02.03.2013 Views

Dinitro-furans, -Thiophenes, and -Azoles - Ark.chem.ufl.edu ...

Dinitro-furans, -Thiophenes, and -Azoles - Ark.chem.ufl.edu ...

Dinitro-furans, -Thiophenes, and -Azoles - Ark.chem.ufl.edu ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

699<br />

<strong>Dinitro</strong>-<strong>furans</strong>, -<strong>Thiophenes</strong>, <strong>and</strong> -<strong>Azoles</strong><br />

Alan R. Katritzky* § , Anatoliy V. Vakulenko § , Jothilingam Sivapackiam, § Bogdan Draghici, § <strong>and</strong> Reddy<br />

Damavarapu #<br />

§ Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200<br />

# US Army ARDEC, Picatinny Arsenal, USA<br />

Fax: (352) 392-9199.<br />

E-mail: katritzky@<strong>chem</strong>.<strong>ufl</strong>.<strong>edu</strong>.<br />

Abstract: Direct nitration of the corresponding mononitro <strong>furans</strong><br />

7a–c with fuming nitric acid, thiophenes 11a,b with acetyl nitrate<br />

<strong>and</strong> thiazoles 15a,b with trifluoroacetyl nitrate, gave dinitrosubstituted<br />

<strong>furans</strong> 8a–c thiophenes 12a,b <strong>and</strong> thiazoles 16a,b<br />

respectively. The nitrations of 2-alkylthiophenes 10a,b with 3 <strong>and</strong><br />

5 molar equivalents of acetyl nitrate, generated in situ, are discussed.<br />

Reactions of 7a,b with fuming nitric acid gave, as byproduct,<br />

1,1,5,5-tetra-substituted dihydro<strong>furans</strong> 9a,b. Treatment of 4nitro-5-methylisoxazole<br />

18 with hydrazine or its methyl or phenyl<br />

derivative, followed by oxidation of the corresponding 4-amino-5nitro-1H-pyrazoles<br />

19a–c with hydrogen peroxide (50%) gave<br />

4,5-dinitro-1H-pyrazoles 20a–c. A safe one-pot synthesis of 1alkyl-3,5-dinitro-1H-[1,2,4]triazoles<br />

22a,b was developed from<br />

dicy<strong>and</strong>iamide.<br />

Key words: dinitro<strong>furans</strong>, dinitrothiophenes, dinitroazoles, nitration<br />

<strong>and</strong> oxidation reactions.<br />

Introduction<br />

Di-nitro derivatives of five-membered heterocycles have<br />

diverse biological activity (2,4-dinitroimidazole derivatives<br />

increase the sensitivity of hypoxic cells toward<br />

irradiation in cancer radiotherapy 1 ), are useful intermediates<br />

(e.g. convertion of di-nitrofuran into various polysubstituted<br />

phenols 2 ) <strong>and</strong> are of potential interest as energetic<br />

materials <strong>and</strong> blowing agents.<br />

Approaches to the preparation of dinitro-substituted five<br />

membered heterocycles comprise: (i) direct nitration 3 ,<br />

(ii) ring construction 4 <strong>and</strong> (iii) functional group transformation.<br />

5 However published methods usually suffer<br />

from low yields, starting material availability, harsh<br />

conditions, <strong>and</strong>/or difficult-to-separate isomer formation.<br />

This prompted our search for more general <strong>and</strong> milder<br />

routes.<br />

We previously 6 reported facile access to polynitroimidazoles,<br />

7 trinitroazetidine, 8 nitropyridines 9 <strong>and</strong> mononitro-<br />

five-membered heterocycles. 10 We now report on dinitrosubstituted<br />

<strong>furans</strong>, thiophenes, thiazoles, pyrazoles <strong>and</strong><br />

1H-[1,2,4]triazoles.<br />

Results <strong>and</strong> Discussion<br />

(i) <strong>Dinitro</strong><strong>furans</strong><br />

Published routes to dinitro<strong>furans</strong> comprise: (i) nitration<br />

of 2-nitrofuran 1 to give 2,5- (4) (67%) <strong>and</strong> 2,4dinitrofuran<br />

3 (5%). 11 (ii) 5-Sulfo-furan-2-carboxylic<br />

acid 2 <strong>and</strong> fuming nitric acid give 2,5-dinitrofuran 4<br />

(3%), 12 or (iii) two-step nitration of furan 5 with acetyl<br />

nitrate - acetic anhydride - HNO3 (27% overall) to give<br />

4 2 (S<strong>chem</strong>e 1). 2-Alkyl-3,5-dinitro<strong>furans</strong> 8 are side<br />

products (up to 4%) in the nitration of 2-alkyl<strong>furans</strong> or<br />

ethyl 2-alkyl-5-furancarboxylate. 13<br />

O 2 N<br />

5%<br />

O<br />

HNO 3<br />

NO 2<br />

O<br />

+<br />

O 2 N<br />

NO 2<br />

O<br />

67%<br />

NO 2<br />

HNO 3<br />

SO 3 H<br />

3 87-89 o C 4 99-101 o C 5<br />

S<strong>chem</strong>e 1<br />

1<br />

3%<br />

i) HNO 3 , (Ac) 2 O<br />

ii) HNO 3 , 27%<br />

2<br />

O<br />

O<br />

COOH<br />

2-Alkyl<strong>furans</strong> 6a−c with 1.5 molar equivalents of acetyl<br />

nitrate (generated in situ by the reaction of nitric acid<br />

with acetic anhydride) at –30 o C afforded 2-methyl-5nitrofuran<br />

7a (39%), 2-ethyl-5-nitrofuran 7b (43%) <strong>and</strong><br />

2-n-butyl-5-nitrofuran 7c (36%). Recently Schuisky et<br />

al. reported the preparation of 2-methyl-5-nitrofuran 7a<br />

in 35% yield. 13a Initial attempts to prepare 2-alkyl-3,5dinitro<strong>furans</strong><br />

8a–c in situ by addition of 2-alkyl<strong>furans</strong><br />

6a–c to 1.5 molar equivalents of acetyl nitrate at –30 o C<br />

<strong>and</strong> further treatment of the reaction mixture with concentrated<br />

nitric acid at 50-55 o C gave the desired 8a–c in<br />

up to 8% yield after 4 h (S<strong>chem</strong>e 2).<br />

R R<br />

O<br />

O<br />

6a R=Me<br />

6b R=Et<br />

6c R=n-Bu<br />

S<strong>chem</strong>e 2<br />

(Ac) O, 1.5 eq.HNO ,<br />

2 3<br />

-30 o C, 1 h<br />

O 2 N<br />

R<br />

O<br />

8a 17%<br />

8b 24%<br />

7a 39%<br />

7b 43%<br />

7c 36%<br />

NO 2<br />

+<br />

O 2 N<br />

c. HNO 3 ,<br />

50-55 o C, 4 h<br />

NO 2<br />

f. HNO 3 , AcOH<br />

70-75 o C, 8 h<br />

R<br />

O<br />

9a 29%<br />

9b 30%<br />

NO 2<br />

NO 2<br />

8a-c 7-8%<br />

Treatment of 2-alkyl-5-nitrofuran 7a,b with fuming nitric<br />

acid in glacial acetic acid at 70–75 o C for 8 h gave 2alkyl-3,5-dinitrofuran<br />

8a,b (17–24%) <strong>and</strong> tetrasubstituted<br />

dihydrofuran 9a,b (29–30%) (S<strong>chem</strong>e 2).


