; Mares, F., J. Am. Chem. Soc., (1968) 90, 648.<br />

[123] Schlosser, M., Angew. Chem., (1998) 110, 1538; Angew. Chem. Int. Ed., (1998) 37, 1496.<br />

[124] Schlosser, M., Eur. J. Org. Chem., (2001), 3975.<br />

[125] Fröhlich, J., Prog. Heterocycl. Chem., (1994) 6,1.<br />

[126] Schlosser, M.; Katsoulos, G.; Takagishi, S., Synlett, (1990), 747.<br />

[127] Katsoulos, G.; Takagishi, S.; Schlosser, M., Synlett, (1991), 731.<br />

[128] Schlosser, M.; Guio, L.; Leroux, F., J. Am. Chem. Soc., (2001) 123, 3822.<br />

[129] Rausis, T.; Schlosser, M., Eur. J. Org. Chem., (2002), 3351.<br />

[130] Takagishi, S.; Schlosser, M., Synlett, (1991), 119.<br />

[131] Mongin, F.; Schlosser, M., Tetrahedron Lett., (1996) 37, 6551.<br />

[132] Mongin, F.; Schlosser, M., Tetrahedron Lett., (1997) 38, 1559.<br />

[133] Mongin, F.; Desponds, O.; Schlosser, M., Tetrahedron Lett., (1996) 37, 2767.<br />

[134] Mongin, F.; Marzi, E.; Schlosser, M., Eur. J. Org. Chem., (2001), 2771.<br />

[135] Coe, P. L.; Waring, A. J.; Yarwood, T. D., J. Chem. Soc., Perkin Trans. 1, (1995), 2729.<br />

[136] Kristensen, J.; LysØn, M.; Vedsø, P.; Begtrup, M., Org. Lett., (2001) 3, 1435.<br />

[137] Lulinski, S.; Serwatowski, J., J. Org. Chem., (2003) 68, 5384.<br />

[138] Leroux, F.; Schlosser, M., Angew. Chem., (2002) 114, 4447; Angew. Chem. Int. Ed., (2002) 41, 4272.<br />

[139] Black, W. C.; Guay, B.; Scheuermeyer, F., J. Org. Chem., (1997) 62, 758.<br />

[140] Mattson, R. J.; Sloan, C. P.; Lockhart, C. C.; Catt, J. D.; Gao, Q.; Huang, S., J. Org. Chem., (1999) 64,<br />

8004.<br />

[141] Lulinski, S.; Serwatowski, J., J. Org. Chem., (2003) 68, 9384.<br />

[142] Kottke, T.; Sung, K.; Lagow, R. J., Angew. Chem., (1995) 107, 1612; Angew. Chem. Int. Ed. Engl.,<br />

(1995) 34, 1517.<br />

[143] Bauer, W.; Klusener, P. A. A.; Harder, S.; Kanters, J. A.; Duisenberg, A. J. M.; Br<strong>and</strong>sma, L.;<br />

Schleyer, P. v. R., Organometallics, (1988) 7, 552.<br />

[144] Block, E.; Eswarakrishnan, V.; Gernon, M.; Ofori-Okai, G.; Saha, C.; Tang, K.; Zubieta, J., J. Am.<br />

Chem. Soc., (1989) 111, 658.<br />

[145] Iwao, M.; Iihama, T.; Mahalanabis, K. K.; Perrier, H.; Snieckus, V., J. Org. Chem., (1989) 54, 24.<br />

[146] Krizan, T. D.; Martin, J. C., J. Am. Chem. Soc., (1983) 105, 6155.<br />

[147] Quesnelle, C.; Iihama, T.; Aubert, T.; Perrier, H.; Snieckus, V., Tetrahedron Lett., (1992) 33, 2625.<br />

[148] Katritzky, A. R.; Lue, P., J. Org. Chem., (1990) 55, 74.<br />

[149] Stanetty, P.; Emerschitz, T., Synth. Commun., (2001) 31, 961.<br />

[150] MacNeil, S. L.; Familoni, O. B.; Snieckus, V., J. Org. Chem., (2001) 66, 3662.<br />

[151] Bonfiglio, J. N., J. Org. Chem., (1986) 51, 2833.<br />

[152] Spangler, L. A., Tetrahedron Lett., (1996) 37, 3639.<br />

[153] Metallinos, C.; Snieckus, V., Org. Lett., (2002) 4, 1935.<br />

[154] Figuly, G. D.; Martin, J. C., J. Org. Chem., (1980) 45, 3728.<br />

[155] Fitt, J. J.; Gschwend, H. W., J. Org. Chem., (1976) 41, 4029.<br />

[156] Sibi, M. P.; Snieckus, V., J. Org. Chem., (1983) 48, 1935.<br />

[157] Mills, R. J.; Horvath, R. F.; Sibi, M. P.; Snieckus, V., Tetrahedron Lett., (1985) 26, 1145.<br />

[158] Wang, W.; Snieckus, V., J. Org. Chem., (1992) 57, 424.<br />

[159] Sengupta, S.; Leite, M.; Raslan, D. S.; Quesnelle, C.; Snieckus, V., J. Org. Chem., (1992) 57, 4066.<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


References 417<br />

b[160] Quesnelle, C. A.; Familoni, O. B.; Snieckus, V., Synlett, (1994), 349.<br />

[161] Kalinin, A. V.; da Silva, A. J. M.; Lopes, C. C.; Lopes, R. S. C.; Snieckus, V., Tetrahedron Lett., (1998)<br />

39, 4995.<br />

[162] Chauder, B. A.; Kalinin, A. V.; Snieckus, V., Synthesis, (2001), 140.<br />

[163] Focken, T.; Hopf, H.; Snieckus, V.; Dix, I.; Jones, P. G., Eur. J. Org. Chem., (2001), 2221.<br />

[164] Zhang, P.; Gawley, R. E., J. Org. Chem., (1993) 58, 3223.<br />

[165] Kauch, M.; Hoppe, D., Can. J. Chem., (2001) 79, 1736.<br />

[166] Dennis, M. R.; Woodward, S., J. Chem. Soc., Perkin Trans. 1, (1998), 1081.<br />

[167] Stanetty, P.; Koller, H.; Mihovilovic, M., J. Org. Chem., (1992) 57, 6833.<br />

[168] McCombie, S. W.; Lin, S.-I.; Vice, S. F., Tetrahedron Lett., (1999) 40, 8767.<br />

[169] Fisher, L. E.; Caroon, J. M.; Jahangir; Stabler, S. R.; Lundberg, S.; Muchowski, J. M., J. Org. Chem.,<br />

(1993) 58, 3643.<br />

[170] Caron, S.; Hawkins, J. M., J. Org. Chem., (1998) 63, 2054.<br />

[171] Smith, K.; El-Hiti, G. A.; Shukla, A. P., J. Chem. Soc., Perkin Trans. 1, (1999), 2305.<br />

[172] Bennetau, B.; Mortier, J.; Moyroud, J.; Guesnet, J.-L., J. Chem. Soc., Perkin Trans. 1, (1995), 1265.<br />

[173] Meigh, J.-P.; lvarez, M.; Joule, J. A., J. Chem. Soc., Perkin Trans. 1, (2001), 2012.<br />

[174] Ameline, G.; Vaultier, M.; Mortier, J., Tetrahedron Lett., (1996) 37, 8175.<br />

[175] Katritzky, A. R.; Fan, W.-Q.; Akutagawa, K., Tetrahedron, (1986) 42, 4027.<br />

[176] Katritzky, A. R.; Black, M.; Fan, W.-Q., J. Org. Chem., (1991) 56, 5045.<br />

[177] Gray, M.; Chapell, B. J.; Felding, J.; Taylor, N. J.; Snieckus, V., Synlett, (1998), 422.<br />

[178] Melvin, L. S., Tetrahedron Lett., (1981) 22, 3375.<br />

[179] Dhawar, B.; Redmore, D., Synth. Commun., (1985) 15, 411.<br />

[180] Watanabe, M.; Date, M.; Kawanishi, K.; Hori, T.; Furukawa, S., Chem. Pharm. Bull., (1990) 38, 2637.<br />

[181] Gschwend, H. W.; Hamdan, A., J. Org. Chem., (1975) 40, 2008.<br />

[182] Meyers, A. I.; Mihelich, E. D., J. Org. Chem., (1975) 40, 3158.<br />

[183] Gant, T. G.; Meyers, A. I., Tetrahedron, (1994) 50, 2297.<br />

[184] Flippin, L. A.; Muchowski, J. M.; Carter, D. S., J. Org. Chem., (1993) 58, 2463.<br />

[185] Houlihan, W. J.; Parrino, V. A., J. Org. Chem., (1982) 47, 5177.<br />

[186] Harris, T. D.; Neuschw<strong>and</strong>er, B.; Boekelheide, V., J. Org. Chem., (1978) 43, 727.<br />

[187] Harvey, R. G.; Cortez, C., Tetrahedron, (1997) 53, 7101.<br />

[188] Flippin, L. A., Tetrahedron Lett., (1991) 32, 6857.<br />

[189] Larsen, R. D.; King, A. O.; Chen, C. Y.; Corley, E. G.; Foster, B. S.; Roberts, F. E.; Yang, C.;<br />

Lieberman, D. R.; Reamer, R. A.; Tschaen, D. M.; Verhoeven, T. R.; Reider, P. J.; Lo, Y. S.;<br />

Rossano, L. T.; Brookes, A. S.; Meloni, D.; Moore, J. R.; Arnett, J. F., J. Org. Chem., (1994) 59, 6391.<br />

