02.03.2013 Views

Product Class 16: Benzisothiazoles

Product Class 16: Benzisothiazoles

Product Class 16: Benzisothiazoles

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

11.<strong>16</strong> <strong>Product</strong> <strong>Class</strong> <strong>16</strong>:<br />

<strong>Benzisothiazoles</strong><br />

D. W. Brown and M. Sainsbury<br />

General Introduction<br />

<strong>Benzisothiazoles</strong> have a much longer history than isothiazoles and 2,1-benzisothiazole<br />

was first synthesized in 1898. Saccharin, the best-known 1,2-benzisothiazole derivative,<br />

was first prepared in 1879.<br />

Two isomeric forms of benzisothiazole are known, depending on the position of the<br />

ring fusion. Benz[d]isothiazole is better known as 1,2-benzisothiazole (1) and benz[c]isothiazole<br />

as 2,1-benzisothiazole (2) (Scheme 1). 2,3-Dihydro-1,2-benzisothiazole (3) is also<br />

described as 1,2-benzisothiazoline, and 1,3-dihydro-2,1-benzisothiazole (4) as 2,1-benzisothiazoline.<br />

It is noteworthy that in 1,3-dihydro-2,1-benzisothiazoles the ortho-quinone<br />

system is lost and the carbocycle becomes benzenoid.<br />

Scheme 1 Nomenclature of <strong>Benzisothiazoles</strong><br />

4<br />

3<br />

5<br />

N 2<br />

6<br />

S<br />

7 1<br />

1 1,2-benzisothiazole<br />

NH<br />

S<br />

3 2,3-dihydro-1,2-benzisothiazole<br />

4<br />

3<br />

5<br />

S 2<br />

6<br />

N<br />

7 1<br />

2 2,1-benzisothiazole<br />

S<br />

N<br />

H<br />

4 1,3-dihydro-2,1-benzisothiazole<br />

Both compounds are well represented and their chemistry is regularly reviewed, most recently<br />

by Chapman and Peart in Comprehensive Heterocyclic Chemistry II [1] and by Schulze<br />

(the authors acknowledge the fact that this chapter is based upon this earlier contribution)<br />

in Houben±Weyl. [2] Other information on these compounds is available annually in<br />

Progress in Heterocyclic Chemistry. Aspects of the aromaticity of isothiazoles in general is<br />

covered by Simkin, Minkin, and Glukhovtsev in Advances in Heterocyclic Chemistry. [3]<br />

The main interest in benzisothiazoles over the years has been the sweet taste of the<br />

compound saccharin, 1,2-benzisothiazol-3(2H)-one 1,1-dioxide (5). Five hundred times<br />

sweeter than sugar in dilute solution, saccharin has been the subject of many patents<br />

and also much development work aimed at reducing its metallic aftertaste. [4] In addition<br />

2-alkylsaccharins show a wide range of biological activity (see Section 11.<strong>16</strong>.1.3.2.1.1) and<br />

some 2-alkanoic acid derivatives exhibit antimicrobial action. [5] Other benzisothiazoles<br />

have pharmacological importance and value as agrochemicals. For example, ipsapirone<br />

(6) is an axiolytic serotonin receptor agonist and probenazole (7) is used against rice blast<br />

fungus (Scheme 2).<br />

573<br />

for references see p 622


574 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

Scheme 2 Some Commercially Important <strong>Benzisothiazoles</strong><br />

O<br />

NH<br />

S<br />

O O<br />

5 saccharin<br />

11.<strong>16</strong>.1 <strong>Product</strong> Subclass 1:<br />

1,2-<strong>Benzisothiazoles</strong><br />

O<br />

N<br />

S<br />

O O<br />

N<br />

( )4<br />

6 ipsapirone<br />

N<br />

N<br />

N<br />

O<br />

N<br />

S<br />

O O<br />

7 probenazole<br />

1,2-Benzisothiazole (1), which smells of almonds, exists as a low-melting, pale yellow<br />

solid (mp378C; bp2208C). Bond lengths and internal bond angles for 1,2-benzisothiazole-3-acetic<br />

acid [6] are shown in Scheme 3.<br />

141<br />

Scheme 3 Bond Lengths (pm) and Angles (8) for 1,2-Benzisothiazole-3-acetic Acid [6]<br />

138<br />

137<br />

140<br />

141<br />

144<br />

172<br />

131<br />

N<br />

S<br />

<strong>16</strong>8<br />

bond lengths<br />

CO 2H CO 2H<br />

120<br />

122<br />

119<br />

120<br />

115<br />

N<br />

S<br />

121<br />

117 94<br />

111.5<br />

internal bond angles<br />

In the 1 H NMR spectra of 1,2-benzisothiazoles the H3 signal normally occurs at d 8.2±8.8:<br />

thus, for 5,6-dimethoxy-1,2-benzisothiazole H3 resonates at d 8.7. For the same compound<br />

the chemical shifts of H4 and H7 are d 7.3 and 7.4, respectively. [7] The chemical<br />

shifts of the benzenoid resonances are, as might be anticipated, influenced by the nature<br />

of the substituents in that ring and, for example, in the spectrum of 5-acetoxy-3-methyl-<br />

1,2-benzisothiazole the resonance of H4 is at d 8.6, while those of H6 and H7 are at ca. d<br />

8.1. [8]<br />

13 C NMR signals for C3 of 3-alkyl-1,2-benzisothiazoles occur at d <strong>16</strong>1±<strong>16</strong>5, the resonance<br />

of C3a is normally found at d 128±130 and that of C7a is at d 148±153 in<br />

CDCl 3. [8,11] The resonance positions of these signals are almost the same in 1,2-benzisothiazole<br />

1-oxides, and even in 1,1-dioxides the only obvious change is an upfield shift of<br />

about 10 ppm in the resonance position of C7a (in DMSO). [11]<br />

<strong>Benzisothiazoles</strong> are soluble in organic solvents, but insoluble in water. They dissolve<br />

in aqueous acid forming salts.<br />

3-Methyl-2,3-dihydro-1,2-benzisothiazole 1,1-dioxide (8) is a nonplanar and flexible<br />

molecule. X-ray studies show that it exists as two crystallographically distinct conformers,<br />

in which the pyramidal nitrogen lies above the plane of the ring by either 3 pm or<br />

51 pm. The N-H and C-Me bonds are arranged in a cis configuration (Scheme 4), allowing<br />

the lone pair of the nitrogen atom to bisect the angle between the S-O bonds. [12]


11.<strong>16</strong>.1 1,2-<strong>Benzisothiazoles</strong> 575<br />

Scheme 4 Conformation of 3-Methyl-2,3-dihydro-1,2benzisothiazole<br />

1,1-Dioxide [12]<br />

H<br />

N<br />

S<br />

O<br />

O<br />

8<br />

•<br />

Reactivity: The attachment of a benzene ring to the isothiazole nucleus has the effect of<br />

directing most electrophilic substitution reactions into the carbocycle at C4. Although the<br />

nature of substituents already in the benzenoid ring influences the position of attack,<br />

electrophilic nitration and halogenation reactions are important for the synthesis of the<br />

corresponding nitro- and halo-1,2-benzisothiazoles (see Section 11.<strong>16</strong>.1.3.1.1).<br />

N-Alkylation of 1,2-benzisothiazoles can be achieved by treatment with triethyloxonium<br />

tetrafluoroborate, [13] or with dimethyl sulfate [14] in contact with perchloric acid. [15,<strong>16</strong>]<br />

The salts formed are unstable to strong heat and, for example, if 3-chloro-2-ethyl-1,2-benzisothiazolium<br />

chloride (9) is distilled, chloroethane is lost and 3-chloro-1,2-benzisothiazole<br />

(10) is obtained in 78% yield (Scheme 5). [17]<br />

Scheme 5 Thermal Decomposition of 3-Chloro-2-ethyl-1,2-benzisothiazolium Chloride [17]<br />

Cl<br />

+<br />

NEt<br />

S Cl<br />

9<br />

−<br />

distillation<br />

− EtCl<br />

78%<br />

For the synthesis of 2-alkylsaccharins see Section 11.<strong>16</strong>.1.3.2.1.1.<br />

Some nucleophilic reagents (sodium methoxide, sodium cyanide, butyllithium, thiols,<br />

and some tertiary bases) react with 1,2-benzisothiazoles, or 3-halo-1,2-benzisothiazoles,<br />

and cause ring opening. For example, 1,2-benzisothiazole (1) is cleaved by treatment<br />

with sodium methoxide to sodium 2-cyanobenzenethiolate (Scheme 6). [18±20]<br />

10<br />

Cl<br />

N<br />

S<br />

Scheme 6 RingOpeningof 1,2-Benzisothiazole with Sodium Methoxide [18±20]<br />

1<br />

N<br />

S<br />

NaOMe, MeOH<br />

When 3-chloro-1,2-benzisothiazole (11) is treated with sodium cyanide in acetone the<br />

reaction gives bis(2-cyanophenyl) disulfide (12) [21] and 2-thiocyanatobenzonitrile (13) in<br />

yields of 22 and 62%, respectively, together with a smaller amount of 2-acetylbenzo[b]thiophen-3-amine<br />

(14) (6%) (Scheme 7). [22] The reaction between 11 and sodium benzenethiolate<br />

at 408C gives bis(2-cyanophenyl) disulfide (12) in about 50% yield, plus diphenyl disulfide<br />

and a smaller amount of 2-cyanophenyl phenyl disulfide. [21±27] A similar result is noted<br />

when copper(I) cyanide replaces sodium cyanide, but now 3-chloro-1,2-benzisothiazole<br />

(11) gives bis(2-cyanophenyl) disulfide (12) as the main product (80%). 3-Chloro-1,2-benzisothiazole<br />

(11) reacts with butyllithium at ±78 8C in diethyl ether to give 2-(butylsulfanyl)benzonitrile<br />

(15) in 90% yield (Scheme 7). [18±26]<br />

CN<br />

SNa<br />

for references see p 622


576 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

Scheme 7 Reaction of 3-Chloro-1,2-benzisothiazole [18±27]<br />

11<br />

Cl<br />

N<br />

S<br />

NaX<br />

CN<br />

S<br />

S<br />

NC<br />

12<br />

13<br />

CN<br />

+ +<br />

Reagent Yield (%) Ref<br />

12 13 14<br />

NaCN, acetone 22 62 6 [21,22]<br />

a [21±27]<br />

NaSPh, 40 8C 50<br />

a Diphenyl disulfide and 2-cyanophenyl phenyl disulfide are also formed.<br />

11<br />

Cl<br />

N<br />

S<br />

BuLi, Et 2O, −78 o C<br />

Reaction of 3-bromoisothiazolo[5,4-b]pyridine (<strong>16</strong>) [25] with piperidine gives 2-(piperidinosulfanyl)pyridine-3-carbonitrile<br />

(17) (Scheme 8). [28]<br />

15<br />

CN<br />

SBu<br />

SCN<br />

Scheme 8 Reaction of 3-Bromoisothiazolo[5,4-b]pyridine with Piperidine [28]<br />

N<br />

<strong>16</strong><br />

Br<br />

N<br />

S<br />

piperidine<br />

83%<br />

N<br />

Fortunately, some reactions with alkoxides, amines, and enolates can be mediated so that<br />

ring scission does not occur and this allows the synthesis of many derivatives through<br />

nucleophilic substitution (see Section 11.<strong>16</strong>.1.3.1.2).<br />

1,2-Benzisothiazolium salts 18 (R 2 = H) or 3-amino-1,2-benzisothiazolium salts 18<br />

(R 2 = NHEt) behave in a similar fashion and, for example, with aqueous sodium hydroxide<br />

and sodium acetate afford the appropriate bis[2-(iminomethyl)aryl] disulfides 19, [29±31]<br />

whereas 3-aryl-1,2-benzisothiazolium salts 18 (R 2 = aryl) react with aqueous sodium<br />

hydroxide or concentrated ammonia to give 2-(sulfanylamino)benzophenones 20<br />

(Scheme 9). [29,32]<br />

CN<br />

S N<br />

17<br />

14<br />

S<br />

NH 2<br />

Ac


11.<strong>16</strong>.1 1,2-<strong>Benzisothiazoles</strong> 577<br />

Scheme 9 Reactions of 1,2-Benzisothiazolium Salts [29±32]<br />

R 3<br />

18<br />

R 2<br />

NR<br />

S<br />

1<br />

+<br />

X −<br />

2 M NaOH<br />

NaOAc<br />

R 2 = H, NHEt<br />

2 M NaOH<br />

or NH3<br />

R 2 = aryl<br />

With zinc and hydrochloric acid, hydrazine and diisopropylamine, or nitrous acid,<br />

3-chloro-1,2-benzisothiazole (11) undergoes ring scission to bis(2-cyanophenyl) disulfide<br />

(12) in over 90% yield, [33] thus relating the results of these reactions to those between<br />

3-chloro-1,2-benzisothiazole and cyanide, benzenethiolate, and butyllithium (Scheme 7).<br />

11.<strong>16</strong>.1.1 Synthesis by Ring-Closure Reactions<br />

11.<strong>16</strong>.1.1.1 By Formation of Two C-C Bonds<br />

The benzene ring of 3-substituted 1,2-benzisothiazoles can be supplied by the cycloaddition<br />

of benzyne and a symmetrically substituted 1,2,5-thiadiazole 21 (Scheme 10). [10,67±69]<br />

An adduct 22 is formed which then eliminates a nitrile to form the benzisothiazole 23.<br />

This method probably has little synthetic value as yields are low. For example, when the<br />

thiadiazoles 21 (R 1 = H, Me, CN, or Cl) are the starting materials the yields are 25, 31, 36,<br />

and 35%, respectively. [10]<br />

R 3<br />

R 3<br />

R 2<br />

20<br />

NR 1<br />

S<br />

S<br />

R 2<br />

NR<br />

19<br />

1<br />

COR 2<br />

S<br />

NHR 1<br />

Scheme 10 Synthesis of 1,2-<strong>Benzisothiazoles</strong> by the Addition of Benzyne to<br />

1,2,5-Diazathiazoles [10]<br />

+<br />

R 1 R 1<br />

N<br />

S<br />

21<br />

N<br />

−<br />

N<br />

R 1<br />

S<br />

+<br />

N<br />

11.<strong>16</strong>.1.1.2 By Formation of One S-N or One N-C Bond<br />

22<br />

R 1<br />

R 3<br />

− R 1 CN<br />

23<br />

R 1<br />

N<br />

S<br />

R1 = H 25%<br />

R1 = Me 31%<br />

R1 = CN 36%<br />

R1 = Cl 35%<br />

Many useful methods for the synthesis of 1,2-benzisothiazoles depend on the formation<br />

of the S-N bond as the last step. Essentially these methods differ only in the selection of<br />

the starting material. Also included in this section are syntheses that probably involve<br />

N-C bond formation as the last step. There are two reasons for this merger: firstly the<br />

starting materials are often very similar and secondly there is possible ambiguity concerning<br />

the precise reaction mechanisms.<br />

for references see p 622


578 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

11.<strong>16</strong>.1.1.2.1 Method 1:<br />

From Thiols, Disulfides, and Related Compounds<br />

One of the early approaches to the synthesis of benzisothiazoles depends on the oxidative<br />

cyclization of 2-(aminomethyl)benzenethiols with iodine or bromine, [34] or with alkaline<br />

potassium ferricyanide. [35] It seems likely that a disulfide, or an equivalent, is an intermediate<br />

in these reactions and in acidic medium disulfides can be isolated as their ammonium<br />

salts. In alkaline solution, however, the reactions proceed to give the 1,2-benzisothiazoles.<br />

Thus, iodine and potassium iodide in aqueous sodium hydroxide oxidize 2-(aminomethyl)-5-methylbenzenethiol<br />

(24) [34,35] to 5-methyl-1,2-benzisothiazole (26) in 89% yield,<br />

possibly via 25 (Scheme 11). [34]<br />

Scheme 11 Synthesis of 5-Methyl-1,2-benzisothiazole from 2-(Aminomethyl)-<br />

5-methylbenzenethiol [34]<br />

24<br />

SH<br />

NH2<br />

I2, KI<br />

0.5 M NaOH<br />

NH2<br />

S<br />

S<br />

H2N 25<br />

N<br />

S<br />

26 89%<br />

Indeed, diaryl disulfides are commonly presynthesized and then used as the starting materials.<br />

Often the nitrogen-bearing substituent is either a cyanide or an amide and, if a halogen<br />

is used as the oxidant, the product contains a halogen atom at C3. For example,<br />

chlorine in dimethylformamide leads to the production of 3-chloro-1,2-benzisothiazole<br />

(11) in 36% yield from bis(2-cyanophenyl) disulfide (12), [36] probably via the sulfenyl<br />

chloride 27 (Scheme 12).<br />

Scheme 12 Synthesis of 3-Chloro-1,2-benzisothiazole from Bis(2-cyanophenyl) Disulfide [36]<br />

CN<br />

S<br />

12<br />

S<br />

NC<br />

Cl 2, DMF, 17 h<br />

27<br />

CN<br />

SCl<br />

11 36%<br />

Not surprisingly, similar constructions of 3-bromoisothiazolo[5,4-b]pyridine (<strong>16</strong>) utilize<br />

2-sulfanylpyridine-3-carbonitrile (28) or bis(3-cyano-2-pyridyl) disulfide (29) (Scheme 13).<br />

If 29 is the starting material, bromine in boiling chloroform is used, rather than chlorine,<br />

to effect the cyclization and C3 halogenation. The yield is higher (86 versus 68%) if the<br />

2-sulfanylpyridine 28 is the starting material as opposed to the dipyridyl disulfide 29. [28]<br />

In this case bromine in acetic acid/ethyl acetate is the reagent, and the reaction mixture<br />

is worked upby the addition of aqueous ammonia at 408C.<br />

Cl<br />

N<br />

S


11.<strong>16</strong>.1 1,2-<strong>Benzisothiazoles</strong> 579<br />

Scheme 13 Synthesis of 3-Bromoisothiazolo[5,4-b]pyridine from 2-Sulfanylpyridine-3-carbonitrile<br />

or Bis(3-cyano-2-pyridyl) Disulfide [28]<br />

N<br />

N<br />

28<br />

CN<br />

SH<br />

CN<br />

S<br />

29<br />

S N<br />

NC<br />

1. AcOH, EtOAc, reflux<br />

2. Br2<br />

3. 10% NH4OH, 40 oC Br 2, CHCl3<br />

86%<br />

68%<br />

Bis[2-(arylimino)aryl] disulfides can also be ring closed, and when, for example,<br />

bis[4-nitro-2-(4-tolyliminomethyl)phenyl] disulfide (30) is treated with chlorine in chloroform<br />

it gives 5-nitro-2-(4-tolyl)-1,2-benzisothiazolium chloride (31) in 67% yield (Scheme<br />

14). [29]<br />

Scheme 14 Synthesis of 5-Nitro-2-(4-tolyl)-1,2-benzisothiazolium Chloride from<br />

Bis[4-nitro-2-(4-tolyliminomethyl)phenyl] Disulfide [29]<br />

O 2N<br />

N-4-Tol<br />

S<br />

S<br />

4-TolN<br />

30<br />

NO 2<br />

N<br />

Cl2, CHCl3, heat, 10 min<br />

67%<br />

<strong>16</strong><br />

Br<br />

N<br />

S<br />

O 2N<br />

31<br />

+<br />

N-4-Tol<br />

S<br />

Cl −<br />

Bis[2-(aminocarbonyl)aryl] disulfides 32 afford 3-chloro-1,2-benzisothiazolium chlorides<br />

33 when treated with phosphorus pentachloride (Scheme 15). [17] In this way 3-chloro-2methyl-1,2-benzisothiazolium<br />

chloride (33, R 1 = Me; R 2 = H) is generated in 90% yield<br />

from bis[2-(methylaminocarbonyl)phenyl] disulfide (32, R 1 = Me; R 2 = H).<br />

for references see p 622


580 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

Scheme 15 Synthesis of 3-Chloro-1,2-benzisothiazolium Chlorides from<br />

Bis[2-(aminocarbonyl)aryl] Disulfides [17]<br />

R 2<br />

O<br />

NR<br />

S<br />

1<br />

S +<br />

Cl −<br />

PCl5, dry benzene<br />

80 o Cl<br />

C, 30−45 min<br />

R3 NHR1 R<br />

S<br />

1HN O<br />

R2 32<br />

R 1 R 2 R 3 Yield (%) of 33 Ref<br />

Me H H 90 [17]<br />

Et H H ± [17]<br />

Et 5-Cl 6-Cl ± [17]<br />

Et 5-OMe 6-OMe ± [17]<br />

CH 2CH=CH 2 H H ± [17]<br />

Ph H H ± [17]<br />

morpholino H H ± [17]<br />

Some aminocarbonyl- 34 (X = O), aminothiocarbonyl- 34 (X = S), or carbamimidoyl-substituted<br />

34 (X = NEt) aryl disulfides cyclize to give 3-substituted 1,2-benzisothiazoles 35 in<br />

methanol solution, but these are accompanied by 2-sulfanylbenzamide 36 (X = O), 2-sulfanylbenzenecarbothioamide<br />

36 (X = S), or N,N-diethyl-2-sulfanylbenzimidamide 36<br />

(X = NEt), as appropriate, in solution (Scheme <strong>16</strong>). In addition, these products are in equilibrium<br />

with the starting materials and the disulfides 34 are favored when acids are present.<br />

[37]<br />

Scheme <strong>16</strong> Equilibrium between Bisaryl, Disulfides and 3-Substituted<br />