700<br />

Structures 9a,b were supported by NMR spectral data<br />

<strong>and</strong> elemental analyses. The 15 N NMR spectrum of 2ethyl-2,5,5-trinitro-2,5-dihydrofuran<br />

9b showed signals<br />

in the region -12.1 – +2.3 ppm characteristic of a nitro<br />

group (Fig.1).<br />

Fig. 1 1 H – 15 N gHMBC spectrum of 9b<br />

The structure of compound 9b is also supported by correlation<br />

between 1 H <strong>and</strong> 13 C over 3 bonds <strong>and</strong> by the 1 H<br />

– 13 C gHMBC spectrum. Total correlations for compound<br />

9b based on 1 H – 15 N <strong>and</strong> 1 H – 13 C gHMBC experiments<br />

are given in Figure 2.<br />

(−10.9)<br />

-O<br />

O<br />

N +<br />

-O<br />

(−12.2)<br />

N +<br />

127.1<br />

O<br />

6.70 6.89<br />

150.2 139.6<br />

O<br />

124.5<br />

O<br />

N +<br />

2.43, 2.59<br />

28.8<br />

Fig. 2 Chemical shift of 1 H, 13 C <strong>and</strong> 15 N for 9b<br />

(ii) <strong>Dinitro</strong>thiophenes<br />

2.3<br />

O<br />

1.04<br />

7.4<br />

After “countless futile attempts 14 ” thiophene was first<br />

successfully nitrated by Meyer <strong>and</strong> Stadler when air<br />

saturated with thiophene was passed through fuming<br />

nitric acid to give mononitro- <strong>and</strong> dinitro-thiophenes. 15<br />

Direct nitration is still the most usual method for the<br />

preparation of nitrothiophenes. Thus, for instance, benzoyl<br />

nitrate, 16 acetyl nitrate 17 <strong>and</strong> various mixtures of<br />

nitric acid <strong>and</strong> acetic anhydride 18 are effective nitrating<br />

agents for thiophene itself. Other routes such as cyclization<br />

are less convenient or general. 19<br />

Nitration is one of the least selective of electrophilic<br />

subtitution processes in benzenoid systems; 20 thus the<br />

thiophene nucleus undergoes some β-nitration even<br />

when α positions are unsubstituted. Nitration of 2- or 3nitrothiophene<br />

is conveniently effected with fuming<br />

nitric acid in the presence of sulfuric acid 21 or<br />

trifluoroacetic acid. 22 Isomer proportions formed by<br />

nitration of 2- <strong>and</strong> 3-nitrothiophenes in trifluoroacetic<br />

acid were determined indirectly 22 by a combination of<br />

NMR, GLC <strong>and</strong> mass-spectral analyses of products from<br />

nitration of mixtures of the 2- <strong>and</strong> 3-nitrothiophenes with<br />

fuming nitric acid. Blatt obtained 2,5-dinitrothiophene<br />

(15%) from a crude mixture of dinitrothiophene isomers.<br />

3 Newcombe separated dinitrothiophenes by column<br />

chromatography. 23<br />

A mixture of nitric acid <strong>and</strong> acetic anhydride is effective<br />