[190] Liepa, A. J.; Jones, D. A.; McCarthy, T. D.; Nearn, R. H., Aust. J. Chem., (2000) 53, 619.<br />

[191] Rhonnstad, P.; Wensbo, D., Tetrahedron Lett., (2002) 43, 3137.<br />

[192] Krizan, T. D.; Martin, J. C., J. Org. Chem., (1982) 47, 2681.<br />

[193] Dreier, T.; Fröhlich, R.; Erker, G., J. Organomet. Chem., (2001) 621, 197.<br />

[194] Yokoyama, M.; Tanabe, T.; Toyoshima, A.; Togo, H., Synthesis, (1993), 517.<br />

[195] Dondoni, A.; Junquera, F.; Merchµn, F. L.; Merino, P.; Scherrmann, M.-C.; Tejero, T., J. Org. Chem.,<br />

(1997) 62, 5484.<br />

[196] Kerdesky, F. A. J.; Basha, A., Tetrahedron Lett., (1991) 32, 2003.<br />

[197] Ager, D. J., Tetrahedron Lett., (1983) 24, 5441.<br />

[198] Carpenter, A. J.; Chadwick, D. J., Tetrahedron, (1985) 41, 3803.<br />

[199] Chadwick, D. J.; Wilbe, C., J. Chem. Soc., Perkin Trans. 1, (1977), 887.<br />

[200] Zeni, G.; Nogueira, C. W.; Silva, D. O.; Menezes, P. H.; Braga, A. L.; Stefani, H. A.; Rocha, J. B. T.,<br />

Tetrahedron Lett., (2003) 44, 1387.<br />

[201] Katsumura, S.; Fujiwara, S.; Isoe, S., Tetrahedron Lett., (1988) 29, 1173.<br />

[202] Alvarez-Ibarra, C.; Quiroga, M. L.; Toledano, E., Tetrahedron, (1996) 52, 4065.<br />

[203] Comins, D. L.; Killpack, M. O., J. Org. Chem., (1987) 52, 104.<br />

[204] Lee, G. C. M.; Holmes, J. M.; Harcourt, D. A.; Garst, M. E., J. Org. Chem., (1992) 57, 3126.<br />

[205] Grimaldi, T.; Romero, M.; Pujol, M. D., Synlett, (2000), 1788.<br />

[206] Carpenter, A. J.; Chadwick, D. J., J. Org. Chem., (1985) 50, 4362.<br />

[207] Näsman, J. H.; Kopola, N.; Pensar, G., Tetrahedron Lett., (1986) 27, 1391.<br />

[208] Chadwick, D. J.; McKnight, M. V.; Ngochindo, R., J. Chem. Soc., Perkin Trans. 1, (1982), 1343.<br />

[209] Carpenter, A. J.; Chadwick, D. J., Tetrahedron Lett., (1985) 26, 5335.<br />

[210] Domínguez, C.; Csµky, A. G.; Plumet, J., Tetrahedron, (1992) 48, 149.<br />

[211] Chadwick, D. J.; Ennis, D. S., Tetrahedron, (1991) 47, 9901.<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


418 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

b[212] Bures, E. J.; Keay, B. A., Tetrahedron Lett., (1988) 29, 1247.<br />

[213] Yokoyama, M.; Toyoshima, H.; Shimizu, M.; Togo, H., J. Chem. Soc., Perkin Trans. 1, (1997), 29.<br />

[214] Silcoff, E. R.; Asadi, A. S. I.; Sheradsky, T., J. Polym. Sci., Part A: Polym. Chem., (2001) 39, 872.<br />

[215] Nakayama, J.; Dong, H.; Sawada, K.; Ishii, A.; Kumakura, S., Tetrahedron, (1996) 52, 471.<br />

[216] De Sousa, P. T., Jr.; Taylor, R. J. K., Synlett, (1990), 755.<br />

[217] Feringa, B. L.; Hulst, R.; Rikers, R.; Br<strong>and</strong>sma, L., Synthesis, (1988), 316.<br />

[218] Samanta, S. S.; Ghosh, S. C.; De, A., J. Chem. Soc., Perkin Trans. 1, (1997), 2683.<br />

[219] Wilson, W. D.; Tanious, F. A.; Watson, R. A.; Barton, H. J.; Strekowska, A.; Harden, D. B.;<br />

Strekowski, L., Biochemistry, (1989) 28, 1984.<br />

[220] Nakayama, J.; Yu, T.; Sugihara, Y.; Ishii, A.; Kumakura, S., Heterocycles, (1997) 45, 1267.<br />

[221] Sotgiu, G.; Zambianchi, M.; Barbarella, G.; Aruffo, F.; Cipriani, F.; Ventola, A., J. Org. Chem., (2003)<br />

68, 1512.<br />

[222] Benincori, T.; Cesarotti, E.; Piccolo, O.; Sannicolò, F., J. Org. Chem., (2000) 65, 2043.<br />

[223] Briehn, C. A.; Kirschbaum, T.; Bäuerle, P., J. Org. Chem., (2000) 65, 352.<br />

[224] Coppola, G. M.; Damon, R. E.; Yu, H., J. Heterocycl. Chem., (1996) 33, 687.<br />

[225] Spagnolo, P.; Zanirato, P., J. Chem. Soc., Perkin Trans. 1, (1996), 963.<br />

[226] Slocum, D. W.; Gierer, P. L., J. Org. Chem., (1976) 41, 3668.<br />

[227] Della Vecchia, L.; Vlattas, I., J. Org. Chem., (1977) 42, 2649.<br />

[228] Doadt, E. G.; Snieckus, V., Tetrahedron Lett., (1985) 26, 1149.<br />

[229] Mukherjee, S.; De, A., J. Chem. Res., Synop., (1994), 238.<br />

[230] Graham, S. L.; Scholz, T. H., J. Org. Chem., (1991) 56, 4260.<br />

[231] Watanabe, M.; Snieckus, V., J. Am. Chem. Soc., (1980) 102, 1457.<br />

[232] Kano, S.; Yuasa, Y.; Yokomatsu, T.; Shibuya, S., Heterocycles, (1983) 20, 2035.<br />

[233] van Pham, C.; Macomber, R. S.; Mark, H. B., Jr.; Zimmer, H., J. Org. Chem., (1984) 49, 5250.<br />

[234] Fröhlich, H.; Kalt, W., J. Org. Chem., (1990) 55, 2993.<br />

[235] Sauter, F.; Fröhlich, H.; Kalt, W., Synthesis, (1989), 771.<br />

[236] Gharpure, M.; Stoller, A.; Bellamy, F.; Firnau, G.; Snieckus, V., Synthesis, (1991), 1079.<br />

[237] Fraser, R. R.; Mansour, T. S.; Savard, S., Can. J. Chem., (1985) 63, 3505.<br />

[238] Brittain, J. M.; Jones, R. A.; Arques, J. S.; Saliente, T. A., Synth. Commun., (1982) 12, 231.<br />

[239] Minato, A.; Tamao, K.; Hayashi, T.; Suzuki, K.; Kumada, M., Tetrahedron Lett., (1981) 22, 5319.<br />

[240] Bauer, W.; Müller, G.; Pi, R.; Schleyer, P. v. R., Angew. Chem., (1986) 98, 1130; Angew. Chem. Int. Ed.<br />

Engl., (1986) 25, 1103.<br />

[241] Katritzky, A. R.; Akutagawa, K., Org. Prep. Proced. Int., (1988) 20, 585.<br />

[242] Faigl, F.; Schlosser, M., Tetrahedron, (1993) 49, 10271.<br />

[243] Faigl, F.; Fogassy, K.; Thurner, A.; Töke, L., Tetrahedron, (1997) 53, 4883.<br />

[244] Faigl, F.; Fogassy, K.; Szµntó, Z.; Lopata, A.; Töke, L., Tetrahedron, (1998) 54, 4367.<br />

[245] Kozikowski, A. P.; Cheng, X.-M., J. Org. Chem., (1984) 49, 3239.<br />

[246] Bray, B. L.; Mathies, P. H.; Naef, R.; Solas, D. R.; Tidwell, T. T.; Artis, D. R.; Muchowski, J. M., J. Org.<br />

Chem., (1990) 55, 6317.<br />

[247] Sundberg, R. J.; Pearce, B. C., J. Org. Chem., (1985) 50, 425.<br />

[248] Liu, J.-H.; Chan, H.-W.; Wong, H. N. C., J. Org. Chem., (2000) 65, 3274.<br />

[249] Banwell, M. G.; Flynn, B. L.; Hamel, E.; Hockless, D. C. R., Chem. Commun. (Cambridge), (1997), 207.<br />

[250] Liu, J.-H.; Yang, Q.-C.; Mak, T. C. W.; Wong, H. N. C., J. Org. Chem., (2000) 65, 3587.<br />

[251] Gribble, G. W.; Blank, D. H.; Jasinski, J. P., Chem. Commun. (Cambridge), (1999), 2195.<br />

[252] Chen, W.; Cava, M. P., Tetrahedron Lett., (1987) 28, 6025.<br />

[253] Muchowski, J. M.; Hess, P., Tetrahedron Lett., (1988) 29, 3215.<br />

[254] Muchowski, J. M.; Hess, P., Tetrahedron Lett., (1988) 29, 777.<br />

[255] Moskalev, N. V.; Gribble, G. W., Tetrahedron Lett., (2002) 43, 197.<br />

[256] Chadwick, D. J.; Ngochindo, R. I., J. Chem. Soc., Perkin Trans. 1, (1984), 481.<br />