1,2-<strong>Benzisothiazoles</strong> and 2-Sulfanylbenzamides, -benzothioamides, or benzimidamides [37]<br />

X<br />

NHEt<br />

S<br />

S<br />

EtHN<br />

X<br />

34<br />

X = O, S, NEt<br />

MeOH<br />

The nitrogen-bearing component in cyclizations of this type need not be a secondary<br />

amine and pyrido[1,2-b][1,2]benzisothiazolium tetrafluoroborates 38 can be synthesized<br />

by the oxidative cyclization of 2-(2-sulfanylphenyl)pyridines 37 in the presence of<br />

N-chlorosuccinimide with the addition of silver tetrafluoroborate (Scheme 17). [38] In this<br />

way 2-nitropyrido[1,2-b][1,2]benzisothiazolium tetrafluoroborate (38, R 1 =NO 2) is obtained<br />

in 60% yield and the 2-cyano analogue 38 (R 1 = CN) in 57% yield.<br />

35<br />

XH<br />

N<br />

S<br />

+<br />

33<br />

X<br />

36<br />

SH<br />

NHEt


Scheme 17 Synthesis of Pyrido[1,2-b][1,2]benzisothiazolium Tetrafluoroborates from<br />

2-(2-Sulfanylphenyl)pyridines [38]<br />

R 1<br />

N<br />

1. NCS, benzene, N 2, 0−10 o C, 15 min<br />

2. AgBF 4<br />

SH<br />

R<br />

37 38<br />

1 = CN 57%<br />

R1 = NO2 60%<br />

3-Chloro-1,2-benzisothiazole (11); Typical Procedure: [36]<br />

Cl 2 was passed for a few minutes into DMF (50 mL) and to this soln bis(2-cyanophenyl) disulfide<br />

(12; 5.6 g, 21 mmol) was added. The resulting mixture was stirred for 17 h, then Cl 2<br />

was passed through the mixture for a few minutes and stirring was continued for 4 h. The<br />

mixture was poured into ice water and extracted with Et 2O. The Et 2O extract was washed<br />

with H 2O, dried, and concentrated; the residue was crystallized (EtOH/H 2O); yield: 2.5 g<br />

(36%); mp41±458C.<br />

3-Bromoisothiazolo[5,4-b]pyridine (<strong>16</strong>): [28]<br />

2-Sulfanylpyridine-3-carbonitrile (28; 10 mmol) was suspended in AcOH/EtOAc (20±30 mL)<br />

and heated to reflux. Br 2 (1±3 mL) was added to the mixture at reflux. After 1 h, the mixture<br />

was filtered, the residue washed with AcOH/EtOAc and then dissolved or suspended<br />

in EtOH (30±40 mL). This soln/suspension was made alkaline at 408C by addition of 10%<br />

NH 3 soln. The product was precipitated by the addition of H 2O and crystallized (EtOH or<br />

EtOH/H 2O); yield: 40±81%.<br />

5-Methyl-1,2-benzisothiazole (26); Typical Procedure: [34]<br />

To a stirred suspension of 2-(aminomethyl)-5-methylbenzenethiol (24; 3.06 g, 20 mmol) in<br />

0.5 M NaOH (400 mL) was added dropwise over 0.75 h a soln of I 2 (10.2 g) and KI (25 g) in<br />

H 2O (150 mL). A very strong almond odor was produced. The precipitate was collected by<br />

filtration, giving small colorless plates (MeOH/H 2O); yield: 2.6 g (87%); mp848C.<br />

3-Chloro-2-methyl-1,2-benzisothiazolium Chloride (33,R 1 = Me; R 2 = H);<br />

Typical Procedure: [17]<br />

A suspension of bis[2-(methylaminocarbonyl)phenyl] disulfide (32, R 1 = Me; R 2 = H; 33.2 g,<br />

0.1 mol) and PCl 5 (62.4 g, 0.3 mol) in dry benzene (200 mL) was rapidly stirred and heated<br />

to reflux. The frothing was controlled by regular removal of the heat source. After 30±<br />

45 min, the vigorous frothing subsided and the mixture was maintained at steady reflux.<br />

On cooling, the mixture was filtered and the residue washed with benzene and dried under<br />

vacuum; crude yield: 40 g (90%); mp<strong>16</strong>48C (dec) (1,2-dichlorobenzene).<br />

11.<strong>16</strong>.1.1.2.2 Method 2:<br />

From Oximes<br />

11.<strong>16</strong>.1 1,2-<strong>Benzisothiazoles</strong> 581<br />

One versatile approach to 1,2-benzisothiazoles 40 is the cyclization of the oximes of 2-(alkylsulfanyl)benzaldehydes<br />

or alkyl (or aryl) 2-(alkylsulfanyl)phenyl ketones 39 (Scheme<br />

18). In these cases the S-alkyl substituent group(methyl or, more commonly, tert-butyl)<br />

is lost in the reaction. [39±47] Cyclization is normally achieved using acetic anhydride in pyridine,<br />

or polyphosphoric acid as the reagents.<br />

R 1<br />

N<br />

+<br />

S<br />

BF 4 −<br />

for references see p 622


582 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

Scheme 18 Synthesis of 1,2-<strong>Benzisothiazoles</strong> from the Oximes of 2-Sulfanylbenzaldehydes<br />

or Alkyl (or Aryl) 2-(Alkylsulfanyl)phenyl Ketones [39±47]<br />

R 2<br />

39<br />

R 1<br />

SR 3<br />

NOR 4<br />

Ac2O, py<br />

or PPA<br />

R 2<br />

R 1 R 2 R 3 R 4 Reaction Conditions Yield (%)<br />

of 40<br />

H H t-Bu H PPA 71 [39]<br />

H H t-Bu Bz 1008C, 0.5 h; MeOH, reflux, 1 h 90 [40]<br />

H 7-NO 2 t-Bu H PPA, 100 8C, 0.5 h 75 [41]<br />

Me H Me H Ac 2O, pyridine 95 [42,43]<br />

Me H Me 4-O 2NC 6H 4CO Ac 2O, pyridine 66 [44]<br />

Me H Me Bz Cl 2CHCHCl 2, reflux, 3 h 60 [43,44]<br />

Me H Me 4-MeC 6H 4SO 2 Cl 2CHCHCl 2, reflux, 3 h 32 [43,44]<br />

Me 6-Me Me H Ac 2O, pyridine 88 [45]<br />

Me 5-Me Me H Ac 2O, pyridine 90 [42]<br />

Me 7-Ac Me H Ac 2O, pyridine 43 [46]<br />

Me 5-SMe Me H Ac 2O, pyridine 92 [47]<br />

Me 6-SMe Me H Ac 2O, pyridine 89 [47]<br />

Et 5-Me Me H Ac 2O, pyridine 76 [42]<br />

(CH 2) 2CO 2Et 5-Me Me H Ac 2O, pyridine 83 [42]<br />

Ph H Me Bz Ac 2O, pyridine 93 [42]<br />

Ph H t-Bu H MeOH, reflux, 10 h 82 [40]<br />

Ph 5-Me Me H Ac 2O, pyridine 94 [42]<br />

2-pyridyl H t-Bu Bz 1,2-dichlorobenzene, <strong>16</strong>0 8C, 20 h 66 [40]<br />

In the case of acid-promoted ring closures with 2-sulfanylacetophenone oximes 39<br />

(R 1 = Me), however, Beckmann rearrangements can occur. [48] For this reason thermal<br />

methods of cyclization are recommended and the solvents now used range from methanol<br />

to 1,2-dichlorobenzene [40] or 1,1,2,2-tetrachloroethane. [43] Nevertheless, benzo[1,2-d:5,4-d¢]diisothiazoles<br />

42 (R 1 = H or Me) are synthesized in 68 [39] and 84% [47] yields,<br />

respectively, from the bisoximes 41 of 1,3-diacyl-4,6-bis(tert-butylsulfanyl)benzenes with<br />

polyphosphoric acid (Scheme 19).<br />

40<br />

R 1<br />

N<br />

S<br />

Scheme 19 Synthesis of Benzo[1,2-d:5,4-d']diisothiazoles [39,47]<br />

HON<br />

R 1<br />

Bu t S<br />

41<br />

R 1<br />

SBu t<br />

NOH<br />

PPA, 20 o C, 24 h<br />

R1 = H 68%<br />

R1 = Me 84%<br />

R 1<br />

N<br />

S<br />

42<br />

R 1<br />

N<br />

S<br />

Ref


11.<strong>16</strong>.1 1,2-<strong>Benzisothiazoles</strong> 583<br />

This last route has been applied to the syntheses of many benzisothiazolo heterocycles<br />

simply by selecting the appropriate oximino derivative of a sulfanylheteroarene as the<br />

starting material. For example, isothiazolo[5,4-b]quinoline (44) can be obtained in 50%<br />

yield from 2-thioxo-1,2-dihydroquinoline-3-carbaldehyde oxime (43) by reaction with<br />

acetic anhydride in acetic acid at reflux, [24] and ethyl thieno[3,2-d]isothiazole-5-carboxylate<br />

(46) is produced in 74% yield when ethyl 4-(hydroxyiminomethyl)-5-sulfanylthiophene-2-carboxylate<br />

(45) is treated similarly (Scheme 20). [49]<br />

Scheme 20 Synthesis of Isothiazolo[5,4-b]quinoline [24] or Ethyl Thieno[3,2-d]isothiazole-5-carboxylate<br />

[49]<br />

N<br />

H<br />

43<br />

45<br />

S<br />

NOH<br />

NOH<br />

EtO2C S<br />

SH<br />

Ac 2O, AcOH, reflux<br />

50%<br />

DMSO, 170 o C, 5 min<br />

74%<br />

EtO2C<br />

Benzo[1,2-d:5,4-d¢]diisothiazoles (42,R 1 = H); Typical Procedure: [39]<br />

4,6-Bis[tert-butylsulfanyl]benzene-1,3-dicarbaldehyde dioxime (41, R 1 = H; 0.7 g, 2 mmol)<br />

and PPA (25 g) were stirred together at 208C for 24 h, diluted with AcOH and heated under<br />

reflux for 1 h. The cooled soln was filtered and the residue washed with H 2O, dried, and<br />

subjected to chromatography (alumina, toluene). The product was crystallized (toluene)<br />

as cream-colored crystals; yield: 0.27 g (68%); mp215.5±2<strong>16</strong>8C.<br />

Ethyl Thieno[3,2-d]isothiazole-5-carboxylate (46): [49]<br />

Ethyl 4-(hydroxyiminomethyl)-5-sulfanylthiophene-2-carboxylate (45; 10 g, 43 mmol) was<br />

added portionwise over 5 min to stirred DMSO at 1708C. The mixture was then poured<br />

onto crushed ice (500 g). Extraction with Et 2O gave pale yellow plates; yield: 6.8 g (74%);<br />

mp97±988C (MeOH).<br />

11.<strong>16</strong>.1.1.2.3 Method 3:<br />

From (Aminosulfanyl)arenes<br />

Other more versatile routes to 1,2-benzisothiazoles take advantage of the intramolecular<br />

cyclization of (aminosulfanyl)arenes bearing an unsaturated ortho substituent, such as a<br />

cyano or carbonyl group. For example, the 2-(aminosulfanyl)benzonitriles 48 are generated<br />

in situ by the action of chloroamine on the appropriate sodium 2-cyanobenzenethiolate<br />

47 (X = SNa). [41,50] The cyanobenzenethiolate starting materials are generally obtained<br />

by reacting the corresponding aryl bromides 47 (X = Br) with sodium hydrogen sulfide.<br />

Such a construction is thus very similar to that used to generate monocyclic isothiazoles.<br />

Here it can be used to synthesize 7-nitro-1,2-benzisothiazol-3-amine (49, R 1 =NO 2) in 78%<br />

yield, and its 7-chloro- and 7-methoxy- analogues 49 (R 1 =ClorR 1 = OMe, respectively) in<br />

62 and 73% yields, respectively (Scheme 21). [41] Note, the mechanism of this last reaction<br />

may place it in the N-C bonding category, rather than the S-N one; this conclusion may<br />

also apply to some other procedures listed here for convenience.<br />

N<br />

44<br />

S<br />

46<br />

N<br />

S<br />

N<br />

S<br />

for references see p 622


584 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

Scheme 21 Synthesis of 1,2-Benzisothiazol-3-amines from<br />

2-(Aminosulfanyl)benzonitriles [41,50]<br />

R 1<br />

47<br />

CN<br />

X<br />

1. NaSH<br />

2. NH2Cl −5 to 10 oC R 1<br />

48<br />

CN<br />

SNH 2<br />

49<br />

R 1<br />

NH2<br />

N<br />

S<br />

R1 = 7-NO2 78%<br />

R1 = 7-Cl 62%<br />

R1 = 7-OMe 73%<br />

1,2-<strong>Benzisothiazoles</strong> without an amino groupat C3 can also be synthesized if sodium<br />

2-formylbenzenethiolates replace sodium 2-cyanobenzenethiolates as the starting materials.<br />

[41] As an illustration, 7-chloro-1,2-benzisothiazole (52, R 1 = Cl) is formed from 2,3-dichlorobenzaldehyde<br />

(50, R 1 = Cl) via sodium 2-chloro-6-formylbenzenethiolate (51,<br />

R 1 = Cl) in an overall yield of 57% (Scheme 22). [41]<br />

Scheme 22 Synthesis of 7-Substituted 1,2-<strong>Benzisothiazoles</strong> from Sodium<br />

2-Formylbenzenethiolates [41]<br />

CHO<br />

NaSH, HMPA<br />

120 oC CHO<br />

Cl<br />

SNa<br />

R<br />

50<br />

51<br />

1 R1 1. NH3 2. NaOCl<br />

−5 to 0 oC, 1 h<br />

52<br />

R 1<br />

N<br />

S<br />

R 1 = Cl 57%<br />

R 1 = OMe 70%<br />

Chloroamine can sometimes give rise to side reactions and disulfides can be formed, but<br />

2-sulfanylpyridine-3-carbonitriles 53 can be converted into the 2-(aminosulfanyl)pyridine-3-carbonitriles<br />

54 by the action of hydroxylamine-O-sulfonic acid. In aqueous solution<br />

at pH 7 these intermediates then cyclize to isothiazolo[5,4-b]pyridin-3-amines 55 in<br />

good yields (Scheme 23). For example, 4,6-dimethylisothiazolo[5,4-b]pyridin-3-amine (55,<br />

R 1 =R 2 = Me) is obtained in 72% yield from 4,6-dimethyl-2-sulfanylpyridine-3-carbonitrile<br />

(53, R 1 =R 2 = Me). [51]<br />

Scheme 23 Synthesis of Isothiazolo[5,4-b]pyridin-3-amines from<br />

2-(Aminosulfanyl)pyridine-3-carbonitriles [51]<br />

R 2<br />

R 1<br />

N<br />

53<br />

CN<br />

SH<br />

1. NaOH<br />

2. NH2OSO3H 2-Acylbenzenesulfenyl halides 56 are also used as starting materials and when these are<br />

treated with ammonia they give the corresponding 1,2-benzisothiazoles 57 or, if a primary<br />

amine is the reagent, 1,2-benzisothiazolium salts 58 (Scheme 24). [29] For example,<br />

2-formyl-5-nitrobenzenesulfenyl bromide (56, R 1 = H) gives 6-nitro-1,2-benzisothiazole<br />

(57, R 1 = H) in 95% yield, whereas 2-benzoyl-5-nitrobenzenesulfenyl bromide (56, R 1 = Ph)<br />

affords 6-nitro-2,3-diphenyl-1,2-benzisothiazolium bromide (58, R 1 = Ph) after treatment<br />

with aniline and then concentrated hydrobromic acid. [29]<br />

R 2<br />

R 1<br />

N<br />

54<br />

CN<br />

SNH2<br />

NaOEt<br />

R 2<br />

R 1<br />

N<br />

55<br />

NH 2<br />

N<br />

S


11.<strong>16</strong>.1 1,2-<strong>Benzisothiazoles</strong> 585<br />

Scheme 24 Synthesis of 6-Nitro-1,2-benzisothiazoles and 6-Nitro-1,2-benzisothiazolium<br />

Bromides from 2-Acyl-5-nitrobenzenesulfenyl Bromides [29]<br />

O 2N<br />

56<br />

R 1<br />

SBr<br />

O<br />

concd NH3<br />

benzene, reflux<br />

R 1 = H 95%<br />

1. PhNH2<br />

benzene, reflux<br />

2. HBr<br />

R 1 = Ph<br />

O 2N<br />

57<br />

O 2N<br />

58<br />

R 1<br />

N<br />

S<br />

R 1<br />

+<br />

NPh<br />

S<br />

Br −<br />

In a specific procedure selective nucleophilic displacement of a fluorine atom from the 4-<br />

(2,4-difluorobenzoyl) piperidine-1-carbaldehyde 59 by potassium phenylmethanethiolate<br />

gives the corresponding benzyl sulfide 60. Treatment of this product with thionyl<br />

chloride yields a sulfanyl chloride that is cyclized by a reaction with ammonia to give<br />

6-fluoro-3-(1-formylpiperidin-4-yl)-1,2-benzisothiazole (61), a potential antipsychotic<br />

agent (Scheme 25); the overall yield is ~35%. [52]<br />

Scheme 25 Synthesis of 6-Fluoro-3-(formylpiperidin-4-yl)-1,2-benzisothiazole from<br />

4-(2,4-Difluorobenzoyl) Piperidine-1-carbaldehyde [52]<br />

F<br />

59<br />

CHO CHO<br />

N<br />

N<br />

F<br />

O<br />

t-BuOK, BnSH<br />

THF<br />

F<br />

60<br />

O<br />

SBn<br />

1. SOCl 2, CH 2Cl 2<br />

2. NH3, EtOH<br />

F<br />

N<br />

S<br />

61 ~35%<br />

CHO<br />

N<br />

7-Nitro-1,2-benzisothiazole-3-amine (49,R 1 = 7-NO 2); Typical Procedure: [41]<br />

A mixture of 2-bromo-3-nitrobenzonitrile (47, X = Br; R 1 = 6-NO 2; 1.0 g, 4.4 mmol), NaSH<br />

(0.4 g, 7.7 mmol) and acetone (25 mL) was stirred under N 2 for 6 h and the acetone then<br />

evaporated. The residue was treated with H 2O (25 mL) and to this was added dropwise dil<br />

NH 3 soln (d 0.89, 7 mL) and 5% NaOCl (6 mL). After 1 h, the mixture was extracted with<br />

Et 2O and the extracts dried and evaporated. The residue was crystallized (acetone/H 2O)<br />

giving yellow needles; yield: 0.67 g (78%); mp247±2488C.<br />

7-Chloro-1,2-benzisothiazole (52, R 1 = Cl); Typical Procedure: [41]<br />

2,3-Dichlorobenzaldehyde (50, R 1 = Cl; 3.5 g, 20 mmol), NaSH (0.7 g, 13 mmol), and HMPA<br />

(20 mL, 11.5 mmol) were heated together under N 2 at 120 8C for 24 h and then poured into<br />

H 2O. The thiol was extracted with Et 2O and then from the organic solvent into 3% NaOH<br />

(20 mL) as its sodium salt. This alkaline soln was treated successively with aq dil NH 3 (d<br />

0.89, 20 mL) and 5% aq NaOCl (18 mL), the latter added dropwise at ±5±08C. After 1 h, the<br />

product was obtained by Et 2O extraction; yield: 1.93 g (57%); mp49±50 8C.<br />

7-Methoxy-1,2-benzisothiazole (52, R 1 = OMe) was similarly prepared; yield: 70%; bp<br />

135±1388C/7 Torr.<br />

for references see p 622


586 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

4,6-Dimethylisothiazolo[5,4-b]pyridin-3-amine (55,R 1 =R 2 = Me) From 4,6-Dimethyl-2-sulfanylpyridine-3-carbonitrile<br />

(53,R 1 =R 2 = Me); Typical Procedure: [51]<br />

4,6-Dimethyl-2-sulfanylpyridine-3-carbonitrile (53,R 1 =R 2 = Me; 1.64 g, 10 mmol) was added<br />

to a soln of NaOH (0.8 g, 20 mmol) in EtOH (20 mL) and the clear soln shaken with a<br />

soln of hydroxylamine-O-sulfonic acid (1.2 g, 10 mmol) in H 2O (20 mL) that had just previously<br />

been neutralized with KHCO 3 (~1.5 g). After 15 min the mixture was diluted with<br />

H 2O and filtered. The residue was crystallized (benzene); yield: 1.3 g (72%); mp181±1838C.<br />

4,6-Dimethylisothiazolo[5,4-b]pyridin-3-amine (55,R 1 =R 2 = Me) From 2-(Aminosulfanyl)-<br />

4,6-dimethylpyridine-3-carbonitrile (54,R 1 =R 2 = Me); Typical Procedure: [51]<br />

2-(Aminosulfanyl)-4,6-dimethylpyridine-3-carbonitrile (54, R 1 =R 2 = Me; 1.79 g, 10 mmol)<br />

was heated under reflux for 80 min in a soln of sodium (0.23 g, 10 mmol) in abs EtOH<br />

(20 mL). On cooling, H 2O was stirred into the mixture which was then filtered; yield:<br />