for mononitration of 2-alkylthiophenes. 24 An electrondeficient<br />

substituent in addition to the 2-alkyl group<br />

requires the application of HNO3–H2SO4. 24a,25 3-Nitrosubstituted<br />

thiophene byproducts were isolated in up to<br />

19% yields after direct nitration of 2-alkylthiophenes. 26<br />

2-Alkyl-3-nitrothiophenes were prepared in yields of<br />

55.5–82.0% by decarboxylation 27 or desulfonation 28<br />

reactions.<br />

Treatment of 2-methylthiophene 10a with 1.3 molar<br />

equivalents of acetyl nitrate (generated in situ by reaction<br />

of 1.3 equivalents of nitric acid with 10.5 equivalents<br />

of acetic anhydride) at -30 o C for 3 h followed by<br />

reaction of 2-methyl-5-nitrothiophene 11a with another<br />

1.1 molar equivalents of acetyl nitrate at –30 o C for 3 h,<br />

gave 2-methyl-3,5-dinitrothiophene 12a (method i) in<br />

35% overall yield (S<strong>chem</strong>e 3). Attempts to use a single<br />

batch (method ii) of acetyl nitrate (3.0 equiv) in acetic<br />

anhydride (8.9 equiv) with 2-ethylthiophene 10b at -40 –<br />

-45 o C for 6 h <strong>and</strong> then at room temperature for 18 h<br />

gave 2-ethyl-5-nitrothiophene 11b (40%) as a major<br />

product together with 2-ethyl-3,5-dinitrothiophene 12b<br />

(24%) <strong>and</strong> 2-methyl-5-nitrothiophen-1-oxide 13b (4%).<br />

One-step dinitration (method iii) of 2-alkylthiophene<br />

10a,b with 5 equivalents of acetic nitrate gave 67–70%<br />

of 12a,b (S<strong>chem</strong>e 3). Products 13a,b were characterized<br />

by 1 H, 13 C NMR <strong>and</strong> IR spectra together with elemental<br />

analyses <strong>and</strong> are consistent with previous data published<br />

in the literature. 29


701<br />

R<br />

O 2 N<br />

S<br />

10a R=CH 3<br />

10b R=C 2 H 5<br />

S<strong>chem</strong>e 3<br />

(i)10.5 eq.(Ac) 2 O,<br />

1.3 eq.HNO 3 , -30 o C, 3 h,<br />

25 o C, 12 h, 59%<br />

R NO<br />

S 2<br />

(ii) 12b 24%<br />

(iii) 12a 67%<br />

(iii) 12b 70%<br />

11a,<br />

R=CH 3<br />

(i)1.1 eq.(Ac) 2 O,<br />

1.1 eq.HNO 3 , -30 o C, 3 h,<br />

25 o C, 12 h, 60%<br />

(ii) 8.9 eq.(Ac) 2 O, 3.0 eq.HNO 3 ,<br />

-40-45 o C, 6 h, 25 o C, 18 h<br />

+<br />

(iii) <strong>Dinitro</strong>thiazoles<br />

(iii) 8.9 eq.(Ac) 2 O, 5.0 eq.HNO 3 ,<br />

-40-45 o C, 6 h, 25 o C, 18 h<br />

+<br />

R<br />

S<br />

NO2 R<br />

S<br />

NO2 (ii) 11b 40%<br />

(iii) 11a 12%<br />

(iii) 11b 11%<br />

O<br />

(ii) 13b 4%<br />

(iii) 13a 10%<br />

(iii) 13b 8%<br />

12a,<br />

R=CH 3<br />

Parent 30 obtained 2,4-dinitrothiazole 16a from 2nitrothiazole<br />

15a with boron trifluoride−nitrogen tetroxide<br />

complex; Prijs 31 dinitrated 5-acylaminothiazole 17c<br />

to give 16c using potassium nitrate in fuming sulfuric<br />

acid (S<strong>chem</strong>e 4).<br />

R<br />

R<br />

S<br />

N<br />

14a,b<br />

S<br />

N<br />

17c<br />

NH 2<br />

i)<br />

iv)<br />

N<br />

R NO<br />

S 2<br />

ii) or iii)<br />

O 2 N<br />

15a, R=H, 28%<br />

15b, R=CH 3 , 21%<br />

N<br />

R NO<br />

S 2<br />

16a, R=H<br />

16b, R=CH 3<br />

16c, R=NHCOCH 3<br />

S<strong>chem</strong>e 4 i) aq. HBF4, NaNO2, 4 o C, 20 min; NaNO2,<br />

Cu, 100 o C, 30 min; ii) BF3N2O4, CH3NO2, 101 o C, 1 h<br />

(80% for 16a 30 ); iii) NH4NO3, TFA, TFAA, 0–5 o C, 0.5<br />

h; 15a,b, 0–5 o C; 25 o C for 20 h <strong>and</strong> 70–80 o C for 4 h<br />

(34% for 16a) or 0.5 h (91% for 16b); iv) KNO3, Oleum,<br />

0–5 o C (37% for 16c 31 ).<br />

2-Aminothiazoles 14a,b on diazotization <strong>and</strong> treatment<br />

with NaNO2 give 2-nitrothiazoles 15a,b, which can be<br />

further nitrated by trifluoroacetyl nitrate. Nitration of<br />

15a by heating the reaction mixture at 70–80 o C for 4 h,<br />

forms dinitro derivative 16a (34%). A 5-methyl group<br />

facilitates the preparation of 16b (91%) using similar<br />

conditions (S<strong>chem</strong>e 4).<br />

(iv) <strong>Dinitro</strong>pyrazoles<br />

4-Unsubstituted pyrazoles are usually nitrated at position<br />

4, 32 facilitated by electron-donating <strong>and</strong> retarded by<br />

electron-withdrawing substituents. Thus, 4-nitropyrazole<br />

<strong>and</strong> 1-methyl-4-nitropyrazole do not undergo nitration. 33<br />

However, on prolonged heating with mixed acid 1methylpyrazole<br />

affords the 4-nitro– <strong>and</strong> 3,4-dinitro–<br />

derivatives (51 <strong>and</strong> 13%, respectively). 34 1,5-Dimethyl-<br />

4-nitropyrazole, on heating with nitric acid <strong>and</strong> oleum,<br />

similarly gives 1,5-dimethyl-3,4-dinitropyrazole. 35 Rare<br />

simultaneous introduction of two nitro groups into the<br />

pyrazole ring occurs 36 in low yield under vigorous conditions.<br />

Pyrazoles containing two adjacent nitro groups were<br />

previously prepared in three-steps (average 40% yield)<br />

by thermal rearrangement of N-nitropyrazoles <strong>and</strong> further<br />

nitration with mixed acid. 33 We now report a convenient<br />

synthesis of 3-methyl-4,5-dinitropyrazoles 20a–c<br />

by oxidation of 3-methyl-4-nitro-5-amino-1H-pyrazoles<br />

19a−c with 50% hydrogen peroxide - sulfuric acid at 0<br />

o<br />

C for 16 h in 40–81% yields. By contrast, diazotization<br />

of 19a with 5 equivalents of sodium nitrite in 2N sulfuric<br />

o<br />

acid at 50 C for 1h led to difficult-to-separate mixtures<br />

of di- 20a, 33%) <strong>and</strong> mono- (4%) nitro derivatives. Intermediates<br />

19a-c were easily prepared by a modifica-<br />

37<br />

tion of the treatment of 4-nitro-5-methylisoxazole 18<br />

with the corresponding hydrazines in water for 1 h or<br />

ethanol for 15 h under reflux in 30–87% yields (S<strong>chem</strong>e<br />

5).<br />

O 2 N<br />

C<br />

H 3<br />

O N<br />

18<br />

O2N RNHNH2 , reflux<br />

water, 1 h or<br />

ethanol, 15 h<br />

N<br />

H 2<br />

N N<br />

R<br />

CH 3<br />

19a, R=H, 75% a , 87% b<br />

19b, R=CH 3 , 30% a , 86% b<br />

19c, R=Ph, 81% b<br />

a yield of 19 given for preparation in water<br />

b yield of 19 given for preparation in ethanol<br />

S<strong>chem</strong>e 5<br />

H 2 O 2 , H 2 SO 4<br />

O 2 N<br />

O2N 0 to 25 oC, 16 h<br />

N N<br />

R<br />

CH 3<br />

20a, R=K, 40%<br />

20b, R=CH 3 , 81%<br />

20c, R=Ph, 52%<br />

(v) One-pot synthesis of 1-alkyl-3,5-dinitro-1H-<br />

[1,2,4]triazoles<br />

Nitrotriazoles are important in fields as diverse as medicine,<br />

38 <strong>and</strong> agro<strong>chem</strong>icals. 39 They are also photosensitive<br />

40 <strong>and</strong> energetic 41 with high density, high energy, low<br />

sensitivity <strong>and</strong> good heat resistance, <strong>and</strong> thus ideally<br />

insensitive high explosives for the space program <strong>and</strong><br />

deep oil-well drilling. 42<br />

Three ring-nitrogens significantly r<strong>edu</strong>ce reactivity toward<br />

electrophilic substitution 43 <strong>and</strong> the only known<br />

direct nitration is of 1,2,4-triazol-3-one. 44 1-Alkyl-3,5dinitro-1H-[1,2,4]triazoles<br />

were previously synthesized<br />

in two steps (overall 40%) (i) by oxidation 5a or S<strong>and</strong>meyer<br />

reaction 45 of 3,5-diamino-1H-[1,2,4]triazole, followed<br />

(ii) by alkylation of the intermediate 3,5-dinitro-<br />

1H-[1,2,4]triazole with an alkyl halide or sulfate. 46<br />

We now report a convenient one-pot synthesis of 1alkyl-3,5-dinitro-1H-[1,2,4]triazoles<br />

22a,b by conversion<br />

of 1-alkyl-3,5-amino-1H-[1,2,4]triazoles, prepared<br />

in situ from dicy<strong>and</strong>iamide 21 <strong>and</strong> alkylhydrazines, to<br />

22a,b in 23–43% yields. The proc<strong>edu</strong>re was optimized in


702<br />

terms of the ratio of methylhydrazine to dicy<strong>and</strong>iamide<br />

to sodium nitrite, the reaction time <strong>and</strong> the temperature.<br />

Equimolar amounts of methylhydrazine <strong>and</strong> dicy<strong>and</strong>iamide<br />

21 in aqueous nitric acid at 50 o C for 5 h for cyclization<br />

<strong>and</strong> 10 molar equivalents of sodium nitrite at 50<br />

o C for 1.5 h for diazotization proved to be appropriate<br />

for the safe, large scale preparation of 1-alkyl-3,5dinitro-1H-[1,2,4]triazoles<br />

22a,b (S<strong>chem</strong>e 6). Assigned<br />

structures of 22a,b were supported by NMR spectral<br />

data in agreement with the published data. 47<br />

N<br />

H 2<br />

NH 2<br />

S<strong>chem</strong>e 6<br />

N CN<br />

i) RNHNH 2 , HNO 3<br />

ii) NaNO 2 , H 2 SO 4<br />

O 2 N<br />

N<br />

N N<br />

R<br />

NO 2<br />

21 22a, R=CH 3 43%<br />

22b, R=C 2 H 5 23%<br />

+<br />

O 2 N<br />

N<br />

N N<br />

R<br />

23a<br />

Use of 1.4 molar equivalents of methylhydrazine at<br />

shorter (1 h) reaction time led to the formation of 1methyl-3-azido-5-nitro-1H-[1,2,4]triazole<br />

23a (7%) as a<br />

byproduct. Possible formation of isomeric 5-azido- derivative<br />

(24) from 1-methyl-3,5-dinitro-1H-<br />

[1,2,4]triazole 22a is reported in the literature <strong>and</strong> proceeds<br />

by treatment with acetyl hydrazide or hydrazine<br />

followed by reaction with HONO (S<strong>chem</strong>e 7). 48<br />

N 3<br />

N<br />

N N<br />

CH 3<br />

NO 2<br />

AcNHNH 2<br />

O 2 N<br />

N<br />

N N<br />

CH 3<br />

NO 2<br />

NH 2 NH 2<br />

H 2 NHN<br />

24 22a 25<br />

HONO<br />

S<strong>chem</strong>e 7<br />

Conclusions<br />

N<br />

N N<br />

CH 3<br />

N 3<br />

NO 2<br />

Novel, advantageous approaches for the syntheses of<br />

dinitro-<strong>furans</strong>, -thiophenes, <strong>and</strong> -thiazoles, have been<br />

developed using fuming nitric acid, acetyl- <strong>and</strong><br />

trifluoroacetyl- nitrates. Convenient methods for dinitro-<br />

pyrazoles <strong>and</strong> 1H-[1,2,4]triazoles from the corresponding<br />

amino derivatives by oxidation or diazotization<br />

are also described. These routes broaden the range of<br />

availability of dinitro derivatives of five-membered heterocycles,<br />

which are compounds of major synthetic,<br />

biological, <strong>and</strong> energetic importance. The present proc<strong>edu</strong>res<br />

require only simple manipulations <strong>and</strong> low-priced<br />

reagents <strong>and</strong> allow syntheses of dinitro-<strong>furans</strong>,<br />