[257] Carpenter, A. J.; Chadwick, D. J., Tetrahedron, (1986) 42, 2351.<br />

[258] Thang, C. C.; Davalian, D.; Huang, P.; Breslow, R., J. Am. Chem. Soc., (1978) 100, 3918.<br />

[259] Walters, M. A.; Lee, M. D., Tetrahedron Lett., (1994) 35, 8307.<br />

[260] Ohta, S.; Yamamoto, T.; Kawasaki, I.; Yamashita, M.; Katsuma, H.; Nasako, R.; Kobayashi, K.;<br />

Ogawa, K., Chem. Pharm. Bull., (1992) 40, 2681.<br />

[261] Kawasaki, I.; Katsuma, H.; Nakayama, Y.; Yamashita, M.; Ohta, S., Heterocycles, (1998) 48, 1887.<br />

[262] Guziec, L. J.; Guziec, F. S., Jr., J. Org. Chem., (1994) 59, 4691.<br />

[263] Boga, C.; Vecchio, E. D.; Forlani, L.; Todesco, P. E., J. Organomet. Chem., (2000) 601, 233.<br />

[264] Whitten, J. P.; Matthews, D. P.; McCarthy, J. R., J. Org. Chem., (1986) 51, 1891.<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


References 419<br />

b[265] Lipshutz, B. H.; Huff, B.; Hagen, W., Tetrahedron Lett., (1988) 29, 3411.<br />

[266] Manoharan, T. S.; Brown, R. S., J. Org. Chem., (1988) 53, 1107.<br />

[267] Eriksen, B. L.; Vedsø, P.; Morel, S.; Begtrup, M., J. Org. Chem., (1998) 63, 12.<br />

[268] Díez-Barra, E.; de la Hoz, A.; Sµnchez-Migallón, A.; Tejeda, J., J. Chem. Soc., Perkin Trans. 1, (1993),<br />

1079.<br />

[269] Demuth, T. P., Jr.; Lever, D. C.; Gorgos, L. M.; Hogan, C. M.; Chu, J., J. Org. Chem., (1992) 57, 2963.<br />

[270] Phillips, B. T.; Claremon, D. A.; Varga, S. L., Synthesis, (1990), 761.<br />

[271] Iddon, B., Heterocycles, (1985) 23, 417.<br />

[272] Iddon, B.; Khan, N., Tetrahedron Lett., (1986) 27, 1635.<br />

[273] Iddon, B.; Khan, N., J. Chem. Soc., Perkin Trans. 1, (1987), 1445.<br />

[274] Iddon, B.; Khan, N., J. Chem. Soc., Perkin Trans. 1, (1987), 1453.<br />

[275] Iddon, B.; Petersen, A. K.; Becher, J.; Christensen, N. J., J. Chem. Soc., Perkin Trans. 1, (1995), 1475.<br />

[276] Lipshutz, B. H.; Hagen, W., Tetrahedron Lett., (1992) 33, 5865.<br />

[277] Kaswasaki, I.; Yamashita, M.; Ohta, S., J. Chem. Soc., Chem. Commun., (1994), 2085.<br />

[278] Kawasaki, I.; Yamashita, M.; Ohta, S., Chem. Pharm. Bull., (1996) 44, 1831.<br />

[279] Groziak, M. P.; Wie, L., J. Org. Chem., (1992) 57, 3776.<br />

[280] Becher, J.; Pluta, K.; Krake, N.; Brøndum, K.; Christensen, N. J.; Vinader, M. V., Synthesis, (1989),<br />

530.<br />

[281] Hawkins, D. W.; Iddon, B.; Longthorne, D. S., Tetrahedron, (1995) 51, 12807.<br />

[282] Groziak, M. P.; Wie, L., J. Org. Chem., (1991) 56, 4296.<br />

[283] Holden, K. G.; Mattson, M. N.; Cha, K. H.; Rapoport, H., J. Org. Chem., (2002) 67, 5913.<br />

[284] Iddon, B., Heterocycles, (1994) 37, 1321.<br />

[285] Iddon, B., Heterocycles, (1994) 37, 1263.<br />

[286] Gilchrist, T. L., Adv. Heterocycl. Chem., (1987) 41, 41.<br />

[287] Hodges, J. C.; Patt, W. C.; Connolly, C. J., J. Org. Chem., (1991) 56, 449.<br />

[288] Whitney, S. E.; Rickborn, B., J. Org. Chem., (1991) 56, 3058.<br />

[289] Crowe, E.; Hossner, F.; Hughes, M. J., Tetrahedron, (1995) 51, 8889.<br />

[290] Vedejs, E.; Monahan, S. D., J. Org. Chem., (1996) 61, 5192.<br />

[291] Vedejs, E.; Luchetta, L. M., J. Org. Chem., (1999) 64, 1011.<br />

[292] Barrett, A. G. M.; Kohrt, J. T., Synlett, (1995), 415.<br />

[293] Harn, N. K.; Gramer, C. J.; Anderson, B. A., Tetrahedron Lett., (1995) 36, 9453.<br />

[294] Anderson, B. A.; Harn, N. K., Synthesis, (1996), 583.<br />

[295] Clapham, B.; Sutherl<strong>and</strong>, A. J., J. Org. Chem., (2001) 66, 9033.<br />

[296] Evans, D. A.; Cee, V. J.; Smith, T. E.; Santiago, K. J., Org. Lett., (1999) 1, 87.<br />

[297] Vedejs, E.; Barda, D. A., Org. Lett., (2000) 2, 1033.<br />

[298] Konoike, T.; K<strong>and</strong>a, Y.; Araki, Y., Tetrahedron Lett., (1996) 37, 3339.<br />

[299] Booker-Milburn, K. I., Synlett, (1992), 327.<br />

[300] Heinisch, G.; Holzer, W.; Pock, S., J. Chem. Soc., Perkin Trans. 1, (1990), 1829.<br />

[301] Aboutayab, K.; Caddick, S.; Jenkins, K.; Joshi, S.; Khan, S., Tetrahedron, (1996) 52, 11 329.<br />

[302] Kristensen, J.; Begtrup, M.; Vedsø, P., Synthesis, (1998), 1604.<br />

[303] Vedsø, P.; Begtrup, M., J. Org. Chem., (1995) 60, 4995.<br />

[304] Iddon, B., Heterocycles, (1995) 41, 533.<br />

[305] Dondoni, A.; Fantin, G.; Fogagnolo, M.; Medici, A.; Pedrini, P., J. Org. Chem., (1988) 53, 1748.<br />

[306] Dondoni, A.; Mastellari, A. R.; Medici, A.; Negrini, E.; Pedrini, P., Synthesis, (1986), 757.<br />

[307] Meyers, A. I.; Knaus, G. N., J. Am. Chem. Soc., (1973) 95, 3408.<br />

[308] Dondoni, A.; Giovannini, P. P.; Perrone, D., J. Org. Chem., (2002) 67, 7203.<br />

[309] Dondoni, A., Lect. Heterocycl. Chem., (1985) 8, 13.<br />

[310] Bach, T.; Heuser, S., J. Org. Chem., (2002) 67, 5789.<br />

[311] Kelly, T. R.; Jagoe, C. T.; Gu, Z., Tetrahedron Lett., (1991) 32, 4263.<br />

[312] Kelly, T. R.; Lang, F., Tetrahedron Lett., (1995) 36, 9293.<br />

[313] Cugnon de Sevricourt, M.; Robba, M., Bull. Soc. Chim. Fr., (1977), 142.<br />

[314] Janosik, T.; Stensl<strong>and</strong>, B.; Bergman, J., J. Org. Chem., (2002) 67, 6220.<br />

[315] Costa, A. M. B. S. R. C. S.; Dean, F. M.; Jones, M. A.; Smith, D. A.; Varma, R. S., J. Chem. Soc., Chem.<br />

Commun., (1980), 1224.<br />

[316] Chapman, N. B.; Hughes, C. G.; Scrowston, R. M., J. Chem. Soc. C, (1970), 2431.<br />

[317] DiMenna, W. S., Tetrahedron Lett., (1980) 21, 2129.<br />

[318] Yokoyama, Y.; Shiraishi, H.; Tani, Y.; Yokoyama, Y.; Yamaguchi, Y., J. Am. Chem. Soc., (2003) 125,<br />

7194.<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


420 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

b[319] M<strong>and</strong>al, S. S.; Samanta, S. S.; Deb, C.; De, A., J. Chem. Soc., Perkin Trans. 1, (1998), 2559.<br />

[320] Kamila, S.; Mukherjee, C.; Mondal, S. S.; De, A., Tetrahedron, (2003) 59, 1339.<br />

[321] Tanaka, K.; Suzuki, H.; Osuga, H., Tetrahedron Lett., (1997) 38, 457.<br />

[322] Kamila, S.; Mukherjee, C.; De, A., Tetrahedron Lett., (2001) 42, 5955.<br />

[323] Shirley, D. A.; Roussel, P. A., J. Am. Chem. Soc., (1953) 75, 375.<br />

[324] Sundberg, R. J.; Russell, H. F., J. Org. Chem., (1973) 38, 3324.<br />

[325] Ziegler, F. E.; Spitzner, E. B., J. Am. Chem. Soc., (1973) 95, 7146.<br />

[326] Bergman, J.; Eklund, N., Tetrahedron, (1980) 36, 1439.<br />

[327] Akgün, E.; Tunali, M.; Erdönmez, G., J. Heterocycl. Chem., (1989) 26, 1869.<br />