1.6 g (88%).<br />

11.<strong>16</strong>.1.1.2.4 Method 4:<br />

From Disulfides<br />

Bis(2-acetyl-4-methylphenyl) disulfide (62) reacts with ammonia and silver nitrate at 50 8C<br />

to give a 30% yield of 3,5-dimethyl-1,2-benzisothiazole (64) within 5 minutes, [53] probably<br />

via the 2-(aminosulfanyl)acetophenone 63 (Scheme 26).<br />

Scheme 26 Synthesis of a 3,5-Methyl-1,2-benzisothiazole from a Bis(2-acylphenyl)<br />

Disulfide [53]<br />

Ac<br />

S<br />

S<br />

Ac<br />

NH 3, AgNO 3, MeOH<br />

50 o C, 5 min<br />

62 63<br />

It may well be that the reactions of 2-halobenzaldehydes 65 (R 1 = H) and 2-halobenzophenones<br />

65 (R 1 = aryl) with sulfur and ammonia to give 1,2-benzisothiazoles 66 follow<br />

mechanistically related pathways (Scheme 27). Quite often the recommended protocol<br />

demands moderately high temperatures (80±<strong>16</strong>08C) within an autoclave. [18,54±56] This is<br />

one of the easiest approaches to 1,2-benzisothiazoles and it has been used repeatedly.<br />

The method also lends itself to the synthesis of polycyclic analogues if the benzene<br />

ring of the starting material is replaced by a naphthyl, an anthracenyl, [18,55] or a 1,8-naphthyrin<br />

[56] unit.<br />

30%<br />

Ac<br />

SNH2<br />

64<br />

N<br />

S


11.<strong>16</strong>.1 1,2-<strong>Benzisothiazoles</strong> 587<br />

Scheme 27 Synthesis of 1,2-<strong>Benzisothiazoles</strong> from 2-Halobenzaldehydes<br />

or 2-Halobenzophenones [18,41,55]<br />

R 2<br />

65<br />

R 1<br />

Cl<br />

O<br />

S8, NH3, autoclave<br />

80−<strong>16</strong>0 o C, 6−8 h<br />

65−85%<br />

R 2<br />

66<br />

R 1<br />

N<br />

S<br />

R 1 R 2 Reaction Conditions Yield (%) Ref<br />

H 3-Cl MeOCH 2CH 2OH, <strong>16</strong>0 8C, 6 h 46 [41]<br />

H 6-Cl MeOCH 2CH 2OH, <strong>16</strong>0 8C, 6 h 75±80 [18]<br />

H 4-NMe 2 MeOH, <strong>16</strong>0 8C, 6 h 76 [18,55]<br />

H 4-NEt 2 MeOH, 80 8C, 6 h 72 [18,55]<br />

H 5-NO 2 MeOH, 80 8C, 10 h 90 [18,55]<br />

Ph H MeOCH 2CH 2OH, <strong>16</strong>0 8C, 6 h 70±85 [18]<br />

Ph 6-Cl MeOCH 2CH 2OH, <strong>16</strong>0 8C, 6 h 70±85 [18]<br />

Ph 5-NO 2 MeOH, 80 8C, 6 h 80±95 [18]<br />

4-Tol H MeOCH 2CH 2OH, <strong>16</strong>0 8C, 6 h 89 [18]<br />

4-Tol 5-Cl MeOCH 2CH 2OH, <strong>16</strong>0 8C, 6 h 75±95 [18]<br />

4-Et 2NC 6H 4 H MeOCH 2CH 2OH, <strong>16</strong>0 8C, 6 h 75±85 [18]<br />

3-O 2NC 6H 4 5-Cl MeOCH 2CH 2OH, <strong>16</strong>0 8C, 6 h 75±85 [18]<br />

2-thienyl 5-NO 2 MeOH, 80 8C, 6 h 80±95 [18]<br />

Benzothiazoles 66 Using Methanol as the Solvent; General Procedure: [18]<br />

A 2-chlorobenzaldehyde or a 2-chlorobenzophenone (0.1 mol) was heated in an autoclave<br />

with an equimolar quantity of sulfur in MeOH (300 mL) containing NH 3 (50 g) for 6 h or<br />

8 h, respectively, at 808C. The solvent was evaporated and the residue distilled through a<br />

Vigreux column; yield: 65±80%.<br />

Benzothiazoles 66 Using 2-Methoxyethanol as the Solvent; General Procedure: [18]<br />

The 2-chlorobenzaldehyde or the 2-chlorobenzophenone (0.2 mol) and an equimolar<br />

quantity of sulfur were heated in an autoclave in 2-methoxyethanol (500 mL) containing<br />

NH 3 (100 g) at <strong>16</strong>08C for 6 h. For the aldehydes the solvent was largely evaporated, and the<br />

residue treated with H 2O (500 mL) and extracted with CH 2Cl 2 (3 î 200 mL). The combined<br />

organic extracts were dried, the solvent evaporated, and the residue crystallized. In the<br />

case of the ketones the reaction solvent was completely removed by distillation and the<br />

residue distilled through a Vigreux column; yield: 70±85%.<br />

11.<strong>16</strong>.1.1.2.5 Method 5:<br />

From 2-Acylbenzenesulfonamides or 2-(Sulfinyl)benzamides<br />

Saccharin (5) is still prepared by the original route, namely the oxidative cyclization of<br />

toluene-2-sulfonamide (67) (Scheme 28). The only variation in this synthesis is the choice<br />

of the oxidant, typically potassium permanganate or chromic acid; yields are generally<br />

high (80±95%). [56,57] Anodic oxidation is also employed. [58]<br />

for references see p 622


588 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

Scheme 28 Synthesis of Saccharin by Oxidation of Toluene-2-sulfonamide [56,57]<br />

NH2 S<br />

O O<br />

67<br />

[O]<br />

80−95%<br />

NH<br />

S<br />

O O<br />

N-Alkyl- and N-arylsaccharins 69 are readily synthesized from 2-(aminosulfonyl)benzoyl<br />

chlorides 68 and primary amines (Scheme 29). [59±61]<br />

Scheme 29 Synthesis of N-Alkyl- and N-Arylsaccharins from 2-(Aminosulfonyl)benzoyl<br />

Chlorides and Primary Amines [59±61]<br />

O<br />

NH2 S<br />

O O<br />

68<br />

Cl<br />

R 1 NH2<br />

5<br />

69<br />

O<br />

O<br />

NHR<br />

S<br />

1<br />

O O<br />

A modern variant embodies a two-stepprocess from N,N-diethylbenzamides 70. [62,63] Ortho-lithiation<br />

by sec-butyllithium in the presence of N,N,N¢,N¢-tetramethylethylenediamine,<br />

followed by an oxidative amination of the intermediate lithium sulfinate with<br />

hydroxylamine-O-sulfonic acid [62] gives (aminosulfonyl)benzamides 71 that are cyclized<br />

to saccharins 72 in excellent yields by treatment with hot acetic acid (Scheme 30).<br />

Scheme 30 Synthesis of Saccharins from N,N-Diethylbenzamides [62,63]<br />

R 1<br />

70<br />

O<br />

NEt2<br />

s-BuLi, TMEDA<br />

NH2OSO3H<br />

R 1<br />

O<br />

NEt2<br />

NH2<br />

S<br />

O O<br />

71<br />

AcOH<br />

heat<br />

R 1<br />

O<br />

NH<br />

S<br />

O<br />

72<br />

O<br />

The pyridosaccharin 75 is prepared by ortho-lithiation of N-tert-butylpyridine-3-sulfonamide<br />

(73) with lithium diisopropylamide, followed by entrapment of the anion with carbon<br />

dioxide and cyclodehydration of the product 74 with polyphosphoric acid (Scheme<br />

31). The N-tert-butyl groupis lost in this last step, but is retained if the reagent used in<br />

the final step is phosphoryl chloride. [64]<br />

Scheme 31 Synthesis of Isothiazolo[5,4-c]pyridine-3(2H)-one 1,1-Dioxide [64]<br />

N<br />

NHBu<br />

S<br />

t<br />

O O<br />

73<br />

1. LDA (2 equiv)<br />

2. CO2 3. H +<br />

N<br />

CO 2H<br />

NHBu<br />

S<br />

t<br />

O O<br />

74<br />

PPA<br />

N<br />

75<br />

O<br />

NH<br />

S<br />

O O<br />

A method for the preparation of 1,2-benzisothiazol-3(2H)-ones 77 involves the cyclization<br />

of the benzyl sulfoxides 76 on treatment with trichloroacetic anhydride (Scheme 32). [65]<br />

The method has applicability for the synthesis of substituted 1,2-benzisothiazol-3(2H)ones<br />

in general. [66]


11.<strong>16</strong>.1 1,2-<strong>Benzisothiazoles</strong> 589<br />

Using this approach, 2-phenyl-1,2-benzisothiazol-3(2H)-one and 2-(3,4,5-trimethoxyphenyl)-1,2-benzisothiazol-3(2H)-one<br />

are synthesized from the appropriate benzyl sulfoxides<br />

in 75 and 79% yields, respectively. [65]<br />

Scheme 32 Synthesis of 2-Aryl-1,2-benzisothiazol-3(2H)-ones<br />

O<br />

NHR 1<br />

S(O)Bn<br />

(CCl3CO)2O, CH2Cl2<br />

− BnOCOCCl3<br />

R 1 = Ph 75%<br />

R<br />

76 77<br />

1 = 3,4,5-(MeO) 3C6H2 79%<br />

11.<strong>16</strong>.1.1.3 By Formation of One S-C Bond<br />

O<br />

NR<br />

S<br />

1<br />

Syntheses that have the formation of an S-C(Ar) bond as the ultimate stepare uncommon,<br />

although it is known that aryllithiums, formed from the aryl bromides 78, and<br />

chlorobis(h 5 -cyclopentadienyl)methylzirconium complexes afford zirconocene complexes,<br />

which on reaction with nitriles form zirconocene complexes 79. These, on treatment<br />

with disulfur dichloride, form 1,2-benzisothiazoles 80 (Scheme 33). Yields range<br />

from poor (25%) in the case of 7-methoxy-3-methyl-1,2-benzisothiazole (81, R 1 = Me;<br />

R 2 = OMe), to good (83%) for 3-methyl-1,2-benzisothiazole (84, R 1 = Me; R 2 = H). Although<br />

anhydrous conditions are necessary, the method does have the advantage that the aryl<br />

bromides are readily available. [9]<br />

Scheme 33 Synthesis of 1,2-<strong>Benzisothiazoles</strong> from Aryl Bromides [9]<br />

R 1<br />

78<br />

Br<br />

1. t-BuLi, −78 oC 2. ZrMe(Cp) 2Cl<br />

3. MeCN, 80 oC, <strong>16</strong> h<br />

N<br />

Zr<br />

Cp<br />

1 Cp<br />

R<br />

79<br />

S2Cl2<br />

20 o C, 18 h<br />

R 1<br />

N<br />

S<br />

80 R 1 = H 83%<br />

R 1 = OMe 25%<br />

In a second synthesis of this type, benzophenones 81 afford N-chlorosulfonylimines 82 as<br />

transient intermediates. When treated with chlorosulfonyl isocyanate in boiling nitrobenzene<br />

these cyclize to 3-aryl-1,2-benzisothiazole 1,1-dioxides 83, but only in low (28±<br />

31%) yields (Scheme 34). [70]<br />

for references see p 622


590 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

Scheme 34 Synthesis of 3-Aryl-1,2-benzisothiazoles from Benzophenones [70]<br />

R 1<br />

81<br />

R 2<br />

O<br />

R 1 = H, Me, OMe; R 2 = Me, Cl<br />

ClSO2NCO<br />

PhNO2<br />

130 o C, 2 h<br />

28−31%<br />

R 1<br />

82<br />

R 2<br />

N<br />

SO2Cl<br />

R 1<br />

83<br />

N<br />

S<br />

O O<br />

Finally, the ortho-lithiation of an arene can be used in a synthesis of 1,2-benzisothiazole<br />

1,1-dioxides. For example the treatment of N-acetyl-2-chlorobenzenesulfonamide (84,<br />

R 1 = Me) with two equivalents of lithium diisopropylamide leads to a dilithio derivative<br />

85, which then cyclizes to 3-methyl-1,2-benzisothiazole 1,1-dioxide (86, R 1 = Me) in 69%<br />

yield (Scheme 35). Other examples, such as 3-isopropyl-1,2-benzisothiazole 1,1-dioxide<br />

(86, R 1 = iPr) and 3-phenyl-1,2-benzisothiazole 1,1-dioxide (86, R 1 = Ph), are similarly obtained<br />

from the appropriate N-acyl-2-chlorobenzenesulfonamides in 58 and 86% yields, respectively.<br />

[71]<br />

Scheme 35 Synthesis of 3-Substituted 1,2-Benzisothiazole 1,1-Dioxides [71]<br />

Cl<br />

S<br />

H<br />

N R<br />

84<br />

1<br />

O O<br />

O<br />

LDA (2 equiv)<br />

THF<br />

11.<strong>16</strong>.1.2 Synthesis by Ring Transformation<br />

Li<br />

S<br />

N R<br />

O O<br />

85<br />

1<br />

OLi<br />

86<br />

R 2<br />

R 1<br />

N<br />

S<br />

O O<br />

R 1 = Me 69%<br />

R 1 = iPr 58%<br />

R 1 = Ph 86%<br />

Although placed here as a separate section, many of these reactions probably serve only<br />

to generate intermediates from which the isothiazole ring arises by familiar bond forming<br />

reactions.<br />

Benzo[b]thiophene-2,3-dione (87) and ammonia are likely to react and yield a (2-sulfanylphenyl)methylimine,<br />

which in contact with hydrogen peroxide cyclizes oxidatively<br />

to 1,2-benzisothiazole-3-carboxamide (88) in 66% yield (Scheme 36). [72,73] Hydrolysis to<br />

1,2-benzisothiazole-3-carboxylic acid (89) can be effected without isolating the amide if<br />

the reaction mixture is heated with aqueous sodium hydroxide. [73]


11.<strong>16</strong>.1 1,2-<strong>Benzisothiazoles</strong> 591<br />

Scheme 36 Synthesis of 1,2-Benzisothiazole-3-carboxamide or 1,2-Benzisothiazole-<br />

3-carboxylic Acid [72,73]<br />

87<br />

S<br />

O<br />

O<br />

aq NH 3<br />

CONH2<br />

SH<br />

NH<br />

H2O 2<br />

2 M NaOH<br />

reflux, 15 min<br />

88 66%<br />

CONH 2<br />

N<br />

S<br />

89 85%<br />

The same procedure can be adopted to synthesize naphtho[1,2-d]isothiazole-3-carboxamide<br />

(91a), naphtho[2,3-d]isothiazole-3-carboxamide (91b), and naphtho[2,1-d]isothiazole-3-carboxamide<br />

(91c) from the appropriate naphthothiophenediones 90 (Scheme<br />

37). [72±74]<br />

Scheme 37 Synthesis of Naphthoisothiazole-3-carboxamides [72±74]<br />

R 2<br />

R 3<br />

R 1<br />

R 4<br />

90<br />

S<br />

O<br />

O<br />

1. aq NH3 2. 30% H2O2 R 2<br />

R 3<br />

R 1<br />

R 4<br />

CONH2<br />

N<br />

S<br />

91a R1 ,R2 =<br />

b R1 = R4 = H; R2 ,R3 =<br />

c R1 = R2 = H; R3 ,R4 (CH CH)2; R<br />

=<br />

3 = R4 = H<br />

(CH CH) 2<br />

(CH CH)2<br />

Benzothiophen-3(2H)-ones 92, or their tautomers, undergo S-amination when reacted<br />

with O-mesitylsulfonylhydroxylamine and the products 93 ring open on basification to<br />

afford sulfanamides 94, these then recyclize to 3-alkenyl-1,2-benzisothiazoles 95 (Scheme<br />

38). Whereas this approach works well when the substrate is 92 (R 1 = Me) and gives 3-isopropenyl-1,2-benzisothiazole<br />

(95,R 1 = Me) in 82% yield, unfortunately, for 2-methyl-2-phenylbenzothiophen-3(2H)-one<br />

(92, R 1 = Ph), 4-phenyl-2,3,4,5-tetrahydro-1,2-benzothiazepin-4-one<br />

(96) is also a major product (38% yield). This last compound arises through an<br />

intramolecular Michael reaction. [75±77]<br />

CO2H<br />

N<br />

S<br />

for references see p 622


592 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

Scheme 38 Synthesis of 3-Alkenyl-1,2-benzisothiazoles from Benzothiophen-<br />

3(2H)-ones [75±77]<br />

92<br />

S<br />

O<br />

R 1<br />

MesSO2ONH2<br />

CH2Cl2, 0 o C<br />

O<br />

94<br />

SNH2<br />

R 1<br />

93<br />

O<br />

+<br />

S<br />

NH 2<br />

R 1<br />

NaOH<br />

95<br />

N<br />

S<br />

R 1<br />

+<br />

O<br />

S NH<br />

A very similar procedure replaces benzothiophen-3(2H)-ones with 2,3-dihydro-4H-benzothiopyran-4-ones<br />

97. Under similar reaction conditions these afford the S-amino derivatives<br />

98, which when heated with 10% aqueous sodium hydroxide ring open and recyclize<br />

to yield 3-alkenyl-1,2-benzisothiazoles 99 (Scheme 39). [75±78] For simple derivatives such as<br />

3-vinyl-1,2-benzisothiazole (99, R 1 =R 2 = H), 5-methyl-3-vinyl-1,2-benzisothiazole (99,<br />

R 1 =H; R 2 = Me), and 3-prop-1-enyl-1,2-benzisothiazole (99, R 1 = Me; R 2 = H) the yields are<br />

42, 35, and 63%, respectively. [75,77]<br />

Scheme 39 Synthesis of 3-Alkenyl-1,2-benzisothiazoles from 2,3-Dihydro-4Hbenzothiopyran-4-ones<br />

[75±78]<br />

R 2<br />

97<br />

O<br />

S<br />

R 1<br />

MesSO 2ONH 2<br />

CH2Cl2, 20 o C, 1 h<br />

R 2<br />

98<br />

O<br />

10% NaOH<br />

20 oC, 10 min<br />

+<br />

S<br />

NH2 R 1<br />

R 2<br />

99<br />

96<br />

N<br />

S<br />

Ph<br />

R 1<br />

R1 = R2 = H 42%<br />

R1 = H; R2 = Me 35%<br />

R1 = Me; R2 = H 63%<br />

The conversion of N-acetyl-3H-1,2-benzodithiol-3-imines 100 into 3-acetamido-1,2-benzisothiazoles<br />

102 by the action of hydroxylamine also has parallels with work described<br />

earlier. S-Amination with the formation of an intermediate N-hydroxysulfanamide 101<br />

is a likely first step. [71] Hydrolysis to the corresponding 1,2-benzisothiazol-3-amine 103<br />

can be effected in high yield by treatment with hydrochloric acid (Scheme 40). Although<br />

the yield of 3-acetamido-1,2-benzisothiazole (102, R 1 = H) from N-acetyl-1,2-benzodithiol-<br />

3-imine (100, R 1 = H) is only 50±62%, that of 3-acetamido-5-chloro-1,2-benzisothiazole<br />

(102,R 1 = 5-Cl) from N-acetyl-5-chloro-1,2-benzodithiol-3-imine (100,R 1 = 5-Cl) is much improved<br />

at 81%. [69]


11.<strong>16</strong>.1 1,2-<strong>Benzisothiazoles</strong> 593<br />

Scheme 40 Synthesis of 3-Acetamido-1,2-benzisothiazoles and 1,2-Benzisothiazol-<br />

3-amines [69,71]<br />

R 1<br />

100<br />

NAc<br />

S<br />

S<br />

NH2OH, NaOAc 3H2O<br />

EtOH, reflux, 1.5h<br />

R 1<br />

NHAc<br />

N<br />

S<br />

102 R 1 = H 50−62%<br />

R 1 = 5-Cl 81%<br />

R 1<br />

101<br />

concd HCl<br />

reflux, 1 h<br />

NAc<br />

SH<br />

NHOH<br />

S<br />

R 1<br />

103<br />

NH 2 HCl<br />

N<br />

S<br />

R1 = H 88%<br />

R1 = 5-Cl 81%<br />

Another synthesis, this time of 1,2-benzisothiazole-3-acetic acids 105, depends on the reactions<br />

of 4-hydroxy-2H-thiobenzopyran-2-ones 104 with hydroxylamine (Scheme 41). [79]<br />

The reaction may also be related mechanistically to the previous examples.<br />

Scheme 41 Synthesis of 1,2-Benzisothiazole-3-acetic Acids [79]<br />

R 1<br />

S<br />

104<br />

OH<br />

O<br />

NH 2OH<br />

R1 = H 35%<br />

R1 = 5-Cl 50%<br />

R1 = 5-NO2 30%<br />

However, an approach to 5,6-dialkoxy-3-aryl-1,2-benzisothiazoles 109 that requires the<br />

sodium periodate cleavage of 6,7-dialkoxy-4-aryl-2H-1,3-benzothiazines 106 is likely to involve<br />

the initial formation of an S-oxide 107. This then ring opens to an N-formylimine<br />

108 and eliminates formic acid to provide the 3-aryl-1,2-benzisothiazole 109 (Scheme<br />

42). [80]<br />

R 1<br />

N<br />

S<br />

105<br />

CO 2H<br />

for references see p 622


594 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

Scheme 42 Synthesis of 5,6-Dialkoxy-3-aryl-1,2-benzisothiazoles from 6,7-Dialkoxy-<br />