-thiophenes <strong>and</strong> azoles in yields which are comparable<br />

<strong>and</strong>, in many cases, higher than those in previously reported<br />

methods.<br />

Experimental Section<br />

General. Melting points were determined using a capillary<br />

melting point apparatus equipped with a digital<br />

thermometer <strong>and</strong> are uncorrected. The elemental analyses<br />

were performed on a Carlo Erba EA-1108 instrument.<br />

1 H (300 MHz), 13 C (75 MHz) NMR spectra were<br />

recorded in CDCl3 (with TMS as the internal st<strong>and</strong>ard),<br />

unless otherwise stated. Compound 9b was characterized<br />

by indirect detection correlation experiment. 1 H – 15 N<br />

gHMBC <strong>and</strong> 1 H – 13 C gHMBC spectra were recorded on<br />

INOVA 500 in CDCl3 with nitromethane as internal<br />

st<strong>and</strong>ard (0 ppm in 15 N spectrum for 1 H – 15 N gHMBC<br />

preliminary calibrations). 49 All the reactions were carried<br />

out in flame dried glassware. Purification by column<br />

chromatography was performed on silica gel 200-425<br />

mesh. 4-Nitro-5-methylisoxazole 18 was synthesized<br />

according to a published proc<strong>edu</strong>re. 50<br />

2-Alkyl-5-nitrofuran 7a-c; General Proc<strong>edu</strong>re<br />

To 5 mL of acetic anhydride at –30 o C was added 0.37<br />

mL (8.4 mmol) of fuming nitric acid, while maintaining<br />

the temperature below –20 o C. The acetyl nitrate solution<br />

was cooled to –30 o C <strong>and</strong> a solution containing (5 mmol)<br />

of redistilled 2-alkylfuran 6 in 2 mL of acetic anhydride<br />

was added slowly, while maintaining the temperature<br />

below –30 o C. When addition was complete, the reaction<br />

was allowed to stir for an additional 0.5 h, poured into<br />

ice, <strong>and</strong> neutralized to pH 6 by the slow addition of a<br />

saturated solution of sodium carbonate. The mixture was<br />

extracted with ether, dried over MgSO4 <strong>and</strong> concentrated<br />

under r<strong>edu</strong>ced pressure. The resulting residue was subjected<br />

to silica gel chromatography to give 7a-c.<br />

2-Methyl-5-nitrofuran (7a)<br />

Yellowish prisms (39%); mp 45.0–46.0 o C (Lit. 13a mp<br />

43.0–44.5 o C).<br />

1 H NMR δ 7.26 (d, J = 3.7 Hz, 1H), 6.29 (br d, J = 3.6<br />

Hz, 1H), 2.45 (s, 1H).<br />

13 C NMR δ 156.8, 151.3, 113.2, 110.0, 14.1.<br />

Anal Calcd for C5H5NO3: C, 47.25; H, 3.97; N, 11.02.<br />

Found: C, 47.50; H, 3.88; N, 10.88.<br />

2-Ethyl-5-nitrofuran (7b)<br />

Yellow oil (43%) (Lit. 51 bp 77.0–78.0 o C/2.5–3.0 mm).<br />

1 H NMR δ 7.27 (d, J = 3.6 Hz, 1H), 6.29 (d, J = 3.6 Hz,<br />

1H), 2.78 (q, J = 7.6 Hz, 2H), 1.32 (t, J = 7.6 Hz, 3H).<br />

13 C NMR δ 162.1, 151.2, 113.1, 108.5, 21.8, 11.4.<br />

Anal Calcd for C6H7NO3:<br />

C, 51.06; H, 5.00; N, 9.92.<br />

Found: C, 50.70; H, 4.91; N, 9.83.<br />

2-(n-Butyl)-5-nitrofuran (7c)<br />

Yellow oil (36%).<br />

1 H NMR δ 7.26 (d, J = 3.6 Hz, 1H), 6.27 (d, J = 3.7 Hz,<br />

1H), 2.73 (t, J = 7.6 Hz, 2H), 1.70 (quintet, J = 7.6Hz,<br />

2H), 1.40 (sextet, J = 7.6 Hz, 2H), 0.95 (t, J = 7.4 Hz,<br />

3H).


703<br />

13<br />

C NMR δ 161.1, 151.3, 113.1, 109.1, 29.4, 28.1, 22.1,<br />

13.6.<br />

Anal Calcd for C8H11NO3: C, 56.80; H, 6.55; N, 8.28.<br />

Found: C, 56.58; H, 6.64; N, 8.45.<br />

Nitration of 2-alkyl-5-nitro<strong>furans</strong> 7a,b with excess of<br />

fuming nitric acid; General proc<strong>edu</strong>re<br />

Fuming nitric acid (1.0 mL, 21.7 mmol) was added to<br />

solution of 2-alkyl-5-nitrofuran 7a,b (2.0 mmol) in acetic<br />

acid (4 mL) <strong>and</strong> the whole was heated at 70-75 o C for<br />

8 h. After cooling, the reaction mixture was poured onto<br />

ice <strong>and</strong> neutralized to pH 7 by the slow addition of sodium<br />

bicarbonate below 5 o C. The solid was filtered <strong>and</strong><br />

washed with ethyl acetate. The products were extracted<br />

from the filtrate with ethyl acetate, the combined organic<br />

phase was dried over MgSO4 <strong>and</strong> filtered. Solvent was<br />

evaporated under r<strong>edu</strong>ced pressure <strong>and</strong> the residue was<br />

chromatographed on silica gel using hexanes/ethyl acetate<br />

(v/v=5:1) to elute the products in the order 2-alkyl-<br />

3,5-dinitrofuran 8a,b <strong>and</strong> 2-alkyl-2,5,5-trinitro-2,5- dihydrofuran<br />