[328] Sundberg, R. J.; Bloom, J. D., J. Org. Chem., (1980) 45, 3382.<br />

[329] Saulnier, M. G.; Gribble, G. W., J. Org. Chem., (1982) 47, 757.<br />

[330] Gribble, G. W.; Barden, T. C.; Johnson, D. A., Tetrahedron, (1988) 44, 3195.<br />

[331] Ketcha, D. M.; Lieurance, B. A.; Homan, D. F. J.; Gribble, G. W., J. Org. Chem., (1989) 54, 4350.<br />

[332] Gribble, G. W.; Allison, B. D.; Conway, S. C.; Saulnier, M. G., Org. Prep. Proced. Int., (1992) 24, 649.<br />

[333] Jiang, J.; Gribble, G. W., Synth. Commun., (2002) 32, 2035.<br />

[334] Jiang, J.; Gribble, G. W., Tetrahedron Lett., (2002) 43, 4115.<br />

[335] Molina, P.; Almendros, P.; Fresneda, P. M., Tetrahedron Lett., (1993) 34, 4701.<br />

[336] Kraxner, J.; Gmeiner, P., Synthesis, (2000), 1081.<br />

[337] Hasan, I.; Marinelli, E. R.; Lin, L.-C. C.; Fowler, F. W.; Levy, A. B., J. Org. Chem., (1981) 46, 157.<br />

[338] Beak, P.; Lee, W. K., J. Org. Chem., (1993) 58, 1109.<br />

[339] Coulton, S.; Gilchrist, T. L.; Graham, K., Tetrahedron, (1997) 53, 791.<br />

[340] Vazquez, E.; Davies, I. W.; Payack, J. F., J. Org. Chem., (2002) 67, 7551.<br />

[341] Hlasta, D. J.; Bell, M. R., Heterocycles, (1989) 29, 849.<br />

[342] Katritzky, A. R.; Lue, P.; Chen, Y.-X., J. Org. Chem., (1990) 55, 3688.<br />

[343] Katritzky, A. R.; Akutagawa, K., Tetrahedron Lett., (1985) 26, 5935.<br />

[344] Fukuda, T.; Mine, Y.; Iwao, M., Tetrahedron, (2001) 57, 975.<br />

[345] Kline, T., J. Heterocycl. Chem., (1985) 22, 505.<br />

[346] Saulnier, M. G.; Gribble, G. W., J. Org. Chem., (1982) 47, 2810.<br />

[347] Saulnier, M. G.; Gribble, G. W., J. Org. Chem., (1983) 48, 2690.<br />

[348] Ketcha, D. M.; Gribble, G. W., J. Org. Chem., (1985) 50, 5451.<br />

[349] Gribble, G. W.; Fletcher, G. L.; Ketcha, D. M.; Rajopadhye, M., J. Org. Chem., (1989) 54, 3264.<br />

[350] Gribble, G. W.; Saulnier, M. G.; Obaza-Nutaitis, J. A.; Ketcha, D. M., J. Org. Chem., (1992) 57, 5891.<br />

[351] Fraser, H. L.; Gribble, G. W., Can. J. Chem., (2001) 79, 1515.<br />

[352] Caixach, J.; Capell, R.; Galvez, C.; Gonzalez, A.; Roca, N., J. Heterocycl. Chem., (1979) 16, 1631.<br />

[353] Bergman, J.; Venemalm, L., Tetrahedron Lett., (1988) 29, 2993.<br />

[354] Aygün, A.; Pindur, U., Synlett, (2000), 1757.<br />

[355] Saulnier, M. G.; Gribble, G. W., Tetrahedron Lett., (1983) 24, 5435.<br />

[356] Gribble, G. W.; Keavy, D. J.; Davis, D. A.; Saulnier, M. G.; Pelcman, B.; Barden, T. C.; Sibi, M. P.;<br />

Olson, E. R.; BelBruno, J. J., J. Org. Chem., (1992) 57, 5878.<br />

[357] Gribble, G. W.; Jiang, J.; Liu, Y., J. Org. Chem., (2002) 67, 1001.<br />

[358] Jiang, J.; Gribble, G. W., Org. Prep. Proced. Int., (2002) 34, 533.<br />

[359] Abbiati, G.; Beccalli, E. M.; Marchesini, A.; Rossi, E., Synthesis, (2001), 2477.<br />

[360] Rewcastle, G. W.; Janosik, T.; Bergman, J., Tetrahedron, (2001) 57, 7185.<br />

[361] Conway, S. C.; Gribble, G. W., Heterocycles, (1992) 34, 2095.<br />

[362] Liu, Y.; Gribble, G. W., Tetrahedron Lett., (2000) 41, 8717.<br />

[363] Liu, Y.; Gribble, G. W., J. Nat. Prod., (2002) 65, 748.<br />

[364] Macor, J. E.; Ryan, K.; Chalabi, P. M.; Windels, J. C.; Roth, R. W., J. Labelled Compd. Radiopharm.,<br />

(1990) 28, 1293.<br />

[365] Cheng, A. C.; Shulgin, A. T.; Castagnoli, N., Jr., J. Org. Chem., (1982) 47, 5258.<br />

[366] Katritzky, A. R.; Akutagawa, K.; Jones, R. A., Synth. Commun., (1988) 18, 1151.<br />

[367] Buttery, C. D.; Jones, R. G.; Knight, D. W., Synlett, (1991), 315.<br />

[368] Nakagawa, K.; Somei, M., Heterocycles, (1994) 39, 31.<br />

[369] Sundberg, R. J.; Parton, R. L., J. Org. Chem., (1976) 41, 163.<br />

[370] Sundberg, R. J.; Broome, R.; Walters, C. P.; Schnur, D., J. Heterocycl. Chem., (1981) 18, 807.<br />

[371] Ishikura, M.; Agata, I., Heterocycles, (1995) 41, 2437.<br />

[372] Ishikura, M.; Agata, I., Heterocycles, (1996) 43, 1591.<br />

[373] Sakamoto, T.; Kondo, Y.; Takazawa, N.; Yamanaka, H., J. Chem. Soc., Perkin Trans. 1, (1996), 1927.<br />

[374] Labadie, S. S.; Teng, E., J. Org. Chem., (1994) 59, 4250.<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


References 421<br />

b[375] Achab, S., Tetrahedron Lett., (1996) 37, 5503.<br />

[376] Kondo, Y.; Yoshida, A.; Sato, S.; Sakamoto, T., Heterocycles, (1996) 42, 105.<br />

[377] Conway, S. C.; Gribble, G. W., Heterocycles, (1990) 30, 627.<br />

[378] Gribble, G. W.; Barden, T. C., J. Org. Chem., (1985) 50, 5900.<br />

[379] Zheng, Q.; Yang, Y.; Martin, A. R., Heterocycles, (1994) 37, 1761.<br />

[380] Amat, M.; Hadida, S.; Sathyanarayana, S.; Bosch, J., J. Org. Chem., (1994) 59, 10.<br />

[381] Amat, M.; Sathyanarayana, S.; Hadida, S.; Bosch, J., Heterocycles, (1996) 43, 1713.<br />

[382] Amat, M.; Pshenichnyi, G.; Bosch, J.; Molins, E.; Miravitlles, C., Tetrahedron: Asymmetry, (1996) 7,<br />

3091.<br />

[383] Choshi, T.; Yamada, S.; Sugino, E.; Kuwada, T.; Hibino, S., J. Org. Chem., (1995) 60, 5899.<br />

[384] Hoerrner, R. S.; Askin, D.; Volante, R. P.; Reider, P. J., Tetrahedron Lett., (1998) 39, 3455.<br />

[385] Gerasimov, M.; Marona-Lewicka, D.; Kurrasch-Orbaugh, D. M.; Q<strong>and</strong>il, A. M.; Nichols, D. E.,<br />

J. Med. Chem., (1999) 42, 4257.<br />

[386] Ma, C.; Yu, S.; He, X.; Liu, X.; Cook, J. M., Tetrahedron Lett., (2000) 41, 2781.<br />

[387] Wynne, J. H.; Stalick, W. M., J. Org. Chem., (2002) 67, 5850.<br />

[388] Wynne, J. H.; Stalick, W. M., J. Org. Chem., (2003) 68, 4845.<br />

[389] Amat, M.; Seffar, F.; Llor, N.; Bosch, J., Synthesis, (2001), 267.<br />

[390] Amat, M.; Hadida, S.; Bosch, J., Tetrahedron Lett., (1994) 35, 793.<br />

[391] Liu, Y.; Gribble, G. W., Tetrahedron Lett., (2002) 43, 7135.<br />

[392] Gribble, G. W.; Saulnier, M. G., J. Org. Chem., (1983) 48, 607.<br />

[393] Liu, Y.; Gribble, G. W., Tetrahedron Lett., (2001) 42, 2949.<br />

[394] Herbert, J. M.; Maggiani, M., Synth. Commun., (2001) 31, 947.<br />

[395] Moyer, M. P.; Shiurba, J. F.; Rapoport, H., J. Org. Chem., (1986) 51, 5106.<br />

[396] Soll, R. M.; Humber, L. G.; Deininger, D.; Asselin, A. A.; Chau, T. T.; Weichman, B. M., J. Med.<br />

Chem., (1986) 29, 1457.<br />

[397] Yang, Y.; Martin, A. R.; Nelson, D. L.; Regan, J., Heterocycles, (1992) 34, 1169.<br />

[398] Johnson, D. A.; Gribble, G. W., Heterocycles, (1986) 24, 2127.<br />

[399] Gribble, G. W.; Johnson, D. A., Tetrahedron Lett., (1987) 28, 5259.<br />

[400] Lipinska, T., Tetrahedron Lett., (2002) 43, 9565.<br />

[401] Yokoyama, Y.; Uchida, M.; Murakami, Y., Heterocycles, (1989) 29, 1661.<br />