4-aryl-2H-1,3-benzothiazines [80]<br />

R 1 O<br />

R 1 O<br />

106<br />

Ar 1<br />

S<br />

N<br />

R 1 O<br />

R 1 O<br />

NaIO 4, H 2O<br />

MeOH, 48 h<br />

Ar 1<br />

S<br />

O<br />

107<br />

N<br />

R 1 O<br />

Ar 1<br />

OH R SOH<br />

1O − HCO 2H<br />

R 1 Ar 1 Yield (%) of 109 Ref<br />

Me Ph 55 [80]<br />

Et Ph 58 [80]<br />

Me 4-Tol 40 [80]<br />

Me 4-ClC 6H 4 55 [80]<br />

108<br />

R 1 O<br />

R 1 O<br />

NCHO<br />

1,2-Benzisothiazole-3-carboxamide (88); Typical Procedure: [73]<br />

A cooled soln of benzo[b]thiophene-2,3-dione (87; 4.9 g, 0.03 mol) in concd aq NH 3 was<br />

treated dropwise with H 2O 2 (10 mL). The rapidly formed, colorless precipitate was collected<br />

and crystallized (H 2O); yield: 3.5 g (66%); mp1348C.<br />

1,2-Benzisothiazole-3-carboxylic Acid (89): [73]<br />

The above procedure was followed. The product 88 (3.5 g) was then heated with 2 M NaOH<br />

soln (40 mL) for about 15 min, during which time the evolution of NH 3 was clearly detectable.<br />

The solid obtained by acidification of the cooled mixture was crystallized (H 2O);<br />

yield: 3.0 g (85%); mp1438C.<br />

3-Acetamido-1,2-benzisothiazole (102, R 1 = H); Typical Procedure: [69]<br />

N-Acetyl-3H-1,2-benzodithiol-3-imine (100, R 1 = H; 20.9 g, 0.1 mol) was added to a soln of<br />

hydroxylamine hydrochloride (13.9 g, 0.2 mol) and NaOAc·3H 2O (27.2 g, 0.2 mol) in EtOH<br />

(500 mL). The mixture was heated under reflux for 1.5 h. After cooling, the mixture was<br />

filtered from NaCl and sulfur, and the filtrate evaporated under vacuum. The residual yellow<br />

syrupcrystallized on scratching, giving yellow prisms (EtOH); yield: 10±12 g (50±62%);<br />

mp<strong>16</strong>2 8C.<br />

1,2-Benzisothiazol-3-amine Hydrochloride (103, R 1 = H); Typical Procedure: [69]<br />

3-Acetamido-1,2-benzisothiazole was heated under reflux in concd HCl (200 mL) for 1 h.<br />

The mixture was filtered while hot and, on cooling, deposited crystals of 3-amino-1,2benzisothiazolium<br />

hydrochloride as colorless needles. A second fraction was isolated by<br />

109<br />

Ar 1<br />

N<br />

S


11.<strong>16</strong>.1 1,2-<strong>Benzisothiazoles</strong> 595<br />

concentration of the mother liquor and was crystallized (H 2O); combined yield: 17.1 g<br />

(88%); sublimed at 2448C.<br />

6-Chloro-1,2-benzisothiazol-3-amine (103, R 1 = 6-Cl) was similarly prepared from<br />

3-acetamido-6-chloro-1,2-benzisothiazole; yield: 81%; sublimed at 205 8C.<br />

3-Aryl-1,2-benzothiazoles 109; General Procedure: [80]<br />

To a soln of 6,7-dialkoxy-4-phenyl-2H-1,3-benzothiazine 106 (5 mmol) in MeOH (50 mL)<br />

was added a soln of NaIO 4 (2.14 g, 10 mmol) in H 2O (20 mL) and the mixture was stirred<br />

for 48 h. The mixture was filtered, the residue washed with H 2O, and the product crystallized<br />

(MeOH); yield: 40±58%.<br />

11.<strong>16</strong>.1.3 Synthesis by Substituent Modification<br />

11.<strong>16</strong>.1.3.1 Substitution of Existing Substituents<br />

11.<strong>16</strong>.1.3.1.1 Electrophilic Substitution<br />

Nitration of 1,2-benzisothiazole (1) gives a mixture of 5- and 7-nitro-1,2-benzisothiazoles<br />

(110 and 111, respectively). [22,29,81±84] The nitration of 3,5-dimethyl-1,2-benzisothiazole<br />

(112) is more easily controlled and gives 3,5-dimethyl-4-nitro-1,2-benzisothiazole (113)<br />

in 81% yield (Scheme 43). [82]<br />

Scheme 43 Nitration of 1,2-<strong>Benzisothiazoles</strong> [22,29,81±84]<br />

1<br />

N<br />

S<br />

112<br />

N<br />

S<br />

NaNO 3, H 2SO 4<br />

0 o C<br />

KNO 3, concd H 2SO 4<br />

0−5 o C, 1.25 h<br />

81%<br />

O 2N<br />

There are many other examples that illustrate the use of halogenation and nitration reactions<br />

for the synthesis of substituted 1,2-benzisothiazoles 114±1<strong>16</strong> from the parent heterocycles<br />

(Scheme 44).<br />

Scheme 44 Synthesis of 1,2-<strong>Benzisothiazoles</strong> by Electrophilic Substitution [22,29,45,81,82]<br />

R 2<br />

R 1<br />

N<br />

S<br />

Cl2, AcOH<br />

R 2<br />

114<br />

110<br />

NO2<br />

N<br />

S<br />

113<br />

R 1<br />

N<br />

S<br />

+<br />

N<br />

S<br />

R 1 R 2 Yield (%) of 114 Ref<br />

H OH 92 [29]<br />

Me NH 2 81 [82]<br />

Ph OH 88 [29]<br />

Cl<br />

NO 2<br />

111<br />

N<br />

S<br />

for references see p 622


596 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

R 1<br />

R N<br />

S<br />

2 R2 Br<br />

115<br />

R 1 R 2 Reagent Position of Bromination Yield (%) of 115 Ref<br />

H 4-Cl/7-NH 2 Br 2, CHCl 3 6-Br 83 [81]<br />

H 5-OH Br 2, AcOH 4-Br 93 [29]<br />

Me H Br 2, AcOH 7-Br + 5-Br 37 [82]<br />

Me H Br 2,Ag 2SO 4,H 2SO 4 7-Br + 5-Br 32 [82]<br />

Me 4-Br Br 2,Ag 2SO 4,H 2SO 4 7-Br 96 [82]<br />

Me 5-OH Br 2, CHCl 3 4-Br 95 [82]<br />

Ph 5-OH Br 2, AcOH 4-Br 10 [29]<br />

R 1<br />

R N<br />

S<br />

2 R2 O2N R 1 R 2 Reagents Position of Nitration Yield (%) of 1<strong>16</strong> Ref<br />

H 4-Cl HNO 3,H 2SO 4 7-NO 2 77 [22]<br />

H 5-OH HNO 3, AcOH 4-NO 2 72 [29]<br />

Me 5-Me HNO 3,H 2SO 4 4-NO 2 91 [45]<br />

Me 6-Me HNO 3,H 2SO 4 7-NO 2 89 [45]<br />

Me 4-Br HNO 3,H 2SO 4 7-NO 2 + 5-NO 2 42 + 41 [82]<br />

Me 5-OH HNO 3, AcOH 4-NO 2 72 [82]<br />

Me 5-OMe KNO 3,H 2SO 4 4-NO 2 93 [82]<br />

Me 5-NHAc KNO 3,H 2SO 4 4-NO 2 60 [29]<br />

Me 5-Br KNO 3,H 2SO 4 4-NO 2 81 [82]<br />

Ph 5-OH HNO 3, AcOH 4-NO 2 73 [29]<br />

Ph 5-NHAc HNO 3, AcOH 4-NO 2 63 [29]<br />

However, there are limited representatives of direct acylation reactions, and Vilsmeier±<br />

Haack reactions on 3-methyl-1,2-benzisothiazoles 117 result in ring opening, followed<br />

by recyclization to produce N 2 -benzo[b]thiophen-3-yl-N 1 ,N 1 -dimethylformimidamide 118<br />

and 3-(formylamino)benzo[b]thiophenes 119 (Scheme 45). [44,82,85]<br />

1<strong>16</strong><br />

R 1<br />

N<br />

S<br />

R 1<br />

N<br />

S


11.<strong>16</strong>.1 1,2-<strong>Benzisothiazoles</strong> 597<br />

Scheme 45 Vilsmeier±Haack Reactions of 3-Methyl-1,2-benzisothiazoles [44,82,85]<br />

R 1<br />

R 1 = OMe, Br<br />

117<br />

N<br />

S<br />

POCl3, DMF<br />

100 o C, 5 h<br />

R 1<br />

S<br />

N<br />

118<br />

NMe 2<br />

+<br />

R 1<br />

119<br />

S<br />

NHCHO<br />

On the other hand, Friedel±Crafts acetylation of 4-methyl-6-(methylsulfanyl)-1,2-benzisothiazole<br />

(120) with acetyl chloride and aluminum trichloride in boiling dichloromethane<br />

gives 7-acetyl-4-methyl-6-(methylsulfanyl)-1,2-benzisothiazole (121), but only in 40% yield<br />

(Scheme 46). [14,47]<br />

Scheme 46 Friedel±Crafts Acylation of 4-Methyl-6-(methylsulfanyl)-<br />

1,2-benzisothiazole [14,47]<br />

MeS<br />

120<br />

N<br />

S<br />

AcCl, AlCl3<br />

CH2Cl2, 4 h reflux<br />

40%<br />

5-Bromo-3-methyl-4-nitro-1,2-benzothiazole (1<strong>16</strong>,R 1 = Me; R 2 = 5-Br; Nitration<br />

Position = 4-NO 2); Typical Procedure: [82]<br />

5-Bromo-3-methyl-1,2-benzothiazole (1.14 g, 5 mmol) was added to a stirred soln of KNO 3<br />

(0.55 g, 5.2 mmol) in concd H 2SO 4 (10 mL) at 0±5 8C over 1.25 h. The mixture was stirred for<br />

a further 2 h at 0±5 8C and 18 h at 208C. It was then poured onto ice and extracted with<br />

EtOAc to give the product as yellow needles; yield: 1.1 g (81%); mp 104±105 8C (EtOAc).<br />

11.<strong>16</strong>.1.3.1.2 Nucleophilic Substitution<br />

Despite the fact that reactions of 1,2-benzisothiazoles with some hard nucleophiles can<br />

cause ring opening (see Section 11.<strong>16</strong>.1), it is possible to replace successfully the<br />

3-chlorine atom of 3-chloro-1,2-benzisothiazoles 122 with ammonia, some amines, [22]<br />

metal alkoxides, [21,22,91] and enolates. [92] This is a useful synthetic procedure and a series<br />

of 3-substituted 1,2-benzisothiazoles 123 results (Scheme 47).<br />

MeS<br />

Ac<br />

121<br />

N<br />

S<br />

for references see p 622


598 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

Scheme 47 Synthesis of 3-Substituted 1,2-<strong>Benzisothiazoles</strong> by Nucleophilic<br />

Substitution of 3-Chloro-1,2-benzisothiazoles [21,22,91,92]<br />

R 1<br />

122<br />

Cl<br />

N<br />

S<br />

Nu −<br />

− Cl<br />

R 1<br />

123<br />

R 1 Reagent Nu Yield (%) of 123 Ref<br />

Nu<br />

N<br />

S<br />

H CH 2(CO 2Et) 2 CH(CO 2Et) 2 46 [92]<br />

H CH 2(CN)CO 2Et CH(CN)CO 2Et 70 [92]<br />

H NaOEt, EtOH OEt 92 [21]<br />

H NaO(CH 2) 2NMe 2 O(CH 2) 2NMe 2 ± [91]<br />

H H 2N(CH 2) 2NH 2 NH(CH 2) 2NMe 2 ± [91]<br />

4-Me NaO(CH 2) 2NEt 2 O(CH 2) 2NEt 2 ± [91]<br />

4-Cl NaOMe, MeOH, 608C, 5 h OMe 75 [22]<br />

4-Cl NH 3,H 2NCHO, 130±140 8C NH 2 90 [22]<br />

4-Cl MeNH 2 NHMe ± [22]<br />

4-Cl morpholine morpholino ± [22]<br />

4-Cl H 2NCHO NHCHO ± [22]<br />

4,5-Cl 2 NH 3,H 2NCHO, 130±140 8C NH 2 ± [22]<br />

4,5-Cl 2 NaOMe, MeOH, 608C, 5 h OMe 75 [22]<br />

It is also possible to treat 3-chloro-1,2-benzisothiazolium salts in the same way and, for<br />

example, when 3-chloro-2-ethyl-1,2-benzisothiazolium chloride (124) is heated with<br />

phenols 125 (X = O) or benzenethiols 125 (X = S) these substrates afford the corresponding<br />

aryl ethers or sulfides 126. The reactions with phenols can be complicated by coupling<br />

through the para position, leading to 3-(4-hydroxyphenyl)-1,2-benzisothiazoles 127<br />

(Scheme 48). [93]<br />

Similar thermally induced reactions occur with aromatic amines, such as N-methylaniline.<br />

Here 3-[4-(methylamino)phenyl]-1,2-benzisothiazole (128, R 1 =H; R 2 = Me) is<br />

formed from 3-chloro-2-ethyl-1,2-benzisothiazolium chloride (124). N,N-Dialkylanilines<br />

and N-(pyrrolidin-1-yl)aniline also give rise to analogous compounds in 56±70% yield. [32]


11.<strong>16</strong>.1 1,2-<strong>Benzisothiazoles</strong> 599<br />

Scheme 48 Reaction of 3-Chloro-2-ethyl-1,2-benzisothiazolium Chloride<br />

with Phenols and Benzenethiols [93] or N-Substituted Anilines [32]<br />

124<br />

Cl<br />

+<br />

NEt<br />

S<br />

Cl −<br />

Cl<br />

+<br />

NEt<br />

S<br />

Cl<br />

124<br />

−<br />

+<br />

+<br />

R 1<br />

XH<br />

125<br />

NR 1 R 2<br />

reflux, high bp solvent<br />

(e.g., 1,2-dichlorobenzene)<br />

− EtCl<br />

Et3N, 1,2-dichlorobenzene<br />

180 oC, 1 h<br />

− EtCl<br />

50−70%<br />

X<br />

N<br />

S<br />

126 X = O, S<br />

R 1<br />

+<br />

N<br />

S<br />

128<br />

N<br />

S<br />

OH<br />

127 when X = O<br />

NR 1 R 2<br />

Ammonia also combines with 3-chloro-1,2-benzisothiazolium chlorides 129 to afford<br />

1,2-benzisothiazol-3-amines 130, but here ring opening occurs since there is an exchange<br />

of nitrogen substituents. [17,30,94] Primary amines show the same reactivity, affording an<br />

equilibrium mixture of imines 131 and 132 (Scheme 49). [30]<br />

Scheme 49 Reaction of 3-Chloro-1,2-benzisothiazolium Chlorides with Ammonia [17,30,94]<br />

and Primary Amines [30]<br />

NHR 1<br />

N<br />

S<br />

130<br />

NH3<br />

Cl<br />

NR<br />

S<br />

1<br />

+<br />

Cl<br />

129<br />

−<br />

R 2 NH 2<br />

NR 2<br />

NR<br />

S<br />

1<br />

131<br />

NR 1<br />

NR<br />

S<br />

2<br />

132<br />

It is worth noting that hydrolysis of 3-chloro-1,2-benzisothiazolium salts 33 is a useful approach<br />

to 1,2-benzisothiazol-3(2H)-ones 133 (Scheme 50). [17]<br />

R 1<br />

for references see p 622


600 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

Scheme 50 Hydrolysis of 3-Chloro-1,2-benzisothiazolium Salts<br />

To Give 1,2-Benzisothiazol-3(2H)-ones [17]<br />

R 2<br />

33<br />

Cl<br />

NR<br />

S<br />

1<br />

Cl −<br />

+<br />

H 2O<br />

R 2<br />

133<br />

O<br />

NR<br />

S<br />

1<br />

4-Chloro-3-methoxy-1,2-benzisothiazole (123, R 1 = 4-Cl; Nu = OMe); Typical Procedure: [22]<br />

3,4-Dichloro-1,2-benzisothiazole (41 g, 0.2 mol) was stirred in 30% NaOMe in MeOH<br />

(100 mL) for 5 h at 608C. After cooling to about 108C the mixture was filtered and the residue<br />

washed with chloride-free H 2O and crystallized (EtOAc); yield: 30 g (75%); mp1128C.<br />

4-Chloro-1,2-benzisothiazol-3-amine (123,R 1 = 4-Cl; Nu = NH 2); Typical Procedure: [22]<br />

3,4-Dichloro-1,2-benzisothiazole (123 g, 0.6 mol), NH 3 (35 g, 2.1 mol) and formamide<br />

(300 g) were heated together at 130±1408C for 0.5 h in a pressure vessel, during which<br />

time the pressure fell from 8 to 3 atm. After cooling and the release of pressure the mixture<br />

was filtered, and the residue washed with H 2O and dried; yield: 100 g (90%); mp<br />

<strong>16</strong>28C.<br />

3-(4-Aminophenyl)-1,2-benzisothiazoles 128; General Procedure: [32]<br />

The substituted aniline (100 mmol) was dissolved in 1,2-dichlorobenzene (150 mL) containing<br />

Et 3N (20 g, 200 mmol) and to this stirred soln was added 3-chloro-2-ethyl-1,2-benzothiazolium<br />

chloride. The mixture was heated to 180 8C for 1 h, the solvent distilled under<br />

reduced pressure and the residue treated with H 2O (500 mL). The soln was made alkaline<br />

with concd NaOH and extracted with Et 2O. The dried, combined extracts were evaporated<br />

and the residue distilled under reduced pressure; yield: 50±70%.<br />

11.<strong>16</strong>.1.3.2 Addition Reactions<br />

11.<strong>16</strong>.1.3.2.1 Addition of Organic Groups<br />

11.<strong>16</strong>.1.3.2.1.1 Method 1:<br />

Alkylation of Saccharins<br />

For the alkylation of aromatic benzisothiazoles see Section 11.<strong>16</strong>.1.<br />

Saccharins 134 are readily N-alkylated and many derivatives are claimed to show biological<br />

activity (see Section 11.<strong>16</strong>.1). For example, 2-(chloromethyl) derivatives 136 are obtained<br />

by reacting saccharins 134 with chloromethyl phenyl sulfide to give the sulfides<br />

135 and then treating these compounds with sulfuryl chloride. The 2-(chloromethyl)saccharins<br />

136 can be converted into 2-[(arylcarbonyloxy)methyl]saccharins 137 by further<br />

reaction with benzoic acid (Scheme 51). Compounds of this type, e.g. 137 (R 1 = iPr;<br />

R 2 = OMe), are of particular interest because they act as human leukocyte elastase (HLE)<br />

inhibitors. [62,86,87] The HLE inhibitory activity of these derivatives is based on the propensity<br />

of bionucleophiles (Nu ± ) to attack the lactam carbonyl of the saccharin and induce the<br />

loss of a carboxylate anion, leading to a sulfanylimine (137 ® 138). [88,89]


Scheme 51 Synthesis of N-Alkylated Saccharins as HLE Inhibitors and Their Reaction with<br />

Bionucleophiles [62,86±89]<br />

R 2<br />

R 1<br />

134<br />

O<br />

NH<br />

S<br />

O O<br />

Ar 1 CO 2H<br />

PhSCH 2Cl<br />

toluene<br />

reflux<br />

11.<strong>16</strong>.1.3.2.2 Addition of Heteroatoms<br />

11.<strong>16</strong>.1.3.2.2.1 Method 1:<br />

Oxidation<br />

11.<strong>16</strong>.1 1,2-<strong>Benzisothiazoles</strong> 601<br />

R 2<br />

R 2<br />

R 1<br />

O<br />

R 1<br />

N<br />

S<br />

O<br />

137<br />

O<br />

O<br />

N<br />

S<br />

O<br />

135<br />

O<br />

OCOAr 1<br />

SO2Cl2<br />

CH2Cl2<br />

N<br />

R S<br />

2<br />

R1 O<br />

O O<br />

SPh Cl<br />

Nu −<br />

− Ar 1 CO2 −<br />

R 2<br />

136<br />

R 1<br />

O<br />

S<br />

138<br />

N<br />

Nu<br />

O O<br />

1,2-Benzisothiazole 1-oxides can be synthesized from 1,2-benzisothiazoles by reaction<br />

with nitric acid generated in situ from potassium nitrate and sulfuric acid. In the case of<br />

3-(substituted)-1,2-benzisothiazoles 139, the yields of the corresponding 1-oxide 140 so<br />

formed do not exceed 47% (Scheme 52). [31]<br />

Oxidation with other reagents, for example hydrogen peroxide or peracids, allows<br />

the formation of 1,2-benzisothiazole 1,1-dioxides 141, but the yields are unpredictable.<br />

[31,32,44,80]<br />

Scheme 52 Synthesis of 1,2-Benzisothiazole 1-Oxides and 1,1-Dioxides [31,32,44,80]<br />

R 2<br />

139<br />

R 1<br />

N<br />

S<br />

R 1<br />

[O]<br />

R 2<br />

R N<br />

[O]<br />

S<br />

2 R2 R 1<br />

N<br />

S<br />

O<br />

140<br />

R 1<br />

N<br />

S<br />

O<br />

O<br />

141<br />

R 1 R 2 Oxidant Yield (%) of 141 Ref<br />

Me H H 2O 2 41 [44]<br />

Ph 5,6-(OMe) 2 H 2O 2 53 [80]<br />

4-MeNHC 6H 4 H perphthalic acid 39 [32]<br />

NHEt H H 2O 2 42 [31]<br />

for references see p 622


602 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

Although 3-chloroperoxybenzoic acid is a suitable oxidant for the formation of 1,2-benzisothiazole<br />