9a,b.<br />

2-Methyl-3,5-dinitrofuran (8a)<br />

Yellowish needles (17%); mp 73.0–74.0 o C (lit. 13a mp<br />

71.0–72.5 o C).<br />

1<br />

H NMR δ 7.73 (s, 1H), 2.89 (s, 3H).<br />

13<br />

C NMR δ 156.7, 148.2, 136.2, 106.7, 14.4.<br />

Anal Calcd for C5H4N2O5: C, 34.90; H, 2.34; N, 16.28.<br />

Found: C, 35.20; H, 2.22; N, 15.97.<br />

2-Ethyl-3,5-dinitrofuran (8b)<br />

Yellowish oil (24%).<br />

1<br />

H NMR δ 7.72 (s, 1H), 3.28 (q, J = 7.6 Hz, 2H), 1.43 (t,<br />

J = 7.6 Hz, 3H).<br />

13<br />

C NMR δ 161.2, 148.3, 135.3, 106.7, 21.7, 10.9.<br />

Anal Calcd for C6H6N2O5: C, 38.72; H, 3.25; N, 15.05.<br />

Found: C, 39.01; H, 3.18; N, 15.05.<br />

2-(n-Butyl)-3,5-dinitrofuran (8c) obtained by nitration<br />

of 7c with concentrated HNO3<br />

Yellowish oil (7%).<br />

1<br />

H NMR δ 7.72 (s, 1H), 3.24 (t, J = 7.8 Hz, 2H), 1.81<br />

(quintet, J = 7.7 Hz, 2H), 1.46 (sextet, J = 7.6 Hz, 2H),<br />

0.99 (t, J = 7.3 Hz, 3H).<br />

13<br />

C NMR δ 160.7, 148.2, 135.6, 106.7, 29.0, 27.7, 22.3,<br />

13.5.<br />

Anal Calcd for C8H10N2O5: C, 44.86; H, 4.71; N, 13.06.<br />

Found: C, 45.22; H, 4.83; N, 12.97.<br />

2-Methyl-2,5,5-trinitro-2,5-dihydrofuran (9a)<br />

Yellow oil (29%).<br />

1<br />

H NMR δ 6.93 (d, J = 5.6 Hz, 1H), 6.79 (d, J = 5.8 Hz,<br />

1H), 2.25 (s, 3H).<br />

13<br />

C NMR δ 139.9, 128.7, 127.0, 120.9, 21.6.<br />

Anal. Calcd for C5H5N3O7: C, 27.41; H, 2.30; N, 19.18.<br />

Found: C, 27.80; H, 2.09; N, 18.65.<br />

2-Ethyl-2,5,5-trinitro-2,5-dihydrofuran (9b)<br />

Yellowish oil (30%).<br />

1<br />

H NMR δ 6.88 (d, J = 5.6 Hz, 1H), 6.70 (d, J = 5.8 Hz,<br />

1H), 2.57 (dq, J = 16.2, 7.5 Hz, 1H), 2.40 (dq, J = 16.2,<br />

7.5 Hz, 1H), 1.05 (t, J = 7.5 Hz, 3H).<br />

13<br />

C NMR δ 139.4, 128.7, 126.9, 124.2, 28.5, 7.1.<br />

Anal. Calcd for C6H7N3O7: C, 30.91; H, 3.03; N, 18.02.<br />

Found: C, 31.31; H, 2.95; N, 17.48.<br />

2-Methyl-3,5-dinitrothiophene 12a from 10a via twosteps<br />

(method i)<br />

2-Methyl-5-nitrothiophene 11a<br />

2-Methylthiophene 10a (0.982 g, 10 mmol) in acetic<br />

anhydride (5 g, 49 mmol) was added to a mixture of<br />

acetic anhydride (5 g, 49 mmol) <strong>and</strong> fuming nitric acid<br />

(0.82 g, 13 mmol) at -30 o C for 3 h. The reaction mixture<br />

was stirred for 12 h at room temperature, poured onto ice<br />

<strong>and</strong> neutralized with saturated sodium bicarbonate solution.<br />

The product was extracted with methylene chloride,<br />

the organic phase was dried over anhydrous sodium<br />

sulfate <strong>and</strong> the solvent was removed under r<strong>edu</strong>ced pressure.<br />

The residue was purified by silica gel column using<br />

5% ethyl acetate in hexanes as an eluent to give (0.839 g,<br />

59%) of 2-methyl-5-nitrothiophene 11a as brownish<br />

microcrystals. NMR data <strong>and</strong> mp of 11a are in agreement<br />

with those for authentic sample obtained by<br />

method iii.<br />

2-Methyl-3,5-dinitrothiophene 12a<br />

2-Methyl-5-nitrothiophene 11a (0.5 g, 3.5 mmol) was<br />

added to a mixture of acetic anhydride (0.39 g, 3.84<br />

mmol) <strong>and</strong> fuming nitric acid (0.24 g, 3.84 mmol) at -30<br />

o<br />

C <strong>and</strong> the whole was stirred at room temperature for 15<br />

h. The reaction mixture was poured onto ice. The solid<br />

was filtered, washed with saturated solution of sodium<br />

bicarbonate <strong>and</strong> water to give 2-methyl-3,5dinitrothiophene<br />

12a (0.4 g, 60 %) as a yellow microcrystals.<br />

NMR data <strong>and</strong> mp of 12a are in agreement with<br />

those for authentic sample obtained by method iii.<br />

Nitration of 2-alkylthiophenes 10a,b with excess of<br />

acetyl nitrate; General proc<strong>edu</strong>re (method ii <strong>and</strong> iii)<br />

Fuming nitric acid (1.25 mL, 27.2 mmol, method ii) or<br />

(2.05 mL, 44.6 mmol, method iii) was added to acetic<br />

anhydride (7.5 mL, 79.5 mmol) at temperature below -10<br />

o<br />

C. After 0.5 h the acetyl nitrate was cooled to -40÷-45<br />

o<br />

C <strong>and</strong> a solution of 2-alkylthiophene (8.9 mmol) in<br />

acetic anhydride (7.5 mL) was slowly added, while<br />

maintaining the temperature below -40 o C. When the<br />

addition was complete, the reaction was allowed to stir at<br />

this temperature for an additional 5 h <strong>and</strong> at room temperature<br />

for 12 h. Then the reaction mixture was poured<br />

onto ice, <strong>and</strong> the whole was neutralized to pH 7 by the<br />

slow addition of a sodium bicarbonate below 5 o C. The<br />

solid was filtered <strong>and</strong> washed with ethyl acetate. The<br />

products were extracted from the filtrate with ethyl acetate,<br />

the combined organic phase was dried over MgSO4<br />

<strong>and</strong> filtered. Solvent was evaporated under r<strong>edu</strong>ced pressure<br />

<strong>and</strong> the residue was chromatographed on silica gel<br />

using hexanes/ethyl acetate (v/v=8:1) to elute the prod-


704<br />

ucts in the order 2-alkyl-5-nitrothiophene 11, 2-alkyl-<br />

3,5-dinitrothiophene 12 <strong>and</strong> 2-alkyl-5-nitrothiophene 1oxide<br />