[402] Romero, M.; Pujol, M. D., Synlett, (2003), 173.<br />

[403] Matsuzono, M.; Fukuda, T.; Iwao, M., Tetrahedron Lett., (2001) 42, 7621.<br />

[404] Fukuda, T.; Maeda, R.; Iwao, M., Tetrahedron, (1999) 55, 9151.<br />

[405] Masters, N. F.; Mathews, N.; Nechvatal, G.; Widdowson, D. A., Tetrahedron, (1989) 45, 5955.<br />

[406] Iwao, M., Heterocycles, (1993) 36, 29.<br />

[407] Iwao, M.; Motoi, O., Tetrahedron Lett., (1995) 36, 5929.<br />

[408] Iwao, M.; Ishibashi, F., Tetrahedron, (1997) 53, 51.<br />

[409] Shinohara, H.; Fukuda, T.; Iwao, M., Tetrahedron, (1999) 55, 10989.<br />

[410] Nettekoven, M.; Psiorz, M.; Waldmann, H., Tetrahedron Lett., (1995) 36, 1425.<br />

[411] Chauder, B.; Larkin, A.; Snieckus, V., Org. Lett., (2002) 4, 815.<br />

[412] PØrez-Serrano, L.; Casarrubios, L.; Domínguez, G.; Freire, G.; PØrez-Castells, J., Tetrahedron, (2002)<br />

58, 5407.<br />

[413] Griffen, E. J.; Roe, D. G.; Snieckus, V., J. Org. Chem., (1995) 60, 1484.<br />

[414] Tois, J.; Koskinen, A., Tetrahedron Lett., (2003) 44, 2093.<br />

[415] Kinsman, A. C.; Snieckus, V., Tetrahedron Lett., (1999) 40, 2453.<br />

[416] Zoltewicz, J. A.; Grahe, G.; Smith, C. L., J. Am. Chem. Soc., (1969) 91, 5501.<br />

[417] Verbeek, J.; Br<strong>and</strong>sma, L., J. Org. Chem., (1984) 49, 3857.<br />

[418] Vorbrüggen, H., Adv. Heterocycl. Chem., (1990) 49, 117.<br />

[419] Zoltewicz, J. A.; Helmick, L. S., J. Am. Chem. Soc., (1970) 92, 7547.<br />

[420] Zoltewicz, J. A.; Kauffman, G. M., J. Org. Chem., (1969) 34, 1405.<br />

[421] Gros, P.; Fort, Y.; Caub›re, P., J. Chem. Soc., Perkin Trans. 1, (1997), 3597.<br />

[422] Cuperly, D.; Gros, P.; Fort, Y., J. Org. Chem., (2002) 67, 238.<br />

[423] Gros, P.; Choppin, S.; Mathieu, J.; Fort, Y., J. Org. Chem., (2002) 67, 234.<br />

[424] Gilman, H.; Spatz, S. M., J. Org. Chem., (1951) 16, 1485.<br />

[425] Cai, D.; Larsen, R. D.; Reider, P. J., Tetrahedron Lett., (2002) 43, 4285.<br />

[426] Sutherl<strong>and</strong>, A.; Gallagher, T.; Sharples, C. G. V.; Wonnacott, S., J. Org. Chem., (2003) 68, 2475.<br />

[427] Cottet, F.; Marull, M.; Lefebvre, O.; Schlosser, M., Eur. J. Org. Chem., (2003), 1559.<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


422 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

b[428] Wang, X.; Rabbat, P.; O Shea, P.; Tillyer, R.; Grabowski, E. J. J.; Reider, P. J., Tetrahedron Lett., (2000)<br />

41, 4335.<br />

[429] Parry, P. R.; Wang, C.; Batsanov, A. S.; Bryce, M. R.; Tarbit, B., J. Org. Chem., (2002) 67, 7541.<br />

[430] Cai, D.; Hughes, D. L.; Verhoeven, T. R., Tetrahedron Lett., (1996) 37, 2537.<br />

[431] Baxter, P. N. W., J. Org. Chem., (2000) 65, 1257.<br />

[432] Bouillon, A.; Lancelot, J.-C.; Collot, V.; Bovy, P. R.; Rault, S., Tetrahedron, (2002) 58, 4369.<br />

[433] Bouillon, A.; Lancelot, J.-C.; Collot, V.; Bovy, P. R.; Rault, S., Tetrahedron, (2002) 58, 3323.<br />

[434] Li, W.; Nelson, D. P.; Jensen, M. S.; Hoerrner, R. S.; Cai, D.; Larsen, R. D.; Reider, P. J., J. Org. Chem.,<br />

(2002) 67, 5394.<br />

[435] Bouillon, A.; Lancelot, J.-C.; Collot, V.; Bovy, P. R.; Rault, S., Tetrahedron, (2002) 58, 2885.<br />

[436] Lützen, A.; Hapke, M., Eur. J. Org. Chem., (2002), 2292.<br />

[437] Comins, D. L.; Baevsky, M. F.; Hong, H., J. Am. Chem. Soc., (1992) 114, 10 971.<br />

[438] Comins, D. L.; Saha, J. K., Tetrahedron Lett., (1995) 36, 7995.<br />

[439] Quallich, G. J.; Fox, D. E.; Friedmann, R. C.; Murtiashaw, C. W., J. Org. Chem., (1992) 57, 761.<br />

[440] TrØcourt, F.; Mallet, M.; Mongin, O.; QuØguiner, G., J. Heterocycl. Chem., (1995) 32, 1117.<br />

[441] TrØcourt, F.; Gervais, B.; Mallet, M.; QuØguiner, G., J. Org. Chem., (1996) 61, 1673.<br />

[442] TrØcourt, F.; Gervais, B.; Mongin, O.; Le Gal, C.; Mongin, F.; QuØguiner, G., J. Org. Chem., (1998) 63,<br />

2892.<br />

[443] Numata, A.; Kondo, Y.; Sakamoto, T., Synthesis, (1999), 306.<br />

[444] Yao, Y.; Lamba, J. J. S.; Tour, J. M., J. Am. Chem. Soc., (1998) 120, 2805.<br />

[445] Schlosser, M.; Bobbio, C., Eur. J. Org. Chem., (2002), 4174.<br />

[446] Benmansour, H.; Chambers, R. D.; S<strong>and</strong>ford, G.; McGowan, G.; Dahaoui, S.; Yufit, D. S.;<br />

Howard, J. A. K., J. Fluorine Chem., (2001) 112, 349.<br />

[447] Gu, Y. G.; Bayburt, E. K., Tetrahedron Lett., (1996) 37, 2565.<br />

[448] Kondo, Y.; Asai, M.; Miura, T.; Uchiyama, M.; Sakamoto, T., Org. Lett., (2001) 3, 13.<br />

[449] Gómez, I.; Alonso, E.; Ramón, D. J.; Yus, M., Tetrahedron, (2000) 56, 4043.<br />

[450] Yus, M.; Ramón, D. J., J. Chem. Soc., Chem. Commun., (1991), 398.<br />

[451] Alonso, E.; Guijarro, D.; Martínez, P.; Ramón, D. J.; Yus, M., Tetrahedron, (1999) 55, 11 027.<br />

[452] Ramón, D. J.; Yus, M., Eur. J. Org. Chem., (2000), 225.<br />

[453] Marsais, F.; QuØguiner, G., Tetrahedron, (1983) 39, 2009.<br />

[454] Gribble, G. W.; Saulnier, M. G., Tetrahedron Lett., (1980) 21, 4137.<br />

[455] Gribble, G. W.; Saulnier, M. G., Heterocycles, (1993) 35, 151.<br />

[456] Güngör, T.; Marsais, F.; QuØguiner, G., J. Organomet. Chem., (1981) 215, 139.<br />

[457] Marsais, F.; Breant, P.; Ginguene, A.; QuØguiner, G., J. Organomet. Chem., (1981) 216, 139.<br />

[458] Lennox, J. R.; Turner, S. C.; Rapoport, H., J. Org. Chem., (2001) 66, 7078.<br />

[459] Cho, S. Y.; Kim, S. S.; Park, K.-H.; Kang, S. K.; Choi, J.-K.; Hwang, K.-J.; Yum, E. K., Heterocycles,<br />

(1996) 43, 1641.<br />

[460] TrØcourt, F.; Marsais, F.; Güngör, T.; QuØguiner, G., J. Chem. Soc., Perkin Trans. 1, (1990), 2409.<br />

[461] Beierle, J. M.; Osimboni, E. B.; Metallinos, C.; Zhao, Y.; Kelly, T. R., J. Org. Chem., (2003) 68, 4970.<br />

[462] Estel, L.; Marsais, F.; QuØguiner, G., J. Org. Chem., (1988) 53, 2740.<br />

[463] Miki, Y.; Tada, Y.; Matsushita, K., Heterocycles, (1998) 48, 1593.<br />

[464] Bobbio, C.; Schlosser, M., Eur. J. Org. Chem., (2001), 4533.<br />

[465] Karig, G.; Spencer, J. A.; Gallagher, T., Org. Lett., (2001) 3, 835.<br />

[466] Karig, G.; Thasana, N.; Gallagher, T., Synlett, (2002), 808.<br />

[467] Imahori, T.; Uchiyama, M.; Sakamoto, T.; Kondo, Y., Chem. Commun. (Cambridge), (2001), 2450.<br />

[468] Mongin, F.; Tognini, A.; Cottet, F.; Schlosser, M., Tetrahedron Lett., (1998) 39, 1749.<br />