1,1-dioxides, over-reaction is possible and the oxaziridine 143 is formed from<br />

3-methyl-1,2-benzisothiazole 142 in >90% (Scheme 53). [90]<br />

Scheme 53 Epoxidation of 3-Methyl-1,2-benzisothiazole 1,1-Dioxide [90]<br />

142<br />

N<br />

S<br />

MCPBA, CH2Cl2 K2CO3<br />

>90%<br />

O<br />

N<br />

S<br />

O O<br />

In addition, there is a problem if the carbocycle already contains a hydroxy group, as for<br />

6,7-dichloro-1,2-benzisothiazol-5-ol (144), because oxidation even with dilute nitric acid<br />

in acetic acid causes the formation of 6,7-dichloro-1,2-benzisothiazole-4,5-dione (145) in<br />

70% yield (Scheme 54). [29]<br />

143<br />

Scheme 54 Oxidation of 6,7-Dichloro-1,2-benzisothiazol-5-ol [29]<br />

HO<br />

Cl<br />

Cl<br />

144<br />

N<br />

S<br />

aq HNO3<br />

AcOH<br />

70%<br />

In the case of 1,2-benzisothiazol-3-amines 146, a reaction with hydrogen peroxide in<br />

acetic acid gives the 1,1-dioxide 147, but the yield in this reaction can be severely diminished<br />

by ring opening (Scheme 55). This unwanted reaction leads to 2-carbamimidoylbenzenesulfonic<br />

acids 148. [31]<br />

O<br />

Cl<br />

O<br />

Cl<br />

145<br />

N<br />

S<br />

Scheme 55 Synthesis of 1,2-Benzisothiazol-3-amine 1,1-Dioxides [31]<br />

146<br />

NHR 1<br />

N<br />

S<br />

30% H 2O 2, AcOH<br />

N<br />

S<br />

O O<br />

147<br />

NHR 1<br />

+<br />

NHR 1<br />

NH<br />

SO 3H<br />

148 major product<br />

This reaction does not occur for 3-unsubstituted 1,2-benzisothiazoles 149 and here hydrogen<br />

peroxide in acetic acid at 808C gives 4-chlorosaccharins 150 (Scheme 56). For the synthesis<br />

of the 4,5-dichlorosaccharin 150 (R 1 = Cl) and the 5-bromo-4-chlorosaccharin 150<br />

(R 1 = Br) the yields are 95%. [22]<br />

Scheme 56 Synthesis of 4-Chlorosaccharins [22]<br />

R 1<br />

Cl<br />

149<br />

N<br />

S<br />

H2O2, AcOH<br />

80 oC, 20 min<br />

R1 = Cl 95%<br />

R1 = Br 95%<br />

R 1<br />

Cl<br />

O<br />

NH<br />

S<br />

O<br />

150<br />

O


11.<strong>16</strong>.2 2,1-<strong>Benzisothiazoles</strong> 603<br />

11.<strong>16</strong>.2 <strong>Product</strong> Subclass 2:<br />

2,1-<strong>Benzisothiazoles</strong><br />

2,1-Benzisothiazole (2) is a pale yellow liquid, bp 2428C/748 Torr, 708C/0.5 Torr. It can be<br />

represented by the resonance forms shown in Scheme 57. [8,95]<br />

Scheme 57 2,1-Benzisothiazole Resonance Contributors [8,95]<br />

2<br />

S<br />

N<br />

S<br />

N<br />

+<br />

−<br />

S<br />

N<br />

+<br />

−<br />

The molecule is planar and an X-ray crystal structure analysis of 5-chloro-2,1-benzoisothiazole<br />

shows that the S-N bond is short (1.54 ä), with an N-S-C3 bond angle of only<br />

988. [96] The parent heterocycle is only slightly less basic than isothiazole (pKa ±0.51). [97]<br />

Ultraviolet absorption maxima are exhibited by 2,1-benzisothiazole at l max (EtOH)<br />

(log e) 221 (4.21), 288 (3.88), 298 (3.96), and 315 (sh) nm (3.60), [98] and in the 1 H NMR spectrum<br />

(neat) H3 resonates as a double doublet of doublets at d 9.06 (J 3,7 = 0.94 Hz,<br />

J 3,4 = 0.38 Hz, J 3,5 = 0.18 Hz). The other protons resonate at d 7.78 (H7), 7.63 (H4), 7.31 (H6),<br />

and 7.09 (H5). [8,96] The chemical shift of the H3 resonance is dependant on the nature of<br />

the substituents in the carbocycle, for example the presence of a chlorine atom at C4<br />

causes a shift to d 9.33, whereas a nitro groupat this site is responsible for a further downfield<br />

shift of the H3 signal to d 10.05. [98±100]<br />

These data, and also those from the 13 C NMR spectrum, [101,102] tend to confirm the<br />

1,2-quinonoid structure of the parent bicyclic compound, and this is supported by ab initio<br />

calculations and photoelectron spectroscopy. [103]<br />

2,1-Benzisothiazol-3-ol (151, R 1 =H) [104±108] exists in solution preferentially as<br />

2,1-benzisothiazol-3(1H)-one (152, R 1 = H) and exhibits an electronic spectrum [l max<br />

(EtOH) (log e) 230 (4.22), 243 (3.96), 353 nm (3.69)] that is very similar to that of the 1-methyl<br />

derivative 152 (R 1 = Me). [104,105] The benefit gained from the presence of a benzene ring<br />

system is, however, offset in the 3-imino analogue 154, which favors the ortho-quinonoid<br />

tautomer 2,1-benzisothiazol-3-amine (153) [l max (EtOH) (log e) 230 (4.49), 286 (3.41),<br />

373 nm (3.81)] (Scheme 58). [109]<br />

Scheme 58 Tautomerism in 2,1-Benzisothiazol-3-ol and -3-amines<br />

151<br />

153<br />

OR 1<br />

S<br />

N<br />

NH2<br />

S<br />

N<br />

O<br />

S<br />

N<br />

R1 152<br />

154<br />

Reactivity: The bromination of 2,1-benzisothiazole with bromine in sulfuric acid containing<br />

silver sulfate is an nonspecific reaction and a mixture of 5-bromo- (155) (31%), 7-bromo-<br />

(156) (31%), and 4,7-dibromo-2,1-benzisothiazole (157) (10%) is produced (Scheme<br />

59). [99] Similar results are noted for nitration with nitric acid and sulfuric acid and here<br />

the products are 4-nitro- (17%), 5-nitro- (57%), and 7-nitro-2,1-benzisothiazoles (26%). [99] Be-<br />

NH<br />

S<br />

N<br />

H<br />

S<br />

N<br />

for references see p 622


604 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

cause of this lack of specificity, [104,110,111] direct electrophilic substitution reactions of<br />

2,1-benzisothiazoles are normally of little synthetic value.<br />

Scheme 59 Bromination of 2,1-Benzisothiazole [99]<br />

2<br />

S<br />

N<br />

Br2, H2SO4<br />

Ag2SO4<br />

Br<br />

155 31%<br />

S<br />

N<br />

+<br />

Br<br />

156 31%<br />

S<br />

N<br />

+<br />

Br<br />

Br<br />

157 10%<br />

N-Alkylation occurs with alkyl halides (R 1 X) giving salts 158 in which the benzenoid ring<br />

is restored. [112±120] These are quite stable under anhydrous conditions and many have been<br />

synthesized (see Section 11.<strong>16</strong>.2.3.2.1), but on heating with sodium hydrogen carbonate,<br />

with tertiary amines, or with acids, these undergo ring scission, affording 2-aminobenzaldehydes<br />

159 and, through dismutation, 2,1-benzisothiazole-3(1H)-thiones <strong>16</strong>0. [1<strong>16</strong>,121] A<br />

similar reaction takes place when 2,1-benzisothiazole is reacted with ethyl chloroformate<br />

in tetrahydrofuran and water. Here the initial product is presumably the salt <strong>16</strong>1, which<br />

adds water and ring opens to ethyl N-(2-formylphenyl)carbamate (<strong>16</strong>2) (Scheme 60). [1<strong>16</strong>]<br />

Scheme 60 N-Alkylation of 2,1-Benzisothiazole and the Hydrolytic RingOpeningof<br />

1-Alkyl-2,1-benzisothiazolium Salts [112,1<strong>16</strong>,121]<br />

2<br />

R 1 = Me, Bn, CH 2CO 2H<br />

2<br />

S<br />

N<br />

S<br />

N<br />

R 1 X<br />

ClCO 2Et<br />

H 2O, THF<br />

reflux, 3 h<br />

158<br />

S<br />

N<br />

+<br />

R1 X −<br />

<strong>16</strong>1<br />

S<br />

N<br />

+<br />

Cl −<br />

CO 2Et<br />

HCl, NaHCO 3, Et 3N, or py<br />

159<br />

CHO<br />

NHR 1<br />

+<br />

<strong>16</strong>2<br />

S<br />

N<br />

<strong>16</strong>0<br />

CHO<br />

N<br />

H<br />

S<br />

S<br />

N<br />

H<br />

CO2Et<br />

2,1-Benzisothiazolamines can be diazotized by treatment with nitrous acid and the products<br />

behave as typical arenediazonium salts. From these salts a range of useful derivatives<br />

is obtained (see Section 11.<strong>16</strong>.2.3.1.2.2.2)<br />

Although Raney nickel reduction of 3-methyl-2,1-benzisothiazole (<strong>16</strong>3,R 1 = Me) causes<br />

desulfurization and ring opening to give 1-(2-aminophenyl)ethanone (<strong>16</strong>4, R 1 = Me) [122]<br />

under mild conditions, 3-aryl-2,1-benzisothiazoles <strong>16</strong>4 (R 1 = aryl) undergo further reduction<br />

to give the appropriate 2-benzylanilines <strong>16</strong>5 (R 1 = aryl) (Scheme 61). [123,124]


11.<strong>16</strong>.2 2,1-<strong>Benzisothiazoles</strong> 605<br />

Scheme 61 Reductive RingOpeningof 3-Substituted 2,1-<strong>Benzisothiazoles</strong> [122,123,124]<br />

S<br />

N<br />

Raney Ni<br />

benzene, 60<br />

<strong>16</strong>3<br />

o 1 R<br />

R R1<br />

C<br />

O<br />

NH2 NH2<br />

<strong>16</strong>4<br />

<strong>16</strong>5<br />

1<br />

− S<br />

[H]<br />

Treatment with hydrazines (R 1 NHNH 2) also causes the elimination of sulfur, but in this<br />

case the reagent is incorporated in the product so that 2-aminophenylhydrazones <strong>16</strong>6<br />

are generated (Scheme 62); with hydrazine hydrate, <strong>16</strong>6 (R 1 = H) is formed in 23% yield. [125]<br />

Scheme 62 Reaction of 2,1-Benzisothiazole with Hydrazines [125]<br />

2<br />

S<br />

N<br />

R1NHNH2 − S<br />

R1 = H 23%<br />

NH2 <strong>16</strong>6<br />

NNHR 1<br />

Triethyl phosphite and aqueous sodium hydrogen sulfite both effect desulfurization and<br />

in the latter case 2,1-benzisothiazol-3-amine (153) affords 2-(2-aminophenyl)quinazolin-4ol<br />

(<strong>16</strong>7) in 66% yield, but only after 60 hours at reflux (Scheme 63). [126]<br />

Scheme 63 Reaction of 2,1-Benzisothiazol-3-amine with Sodium Hydrogen Sulfite [126]<br />

153<br />

NH 2<br />

S<br />

N<br />

aq NaHSO 3, reflux, 60 h<br />

− S<br />

66%<br />

The ortho-quinoid character of 2,1-benzisothiazoles indicates that they should undergo<br />

cycloaddition reactions with dienophiles, such as maleic anhydride [127] and diethyl acetylenedicarboxylate,<br />

[95] but the reactions require strenuous conditions and the expected adducts<br />

are unstable. For example, 2,1-benzisothiazole (<strong>16</strong>3, R 1 = H) and 3-methyl-2,1-benzisothiazole<br />

(<strong>16</strong>3, R 1 = Me) combine with dimethyl acetylenedicarboxylate over extremely<br />

long reaction times (90 8C for 240 hours), giving very low yields of the appropriate dimethyl<br />

quinoline-2,3-dicarboxylates <strong>16</strong>8 (R 1 = H or Me) (Scheme 64). [95]<br />

OH<br />

N<br />

N<br />

<strong>16</strong>7<br />

NH 2<br />

Scheme 64 Cycloaddition of 2,1-Benzisothiazole and 3-Methyl-2,1benzisothiazole<br />

with Dimethyl Acetylenedicarboxylate [95]<br />

<strong>16</strong>3<br />

R 1<br />

S<br />

N<br />

MeO2C<br />

R1 = H 5%<br />

R1 = Me 23%<br />

CO2Me<br />

R 1<br />

N<br />

<strong>16</strong>8<br />

CO2Me<br />

CO 2Me<br />

The reactivity of the 2,1-benzisothiazole system as a diene is finely balanced and for<br />

2,1-benzisothiazol-3-amine (153) potential dienophiles may react instead as electrophiles.<br />

These may combine either with the 3-amino groupor with the nitrogen atom of the heterocycle.<br />

In the latter event sulfur is lost and the heterocycle is cleaved. With maleic an-<br />

for references see p 622


606 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

hydride, for example, acylation at the 3-amino position occurs, affording a quantitative<br />

yield of N-(3-carboxyprop-2-enoyl)-2,1-benzisothiazol-3-amine (<strong>16</strong>9). [127] In contrast, the<br />

site of reactivity is switched to N1 when dimethyl acetylenedicarboxylate is the reagent<br />

and after heating it and 2,1-benzisothiazol-3-amine (153) together at 100 8C for 24 hours<br />

dimethyl (Z)-2-(2-cyanoanilino)but-2-enedioate (171) is produced in 56% yield, presumably<br />

via the initial adduct 170 (Scheme 65). [95]<br />

Scheme 65 Reactions of 2,1-Benzisothiazol-3-amine with Maleic Anhydride and<br />

Dimethyl Acetylenedicarboxylate [95,127]<br />

153<br />

153<br />

NH2<br />

S<br />

N<br />

NH2<br />

S<br />

N<br />

O<br />

O<br />

O,<br />

heat<br />

100%<br />

HN<br />

S<br />

N<br />

<strong>16</strong>9<br />

MeO2C CO2Me<br />

100 o NH<br />

C, 24 h<br />

S<br />

95% N<br />

MeO 2C<br />

O<br />

170<br />

CO2H<br />

H<br />

CO 2Me<br />

MeO 2C<br />

CN<br />

NH<br />

171<br />

56%<br />

H<br />

CO2Me<br />

With benzyne, 2,1-benzisothiazole (2) gives acridine (173) in low yield (5%). Presumably<br />

here adduct 172 is formed as an intermediate, but with 2,1-benzisothiazol-3-amine both<br />

N1 and the 3-amino group are phenylated, resulting in the formation of 3-anilino-1-phenyl-1,3-dihydro-2,1-benzisothiazole<br />

(174) in 49% yield, together with a minor amount (5%)<br />

of 2-anilinobenzonitrile (175) (Scheme 66). [128]<br />

Scheme 66 Reactions of 2,1-Benzisothiazole and 2,1-Benzisothiazol-3-amine with<br />

Benzyne [128]<br />

2<br />

153<br />

S<br />

N<br />

NH 2<br />

S<br />

N<br />

S<br />

N<br />

172<br />

NHPh<br />

S<br />

N<br />

Ph<br />

174 49%<br />

+<br />

− S<br />

5%<br />

175 5%<br />

NHPh<br />

CN<br />

N<br />

173


11.<strong>16</strong>.2 2,1-<strong>Benzisothiazoles</strong> 607<br />

11.<strong>16</strong>.2.1 Synthesis by Ring-Closure Reactions<br />

11.<strong>16</strong>.2.1.1 By Formation of One S-N Bond<br />

11.<strong>16</strong>.2.1.1.1 Method 1:<br />

From 2-Nitrophenylmethanethiols or 2-Nitrobenzenecarbothioamides<br />

2,1-Benzisothiazole (2) was first synthesized over 100 years ago by the reductive cyclization<br />

of either 2-nitrophenylmethanethiol (176, R 1 = H), [129] or S-2-nitrobenzyl thiocarbamate<br />

(176, R 1 = CONH 2), with tin(II) chloride in hydrochloric acid (Scheme 67); [130] the<br />

yield in the first procedure was 31%.<br />

Scheme 67 Original Synthesis of 2,1-Benzisothiazole through the<br />

Reduction of 2-Nitrophenylmethanethiols [129,130]<br />

NO2 176<br />

SR 1<br />

SnCl2, HCl<br />

R 1 = H 31%<br />

The reduction of 2-nitrobenzenecarbothioamides 177 with tin(II) chloride is a more modern<br />

development of the original protocol and this method has been employed to synthesize<br />

a number of 2,1-benzisothiazol-3-amines 178 (Scheme 68). [112,131,132] However, yields<br />

vary widely depending on the nature of the amino substituent without an obvious reason:<br />

3-pyrrolidin-1-yl-2,1-benzisothiazole (178, R 1 =H; NR 2 2 = pyrrolidin-1-yl) is formed in 72%<br />

yield (as the hydrochloride), whereas N,N-dimethyl-2,1-benzisothiazol-3-amine (178,<br />

R 1 =H;NR 2 2 = NMe 2)is generated in only 24% yield from the corresponding benzenecarbothioamide.<br />

[118]<br />

2<br />

S<br />

N<br />

Scheme 68 Synthesis of 2,1-Benzisothiazol-3-amines from<br />

2-Nitrobenzenecarbothioamides [112,118,131,132]<br />

R 1<br />

177<br />

NR 2 2<br />

S<br />

NO 2<br />

SnCl 2, concd HCl<br />

R 1<br />

178<br />

NR 2 2<br />

S<br />

N<br />

R 1 NR 2 2 Yield (%) of 178 Ref<br />

H NMe 2 24 [112]<br />

H pyrrolidin-1-yl 72 [112]<br />

H piperidino 40 [132]<br />

6-Cl NMe 2 92 [112]<br />

6-Cl morpholino 33 [112]<br />

N,N-Dimethyl-2,1-benzisothiazol-3-amine (178,R 1 =H;NR 2 2 =NMe 2); Typical Procedure: [112]<br />

To a suspension of finely divided N,N-dimethyl-2-nitrobenzenecarbothioamide (177,<br />

R 1 =H;NR 2 2 = NMe 2; 105 g, 0.5 mol) in concd HCl (1 L) at 258C was added dropwise, with<br />

vigorous stirring, a mixture of SnCl 2 ·2H 2O (248 g, 1.1 mol) in concd HCl (250 mL). The mixture<br />

was then stirred at 508C for 3 h. After cooling in ice, the mixture was filtered and the<br />

tin complex residue washed with benzene (CAUTION: carcinogen). This solid was suspend-<br />

for references see p 622


608 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

ed in a mixture of benzene (1 L) and H 2O (500 mL) and excess 50% NaOH was added, keeping<br />

the temperature below 208C. The benzene soln was separated, washed with H 2O and<br />

concentrated. On cooling a yellow crystalline solid was obtained that could be recrystallized<br />

(H 2OorEt 2O); yield: 21.4 g (24%); mp120±1218C.<br />

11.<strong>16</strong>.2.1.1.2 Method 2:<br />

From 2-Aminophenylmethanethiols or 2-Aminobenzenecarbothioamides<br />

A complementary approach is to oxidize 2-aminophenylmethanethiols, but although the<br />

oxidation of 2-aminophenylmethanethiol (179) with iodine in 2 M sodium hydroxide at<br />

pH 13.5 gives 2,1-benzisothiazole (2) in 60% yield (Scheme 69), the product is contaminated<br />

with upto 10% of bis(2-aminobenzyl) disulfide (180). [34]<br />

Scheme 69 Synthesis of 2,1-Benzisothiazole from 2-Aminophenylmethanethiol [34]<br />

NH2 179<br />

SH<br />

I2, KI<br />

2 M NaOH<br />

pH 13.5<br />

2 60%<br />

S<br />

N<br />

+<br />

S S<br />

H 2N<br />

NH2 180 10%<br />

The formation of disulfides is precluded when 2-aminobenzenecarbothioamides 181 are<br />

oxidized and this now forms a versatile route to 2,1-benzisothiazol-3-amines 182 (Scheme<br />

70). The oxidants are normally hydrogen peroxide in pyridine, or acetic acid, [112,133,134] although<br />

bromine in acetic acid is also used. [135]<br />

Scheme 70 Synthesis of 2,1-Benzisothiazol-3-amines from<br />

2-Aminobenzenecarbothioamides [112,133±135]<br />

R 1<br />

R 2<br />

R<br />

181<br />

3<br />

NHR 4<br />

S<br />

NH2<br />

R 1<br />

R 2<br />

R3 182<br />

NHR 4<br />

S<br />

N<br />

R 1 R 2 R 3 R 4 Oxidant Yield (%) of 182 Ref<br />

H H H H H2O2, pyridine 62 [112]<br />

H H H Me H2O2, pyridine 46 [112]<br />

H H H Et H2O2, pyridine 52 [112,133±135]<br />

H H CF3H H2O2, pyridine ± [133,134]<br />

H Me H Et H2O2, pyridine 60 [112]<br />

H Cl H H H2O2, pyridine 87 [112]<br />

Br H H Me H2O2, pyridine 30 [112]<br />

Br H Br H Br2, AcOH 92 [135]<br />

OMe H OMe Et H2O2, AcOH 58 [112]<br />

OMe OMe H Et H2O2, AcOH 62 [112]<br />

NO2 H H H H2O2, AcOH 90 [135]