13.<br />

2-Methyl-5-nitrothiophene (11a), method iii<br />

Brownish prisms (12%), mp 25.0–27.0 o C (Lit. 24a mp<br />

25.0–27.0 o C).<br />

1 H NMR δ 7.76 (d, J = 4.1 Hz, 1H), 6.76 (dd, J = 4.1,<br />

0.9 Hz, 1H) 2.55 (s, 3H).<br />

13 C NMR δ 149.4, 149.2, 129.1, 125.5, 16.2.<br />

2-Ethyl-5-nitrothiophene (11b), method iii<br />

Yellow oil (11%), (Lit. 52 no NMR data or bp were reported).<br />

1 H NMR δ 7.78 (d, J = 4.1 Hz, 1H), 6.78 (d, J = 4.1 Hz,<br />

1H), 2.89 (q, J = 7.6 Hz, 2H), 1.36 (t, J = 7.6 Hz, 3H).<br />

13 C NMR δ 156.8, 149.3, 129.0, 123.7, 24.2, 15.3.<br />

Anal. Calcd for C6H7NO2S: C, 45.85; H, 4.49; N, 8.91.<br />

Found: C, 45.88; H, 4.45; N, 9.11.<br />

2-Methyl-3,5-dinitrothiophene (12a), method iii<br />

Yellow microcrystals (67%), mp 97.0–99.0 o C (Lit. 24a<br />

mp 99.0–100.0 o C).<br />

1 H NMR δ 8.35 (s, 1H), 2.91 (s, 3H).<br />

13 C NMR δ 149.4, 145.3, 142.2, 124.3, 16.2.<br />

2-Ethyl-3,5-dinitrothiophene (12b), method iii<br />

Yellow oil (70%), (Lit. 53 163–165/9 mm).<br />

1<br />

H NMR δ 8.36 (s, 1H), 3.39 (q, J = 7.5 Hz, 2H), 1.48 (t,<br />

J = 7.5 Hz, 3H).<br />

13<br />

C NMR δ 157.4, 145.4, 141.3, 124.5, 23.8, 13.8.<br />

Anal. Calcd for C6H6N2O4S: C, 35.64; H, 2.99; N, 13.86.<br />

Found: C, 35.82; H, 2.83; N, 13.57.<br />

2-Methyl-5-nitrothiophene 1-oxide (13a), method iii<br />

Brownish oil (10%).<br />

1<br />

H NMR δ 7.56 (d, J = 6.2 Hz, 1H), 6.42 (d, J = 6.2 Hz,<br />

1H), 2.29 (s, 1H).<br />

13<br />

C NMR δ 193.7, 152.6, 133.0, 100.2, 26.0.<br />

Anal Calcd for C5H5NO3S: C, 37.73; H, 3.17; N, 8.80.<br />

Found: C, 38.07; H, 3.18; N, 8.75.<br />

IR (Firm, cm -1 ): 3081, 2934, 2872, 1706, 1556, 1443,<br />

1383, 1340, 1051 (S=O).<br />

2-Ethyl-5-nitrothiophene 1-oxide (13b), method iii<br />

Brownish oil (8%).<br />

1 H NMR δ 7.59 (d, J = 6.2 Hz, 1H), 6.40 (d, J = 6.2 Hz,<br />

1H), 2.58 (dq, J = 7.0, 14.3 Hz, 2H), 1.12 (t, J = 7.3 Hz,<br />

3H).<br />

13 C NMR δ 193. 7, 151.5, 133.2, 105.9, 32.5, 9.1.<br />

Anal Calcd for C6H7NO3S: C, 41.61; H, 4.07; N, 8.09.<br />

Found: C, 41.61; H, 3.91; N, 8.35.<br />

IR (Firm, cm -1 ): 3083, 2941, 2882, 1714, 1555, 1458,<br />

1351, 1326, 1058 (S=O).<br />

2-Nitrothiazoles 15a,b; General Proc<strong>edu</strong>re<br />

2-Aminothiazole 14a,b (33 mmol) was dissolved in a<br />

solution of 100 mL of water <strong>and</strong> 20 g of fluoroboric acid<br />

solution (42%). This solution was cooled to 4 o C <strong>and</strong><br />

maintained at this temperature with an ice-water bath<br />

during the addition of 2.3 g (33 mmol) of sodium nitrite<br />

dissolved in 10 mL of water. The sodium nitrite solution<br />

was added to the amine solution, using moderate stirring.<br />

The diazotization required 20 min. At the end of diazotization,<br />

the reaction mixture was added immediately to a<br />

boiling solution of 25 g of sodium nitrite in 100 mL of<br />

water containing 5 g of copper powder <strong>and</strong> the whole<br />

was stirred for 0.5 h at this temperature. After cooling,<br />

the product was extracted with ether, the organic layer<br />

was dried over MgSO4, <strong>and</strong> the solvent was evaporated<br />

under r<strong>edu</strong>ced pressure. Residue was recrystallized from<br />

hexanes to give 2-nitrothiazoles 15a,b.<br />

2-Nitrothiazole (15a)<br />

Brown needles from hexanes (28%); mp 77–78 o C (lit. 54<br />

mp 77–78 o C).<br />

1<br />

H NMR δ 7.92 (d, J = 3.2 Hz, 1H), 7.72 (d, J = 3.2 Hz,<br />

1H).<br />

13<br />

C NMR δ 166.6, 142.5, 127.1.<br />

2-Nitro-5-methylthiazole (15b)<br />

Yellow needles (21%) mp 60–61 o C (lit. 55 mp 60–61 o C).<br />

1<br />

H NMR δ 7.58 (d, J = 1.0 Hz, 1H), 2.61 (d, J = 1.0 Hz,<br />

3H).<br />

13<br />

C NMR δ 163.7, 145.0, 140.7, 12.4.<br />

Anal Calcd for C4H4N2O2S: C, 33.33; H, 2.80; N, 19.43.<br />

Found: C, 33.68; H, 2.64; N, 19.27.<br />

2,4-<strong>Dinitro</strong>thiazoles 16a,b; General Proc<strong>edu</strong>re<br />

Trifluoroacetic anhydride (2.5 g, 12 mmol) was added to<br />

solution of ammonium nitrate (0.67 g, 12 mmol) in<br />

trifluoroacetic acid (2.8 mL) at 0-5 o C. The reaction<br />

mixture was stirred for 0.5 h <strong>and</strong> then 2-nitrothiazole<br />

15a,b (3.5 mmol) was added in small portions to the<br />

suspension at 0 ÷ +5 o C. After addition, the reaction<br />

temperature was kept at 25 o C for 20 h, <strong>and</strong> then at 70–<br />

80 o C for 1–4 h. The cooled reaction mixture was poured<br />

into ice water <strong>and</strong> the precipitated solid was filtered <strong>and</strong><br />

washed with water to give 2,4-dinitrothiazole 16a,b. An<br />

analytical sample was recrystallized from benzene.<br />

2,4-<strong>Dinitro</strong>thiazole (16a)<br />

Yellow needles (34%); mp 144–146 o C (lit. 30 mp 145.5–<br />

146.5 o C).<br />

1<br />

H NMR (acetone-d6) δ 9.14 (s, 1H).<br />

13<br />

C NMR δ 164.5, 152.3, 129.8.<br />

5-Methyl-2,4-dinitrothiazole (16b)<br />

Yellowish prisms (91%); mp 130–131 o C.<br />

1<br />

H NMR δ 3.00 (s, 3H).<br />

13<br />

C NMR δ 158.2, 148.7, 145.7, 14.3.<br />

Anal Calcd for C4H3N3O4S: C, 25.40; H, 1.60; N, 22.22.<br />

Found: C, 25.72; H, 1.27; N, 21.82.


705<br />

5-Amino-3-methyl-4-nitro-1H-pyrazoles (19a−c);<br />

General Proc<strong>edu</strong>re<br />

Hydrazine (7.81 mmol) was added to a solution of 5methyl-4-nitroisoxazole<br />

18 (1.0 g, 7.81 mmol) in ethanol<br />

(20 mL) at -5 o C <strong>and</strong> the mixture was stirred for 1.0 h,<br />

heated under reflux for 15 h <strong>and</strong> concentrated to 5.0 mL<br />

under r<strong>edu</strong>ced pressure. The solid was filtered <strong>and</strong> dried<br />

to give 5-amino-3-methyl-4-nitro-1H-pyrazole 19a−c as<br />

yellow microcrystals.<br />

5-Amino-3-methyl-4-nitro-1H-pyrazole (19a)<br />

Yellow microcrystals (87%); mp 206–208 o C (lit. 37 mp<br />

206–207 o C).<br />

1<br />

H NMR (DMSO-d6) δ 11.96 (br s, 1H), 7.18 (br s, 2H),<br />

2.31 (s, 3H).<br />

13<br />

C NMR (DMSO-d6) δ 148.0, 143.8, 116.3, 14.5.<br />

5-Amino-1,3-dimethyl-4-nitro-1H-pyrazole (19b)<br />

Yellow microcrystals (86%); mp 134–136 o C (lit. 37 mp<br />

135–136 o C).<br />

1<br />

H NMR (DMSO-d6) δ 7.33 (s, 2H), 3.51 (s, 3H), 2.29<br />

(s, 3H).<br />

13<br />

C NMR (DMSO-d6) δ 146.6, 143.0, 116.0, 34.3, 14.1.<br />

5-Amino-3-methyl-4-nitro-1-phenyl-1H-pyrazole<br />

(19c)<br />

Yellow microcrystals (81%); mp 170–172 o C (lit. 37 mp<br />

170–172 o C).<br />

1<br />

H NMR (DMSO-d6) δ 7.56–7.45 (m, 5H), 7.43 (br s,<br />

2H), 2.40 (s, 3H).<br />

13<br />

C NMR (DMSO-d6) δ 146.2, 144.9, 136.8, 129.5,<br />

128.2, 124.4, 116.6, 14.4.<br />

Anal Calcd for C10H10N4O2: C, 55.04; H, 4.62; N, 25.67.<br />

Found: C, 55.38; H, 4.51; N, 25.62.<br />

3-Methyl-4,5-dinitro-1H-pyrazoles (20); General Proc<strong>edu</strong>re<br />

Hydrogen peroxide (50%, 0.5 mL) was added dropwise<br />

to a solution of 5-amino-3-methyl-4-nitropyrazole 19a−c<br />

(0.6 mmol) in concentrated sulfuric acid (1.0 mL) at 0 o C<br />

<strong>and</strong> stirred for 15 min. Additional hydrogen peroxide<br />

(1.50 mL) was slowly added to the reaction mixture at 0<br />

o<br />

C <strong>and</strong> then stirred at room temperature for 15 h. The<br />

reaction mixture was poured onto ice <strong>and</strong> extracted with<br />

ethyl acetate. The combined organic phases were washed<br />

with water, then saturated sodium chloride solution <strong>and</strong><br />

dried over anhydrous magnesium sulfate. The solvent<br />

was removed under r<strong>edu</strong>ced pressure <strong>and</strong> the crude<br />

products from 19b <strong>and</strong> c were purified by column chromatography<br />

on silica to give corresponding 3-methyl-<br />

4,5-dinitro-1H-pyrazoles 20b <strong>and</strong> c as yellow microcrystals.<br />