[469] Connon, S. J.; Hegarty, A. F., J. Chem. Soc., Perkin Trans. 1, (2000), 1245.<br />

[470] Corey, E. J.; Pyne, S. G.; Schafer, A. I., Tetrahedron Lett., (1983) 24, 3291.<br />

[471] Turner, S. C.; Zhai, H.; Rapoport, H., J. Org. Chem., (2000) 65, 861.<br />

[472] Mallet, M.; QuØguiner, G., Tetrahedron, (1979) 35, 1625.<br />

[473] Mallet, M.; QuØguiner, G., Tetrahedron, (1985) 41, 3433.<br />

[474] Mallet, M.; QuØguiner, G., Tetrahedron, (1986) 42, 2253.<br />

[475] Rocca, P.; Cochennec, C.; Marsais, F.; Thomas-dit-Dumont, L.; Mallet, M.; Godard, A.;<br />

QuØguiner, G., J. Org. Chem., (1993) 58, 7832.<br />

[476] Cochennec, C.; Rocca, P.; Marsais, F.; Godard, A.; QuØguiner, G., Synthesis, (1995), 321.<br />

[477] Godard, A.; Rocca, P.; Guillier, F.; Duvey, G.; Nivoliers, F.; Marsais, F.; QuØguiner, G., Can. J. Chem.,<br />

(2001) 79, 1754.<br />

[478] Comins, D. L.; Saha, J. K., J. Org. Chem., (1996) 61, 9623.<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


References 423<br />

b[479] Turner, J. A., J. Org. Chem., (1983) 48, 3401.<br />

[480] Wright, S. W.; Petraitis, J. J.; Abelman, M. M.; Batt, D. G.; Bostrom, L. L.; Corbett, R. L.; Decicco, C. P.;<br />

Di Meo, S. V.; Freimark, B.; Giannaras, J. V.; Green, A. M.; Jetter, J. W.; Nelson, D. J.; Orwat, M. J.;<br />

Pinto, D. J.; Pratta, M. A.; Sherk, S. R.; Williams, J. M.; Magolda, R. L.; Arner, E. C., J. Med. Chem.,<br />

(1994) 37, 3071.<br />

[481] Katritzky, A. R.; Rahimi-Rastgoo, S.; Ponkshe, N. K., Synthesis, (1981), 127.<br />

[482] Epsztajn, J.; Bieniek, A.; Plotka, M. W.; Suwald, K., Tetrahedron, (1989) 45, 7469.<br />

[483] Epsztajn, J.; Józwiak, A.; Czech, K.; Szczesniak, A. K., Monatsh. Chem., (1990) 121, 909.<br />

[484] Epsztajn, J.; Brzezinski, J. Z.; Czech, K., Monatsh. Chem., (1993) 124, 549.<br />

[485] Epsztajn, J.; Bieniek, A.; Kowalska, J. A., Tetrahedron, (1991) 47, 1697.<br />

[486] Epsztajn, J.; Plotka, M. W.; Grabowska, A., Synth. Commun., (1997) 27, 1075.<br />

[487] Güngör, T.; Marsais, F.; QuØguiner, G., Synthesis, (1982), 499.<br />

[488] Dunbar, P. G.; Martin, A. R., Heterocycles, (1987) 26, 3165.<br />

[489] Iwao, M.; Kuraishi, T., Tetrahedron Lett., (1983) 24, 2649.<br />

[490] Watanabe, M.; Shinoda, E.; Shimizu, Y.; Furukawa, S.; Iwao, M.; Kuraishi, T., Tetrahedron, (1987)<br />

43, 5281.<br />

[491] Kelly, T. A.; Patel, U. R., J. Org. Chem., (1995) 60, 1875.<br />

[492] Kelly, T. R.; Echavarren, A.; Ch<strong>and</strong>rakumar, N. S.; Köksal, Y., Tetrahedron Lett., (1984) 25, 2127.<br />

[493] Smith, K.; Anderson, D.; Matthews, I., J. Org. Chem., (1996) 61, 662.<br />

[494] Smith, K.; Lindsay, C. M.; Morris, I. K.; Matthews, I.; Pritchard, G. J., Sulfur Lett., (1994) 17, 197.<br />

[495] Smith, K.; Anderson, D.; Matthews, I., Sulfur Lett., (1995) 18, 79.<br />

[496] Miah, M. A. J.; Snieckus, V., J. Org. Chem., (1985) 50, 5436.<br />

[497] Tsukazaki, M.; Snieckus, V., Heterocycles, (1993) 35, 689.<br />

[498] Marsais, F.; Le Nard, G.; QuØguiner, G., Synthesis, (1982), 235.<br />

[499] Tamura, Y.; Fujita, M.; Chen, L.-C.; Inoue, M.; Kita, Y., J. Org. Chem., (1981) 46, 3564.<br />

[500] Comins, D. L.; LaMunyon, D. H., Tetrahedron Lett., (1988) 29, 773.<br />

[501] Comins, D. L.; Hong, H.; Saha, J. K.; Jianhua, G., J. Org. Chem., (1994) 59, 5120.<br />

[502] TrØcourt, F.; Mallet, M.; Mongin, O.; Gervais, B.; QuØguiner, G., Tetrahedron, (1993) 49, 8373.<br />

[503] Meyers, A. I.; Gabel, R. A., Tetrahedron Lett., (1978), 227.<br />

[504] Bisagni, E.; Rautureau, M., Synthesis, (1987), 142.<br />

[505] Comins, D. L.; Killpack, M. O., J. Org. Chem., (1990) 55, 69.<br />

[506] Marsais, F.; Cronnier, A.; TrØcourt, F.; QuØguiner, G., J. Org. Chem., (1987) 52, 1133.<br />

[507] Alo, B. I.; Familoni, O. B.; Marsais, F.; QuØguiner, G., J. Heterocycl. Chem., (1992) 29, 61.<br />

[508] Shibutani, T.; Fujihara, H.; Furukawa, N., Tetrahedron Lett., (1991) 32, 2947.<br />

[509] Mongin, F.; TrØcourt, F.; QuØguiner, G., Tetrahedron Lett., (1999) 40, 5483.<br />

[510] Lazaar, J.; Rebstock, A.-S.; Mongin, F.; Godard, A.; TrØcourt, F.; Marsais, F.; QuØguiner, G.,<br />

Tetrahedron, (2002) 58, 6723.<br />

[511] Epsztajn, J.; Józwiak, A.; Krysiak, J. K.; Lucka, D., Tetrahedron, (1996) 52, 11 025.<br />

[512] Schlosser, M.; Marull, M., Eur. J. Org. Chem., (2003), 1569.<br />

[513] Choppin, S.; Gros, P.; Fort, Y., Org. Lett., (2000) 2, 803.<br />

[514] Gros, P.; Fort, Y.; Caub›re, P., J. Chem. Soc., Perkin Trans. 1, (1998), 1685.<br />

[515] Choppin, S.; Gros, P.; Fort, Y., Eur. J. Org. Chem., (2001), 603.<br />

[516] Gros, P.; Choppin, S.; Fort, Y., J. Org. Chem., (2003) 68, 2243.<br />

[517] Mongin, O.; Rocca, P.; Thomas-dit-Dumont, L.; TrØcourt, F.; Marsais, F.; Godard, A.; QuØguiner, G.,<br />

J. Chem. Soc., Perkin Trans. 1, (1995), 2503.<br />

[518] Wada, K.; Mizutani, T.; Kitagawa, S., J. Org. Chem., (2003) 68, 5123.<br />

[519] Narasimham, N. S.; Ammanamanchi, R. K., J. Chem. Soc., Chem. Commun., (1985), 1368.<br />

[520] Marull, M.; Schlosser, M., Eur. J. Org. Chem., (2003), 1576.<br />

[521] Marsais, F.; Bouley, E.; QuØguiner, G., J. Organomet. Chem., (1979) 171, 273.<br />

[522] Shi, G.; Takagishi, S.; Schlosser, M., Tetrahedron, (1994) 50, 1129.<br />

[523] Marsais, F.; Godard, A.; QuØguiner, G., J. Heterocycl. Chem., (1989) 26, 1589.<br />

[524] PlØ, N.; Turck, A.; Couture, K.; QuØguiner, G., J. Org. Chem., (1995) 60, 3781.<br />

[525] Turck, A.; Mojovic, L.; QuØguiner, G., Synthesis, (1988), 881.<br />

[526] Mattson, R. J.; Sloan, C. P., J. Org. Chem., (1990) 55, 3410.<br />

[527] Ward, J. S.; Merritt, L., J. Heterocycl. Chem., (1991) 28, 765.<br />

[528] PlØ, N.; Turck, A.; Heynderickx, A.; QuØguiner, G., Tetrahedron, (1998) 54, 4899.<br />

[529] PlØ, N.; Turck, A.; Heynderickx, A.; QuØguiner, G., Tetrahedron, (1998), 54, 9701.<br />

[530] Liu, W.; Wise, D. S.; Townsend, L. B., J. Org. Chem., (2001) 66, 4783.<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


424 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

b[531] LeprÞtre, A.; Turck, A.; PlØ, N.; QuØguiner, G., Tetrahedron, (2000) 56, 3709.<br />

[532] Machado, H. J. S.; Hinchliffe, A., J. Mol. Struct. (Theochem), (1995) 339, 255.<br />

[533] Wada, A.; Yamamoto, J.; Hamaoka, Y.; Ohki, K.; Nagai, S.; Kanatomo, S., J. Heterocycl. Chem.,<br />