11.<strong>16</strong>.2 2,1-<strong>Benzisothiazoles</strong> 609<br />

This approach is also applicable to the synthesis of naphtho[1,2-c]isothiazol-3-amine (184)<br />

from 1-aminonaphthalene-2-carbothioamide (183), but fails in the case of the linear isomer<br />

186 (from 185), probably because such a doubly quinonoid product is inherently unstable<br />

(Scheme 71). [136]<br />

Scheme 71 Synthesis of Naphtho[1,2-c]isothiazol-3-amine [136]<br />

183<br />

185<br />

NH2<br />

S<br />

NH2<br />

NH2<br />

S<br />

NH2<br />

30% H2O2, MeOH<br />

py, 20 o C, 8 h<br />

94%<br />

It is commonplace to prepare the starting 2-aminobenzenecarbothioamides 188 (X,<br />

Y = Ph) by reacting the corresponding 2-aminobenzonitriles 187 (X, Y = Ph) with hydrogen<br />

sulfide, and an analogous preparation of 2-aminoheteroarenecarbothioamides 188 (X,<br />

Y = heteroarene) starting from 2-cyanoheteroarylamines 187 (X, Y = heteroarene) provides<br />

wide access to isothiazol-3-amines 189 fused to many five- and six-membered heterocycles<br />

(Scheme 72). [137±147]<br />

184<br />

186<br />

NH2<br />

S<br />

N<br />

NH2<br />

S<br />

N<br />

Scheme 72 Synthesis of Fused Heteroaryl Isothiazol-3-amines [137±148]<br />

NC<br />

H 2N<br />

187<br />

X<br />

Y<br />

H2S S<br />

H 2N<br />

NH2<br />

188<br />

X<br />

Y<br />

As an example, isothiazolo[3,4-b]pyridin-3-amine (191) is formed in 80% overall yield from<br />

2-aminopyridine-3-carbothioamide (190) using hydrogen peroxide in pyridine as the oxidant.<br />

[137] Similarly, thieno[2,3-c]isothiazol-3-amine (193) is obtained in 68% yield from<br />

2-aminothiophene-3-carbothioamide (192), again using hydrogen peroxide in pyridine<br />

as the oxidizing agent (Scheme 73). [148] Many other five- and six-membered ring-fused isothiazoles<br />

have also been prepared by this route. [8,142±152]<br />

[O]<br />

H2N<br />

X<br />

189<br />

Scheme 73 Synthesis of Isothiazolo[3,4-b]pyridin-3-amine and<br />

Thieno[2,3-c]isothiazol-3-amine [137,148]<br />

N<br />

190<br />

NH2<br />

S<br />

NH 2<br />

30% H 2O 2, py, 20 o C, 10 min<br />

80%<br />

N<br />

191<br />

NH2<br />

S<br />

N<br />

S<br />

N<br />

Y<br />

for references see p 622


610 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

H 2N<br />

S<br />

S<br />

NH2<br />

192<br />

1. 30% H2O2, py, MeOH, 40−50 o C, then 20 o C<br />

2. 2 M HCl<br />

3. 0.89 M NH3 68%<br />

N-Ethyl-2,1-benzisothiazol-3-amine (182, R 1 =R 2 =R 3 =H;R 4 = Et);<br />

Typical Procedure: [112,133±135]<br />

A soln of 30% H 2O 2 (36 mL, 0.32 mol) was added dropwise to a stirred soln of 2-(ethylamino)benzenecarbothioamide<br />

(54 g, 0.3 mol) in pyridine (100 mL) at 35 8C. The mixture was<br />

allowed to stand for <strong>16</strong> h then filtered. The yellow crystalline solid residue was washed<br />

with H 2O and then recrystallized (EtOH); yield: 28 g (52%); mp195±1968C.<br />

Isothiazolo[3,4-b]pyridin-3-amine (191); Typical Procedure: [137]<br />

2-Aminopyridine-3-carbothioamide (190; 4.6 g, 30 mmol) was dissolved in pyridine<br />

(10 mL) and stirred at 358C while 30% H 2O 2 (3.6 mL) was slowly added. A yellow solid was<br />

deposited and this, after further stirring for 10 min at 35 8C and standing at rt for <strong>16</strong> h, was<br />

collected by filtration, washed with H 2O, dried, and crystallized (EtOH) as fine needles;<br />

yield: 3.6 g (80%); mp203.5±204.58C.<br />

Thieno[2,3-c]isothiazol-3-amine (193): [148]<br />

2-Aminothiophene-3-carbothioamide (192; 3.1 g, 20 mmol) was dissolved by warming it<br />

in a soln of MeOH (150 mL) and pyridine (1.6 g, 20 mmol) To the well-stirred soln at 408C<br />

was added 30% H 2O 2 (3.6 mL) dropwise such that the temperature did not exceed 508C.<br />

The mixture was stirred for a further 1 h at 20 8C and poured into ice-cold concd HCl<br />

(50 mL), producing a solid hydrochloride. The free base was obtained by treatment of<br />

this with NH 3 soln (0.89 M NH 3/H 2O 1:1) followed by extraction with Et 2O; yield: 2.2 g<br />

(68%); mp138±1408C (EtOH, darkens in air).<br />

11.<strong>16</strong>.2.1.1.3 Method 3:<br />

From Isatoic Anhydride<br />

2,1-Benzisothiazol-3(1H)-ones 196 are synthesized from 2H-3,1-benzoxazine-2,4(1H)-diones<br />

194 by reaction with sodium or potassium hydrogen sulfides and oxidation of the intermediate<br />

2-aminobenzenecarbothioates 195 with either hydrogen peroxide or iodine<br />

(Scheme 74); yields range from 28 to 90%. [104±108]<br />

Scheme 74 Synthesis of 2,1-Benzisothiazol-3(1H)-ones from 2H-3,1-Benzoxazine-2,4(1H)diones<br />

[104±108]<br />

R 2<br />

M = Na, K<br />

R 1<br />

N O<br />

O<br />

194<br />

O<br />

MSH<br />

R 2<br />

O<br />

195<br />

NHR 1<br />

SM<br />

S<br />

193<br />

H2O2 or I2 28−90%<br />

NH2<br />

S<br />

N<br />

R 2<br />

196<br />

O<br />

S<br />

N<br />

R1


11.<strong>16</strong>.2 2,1-<strong>Benzisothiazoles</strong> 611<br />

11.<strong>16</strong>.2.1.1.4 Method 4:<br />

From 2-Methylanilines<br />

On the face of it, a synthesis of 2,1-benzisothiazoles starting from such readily available<br />

materials as 2-methylanilines and thionyl chloride should be very attractive, but even in a<br />

high boiling solvent, such as mesitylene, xylene, or bromobenzene, such a reaction takes<br />

a long time and the yields are modest. [98,127,153,154]<br />

For example, when 5-methoxy-2,1-benzisothiazole (199,R 1 =H;R 2 = 5-OMe) is formed<br />

from 4-methoxy-2-methylaniline (197, R 1 =H; R 2 = 4-OMe), via the sulfine 198 (R 1 =H;<br />

R 2 = 4-OMe), by treatment with thionyl chloride the yield is only 56% (Scheme 75). [127] In<br />

addition, side reactions, such as chlorination in the rings, are a potential problem. [153]<br />

Thus, a similar reaction of 2-methylaniline (197, R 1 =R 2 = H) with thionyl chloride at<br />

145±1508C affords 3-chloro-2,1-benzisothiazole as the main product in 17% yield, rather<br />

than the parent heterocycle. [153]<br />

Despite these difficulties this approach has been used to prepare 6-bromo-2,1-benzisothiazole<br />

(199,R 1 =H;R 2 = 6-Br) in 42% yield from 5-bromo-2-methylaniline (197,R 1 =H;<br />

R 2 = 5-Br), and 4-methyl-2,1-benzisothiazole (199,R 1 =H;R 2 = 4-Me) is obtained from 2,3-dimethylaniline<br />

(197,R 1 =H;R 2 = 3-Me) in 28% yield. [98]<br />

Scheme 75 Synthesis of 2,1-<strong>Benzisothiazoles</strong> from 2-Methylanilines [98,127,153,155]<br />

R 2<br />

197<br />

R 1<br />

NH 2<br />

SOCl2, xylene<br />

reflux, 24−48 h<br />

R 2<br />

R 1<br />

S<br />

O<br />

R<br />

198 199<br />

3<br />

N<br />

− SO2 S<br />

O<br />

R 1 R 2 R 3 Yield (%) of 199 Ref<br />

H 4-OMe 5-OMe 56 [127]<br />

H 5-Br 6-Br 42 [98]<br />

H 3-Me 4-Me 28 [98]<br />

Ph H H 93 [155]<br />

Although naphtho[c]isothiazole cannot be synthesized in this way, naphtho[2,1-c]isothiazole<br />

(201) (31%) and naphtho[1,2-c]isothiazole (203) (7%) can be produced from the appropriate<br />

2-methylarylamines 200 and 202, respectively, although the reaction times are<br />

24 hours (Scheme 76). In the reaction of 202 some 5-chloronaphtho[1,2-c]isothiazole (204)<br />

is also formed. [155]<br />

Scheme 76 Syntheses of Naphtho[2,1-c]isothiazole and Naphtho[1,2-c]isothiazole [155]<br />

SOCl2 xylene<br />

reflux, 24 h<br />

31%<br />

NH2 200 201<br />

S<br />

N<br />

R 1<br />

S<br />

N<br />

for references see p 622


612 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

NH 2<br />

SOCl2 xylene<br />

reflux, 24 h<br />

202 203 7%<br />

S +<br />

N<br />

Homologues of 2-methylaniline can also be employed, but in the case of 2-ethylaniline<br />

(205) treatment with thionyl chloride in xylene at reflux leads not only to 2,1-benzisothiazole-3-carboxylic<br />

acid (206) in 30% yield but also to N-(2-ethylphenyl)-2,1-benzisothiazole-3-carboxamide<br />

(207) (11%) and 3-(4-ethyl-1,3-benzisothiazol-2-yl)-2,1-benzisothiazole<br />

(208) (4%) (Scheme 77). [156]<br />

Scheme 77 Synthesis of 2,1-Benzisothiazole-3-carboxylic Acid from 2-Ethylaniline [156]<br />

Et<br />

NH2<br />

205<br />

1. SOCl2, xylene, reflux, 24 h<br />

2. 2 M NaOH, pH 7, 12 h<br />

3. SOCl2, 12 h<br />

4. 2.5 M NaOH, steam distillation<br />

206 30%<br />

CO 2H<br />

S<br />

N<br />

+<br />

O H N<br />

Cl<br />

S<br />

N<br />

207 11%<br />

Et<br />

204<br />

+<br />

S<br />

N<br />

S<br />

S<br />

N<br />

N<br />

208 4%<br />

Instead of thionyl chloride, N-sulfinylmethanesulfonamide (from methanesulfonamide<br />

and thionyl chloride) and N-sulfinyl-4-toluenesulfonamide have been recommended as<br />

reagents. 2,1-Benzisothiazole (210, R 1 =R 3 = H) itself can be synthesized in ~60% yield by<br />

treating 2-methylaniline (209, R 1 =R 2 = H) in benzene with N-sulfinylmethanesulfonamide.<br />

[100] The reaction mechanism is probably very similar to that described in Scheme<br />

75, since N-sulfinylanilines 210 can be used as the substrates in place of the 2-methylanilines.<br />

If used these afford the sulfines 211, which then cyclize with the loss of sulfur dioxide<br />

to give the 2,1-benzisothiazoles 212. A series of such compounds synthesized by this<br />

method is given in Scheme 78 using either 2-methylanilines or N-sulfinylanilines as the<br />

starting compounds. [100]<br />

Et


11.<strong>16</strong>.2 2,1-<strong>Benzisothiazoles</strong> 613<br />

Scheme 78 Synthesis of 2,1-<strong>Benzisothiazoles</strong> from 2-Methylanilines and<br />

N-Sulfinylanilines [100]<br />

R 2<br />

209<br />

MsN S O<br />

benzene, py, 0 o R<br />

C<br />

1−72 h, reflux<br />

1 R1 NH 2<br />

R 2<br />

R 2<br />

210<br />

NSO<br />

R 1<br />

211<br />

S<br />

NSO<br />

O<br />

MsN S O<br />

Substrate Reflux (h) <strong>Product</strong> Yield (%) Ref<br />

R1 R2 R1 R3 209 H H <strong>16</strong> H H 27 [100]<br />

210 H H 18 H H 60 [100]<br />

210 H 4-Me 65 H 5-Me 70 [100]<br />

210 H 3-CO2Me 45 H 4-CO2Me 65 [100]<br />

210 H 5-CN 43 H 6-CN 85 [100]<br />

209 H 4-Cl 65 H 5-Cl 89 [100]<br />

209 H 6-Cl 64 H 7-Cl 84 [100]<br />

210 H 6-Cl 19 H 7-Cl 87 [100]<br />

209 H 4-OMe 65 H 5-OMe 88 [100]<br />

210 H 4-OMe 60 H 5-OMe 77 [100]<br />

209 H 5-NO2 65 H 6-NO2 85 [100]<br />

209 Me H 65 Me H 6 [100]<br />

210 Me H 1 Me H 55 [100]<br />

210 Ph Ph 3.5 Ph Ph 11 [100]<br />

6-Bromo-2,1-benzisothiazole (199,R 1 =H;R 3 = 6-Br); Typical Procedure: [98]<br />

Thionyl chloride (8 mL, 100 mmol) was slowly added dropwise to a soln of 5-bromo-2methylaniline<br />

(197, R 1 =H; R 2 = 5-Br; 5.8 g, 31 mmol) in xylene (15 mL). After a vigorous<br />

reaction a yellow solid separated and the mixture was heated under reflux for 24 h. A<br />

further quantity of thionyl chloride (8 mL, 100 mmol) was then added, followed by a second<br />

period of heating for 24 h under reflux. On cooling concd HCl (50 mL) was added and<br />

SO 2 evolved. After vigorously stirring for 0.5 h, the mixture was filtered [the residue was<br />

extracted with boiling H 2O, giving 5-bromo-2-methylaniline hydrochloride; yield: 2.6 g<br />

(39%); sublimed at 2468C] and the aqueous layer separated, washed with petroleum ether<br />

and diluted with H 2O (250 mL). The solid that separated was collected and crystallized<br />

(MeOH), giving long, colorless needles; yield: 2.7 g (42%); mp818C.<br />

2,1-Benzisothiazole-3-carboxylic Acid (206): [156]<br />

Thionyl chloride (36 g, 0.3 mol) was added dropwise to a stirred, cooled soln of 2-ethylaniline<br />

(205; 12.1 g, 0.1 mol) in xylene (50 mL). The mixture was heated under reflux and the<br />

− SO2<br />

R 3<br />

212<br />

R 1<br />

S<br />

N<br />

for references see p 622


614 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

sulfur dioxide and hydrogen chloride produced were neutralized by passing into<br />

2 M NaOH. At the end of 12 h, a further portion of thionyl chloride (22 mL, 0.3 mol) was<br />

introduced dropwise and the mixture heated as before for a further 12 h. After addition<br />

of H 2O (200 mL) and 2.5 M NaOH (400 mL) the mixture was subjected to a steam distillation<br />

procedure (~300 mL distillate). The alkaline residue was treated with decolorizing<br />

charcoal (1 g), filtered, acidified with AcOH, and the resulting crystals collected by filtration;<br />

yield: 5.3 g (30%); mp2128C.<br />

2,1-Benzisothiazole (212,R 1 =R 3 = H) from 2-Methylaniline (209,R 1 =R 2 = H) or 2-Methyl-Nsulfinylaniline<br />

(210,R 1 =R 2 = H); Typical Procedure: [100]<br />

To a soln of 2-methylaniline (209, R 1 =R 2 = H; 7.5 g, 70 mmol) in dry benzene (30 mL)<br />

cooled in an ice bath, or to a soln of 2-methyl-N-sulfinylaniline (210, R 1 =R 2 = H; 10.7 g,<br />

70 mmol) in dry benzene (30 mL) at 208C, was added N-sulfinylmethanesulfonamide<br />

(15.5 g, 0.11 mol when 210 was used; 29.6 g, 0.21 mol when 209 was used) in dry benzene<br />

(30 mL). To the stirred, cooled (ice bath) mixture was added a soln of dry pyridine (7.9 g,<br />

0.10 mol) in dry benzene (20 mL). At the end of the exothermic reaction a colorless solid<br />

was produced that dissolved after 20 min of the subsequent 18 h (when 210 was used, <strong>16</strong> h<br />

when 209 was used) period of heating under reflux (with the exclusion of moisture). The<br />

pyridine and benzene were distilled under reduced pressure and the cooled residue treated<br />

carefully with H 2O (35 mL). After 0.5 h at 20 8C, this was extracted with CHCl 3, the extract<br />

dried and the solvent evaporated under reduced pressure. The dark oily residue was<br />

distilled, giving a yellow oil (6 g, from 209) bp50±608C/0.4 Torr, which was purified by the<br />

addition of H 2O (20 mL), acidification to pH 4 with 5% HCl and extraction with CHCl 3. The<br />

dried extracts were distilled, giving a pale yellow oil; yield: 5.7 g (60%, from 210). When<br />

substrate 209 (R 1 =R 2 = H) (10.7 g) is used 2,1-benzisothiazole (2.6 g) is obtained in 27%<br />

yield; bp608C/0.6 Torr.<br />

11.<strong>16</strong>.2.1.1.5 Method 5:<br />

From Bis(2-aminophenyl)methane<br />

Another related synthesis is that of 3-(2-aminophenyl)-2,1-benzisothiazole (214,<br />

R 1 =R 2 = H) from bis(2-aminophenyl)methane (213, R 1 =R 2 = H) by treatment with N-sulfinylmethanesulfonamide<br />

in boiling pyridine and benzene for 48 hours; [157,158] the yield<br />

is only 21% and the product is tautomeric with the tetracyclic isomer 215 (R 1 =R 2 =H)<br />

(Scheme 79). In other examples, such as 3-(2-amino-4-bromophenyl)-6-bromo-2,1-benzisothiazole<br />

(214, R 1 =H; R 2 = Br) and 3-(2-amino-5-methylphenyl)-5-methyl-2,1-benzisothiazole<br />

(214, R 1 = Me; R 2 = H), the yields from the appropriate bis(2-aminophenyl)methanes<br />

are higher: 43 and 55%, respectively. [158]


11.<strong>16</strong>.2 2,1-<strong>Benzisothiazoles</strong> 615<br />

Scheme 79 Synthesis of 3-(2-Aminophenyl)-2,1-benzisothiazoles [157,158]<br />

R 1<br />

R 1<br />

R 2<br />

R 2 NH 2<br />

213<br />

NH2<br />

R 1<br />

R 2<br />

MsN S O<br />

R 1 = R 2 = H 21%<br />

R 1 = H; R 2 = Br 43%<br />

R 1 = Me; R 2 = H 59%<br />

R 1<br />

214<br />

S<br />

N<br />

R 2<br />

NH2 R 1<br />

R 2<br />

R 1<br />

S<br />

N<br />

H<br />

215<br />

NH<br />

In a similar manner benzo[1,2-c:4,3-c¢]diisothiazole (217) is prepared in 41% yield by treating<br />

2,3-dimethylbenzene-1,4-diamine (2<strong>16</strong>) with two molecular equivalents of N-sulfinylmethanesulfonamide<br />

(Scheme 80). [110]<br />

Scheme 80 Synthesis of Benzo[1,2-c:4,3-c¢]diisothiazole [110]<br />

H 2N<br />

2<strong>16</strong><br />

NH 2<br />

MsN S O<br />

41%<br />

11.<strong>16</strong>.2.2 Synthesis by Ring Transformation<br />

11.<strong>16</strong>.2.2.1 From 2,1-Benzisoxazoles<br />

Rather than reduce 2-nitrophenylmethanethiols or 2-nitrobenzylthiocarbamates directly<br />

to 2,1-benzisothiazoles there are a few syntheses in which 2-nitroacetophenones 218 are<br />

reduced first to give 2,1-benzisoxazoles 219, and then these products are heated with<br />

phosphorus pentasulfide and an organic base such as imidazole or pyridine at reflux to<br />

insert the sulfur atom and form the heterocycles 220 (Scheme 81). This has some practical<br />

advantages over the older routes since the starting materials are readily available and<br />

easily handled.<br />

In the case of 5-chloro-3-phenyl-2,1-benzisothiazole (220, R 1 = Ph; R 3 = 5-Cl) the yield<br />

for the sulfurization stepfrom 5-chloro-3-phenyl-2,1-benzisoxazole (219, R 1 = Ph; R 3 =5-<br />

Cl) is 54%. [113] 7-Acetyl-3-methyl-2,1-benzisothiazole (220, R 1 = Me; R 3 = 7-Ac) is similarly<br />

prepared from 7-acetyl-3-methyl-2,1-benzisoxazole (219, R 1 = Me; R 3 = 7-Ac) in 75%<br />

yield. [159]<br />

N<br />

S<br />

217<br />

S<br />

N<br />

R 2<br />

for references see p 622


6<strong>16</strong> Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

Scheme 81 Synthesis of 2,1-<strong>Benzisothiazoles</strong> from 2,1-Benzisoxazoles [113,159]<br />