The crude product from 19a was dissolved in acetone<br />

(5 mL), potassium carbonate (0.35 g) was added to<br />

the solution <strong>and</strong> the mixture was stirred at room temperature<br />

for 8 h. The solid was filtered, washed with<br />

acetone <strong>and</strong> the filtrate concentrated under r<strong>edu</strong>ced pressure.<br />

The residue was purified by recrystallization from<br />

ethanol to give 3-methyl-4,5-dinitro-1H-pyrazole potassium<br />

salt 20a.<br />

3-Methyl-4,5-dinitro-1H-pyrazole potassium salt<br />

(20a)<br />

Yellow microcrystals (40%); mp 187.0–189.0 o C.<br />

1<br />

H NMR (DMSO-d6) δ 2.34 (s, 3H).<br />

13<br />

C NMR (DMSO-d6) δ 152.0, 146.6, 123.0, 14.0.<br />

Anal Calcd for C4H3KN4O4·0.5H2O: C, 21.92; H, 1.84;<br />

N, 25.56. Found: C, 21.90; H, 1.62; N, 25.16.<br />

1,3-Dimethyl-4,5-dinitro-1H-pyrazole (20b)<br />

Yellow microcrystals (81%); mp 34–36 o C.<br />

1<br />

H NMR (DMSO-d6) δ 4.12 (s, 3H), 2.48 (s, 3H).<br />

13<br />

C NMR (DMSO-d6) δ 145.0, 141.5, 126.9, 39.9, 13.1.<br />

Anal Calcd for C5H6N4O4: C, 32.27; H, 3.25; N, 30.10.<br />

Found: C, 32.46; H, 3.09; N, 29.82.<br />

3-Methyl-4,5-dinitro-1-phenyl-1H-pyrazole (20c)<br />

Yellow microcrystals (52%); mp 80–82 o C.<br />

1 H NMR (acetone-d6) δ 7.64 (br, s, 5H), 2.61 (s, 3H).<br />

13 C NMR (acetone-d6) δ 146.6, 141.8, 137.1, 131.8,<br />

131.0, 126.8, 125.4, 13.7.<br />

Anal Calcd for C10H8N4O2: C, 48.39; H, 3.25; N, 22.57.<br />

Found: C, 48.50; H, 2.91; N, 22.34.<br />

1-Alkyl-3,5-dinitro-1H-[1,2,4]triazoles (22a,b); General<br />

Proc<strong>edu</strong>re<br />

The appropriate alkylhydrazine (59.5 mmol) was added<br />

dropwise to water (50 mL) at 10-20 °C, followed by<br />

concentrated nitric acid (7. 65 mL, 10.86 g, 119 mmol)<br />

also added dropwise over 15 min at temperature below<br />

20 o C. The mixture was stirred at 20 o C for 15 min. Dicy<strong>and</strong>iamide<br />

21 (5 g, 59.5 mmol) was added to the reaction<br />

mixture at 20 o C <strong>and</strong> the whole stirred at 50–55 °C<br />

for 5 h. Then 35 mL of 2.5 M sulfuric acid (prepared by<br />

the addition of 4.75 mL concentrated sulfuric acid to<br />

30.25 mL of water) was added at 20 o C. The resulting<br />

solution was added dropwise (within 1.15 to 1.30 h) to a<br />

solution of sodium nitrite (41.0 g, 595 mmol) in water<br />

(100 mL) with rigorous stirring at 50 °C, followed by<br />

80% sulfuric acid (10 mL), dropwise at 50 o C. The mixture<br />

was heated under reflux for 15 min <strong>and</strong> cooled to<br />

10–15 o C. The product was extracted immediately with<br />

ethyl acetate (5 x 100 mL). The combined extracts were<br />

washed with saturated sodium bicarbonate solution (1 x<br />

20 mL), then with saturated sodium chloride solution (2<br />

x 50 mL) <strong>and</strong> dried over magnesium sulfate (10 g). Solvent<br />

was removed at 20–30 mm, 40–50 o C to give 6.0 g<br />

of a brown oil. Chloroform (70 mL) was added to this oil<br />

<strong>and</strong> evaporated at 20–30 mm again to eliminate ethyl<br />

acetate. The residue was stirred in chloroform (100 mL)<br />

for 0.5 h at 20 o C, the mixture was filtered, <strong>and</strong> the solvent<br />

was evaporated at 20–30 mm, 40–50 o C. The solid<br />

was recrystallized from chloroform or chromatographed<br />

on silica gel chromatography to give pure 1-alkyl-3,5dinitro-1H-[1,2,4]triazole<br />

22a,b.<br />

1-Methyl-3,5-dinitro-1H-[1,2,4]triazole (22a)<br />

Yellow prisms (43%); mp 97–99 o C (lit. 46a,47 mp 97–98.5<br />

o C).


706<br />

1 H NMR (DMSO-d6) δ 4.30 (s, 3H).<br />

13 C NMR (DMSO-d6) δ 156.4, 151.0, 41.4.<br />

Anal Calcd for C3H3N5O4: C, 20.82; H, 1.75; N, 40.46.<br />

Found: C, 21.15; H, 1.60; N, 40.29.<br />

1-Ethyl-3,5-dinitro-1H-[1,2,4]triazole (22b)<br />

Yellow microcrystals (23%); mp 77.0–78.0 o C (lit. 46a mp<br />

78.0 o C).<br />

1<br />

H NMR δ 4.85 (q, J = 7.3 Hz, 2H), 1.70 (t, J = 7.3 Hz,<br />

3H).<br />

13<br />

C NMR δ 157.8, 150.2, 14.6.<br />

1-Methyl-3-azido-5-nitro-1H-[1,2,4]triazole (23a)<br />

Yellowish microcrystals (7%); mp 21.0–23.0 o C.<br />

1 H NMR δ 4.25 (s, 3H).<br />

13 C NMR δ 155.9, 150.4, 40.1.<br />

Anal Calcd for C3H3N7O2: C, 21.31; H, 1.79; N, 57.98.<br />

Found: C, 21.69; H, 1.69; N, 57.92.<br />

Acknowledgment<br />

The authors are indebted to Dr. Dennis Hall (University of Florida)<br />

for help <strong>and</strong> useful discussions during the preparation of this<br />