(1990) 27, 1831.<br />

[534] Turck, A.; PlØ, N.; Mojovic, L.; QuØguiner, G., J. Heterocycl. Chem., (1990) 27, 1377.<br />

[535] Radinov, R.; Chanev, C.; Haimova, M., J. Org. Chem., (1991) 56, 4793.<br />

[536] PlØ, N.; Turck, A.; Heynderickx, A.; QuØguiner, G., J. Heterocycl. Chem., (1994) 31, 1311.<br />

[537] PlØ, N.; Turck, A.; Heynderickx, A.; QuØguiner, G., J. Heterocycl. Chem., (1997) 34, 551.<br />

[538] Pollet, P.; Turck, A.; PlØ, N.; QuØguiner, G., J. Org. Chem., (1999) 64, 4512.<br />

[539] S<strong>and</strong>osham, J.; Undheim, K., Tetrahedron, (1994) 50, 275.<br />

[540] TrØcourt, F.; Turck, A.; PlØ, N.; Paris, A.; QuØguiner, G., J. Heterocycl. Chem., (1995) 32, 1057.<br />

[541] Turck, A.; PlØ, N.; Tallon, V.; QuØguiner, G., J. Heterocycl. Chem., (1993) 30, 1491.<br />

[542] Smith, K.; El-Hiti, G. A.; Abdel-Megeed, M. F.; Abdo, M. A., J. Org. Chem., (1996) 61, 647.<br />

[543] Turck, A.; PlØ, N.; Tallon, V.; QuØguiner, G., Tetrahedron, (1995) 51, 13045.<br />

[544] Nfflnez-Polo, P. P.; Neunhoeffer, H., Heterocycl. Commun., (1998) 4, 301.<br />

[545] PlØ, N.; Turck, A.; QuØguiner, G.; Glassl, B.; Neunhoeffer, H., Liebigs Ann. Chem., (1993), 583.<br />

[546] Glassl, B.; Sinks, U.; Neunhoeffer, H., Heterocycl. Commun., (1996) 2, 513.<br />

[547] Vitse, O.; Bompart, J.; Subra, G.; Viols, H.; Escale, R.; Chapat, J. P.; Bonnet, P. A., Tetrahedron,<br />

(1998) 54, 6485.<br />

[548] Sugimoto, O.; Sudo, M.; Tanji, K., Tetrahedron Lett., (1999) 40, 2139.<br />

[549] Sugimoto, O.; Sudo, M.; Tanji, K., Tetrahedron, (2001) 57, 2133.<br />

[550] Uhlmann, P.; Felding, J.; Vedsø, P.; Begtrup, M., J. Org. Chem., (1997) 62, 9177.<br />

[551] Bookser, B. C., Tetrahedron Lett., (2000) 41, 2805.<br />

[552] Dudfield, P. J.; Ekwuru, C. T.; Hamilton, K.; Osbourn, C. E.; Simpson, D. J., Synlett, (1990), 277.<br />

[553] Li, S. K. Y.; Knight, D. W.; Little, P. B., Tetrahedron Lett., (1996) 37, 5615.<br />

[554] Knight, D. W.; Little, P. B., J. Chem. Soc., Perkin Trans. 1, (2000), 2343.<br />

[555] Tye, H.; Eldred, C.; Wills, M., Synlett, (1995), 770.<br />

[556] Kemp, D. S.; Galakatos, N. G., J. Org. Chem., (1986) 51, 1821.<br />

[557] Jean, F.; Melnyk, O.; Tartar, A., Tetrahedron Lett., (1995) 36, 7657.<br />

[558] Sargent, M. V.; Stransky, P. O., Adv. Heterocycl. Chem., (1984) 35,1.<br />

[559] Deady, L. W.; Sette, R. M. D., Aust. J. Chem., (2001) 54, 177.<br />

[560] Gilman, H.; Jacoby, A. L., J. Org. Chem., (1938) 3, 108.<br />

[561] Katritzky, A. R.; Perumal, S., J. Heterocycl. Chem., (1990) 27, 1737.<br />

[562] Hallberg, A.; Martin, A. R., J. Heterocycl. Chem., (1984) 21, 837.<br />

[563] Katritzky, A. R.; Rewcastle, G. W.; Vazquez de Miguel, L. M., J. Org. Chem., (1988) 53, 794.<br />

[564] Palmer, B. D.; Boyd, M.; Denny, W. A., J. Org. Chem., (1990) 55, 438.<br />

[565] Lee, H. H.; Palmer, B. D.; Boyd, M.; Baguley, B. C.; Denny, W. A., J. Med. Chem., (1992) 35, 258.<br />

[566] Lovell, J. M.; Joule, J. A., J. Chem. Soc., Perkin Trans. 1, (1996), 2391.<br />

[567] Gilman, H.; Stuckwisch, C. G., J. Am. Chem. Soc., (1943) 65, 1461.<br />

[568] Yus, M.; Foubelo, F.; Ferrµndez, J. V., Tetrahedron, (2003) 59, 2083.<br />

[569] Gilman, H.; Shirley, D. A.; Van Ess, P. R., J. Am. Chem. Soc., (1944) 66, 625.<br />

[570] Hallberg, A.; Martin, A., J. Heterocycl. Chem., (1982) 19, 433.<br />

[571] Ebdrup, S.; Jensen, M. S.; Vedsø, P., J. Chem. Soc., Perkin Trans. 1, (1998), 351.<br />

[572] Sailer, M.; Gropeanu, R.-A.; Müller, T. J. J., J. Org. Chem., (2003) 68, 7509.<br />

[573] Dahlgren, T.; Hallberg, A.; Helitzer, R.; Martin, A. R., J. Heterocycl. Chem., (1983) 20, 341.<br />

[574] Hallberg, A.; Al-Showaier, I.; Martin, A. R., J. Heterocycl. Chem., (1984) 21, 197.<br />

[575] Mehta, A.; Dodd, R. H., J. Org. Chem., (1993) 58, 7587.<br />

[576] Batch, A.; Dodd, R. H., J. Org. Chem., (1998) 63, 872.<br />

[577] Hart, H.; Teuerstein, A., Synthesis, (1979), 693.<br />

[578] Gribble, G. W.; Allen, R. W.; LeHoullier, C. S.; Eaton, J. T.; Easton, N. R., Jr.; Slayton, R. I.;<br />

Sibi, M. P., J. Org. Chem., (1981) 46, 1025.<br />

[579] Fitzgerald, J. J.; Drysdale, N. E.; Olofson, R. A., J. Org. Chem., (1992) 57, 7122.<br />

[580] Hart, H.; Shamouilian, S., J. Org. Chem., (1981) 46, 4874.<br />

[581] LeHoullier, C. S.; Gribble, G. W., J. Org. Chem., (1983) 48, 2364.<br />

[582] LeHoullier, C. S.; Gribble, G. W., J. Org. Chem., (1983) 48, 1682.<br />

[583] Gribble, G. W.; LeHoullier, C. S.; Sibi, M. P.; Allen, R. W., J. Org. Chem., (1985) 50, 1611.<br />

[584] Hart, H.; Shamouilian, S.; Takehira, Y., J. Org. Chem., (1981) 46, 4427.<br />

[585] Caster, K. C.; Keck, C. G.; Walls, R. D., J. Org. Chem., (2001) 66, 2932.<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


References 425<br />

b[586] Tripathy, S.; LeBlanc, R.; Durst, T., Org. Lett., (1999) 1, 1973.<br />

[587] Snieckus, V.; Beaulieu, F.; Mohri, K.; Han, W.; Murphy, C. K.; Davis, F. A., Tetrahedron Lett., (1994)<br />

35, 3465.<br />

[588] Davis, F. A.; Han, W.; Murphy, C. K., J. Org. Chem., (1995) 60, 4730.<br />

[589] Blackmore, I. J.; Boa, A. N.; Murray, E. J.; Dennis, M.; Woodward, S., Tetrahedron Lett., (1999) 40,<br />

6671.<br />

[590] Harrowven, D. C.; Nunn, M. I. T.; Fenwick, D. R., Tetrahedron Lett., (2001) 42, 7501.<br />

[591] Reed, J. N.; Snieckus, V., Tetrahedron Lett., (1983) 24, 3795.<br />

[592] Mori, S.; Ohno, T.; Harada, H.; Aoyama, T.; Shioiri, T., Tetrahedron, (1991) 47, 5051.<br />

[593] Tani, K.; Lukin, K.; Eaton, P. E., J. Am. Chem. Soc., (1997) 119, 1476.<br />

[594] Stagliano, K. W.; Malinakova, H. C.; Takayama, A., Synth. Commun., (1997) 27, 2413.<br />

[595] Hoffmann, R. W.; Ditrich, K., Synthesis, (1983), 107.<br />

[596] Taddei, M.; Ricci, A., Synthesis, (1986), 633.<br />

[597] Coleman, R. S.; Mortensen, M. A., Tetrahedron Lett., (2003) 44, 1215.<br />

[598] Sato, N.; Yue, Q., Tetrahedron, (2003) 59, 5831.<br />

[599] Jeganathan, S.; Tsukamoto, M.; Schlosser, M., Synthesis, (1990), 109.<br />

[600] Sibi, M. P.; Miah, M. A. J.; Snieckus, V., J. Org. Chem., (1984) 49, 737.<br />

[601] Rot, N.; Bickelhaupt, F., Organometallics, (1997) 16, 5027.<br />

[602] Shi, Y.-J.; Wells, K. M.; Pye, P. J.; Choi, W.-B.; Churchill, H. R. O.; Lynch, J. E.; Maliakal, A.;<br />