R 2<br />

218<br />

R 1<br />

O<br />

NO 2<br />

R3 SnCl2, HCl P4S10 O<br />

N<br />

219<br />

R 1 R 2 R 3 Conditions Yield (%) of 220 Ref<br />

Ph H H imidazole, 120 8C, 15 min 31 [113]<br />

Ph 4-Cl 5-Cl imidazole, 120 8C, 15 min 54 [113]<br />

4-ClC 6H 4 4-Cl 5-Cl imidazole, 120 8C, 15 min ± [113]<br />

Me 6-Ac 7-Ac pyridine, reflux 75 [159]<br />

OMe 6-CS 2Me 7-CS 2Me pyridine, reflux 7 [159]<br />

5-Chloro-3-phenyl-2,1-benzisothiazole (220, R 1 = Ph; R 3 = 5-Cl); Typical Procedure: [113]<br />

5-Chloro-3-phenyl-2,1-benzisoxazole (219, R 1 = Ph; R 3 = 5-Cl; <strong>16</strong>.3 g, 71 mmol), P 4S 10 (49 g,<br />

0.11 mol) and imidazole (25 g, 0.37 mol) were vigorously stirred together at 120 8C for<br />

15 min. The dark, oily mixture was partitioned between 10% aq NaOH and EtOAc. The<br />

EtOAc extracts were washed with H 2O, dried (MgSO 4), and evaporated under reduced pressure.<br />

The residual oil was treated with concd HCl and the insoluble portion separated by<br />

filtration. The filtrate was poured into H 2O and stored in a refrigerator, where crystallization<br />

took place; yield: 9.6 g (54%); mp 86±88 8C (aq EtOH).<br />

7-Acetyl-3-methyl-2,1-benzisothiazole (220,R 1 = Me; R 3 = 7-Ac); Typical Procedure: [159]<br />

7-Acetyl-3-methyl-2,1-benzisoxazole (219;R 1 = Me; R 3 = 7-Ac; 5 g, 29 mmol) was heated under<br />

reflux in pyridine (80 mL) with P 4S 10 (8 g) for 8 h. The cooled soln was poured into H 2O<br />

and extracted with CHCl 3 (3 î 50 mL). The combined extracts were washed with H 2O<br />

(5 î 20 mL), dried, and the solvent removed under reduced pressure. The residual yellow<br />

oil crystallized on standing and was purified by chromatography (CHCl 3) to give the product<br />

as yellow crystals; yield: 4.1 g (75%); mp79 8C.<br />

In a similar way methyl 3-methoxy-2,1-benzisoxazole-7-carboxylate was obtained<br />

from dimethyl 2-nitroisophthalate in three steps (reduction to the amine, oxidative ring<br />

closure and esterification). It was converted into methyl 3-methoxy-2,1-benzisothiazole-7carbodithioate<br />

by thiation with P 4S 10; yield: 7%; mp128±1298C. Also isolated was the hydrolysis<br />

product, 3-methoxy-2,1-benzisothiazole-7-carbothioic acid (0.5%).<br />

11.<strong>16</strong>.2.3 Synthesis by Substituent Modification<br />

11.<strong>16</strong>.2.3.1 Substitution of Existing Substituents<br />

11.<strong>16</strong>.2.3.1.1 Of Hydrogen<br />

Direct lithiation of 2,1-benzisothiazole occurs on reaction with butyllithium in tetrahydrofuran<br />

and the product, 2,1-benzisothiazol-3-yllithium (221), may then be reacted<br />

in situ with iodomethane to give 3-methyl-2,1-benzisothiazole (222) in 44% yield (Scheme<br />

82). [100]<br />

R 1<br />

R 3<br />

220<br />

R 1<br />

S<br />

N


11.<strong>16</strong>.2 2,1-<strong>Benzisothiazoles</strong> 617<br />

Scheme 82 Synthesis of 3-Methyl-2,1-benzisothiazole via<br />

2,1-Benzisothiazol-3-yllithium [100]<br />

2<br />

S<br />

N<br />

BuLi, THF<br />

221<br />

Li<br />

S<br />

N<br />

MeI, 20 o C, 1 h<br />

222 44%<br />

A further application is the formation of 5,7-di-tert-butyl-2,1-benzisothiazol-3-amine (224)<br />

through the reaction of 5,7-di-tert-butyl-2,1-benzisothiazol-3-yllithium (223) with trimethylsilylmethyl<br />

azide, followed by treatment with aqueous acid (Scheme 83). [100,<strong>16</strong>0]<br />

Scheme 83 Synthesis of 5,7-Di-tert-butyl-2,1-benzisothiazol-3-amine [100,<strong>16</strong>0]<br />

Bu t<br />

Bu t<br />

223<br />

Li<br />

S<br />

N<br />

11.<strong>16</strong>.2.3.1.2 Of Heteroatoms<br />

1. TMSCH2N3<br />

2. H +<br />

11.<strong>16</strong>.2.3.1.2.1 Electrophilic Substitution<br />

1-Alkyl-3-chloro-2,1-benzisothiazolium chlorides 225 are strongly electrophilic and combine<br />

with N,N-dimethylaniline at 208C, over 12 hours, to afford highly colored 1-alkyl-3-<br />

[4-(dimethylamino)phenyl]-2,1-benzisothiazolium salts 226 (isolated as the perchlorates)<br />

(Scheme 84). [108] For the 1-methyl compound (226, R 1 = Me) the yield is 60% and for the<br />

benzyl analogue (226, R 1 = Bn) the yield is 83%.<br />

Bu t<br />

Scheme 84 Synthesis of 1-Alkyl-3-[4-(dimethylamino)phenyl]-2,1-benzisothiazolium<br />

Perchlorates [108]<br />

225<br />

Cl<br />

S<br />

N<br />

+<br />

R1 Cl−<br />

+ NMe 2<br />

Bu t<br />

224<br />

1. MeCN<br />

2. NaClO4 R 1 = Bn 83%<br />

R 1 = Me 60%<br />

NH 2<br />

S<br />

N<br />

NMe 2<br />

S<br />

N<br />

S<br />

N<br />

+<br />

R1 ClO4 −<br />

226<br />

1-Alkyl-5-chloro-3-phenyl-2,1-benzisothiazolium tetrafluoroborates 227 react with secondary<br />

amines to form the corresponding 1,3-dihydrobenzothiazol-3-amines 228, but if<br />

primary amines are used then the adducts 229 suffer the loss of sulfur and concomitant<br />

ring opening to yield [2-(alkylamino)phenyl](phenyl)methanones 231, after hydrolysis of<br />

the intermediate arylimines 230 (Scheme 85). [113]<br />

for references see p 622


618 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

Scheme 85 Reaction of 1-Alkyl-5-chloro-3-phenyl-2,1-benzisothiazolium<br />

Tetrafluoroborates with Amines [113]<br />

Cl<br />

Cl<br />

227<br />

227<br />

S<br />

N<br />

+<br />

Ph<br />

R1 BF4 − S<br />

N<br />

R1 R2 2NH<br />

R1 = Me; NR2 2 = morpholino 50%<br />

R1 = Et; NR2 NR<br />

2 = NMe2 90%<br />

2 Cl<br />

Ph<br />

2<br />

Ph<br />

S<br />

N<br />

+<br />

R1 BF4 −<br />

R 2 NH2<br />

Cl<br />

Cl<br />

230<br />

Ph<br />

NR 2<br />

NHR 1<br />

229<br />

Ph<br />

S<br />

N<br />

R1 NHR 2<br />

− R 2 NH2<br />

Although these examples are of limited synthetic value, a related process is the addition<br />

of ethyl glycinate, in the presence of 2-methylimidazole at <strong>16</strong>0 8C, to 5-chloro-1-methyl-3phenyl-2,1-benzisothiazolium<br />

tetrafluoroborate (227, R 1 = Me). This leads to the formation<br />

of the well-known tranquilizer valium (7-chloro-1-methyl-5-phenyl-1,3-dihydro-2H-<br />

1,4-benzodiazepin-2-one, 233) through the ring expansion of the adduct 232 (Scheme<br />

86). [113]<br />

Scheme 86 Synthesis of Valium [113]<br />

Cl<br />

227<br />

Ph<br />

S<br />

N<br />

+<br />

BF<br />

−<br />

4<br />

H2NCH2CO2Et<br />

2-methylimidazole<br />

<strong>16</strong>0 oC Ph<br />

Me Me<br />

Cl<br />

S<br />

N<br />

232<br />

H<br />

N<br />

H2O<br />

CO 2Et<br />

Enolates from 1,3-dicarbonyl compounds, for example diethyl malonate or ethyl benzoylacetate,<br />

also react with 2,1-benzisothiazolium salts 234, enabling access to the corresponding<br />

3-methylene-1,3-dihydro-2,1-benzisothiazoles 235 (R 2 =CO 2Et or Bz) (Scheme<br />

87). For diethyl malonate, however, the product, 3-[bis(ethoxycarbonyl)methylene]-2,1benzisothiazole,<br />

is accompanied by 2-(methylamino)benzaldehyde. [137]<br />

228<br />

− S<br />

Cl<br />

Cl<br />

47%<br />

231<br />

Ph<br />

233<br />

N<br />

Me<br />

Ph<br />

O<br />

NHR 1<br />

N<br />

O


11.<strong>16</strong>.2 2,1-<strong>Benzisothiazoles</strong> 619<br />

Scheme 87 Synthesis of 3-Methylene-1,3-dihydro-2,1-benzisothiazoles [137]<br />

R 1<br />

S<br />

N<br />

+<br />

BF4 −<br />

Me<br />

234 R 1 = H, SMe<br />

R2 −<br />

CHCO2Et<br />

R 2 = CO2Et 28%<br />

11.<strong>16</strong>.2.3.1.2.2 Nucleophilic Substitution<br />

11.<strong>16</strong>.2.3.1.2.2.1 From 3-Chloro-2,1-benzisothiazoles<br />

235<br />

R 2<br />

S<br />

N<br />

Me<br />

CO2Et<br />

3-Chloro-2,1-benzisothiazoles 236 (normally available from the 3-hydroxy analogues by<br />

reaction with phosphoryl chloride) are potentially useful sources of other 3-substituted<br />

2,1-benzisothiazoles 237. For example, 3-chloro-2,1-benzisothiazole (236, R 1 = H) reacts<br />

with sodium alkoxides, sodium enolates, sodium alkanethiolates, and secondary amines<br />

to form 3-alkoxy-, [104,105,120,132] 3-alkyl-, [120] 3-(alkylsulfanyl)-, [104] and 3-amino-substituted<br />

[104,112,120] 2,1-benzisothiazoles, respectively (Scheme 88). Generally the yields are good<br />

(70±90%), but when sodium cyanide is used as the nucleophilic reagent 3-chloro-2,1-benzisothiazole<br />

affords only a 38% yield of the 3-cyano derivative 237 (R 2 = CN). [153,<strong>16</strong>1]<br />

Scheme 88 Synthesis of 3-Substituted 2,1-<strong>Benzisothiazoles</strong><br />

from 3-Chloro-2,1-benzisothiazoles [104,112,120,132,153,<strong>16</strong>1]<br />

R 1<br />

236<br />

Cl<br />

S<br />

N<br />

R2Na, MeOH, reflux<br />

or R2H R 1<br />

237<br />

R 2<br />

S<br />

N<br />

Nucleophile R 1 R 2 Yield (%) of 237 Ref<br />

NaCH 2CO 2Et H CH 2CO 2Et 79 [120]<br />

NaCN H CN 38 [153,<strong>16</strong>1]<br />

NaOMe H OMe 77 [104,105,132]<br />

NaSEt H SEt 92 [104]<br />

Me 2NH H NMe 2 75 [112,120]<br />

pyrrolidine H pyrrolidin-1-yl 91 [102,104]<br />

H 2O 5-Cl OH 92 [120]<br />

NaOEt 5-Cl OEt 75 [120]<br />

NaSPh 5-Cl SPh 70 [120]<br />

Unfortunately, Grignard reagents may cause reductive dechlorination so that with methylmagnesium<br />

bromide, for example, 3-chloro-2,1-benzisothiazole gives a 1:3 mixture of<br />

3-methyl-2,1-benzisothiazole and 2,1-benzisothiazole. [153]<br />

3-Chloro-2,1-benzisothiazole (236,R 1 = H); Typical Procedure: [104]<br />

POCl 3 (5 mL, 55 mmol) was carefully added to a soln of 2,1-benzisothiazol-3-ol (5 g, 33 mol)<br />

in pyridine (2.5 mL). The red soln was heated at 130±1408C for 1 h, then cooled and cau-<br />

for references see p 622


620 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

tiously poured into ice water. The mixture was extracted with Et 2O, the extracts washed<br />

with H 2O, dried (MgSO 4), and evaporated. The residue was distilled under reduced pressure<br />

giving a yellow oil; yield: 3.5 g (63%); bp65 8C/0.2 Torr.<br />

3-Methoxy-2,1-benzisothiazole (237, R 1 =H;R 2 = OMe); Typical Procedure: [104]<br />

A soln of 3-chloro-1,2-benzisothiazole (236, R 1 = H; 2 g, 11.8 mmol) and NaOMe (1 g,<br />

18.5 mmol) in MeOH (20 mL) was heated under reflux for 2.5 h and then poured into<br />

H 2O. The mixture was extracted with Et 2O, the extracts dried (MgSO 4), and the solvent<br />

evaporated under reduced pressure. A yellow, solid residue was obtained; crude yield:<br />

1.8 g (92%). This was distilled to give yellow crystals; bp93±94 8C/0.2 Torr; mp56±59.58C<br />

(sinters at 508C).<br />

11.<strong>16</strong>.2.3.1.2.2.2 Method 2:<br />

From 2,1-Benzisothiazole 3-Diazonium Salts<br />

2,1-benzisothiazole (153) can be diazotized by treatment with nitrous<br />

acid [114,115,139,140,<strong>16</strong>2±<strong>16</strong>4] and under Sandmeyer conditions in the presence of copper(I) bromide<br />

to give the diazonium salts 238, which may then be converted into the 3-bromo-<br />

2,1-benzisothiazole (239). Similar reaction conditions afford 3-nitro- and 3-iodo-2,1-benzisothiazoles,<br />

but generally yields are only moderate (30±50%). [109] Such diazonium salts<br />

also react with azide ion to form 3-azido-2,1-benzisothiazoles, and in the case of 3-azido-<br />

7-(trifluoromethyl)-2,1-benzisothiazole (241) the yield from 7-(trifluoromethyl)-2,1-benzisothiazol-3-amine<br />

(240) is as high as 65% (Scheme 89). [<strong>16</strong>5]<br />

Scheme 89 Synthesis of 3-Bromo- and 3-Azido-7-(trifluoromethyl)-<br />

2,1-benzisothiazoles [109,<strong>16</strong>5]<br />

NH2<br />

S<br />

N<br />

153<br />

CF3 240<br />

NH 2<br />

S<br />

N<br />

11.<strong>16</strong>.2.3.2 Addition Reactions<br />

11.<strong>16</strong>.2.3.2.1 Method 1:<br />

N-Alkylation<br />

NaNO 2, 2 M HCl<br />

1. NaNO2, HCl<br />

2. NaN3 65%<br />

CF3 241<br />

S<br />

N<br />

238<br />

N2 + Cl −<br />

N 3<br />

S<br />

N<br />

Cu2Br2 30%<br />

Br<br />

S<br />

N<br />

239<br />

The quaternary salts 243 used as the substrates in various reactions (Sections<br />

11.<strong>16</strong>.2.3.1.2.1 and 11.<strong>16</strong>.2.3.1.2.2) are available from the parent 2,1-benzisothiazoles<br />

242 through alkylation with a variety of alkylating agents, including alkyl halides,<br />

[8,105,120,127] dimethyl sulfate, [8,122±125,128] Meerwein's salts (e.g., triethyloxonium tetrafluoroborate),<br />

[121] and methyl tosylate. [124] A list of compounds synthesized in this way is<br />

given in Scheme 90. [120,121,124,126]


11.<strong>16</strong>.2 2,1-<strong>Benzisothiazoles</strong> 621<br />

Scheme 90 Synthesis of 1-Substituted 2,1-Benzisothiazolium Iodides [112,113,1<strong>16</strong>,118,120]<br />

R<br />

S<br />

N<br />

1<br />

R3 R2 1. R4X, 115−120 oC, 1−42 h<br />

2. NaI<br />

242<br />

R 2<br />

R 3<br />

243<br />

R 1<br />

S<br />

N<br />

+<br />

I −<br />

R4 R 1 R 2 R 3 R 4 R 4 X Time (h) Yield (%) of 243 Ref<br />

H H H Me Me 2SO 4 1 ~100 [1<strong>16</strong>]<br />

H H H CH 2CO 2Et BrCH 2CO 2Et 2 ~100 [1<strong>16</strong>]<br />

H H H (CH 2) 3 a Br(CH 2) 3Br 22 ~100 [1<strong>16</strong>]<br />

H H H (CH 2) 4 b Br(CH 2) 4Br 42 ~100 [1<strong>16</strong>]<br />

H H Cl Me TsOMe 4 ~100 [1<strong>16</strong>]<br />

H H Cl Bn BnBr 4 ~100 [1<strong>16</strong>]<br />

H Cl H Bn BnBr 4 ~100 [1<strong>16</strong>]<br />

H NO 2 H Me TsOMe 4 ~100 [1<strong>16</strong>]<br />

Me H H Me FSO 2OMe ± 83 [118]<br />

Ph Cl H Et (EtO) 3CH c 1 d 57 [113]<br />

Ph Cl H Et (EtO) 3CH e 8 37 [113]<br />

Cl H H Me Me 2SO 4 28 f 84 [120]<br />

OMe H H Me Me 2SO 4 0.5 f 59 [120]<br />

NH 2 H H Me MeI 3 88 [120]<br />

NHEt OMe OMe Me MeI 3 78 [112]<br />

NMe 2 H Cl Me MeI 3 92 [112]<br />

a The product was the 1,3-bis(2,1-benzolium-1-yl)propane diiodide.<br />

b The product was the 1,4-bis(2,1-benzolium-1-yl)butane diiodide.<br />

c SbCl5 is used in place of NaI.<br />

d Reaction is carried out a 20 8C.<br />

e BF3 is used in place of NaI.<br />

f Reaction is carried out at 50 8C.<br />

N-Alkyl-2,1-benzisothiazolium salts 243; General Procedure: [1<strong>16</strong>]<br />

2,1-Benzisothiazole 242 (0.10 mol) and Me 2SO 4, alkyl bromide, or methyl 4-toluenesulfonate<br />

(0.11 mol) were heated together at 115±1208C for 1 to 42 h. The crude product was<br />

formed in quantitative yield as colorless crystals or as oils. Treatment of the oily salts<br />

with an excess of sat. aq NaI gave the orange, crystalline, quaternary salts. The salts were<br />

recrystallized (EtOH containing 5% H 2O).<br />

for references see p 622


622 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

References<br />

[1] Chapman, R. F.; Peart, B. J., In Comprehensive Heterocyclic Chemistry II, Katritzky, A. R.; Rees, C. W.;<br />

Scriven, E. F. V., Eds.; Pergamon: Oxford, (1996); Vol. 3, Chapter 3.05, p 319.<br />

[2] Schulze, B., In Houben±Weyl, (1993); Vol. E8a, p799.<br />

[3] Simkin, B. Y.; Minkin, V. I.; Glukhovtsev, N., Adv. Heterocycl. Chem., (1993) 56, 303.<br />

[4] Michell, M. L.; Pearson, R. L., Food Sci. Technol. (London), (1991) 48, 127.<br />

[5] Mori, M.; Zani, F.; Mazza, P.; Silva, C.; Bordi, F.; Morini, G.; Plazzi, P. V., Farmaco (pavia), (1996) 51,<br />

493.<br />

[6] Domiano, P.; Branca, C., Acta Crystallogr., Sect. B, (1982) 38, 1834.<br />

[7] Szµbo, J.; Sz¸cs, E.; Fodor, L.; Bernµth, G.; Sohar, P., Tetrahedron, (1989) 45, 2731.<br />

[8] Davis, M., Adv. Heterocycl. Chem., (1972) 14, 43.<br />

[9] Buchwald, S. L.; Watson, B. T.; Lun, R. T.; Nugent, W. A., J. Am. Chem. Soc., (1987) 109, 7137.<br />

[10] Campbell, C. D.; Rees, C. W.; Bryce, M. R.; Cooke, M. D.; Hanson, P.; Vernon, J. M., J. Chem. Soc.,<br />

Perkin Trans. 1, (1988), 141.<br />

[11] Pain, D. L.; Peart, B. J.; Wooldridge, K. R. H., In Comprehensive Heterocyclic Chemistry I, Katritzky, A.<br />

R.; Rees, C. W., Eds.; Pergamon: Oxford, (1984); Vol. 6, p131.<br />

[12] Oppolzer, W.; Wills, M.; Starkemann, C.; Bernardinelli, G., Tetrahedron Lett., (1990) 31, 4117.<br />

[13] Faust, J., Z. Chem., (1968) 8, 170.<br />

[14] McKinnon, D. M.; Abouseid, A. A., J. Heterocycl. Chem., (1991) 28, 749.<br />

[15] Davis, M.; Deady, L. W.; Homfeld, E., J. Heterocycl. Chem., (1974) 11, 1011.<br />