Sager, J. W.; Rossen, K.; Volante, R. P.; Reider, P. J., Tetrahedron, (1999) 55, 909.<br />

[603] Casas, R.; CavØ, C.; d Angelo, J., Tetrahedron Lett., (1995) 36, 1039.<br />

[604] Klement, I.; Stadtmüller, H.; Knochel, P.; Cahiez, G., Tetrahedron Lett., (1997) 38, 1927.<br />

[605] Koch, K.; Chambers, R. J.; Biggers, M. S., Synlett, (1994), 347.<br />

[606] Evans, P. A.; Nelson, J. D.; Stanley, A. L., J. Org. Chem., (1995) 60, 2298.<br />

[607] Hirao, T.; Takada, T.; Ogawa, A., J. Org. Chem., (2000) 65, 1511.<br />

[608] Seitz, D. E.; Tonnesen, G. L.; Hellman, S.; Hanson, R. N.; Adelstein, S. J., J. Organomet. Chem., (1980)<br />

186, C33.<br />

[609] Chen, G. J.; Tamborski, C., J. Organomet. Chem., (1983) 251, 149.<br />

[610] de Boer, H. J. R.; Akkerman, O. S.; Bickelhaupt, F., Organometallics, (1990) 9, 2898.<br />

[611] Sharp, M. J.; Snieckus, V., Tetrahedron Lett., (1985) 26, 5997.<br />

[612] Alo, B. I.; K<strong>and</strong>il, A.; Patil, P. A.; Sharp, M. J.; Siddiqui, M. A.; Snieckus, V.; Josephy, P. D., J. Org.<br />

Chem., (1991) 56, 3763.<br />

[613] Mohri, S.; Stefinovic, M.; Snieckus, V., J. Org. Chem., (1997) 62, 7072.<br />

[614] Wang, W.; Snieckus, V., J. Org. Chem., (1992) 57, 424.<br />

[615] Fu, J.; Snieckus, V., Can. J. Chem., (2000) 78, 905.<br />

[616] Patil, P. A.; Snieckus, V., Tetrahedron Lett., (1998) 39, 1325.<br />

[617] Kalinin, A. V.; Snieckus, V., Tetrahedron Lett., (1998) 39, 4999.<br />

[618] Goldfinger, M. B.; Crawford, K. B.; Swager, T. M., J. Org. Chem., (1998) 63, 1676.<br />

[619] Lamba, J. J. S.; Tour, J. M., J. Am. Chem. Soc., (1994) 116, 11723.<br />

[620] Hensel, V.; Schlüter, A. D., Eur. J. Org. Chem., (1999), 451.<br />

[621] Starling, S. M.; Raslan, D. S.; de Oliveira, A. B., Synth. Commun., (1998) 28, 1013.<br />

[622] Epsztajn, J.; Bieniek, A.; Kowalska, J. A.; Kulikiewicz, K. K., Synthesis, (2000), 1603.<br />

[623] Garibay, P.; Vedsø, P.; Begtrup, M.; Hoeg-Jensen, T., J. Comb. Chem., (2001) 3, 332.<br />

[624] Luteijn, J. M.; Spronck, H. J. W., J. Chem. Soc., Perkin Trans. 1, (1979), 201.<br />

[625] Johnson, F.; Subramanian, R., J. Org. Chem., (1986) 51, 5040.<br />

[626] Boehm, T. L.; Showalter, H. D. H., J. Org. Chem., (1996) 61, 6498.<br />

[627] Le Strat, F.; Maddaluno, J., Org. Lett., (2002) 4, 2791.<br />

[628] Marburg, S.; Tolman, R. L., J. Heterocycl. Chem., (1980) 17, 1333.<br />

[629] Smith, K.; El-Hiti, G. A.; Hawes, A. C., Synlett, (1999), 945.<br />

[630] Smith, K.; Pritchard, G. J., Angew. Chem., (1990) 102, 298; Angew. Chem. Int. Ed. Engl., (1990) 29,<br />

282.<br />

[631] Bridges, A. J.; Lee, A.; Maduakor, E. C.; Schwartz, C. E., Tetrahedron Lett., (1992) 33, 7499.<br />

[632] Stanetty, P.; Krumpak, B., J. Org. Chem., (1996) 61, 5130.<br />

[633] Stanetty, P.; Krumpak, B.; Emerschitz, T.; Mereiter, K., Tetrahedron, (1997) 53, 3615.<br />

[634] Hermann, C. K. F.; Campbell, J. A.; Greenwood, T. D.; Lewis, J. A.; Wolfe, J. F., J. Org. Chem., (1992)<br />

57, 5328.<br />

[635] Wright, S. W., J. Heterocycl. Chem., (2001) 38, 723.<br />

[636] Kraus, G. A.; Pezzanite, J. O., J. Org. Chem., (1979) 44, 2480.<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG


426 Science of Synthesis 8.1 Lithium <strong>Compounds</strong><br />

b[637] Harvey, R. G.; Cortez, C.; Ananthanarayan, T. P.; Schmolka, S., J. Org. Chem., (1988) 53, 3936.<br />

[638] Talley, J. J., Synthesis, (1983), 845.<br />

[639] Bieniek, A.; Epsztajn, J.; Kowalska, J. A.; Malinowski, Z., Tetrahedron Lett., (2001) 42, 9293.<br />

[640] Cho, I.-S.; Gong, L.; Muchowski, J. M., J. Org. Chem., (1991) 56, 7288.<br />

[641] Fisher, L. E.; Muchowski, J. M.; Clark, R. D., J. Org. Chem., (1992) 57, 2700.<br />

[642] Kiselyov, A. S., Tetrahedron Lett., (1995) 36, 493.<br />

[643] Iwao, M., J. Org. Chem., (1990) 55, 3622.<br />

[644] MacNeil, S. L.; Gray, M.; Briggs, L. E.; Li, J. J.; Snieckus, V., Synlett, (1998), 419.<br />

[645] Wang, X.; Snieckus, V., Synlett, (1990), 313.<br />

[646] Beaulieu, F.; Snieckus, V., J. Org. Chem., (1994) 59, 6508.<br />

[647] Lane, C.; Snieckus, V., Synlett, (2000), 1294.<br />

[648] Katritzky, A. R.; Nair, S. K.; Rodriguez-Garcia, V.; Xu, Y.-J., J. Org. Chem., (2002) 67, 8237.<br />

[649] Barrett, E. S.; Irwin, J. L.; Turner, P.; Sherburn, M. S., Org. Lett., (2002) 4, 1455.<br />

[650] de Silva, S. O.; Watanabe, M.; Snieckus, V., J. Org. Chem., (1979) 44, 4802.<br />

[651] de Silva, S. O.; Ahmad, I.; Snieckus, V., Tetrahedron Lett., (1978), 5107.<br />

[652] Iwao, M.; Mahalanabis, K. K.; Watanabe, M.; de Silva, S. O.; Snieckus, V., Tetrahedron, (1983) 39,<br />

1955.<br />

[653] Trost, B. M.; Rivers, G. T.; Gold, J. M., J. Org. Chem., (1980) 45, 1835.<br />

[654] Keay, B. A.; Rodrigo, R., J. Am. Chem. Soc., (1982) 104, 4725.<br />

[655] Watanabe, M.; Maenosono, H.; Furukawa, S., Chem. Pharm. Bull., (1983) 31, 2662.<br />

[656] Morrow, G. W.; Swenton, J. S.; Filppi, J. A.; Wolgemuth, R. L., J. Org. Chem., (1987) 52, 713.<br />

[657] Tius, M. A.; Gomez-Galeno, J.; Gu, X.; Zaidi, J. H., J. Am. Chem. Soc., (1991) 113, 5775.<br />

[658] Jew, S.; Lim, D.; Bae, S.; Kim, H.; Kim, J.; Lee, J.; Park, H., Tetrahedron: Asymmetry, (2002) 13, 715.<br />

[659] Familoni, O. B.; Ionica, I.; Bower, J. F.; Snieckus, V., Synlett, (1997), 1081.<br />

[660] Meyers, A. I.; Willemsen, J. J., Tetrahedron, (1998) 54, 10493.<br />

[661] Harrowven, D. C.; Hannam, J. C., Tetrahedron Lett., (1998) 39, 9573.<br />

[662] Reitz, D. B.; Massey, S. M., J. Org. Chem., (1990) 55, 1375.<br />

[663] Stefinovic, M.; Snieckus, V., J. Org. Chem., (1998) 63, 2808.<br />

[664] Corey, E. J.; Das, J., J. Am. Chem. Soc., (1982) 104, 5551.<br />

[665] Soll, R. M.; Guinosso, C.; Asselin, A., J. Org. Chem., (1988) 53, 2844.<br />

[666] Seitz, D. E.; Blaszczak, L. C., Synth. Commun., (1988) 18, 2353.<br />

[667] Coburn, C. A.; Young, M. B.; Hungate, R. W.; Isaacs, R. C. A.; Vacca, J. P.; Huff, J. R., Bioorg. Med.<br />

Chem. Lett., (1996) 6, 1937.<br />

[668] Lau, S. Y. W.; Keay, B. A., Can. J. Chem., (2001) 79, 1541.<br />

[669] Kraus, G. A.; Kim, J., J. Org. Chem., (2002) 67, 2358.<br />

[670] Kress, T. H.; Leanna, M. R., Synthesis, (1988), 803.<br />

[671] Saednya, A.; Hart, H., Synthesis, (1996), 1455.<br />

G. W. Gribble, Section 8.1.14, Science of Synthesis, 2006 Georg Thieme Verlag KG

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!