[<strong>16</strong>] Davis, M.; Deady, L. W.; Homfeld, E., Aust. J. Chem., (1974) 27, 1221.<br />

[17] Bˆshagen, H., Chem. Ber., (1966) 99, 2566.<br />

[18] Markert, J.; Hagen, H., Liebigs Ann. Chem., (1980), 768.<br />

[19] Ohashi, M.; Ezaki, A.; Yonetawa, T., J. Chem. Soc., Chem. Commun., (1974), 617.<br />

[20] Ziegler, H.; Pommer, E. H.; Ammermann, E., DE 3 212135 A1, (1983); Chem. Abstr., (1984) 100,<br />

51291.<br />

[21] Carrington, D. E. L.; Clarke, K.; Scrowston, R. M., J. Chem. Soc. C, (1971), 3262.<br />

[22] Becke, F.; Hagen, H., Justus Liebigs Ann. Chem., (1969) 729, 146.<br />

[23] Iijima, I.; Rice, K. C., J. Heterocycl. Chem., (1978) 15, 1527.<br />

[24] Hull, R., J. Chem. Soc., Perkin Trans. 1, (1973), 2911.<br />

[25] Krauze, A.; Bomika, Z. A.; Pelcer, J. E.; Mazeika, I. B.; Dubur, G. J., Khim. Geterotsikl. Soedin., (1982),<br />

508; Chem. Abstr., (1982) 97, 55723.<br />

[26] Becher, J.; Johannsen, T.; Michael, M. A., J. Heterocycl. Chem., (1984) 21, 41.<br />

[27] Watanabe, S., Bull. Chem. Soc. Jpn., (1969) 42, 1152.<br />

[28] Gewald, K.; Sch‰fer, H.; Schlegel, U., J. Prakt. Chem., (1976) 318, 779.<br />

[29] Fries, K.; Eishold, K.; Vahlberg, B., Justus Liebigs Ann. Chem., (1927) 454, 264.<br />

[30] Bˆshagen, H.; Geiger, W., Chem. Ber., (1976) 109, 659.<br />

[31] Bˆshagen, H.; Geiger, W.; Medenwald, H., Chem. Ber., (1970) 103, 3<strong>16</strong>6.<br />

[32] Bˆshagen, H.; Geiger, W., Chem. Ber., (1979) 112, 3286.<br />

[33] H¸nig, S.; Kiesslich, G.; Quast, H., Justus Liebigs Ann. Chem., (1971) 748, 201.<br />

[34] Goerdeler, J.; Kandler, J., Chem. Ber., (1959) 92, <strong>16</strong>79.<br />

[35] Boudet, R.; Bourgoin-Legay, D., C. R. Hebd. Seances Acad. Sci. Ser. C, (1966) 262, 596.<br />

[36] Beck, J. R.; Jahner, J. A., J. Org. Chem., (1978) 43, <strong>16</strong>04.<br />

[37] Bˆshagen, H.; Geiger, W., Phosphorus Sulfur Relat. Elem., (1983) 17, 325.<br />

[38] Abramovitch, R. A.; Inbasekaran, M. N.; Miller, A. L.; Hanna, J. M., Jr., J. Heterocycl. Chem., (1982)<br />

19, 509.<br />

[39] Meth-Cohn, O.; Tarnowski, B., Synthesis, (1978), 58.<br />

[40] Lawson, A. J., Phosphorus Sulfur Relat. Elem., (1982) 12, 357.<br />

[41] Rahman, L. K. A.; Scrowston, R. M., J. Chem. Soc., Perkin Trans. 1, (1984), 385.<br />

[42] McKinnon, D. M.; Lee, K. R., Can. J. Chem., (1988) 66, 1405.<br />

[43] Crawford, R. J.; Woo, C., J. Org. Chem., (1966) 31, <strong>16</strong>55.<br />

[44] Carrington, D. E. L.; Clarke, K.; Hughes, C. G.; Scrowston, R. M., J. Chem. Soc., Perkin Trans. 1,<br />

(1972), 3006.<br />

[45] McKinnon, D. M.; Abouseid, A. A., J. Heterocycl. Chem., (1991) 28, 347.<br />

[46] McKinnon, D. M.; Abouseid, A. A., J. Heterocycl. Chem., (1991) 28, 1193.<br />

[47] McKinnon, D. M.; Abouseid, A. A., J. Heterocycl. Chem, (1991) 28, 445.<br />

[48] Clarke, K.; Hughes, C. G.; Scrowston, R. M., J. Chem. Soc., Perkin Trans. 1, (1973), 356.


References 623<br />

[49] Clarke, K.; Fox, W. R.; Scrowston, R. M., J. Chem. Soc., Perkin Trans. 1, (1980), 1029.<br />

[50] Rahman, L. K. A.; Scrowston, R. M., J. Chem. Soc., Perkin Trans. 1, (1983), 2973.<br />

[51] Gewald, K.; Schlegel, U.; Sch‰fer, H., J. Prakt. Chem., (1975) 317, 959.<br />

[52] Fink, D. M.; Strupczewski, J. T., Tetrahedron Lett., (1993) 34, 6525.<br />

[53] Davis, F. A.; Slegeir, W. A. R.; Evans, S.; Schwartz, A.; Goff, D. L.; Palmer, R., J. Org. Chem., (1973)<br />

38, 2809.<br />

[54] Shutske, G. M.; Allen, R. C.; Fˆrsch, M. F.; Setescak, L. L.; Wilker, J. C., J. Med. Chem., (1983) 26,<br />

1307.<br />

[55] Hagen, H.; Fleig, H., DD 25 033 699, (1976); Chem. Abstr., (1976) 85, 177401.<br />

[56] Daichi Seiyaku Co. Ltd., JP 81101 185, (1985); Chem. Abstr., (1981), 95, 62195.<br />

[57] Kirk±Othmer Encyclopedia of Chemical Technology, 2nd ed., Mark, H. F., Ed.; Wiley: New York,<br />

(1969); Vol. 19, p597.<br />

[58] Hetler, H., Adv. Heterocycl. Chem., (1973) 15, 233.<br />

[59] Ullmann Encyklop‰die der technischen Chemie, Ed. 2, Urban and Schwarzenburg: Berlin±Wien,<br />

(1928); Vol. 2, p253.<br />

[60] McClelland, E. W.; Gait, A. J., J. Chem. Soc., (1926), 921.<br />

[61] Hart, L. E.; McClelland, E. W.; Fowkes, F. S., J. Chem. Soc., (1938), 2114.<br />

[62] Hlasta, D. J.; Court, J. J.; Desai, R. C., Tetrahedron Lett., (1991) 32, 7179.<br />

[63] Desai, R. C.; Hlasta, D. J.; Monsour, G.; Saindane, M., J. Org. Chem., (1994) 59, 7<strong>16</strong>1.<br />

[64] Alo, B. I.; Familoni, O. B., J. Heterocycl. Chem., (1992) 29, 61.<br />

[65] Wright, S. W.; Abelman, M. M.; Bostrom, L. L.; Corbett, R. L., Tetrahedron Lett., (1992) 33, 153.<br />

[66] Beeley, N. R. A.; Harwood, L. M.; Hedger, P. C., J. Chem. Soc., Perkin Trans. 1, (1994), 2245.<br />

[67] Campbell, D. C.; Rees, C. W.; Bryce, M. R.; Cooke, M. D.; Hanson, P.; Vernon, J. M., J. Chem. Soc.,<br />

Perkin Trans. 1, (1978), 1006.<br />

[68] Bryce, M. R.; Hanson, P.; Vernon, J. M., J. Chem. Soc., Chem. Commun., (1982), 299.<br />

[69] Bˆshagen, H.; Geiger, W., Justus Liebigs Ann. Chem., (1977), 20.<br />

[70] Joseph, S. P.; Keshavamurthy, K. S.; Dhar, D., Synth. Commun., (1989) 19, 417.<br />

[71] Hermann, C. F.; Campbell, J. A.; Greenwood, T. D.; Lewis, J. A.; Wolfe, J. F., J. Org. Chem., (1992) 57,<br />

5328.<br />

[72] Stolle, R.; Geisel, W.; Badst¸bner, W., Ber. Dtsch. Chem. Ges., (1925) 58, 2095.<br />

[73] Stolle, R.; Geisel, W., Angew. Chem., (1923) 36, 159.<br />

[74] Stolle, R.; Badst¸bner, W., J. Prakt. Chem., (1929) 121, 266.<br />

[75] Tamura, Y.; Bayomi, S. M.; Mukai, C.; Ikeda, M.; Murase, M.; Kise, M., Tetrahedron Lett., (1980) 21,<br />

533.<br />

[76] Tamura, Y.; Takebe, Y.; Bayomi, S. M.; Mukai, C.; Ikeda, M.; Murae, M.; Kise, M., J. Chem. Soc., Per-<br />

kin Trans. 1, (1981), 1037.<br />

[77] Tamura, Y.; Bayomi, S. M.; Mukai, C.; Ikeda, M.; Kise, M., J. Chem. Soc., Perkin Trans, 1, (1980),<br />

2830.<br />

[78] Bayomi, S. M.; Ikeda, M.; Tamura, Y., J. Drug Res., (1983) 14, 73; Chem. Abstr., (1985) 102, 149158.<br />

[79] Gianella, M.; Gualtieri, F.; Melchiorre, C., Phytochemistry, (1971) 10, 539.<br />

[80] Szµbo, J.; Sz¸cs, E.; Fodor, L.; Katocs, A.; Bernµth, G., Tetrahedron, (1988) 44, 2985.<br />

[81] Haddock, E.; Kirby, P.; Johnson, A. W., J. Chem. Soc. C, (1971), 3994.<br />

[82] Clarke, K.; Gledhill, B.; Scrowston, R. M., J. Chem. Res., Synop., (1980), 197.<br />

[83] Ricci, A.; Martani, A.; Graziani, O.; Oliva, M. L., Ann. Chim. (Rome), (1963) 53, 1860.<br />

[84] Ricci, A.; Martani, A. M., Ann. Chim. (Rome), (1963) 53, 577.<br />

[85] Clarke, K.; Fox, W. R.; Scrowston, R. M., J. Chem. Res., Synop., (1980), 33.<br />

[86] Subramanyam, C.; Bell, M. R., Bioorg. Med. Chem., (1991) 1, 733.<br />

[87] Court, J. J.; Lessen, T. A.; Hlasta, D. J., Synlett, (1995), 423.<br />

[88] Groutas, W. C.; Epp, J. B.; Venkataraman, R.; Kuang, R. Z.; Truong, T. M.; McClenahan, J. J.; Prakash,<br />

O., Bioorg. Med. Chem., (1996) 4, 1393.<br />

[89] Subramanyam, C.; Bell, M. R.; Carabateas, P.; Court, J. J.; Dority, J. A.; Ferguson, E.; Gordon, R.;<br />

Hlasta, D. L.; Kumar, V.; Saindane, M.; Dunlap, R. P.; Franke, C. A.; Mura, A. J., J. Med. Chem., (1994)<br />

37, 2623.<br />

[90] Davis, F. A.; Lamendola, J., Jr.; Nadir, U.; Kluger, E. W.; Sedergran, T. C.; Panunto, T. W.; Billmers,<br />

R.; Jenkin, R., Jr.; Turchi, I. J.; Watson, W. H.; Chenu, J. S.; Kimura, M., J. Am. Chem. Soc., (1980)<br />

102, 2000.<br />

[91] Vitali, T.; Mossini, F.; Bertaccini, G.; Ipicciatore, M., Farmaco Ed. Sci., (1968) 23, 1081, Chem. Abstr.,<br />

(1969) 70, 37702.


624 Science of Synthesis 11.<strong>16</strong> <strong>Benzisothiazoles</strong><br />

[92] Carrington, D. E. L.; Clarke, K.; Scrowston, R. M., J. Chem. Soc. C, (1971), 3903.<br />

[93] Bˆshagen, H.; Geiger, W., Chem. Ber., (1974) 107, <strong>16</strong>67.<br />

[94] Geiger, W.; Bˆshagen, H.; Medenwald, H., Chem. Ber., (1969) 102, 1961.<br />

[95] Bryce, M. R.; Acheson, R.; Rees, A. J., Heterocycles, (1983) 20, 489.<br />

[96] Davis, M.; Mackay, M. F.; Denne, W. A., J. Chem. Soc., Perkin Trans. 2, (1972), 565.<br />

[97] Deady, L. W.; Stillman, D. C., Aust. J. Chem., (1976) 29, 1745.<br />

[98] Davis, M.; White, A. W., J. Org. Chem., (1969) 34, 2985.<br />

[99] Davis, M.; White, A. W., J. Chem. Soc. C, (1969), 2189.<br />

[100] Singerman, G. M., J. Heterocycl. Chem., (1975) 12, 877.<br />

[101] Stefaniak, L., Org. Magn. Reson., (1978) 11, 385.<br />

[102] Plavac, N.; Still, I. W. J.; Chauhan, M. S.; McKinnon, D. M., Can. J. Chem., (1975) 53, 836.<br />

[103] Palmer, M. H.; Kennedy, S. M. F., J. Mol. Struct., (1978) 43, 33.<br />

[104] Albert, A. H.; O'Brien, D. E.; Robins, R. K., J. Heterocycl. Chem., (1978) 15, 529.<br />

[105] Davis, M.; Deady, L. W.; Homfeld, E.; Pogany, S., Aust. J. Chem., (1975) 28, 129.<br />

[106] Bˆshagen, H.; Geiger, W., Chem. Ber., (1973) 106, 376.<br />

[107] Albert, A. H.; Robins, R. K.; O'Brien, D. E., J. Heterocycl. Chem., (1973) 10, 413.<br />

[108] Faust, J.; Mayer, R., J. Prakt. Chem., (1976) 318, <strong>16</strong>1.<br />

[109] Buckley, R. K.; Davis, M.; Srisvastava, K. S. L., Aust. J. Chem., (1971) 24, 2405.<br />

[110] Danylec, B.; Davis, M., J. Heterocycl. Chem., (1980) 17, 533.<br />

[111] Danylec, B.; Davis, M., J. Heterocycl. Chem., (1980) 17, 537.<br />

[112] Meyer, R. F.; Cummings, B. L.; Bass, P.; Collier, H. O. J., J. Med. Chem., (1965) 8, 515.<br />

[113] Aki, O.; Nakagawa, Y.; Shirakawa, K., Chem. Pharm. Bull., (1972) 20, 2372.<br />

[114] BASF, NL 66008 032, (1966); Chem. Abstr., (1967) 66, 96214.<br />

[115] Bayer AG, FR 1 540 834, (1968); Chem. Abstr., (1970) 72, 80338.<br />

[1<strong>16</strong>] Davis, M.; Homfeld, E.; Srivastava, K. S. L., J. Chem. Soc., Perkin Trans. 1, (1973), 1863.<br />

[117] Cherian, A. L.; Pandit, P. Y.; Seshadri, S., Indian J. Chem., (1972) 10, 361.<br />

[118] Haley, N. F., J. Org. Chem., (1978) 43, 1233.<br />

[119] Davis, M.; Hudson, M. J., J. Heterocycl. Chem., (1983) 20, 1707.<br />

[120] Davis, M.; Homfeld, E.; McVicars, J.; Pogany, S., Aust. J. Chem., (1975) 28, 2051.<br />

[121] McKinnon, D. M.; Duncan, K. A.; Millar, L. M., Can. J. Chem., (1982) 60, 440.<br />

[122] Goerdeler, J.; Keuser, U., Chem. Ber., (1964) 97, 2209.<br />

[123] Gotthardt, H.; Reiter, F., Tetrahedron Lett., (1976), 2<strong>16</strong>3.<br />

[124] Gotthardt, H.; Reiter, F., Chem. Ber., (1979) 112, 266.<br />

[125] Gabriel, S.; Leupold, E., Ber. Dtsch. Chem. Ges., (1898) 31, 2185.<br />

[126] Davis, M.; Hook, R. J.; Wu, W. Y., J. Heterocycl. Chem., (1984) 21, 369.<br />

[127] Davis, M.; Srivastava, K. S. L., J. Chem. Soc., Perkin Trans. 1, (1972), 935.<br />

[128] Bryce, M. R.; Dansfield, T. A.; Kandell, K. A.; Vernon, J. M., J. Chem. Soc., Perkin Trans 1, (1988),<br />

2141.<br />

[129] Gabriel, S.; Stelzner, R., Ber. Dtsch. Chem. Ges., (1896) 29, <strong>16</strong>0.<br />

[130] Gabriel, S.; Posner, T., Ber. Dtsch. Chem. Ges., (1895), 28, 1025.<br />

[131] Parke, Davis & Co., NL 6408 290, (1965); Chem. Abstr., (1965) 63, 1768.<br />

[132] Jackson, B.; Schmid, H.; Hansen, H.-J., Helv. Chim. Acta, (1979) 62, 391.<br />

[133] Wippel, H. G., Melliand Textiber, (1969) 50, 1090; Chem. Abstr., (1969) 71, 125943.<br />

[134] Gray, J.; Waring, D. R., J. Heterocycl. Chem., (1980) 17, 65.<br />

[135] Seefelder, M.; Armbrust, H., BE 670652, (1966); Chem. Abstr., (1967) 66, 65467.<br />

[136] Faust, J., J. Prakt. Chem., (1977) 319, 65.<br />

[137] Taurins, A.; Tan-Khouw, V., Can. J. Chem., (1973) 51, 1741.<br />

[138] Fishwick, B. R.; Sayer, T. S. B., EP 26 596 A1, (1981); Chem. Abstr., (1981) 95, 82388.<br />

[139] Gregory, P.; Sayer, T. S. B., GB 20 744598, (1981); Chem. Abstr., (1982) 96, <strong>16</strong>4132.<br />

[140] Sayer, T. S. B., Dyes Pigments, (1982) 3, 123; Chem. Abstr., (1982) 97, 7803.<br />

[141] LeCount, D. J.; Dewsbury, D. J., Synthesis, (1982), 972.<br />

[142] Niess, R.; Eilingsfeld, H., Justus Liebigs Ann. Chem., (1974), 2019.<br />

[143] Furukawa, Y.; Shima, S., Chem. Pharm. Bull., (1976) 24, 979.<br />

[144] Takahashi, H.; Nimura, N.; Ogura, H., Chem. Pharm. Bull., (1979) 27, 1147.<br />

[145] Eilingsfeld, H.; Niess, R., DD 2354 685, (1975); Chem. Abstr., (1975) 83, 149109.<br />

[146] Gewald, K.; Oelsner, J., J. Prakt. Chem., (1979) 321, 71.<br />

[147] Norek, J., Barwniki-Srodki Pomocnicze, (1977) 21, 75; Chem. Abstr., (1978) 88, 154310.<br />

[148] Gewald, K.; Hentschel, M.; Heikel, R., J. Prakt. Chem., (1973) 315, 539.


References 625<br />

[149] Barker, J. M.; Huddleston, P. H.; Needs, P. W., J. Chem. Res. Synop., (1989), 29.<br />

[150] Tornetta, B.; Siracusa, M. A.; Ronsisvalle, G.; Guerrera, F., Gazz. Chim. Ital., (1978) 108, 57.<br />

[151] Gewald, K.; Hain, U.; Roemhild, G., DD 152937, (1981); Chem. Abstr., (1982) 97, 6290.<br />

[152] Seybold, G.; Eilingsfeld, H., Liebigs Ann. Chem., (1979), 1271.<br />

[153] Onaka, T.; Oikawa, T., Itsuu Kenkyusho Nempo, (1971) <strong>16</strong>, 53; Chem. Abstr., (1972) 77, 48320.<br />

[154] Naito, T.; Nakagawa, S.; Okumura, J.; Takahashi, K.; Masuko, K.; Naita, Y., Bull. Chem. Soc. Jpn.,<br />

(1968) 41, 965.<br />

[155] Davis, M.; Ramsay, G. C.; Stephens, L. T., Aust. J. Chem., (1972) 25, 1355.<br />

[156] Davis, M.; Paproth, T. G.; Stephens, L. T., J. Chem. Soc., Perkin Trans. 1, (1973), 2057.<br />

[157] McKinnon, D. M.; Duncan, K. A.; McKinnon, A. M.; Spevak, P. E., Can. J. Chem., (1985) 63, 882.<br />

[158] McKinnon, D. M.; Duncan, K. A., J. Heterocycl. Chem., (1988) 25, 1095.<br />

[159] McKinnon, D. M.; Wong, J. Y., Can. J. Chem., (1971) 49, 2018.<br />

[<strong>16</strong>0] Okazaki, R.; Takahashi, M.; Inamoto, N.; Sugawara, T.; Iwamura, H., Chem. Lett., (1989), 2083.<br />

[<strong>16</strong>1] Goldish, D. M.; Axon, B. W.; Moore, H. W., Heterocycles, (1983) 20, 187.<br />

[<strong>16</strong>2] Hamprecht, R., DE 3220 117, (1983); Chem. Abstr., (1984) 100, 87267.<br />

[<strong>16</strong>3] Weaver, M. A.; Coates, C. A., Jr.; Fleischer, J. C., US 4265812, (1981); Chem. Abstr., (1981) 95,<br />

26606.<br />

[<strong>16</strong>4] Baird, B. D.; Campbell, J. S.; Fishwick, B. R.; Smith, P., GB 1550 828, (1979); Chem. Abstr., (1980)<br />

92, 112246.<br />

[<strong>16</strong>5] Joucla, M. F.; Rees, C. W., J. Chem. Soc., Chem. Commun., (1984), 374.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!