manuscript. We also wish to thank Dr. James W. Rogers (University<br />

of Florida) for help in development of method for synthesis of<br />

dinitrothiophenes.<br />

References<br />

(1) Agrawal, K. C.; Bears, K. B.; Sehgal, R. K.; Brown, J. N.;<br />

Rist, P. E.; Rupp, W. D. J. Med. Chem. 1979, 22, 583.<br />

(2) Padwa, A.; Waterson, A. G. ARKIVOC 2001, (iv), 29.<br />

(3) Blatt, A. H.; Bach, S.; Kresch, L. W. J. Org. Chem. 1957,<br />

22, 1693.<br />

(4) Godovikova, T. I.; Rakitin, O. A.; Golova, S. P.; Vozchikova,<br />

S. A.; Povorin, M. V.; Khmel’nitskii, L. I. Chem.<br />

Heterocycl. Compd. (Engl. Transl.) 1994, 30, 465.<br />

(5) (a)Kofman, T. P.; Paketina, E. A. Russ. J. Org. Chem.<br />

(Engl. Transl.) 1997, 33, 1125. (b) Millar, R. W., Claridge,<br />

R. P., S<strong>and</strong>all, J. P. B., Thompson, C. ARKIVOC 2002, iii,<br />

19.<br />

(6) Katritzky, A. R., Fan, W.-Q. Heterocycles 1992, 34, 2179.<br />

(7) Katritzky, A. R.; Cundy, D. J.; Chen, J. J. Energetic Materials<br />

1993, 11, 345.<br />

(8) Katritzky, A. R.; Cundy, D. J., Chen. J. J. Heterocyclic<br />

Chem. 1994, 31, 271.<br />

(9) Katritzky, A. R.; Scriven, E. F. V.; Majumder, S.; Akhmedova,<br />

R. G.; Vakulenko, A. V.; Akhmedov, N. G.; Murugan,<br />

R.; Abboud, K. A. Org. Biomol. Chem. 2005, 3, 538.<br />

(10) Katritzky, A. R.; Scriven, E. F. V.; Majumder, S.; Akhmedova,<br />

R. G.; Akhmedov, N. G.; Vakulenko, A. V. ARKIVOC<br />

2005, 3, 179.<br />

(11) Doddi, G.; Stegel, F.; Tanasi, M. T. J. Org. Chem. 1978, 43,<br />

4303.<br />

(12) Scully, J. F.; Brown, E. V. J. Org. Chem. 1954, 19, 894.<br />

(13) (a) Schuisky, P.; Twistel, W.; Grivas, S. Heterocycles, 1998,<br />

48, 1431. (b) Saldabol, N.; Slavinskaya, V.; Popelis, Yu.;<br />

Mazheika, I. Chem. Heterocycl. Compd. (Engl. Transl.)<br />

2000, 36, 134.<br />

(14) Norris, R. K.; Chem. Heterocycl. Compd. 1986, 44, 523;<br />

Chem. Abstr. 1987, 106, 176062.<br />

(15) Meyer, V.; Stadler, O. Chem. Ber. 1884, 17, 2648.<br />

(16) Francis, F. Chem. Ber. 1906, 39, 3798.<br />

(17) Pictet, A.; Khotinsky, E. Chem. Ber. 1907, 40, 1163.<br />

(18) Steinkopf, W. Justus Liebigs Ann. Chem. 1914, 403, 17.<br />

(19) Rajappa, S.; Advani, B. G.; Sreenivasan, R. Synthesis 1974,<br />

656.<br />

(20) Guk, Y. V.; Ilyushin, M. A.; Golod, E. L.; Gidaspov, B. V.<br />

Russ. Chem. Rev. (Engl. Tranl.) 1983, 52, 284.<br />

(21) Babasinian, V. S. J. Am. Chem. Soc. 1928, 50, 2748.<br />

(22) Östman, B. Acta Chem. Sc<strong>and</strong>. 1968, 22, 2754.<br />

(23) Newcombe, P. J.; Norris, R. K. Aust. J. Chem. 1978, 31,<br />

2463.<br />

(24) (a) Rinkes, I. J. Recl. Trav. Chim. Pays-Bas 1932, 51, 1134.<br />

(b) Hardy, G. W.; Lowe, L. A.; Mills, G.; Sang, P. Y.; Simpkin,<br />

D. S. A.; Follenfant, R. L.; Shankley, C.; Smith, T. W.<br />

J. Med. Chem. 1989, 32, 1108. (c) Pinkin, L. D.; Zhiryakov,<br />

V. G. Chem. Heterocycl. Compd. (Engl. Transl.) 1983,<br />

833.<br />

(25) Khalaf, A. I.; Ebrahimabadi, A. H.; Drummond, A. J.;<br />

Anthony, N. G.; Mackay, S. P.; Suckling, C. J.; Waigh, R.<br />

D. Org. Biomol. Chem. 2004, 2, 3119.<br />

(26) Gronowitz, S.; Gjøs, N. Acta Chem. Sc<strong>and</strong>. 1967, 21, 2823.<br />

(27) Snyder, H. R.; Carpino, L. A.; Zack, J. F.; Mills, J. F. J. Am.<br />

Chem. Soc. 1957, 79, 2556.<br />

(28) Gronowitz, S.; Ander, I. Acta Chem. Sc<strong>and</strong>. 1975, B29,<br />

513.<br />

(29) (a ) Jiang, B.; Tilley, D. J. Am. Chem. Soc. 1999, 121,<br />

9744. (b) Mahammed, A.; Gross, Z. J. Am. Chem. Soc.<br />

2005, 127, 2883.<br />

(30) Parent, R. A. J. Org. Chem. 1962, 27, 2282.<br />

(31) Prijs, B.; Mengisen, W.; Fallab, S.; Erlenmeyer, H. Helv.<br />

Chim. Acta 1952, 35, 187.<br />

(32) Huttel, R.; Buchele, F.; Jochum, P. Chem. Ber. 1955, 88,<br />

1577.<br />

(33) Janssen, J. W. A. M.; Koeners, H. J.; Kruse, C. G.; Habraken,<br />

C. L. J. Org. Chem. 1973, 38 1777.<br />

(34) Grimmett, M. R.; Lim, K. H. R. Aust. J. Chem. 1978, 31,<br />

689.<br />

(35) Andreeva, M. A.; Manaev, Yu. A.; Mushii, R. Ya.; Perevalov,<br />

V. P.; Seraya, V. I.; Stepanov, B. I.J. Gen. Chem.<br />

USSR (Engl. Transl.) 1980, 50, 1705.<br />

(36) Chang, K.-C.; Grimmett, M. R.; Ward, D. D.; Weavers, R.<br />

T. Aust. J. Chem. 1979, 32, 1727.<br />

(37) Alberola, A.; Antolin, L. F.; Gonzalez, A. M.; Laguna, M.<br />

A.; Pulido, F. J. J. Heterocyclic Chem. 1986, 23, 1035.<br />

(38) (a) Zhang, Yu.; Chu. T.; Gao, X.; Liu, X.; Yang, Z.; Guo,<br />

Z.; Wang, X. Bioorg. Med. Chem. Lett. 2006, 16, 1831. (b)<br />

Das, T.; Chakraborty, S.; Banerjee, S.; Mukherjee, A.;<br />

Samuel, G.; Sarma, H. D.; Nair, C. K. K.; Kagiya, V. T.;<br />

Venkatesh, M. Bioorg. Med. Chem. 2004, 12, 6077.<br />

(39) Toriyabe, K.; Yamaguchi, M.; Itou, Y.; Kinpara, S.; Yano,<br />

H.; Takahashi, S.; Yonekura, N.; Hamaguchi, R.<br />

WO2006043635, 2006; Chem. Abstr. 2006, 144, 432816.<br />

(40) Le Campion, L.; Giannotti, C.; Ouazzani, J. Chemosphere<br />

1999, 38, 1561.<br />

(41) (a) Jalovy, Z.; Vavra, P. Scientific Papers of the University<br />

of Pardubice, Ser. A: Faculty of Chem. Technology 2004, 9,<br />

187; Chem. Abstr. 2004, 141, 142755. (b) Walsh, C. M.;<br />

Knott, C. D.; Leveritt, C. S. US Patent 6984275, 2006;<br />

Chem. Abstr. 2006, 144, 90622.<br />

(42) Ou, Y.; Chen, B.; Li, J.; Dong, S.; Li, J.; Jia, H. Heterocycles<br />

1994, 38, 1651.<br />

(43) Katritzky, A. R.; Lagowski, J. M. In Comprehensive Heterocyclic<br />

Chemistry Katritzky, A. R.; Rees, C. W., Eds.;<br />

Pergamon Press: Oxford, 1984; Vol. 5, p 752.<br />

(44) Katritzky, A. R.; Öğretir, C. Chim. Acta Turcica. 1982, 10,<br />

137.<br />

(45) Chernyshev, V. M.; Zemlyakov, N. D.; Il’in, V. B.; Taranushich,<br />

V. A. Zh. Prikl. Khim. (Russ. Ed.) 2000, 73, 791;<br />

Chem. Abstr. 2000, 133, 252376.


707<br />

(46) (a) Burchfield, H. P.; Gullstrom, D. K. US 3054800, 1962;<br />

Chem. Abstr. 1963, 58, 59822. (b) Bagal, L. I.; Pevzner, M.<br />

S.; Sheludyakova, N. I.; Kerusov, V. M. Chem. Heterocycl.<br />

Compd. (Engl. Transl.) 1970, 6, 245.<br />

(47) Pevzner, M. S.; Timofeeva, T. N.; Gorbunova, N. N.;<br />

Frolova, G. M. J. Org. Chem. USSR (Engl. Transl.) 1976,<br />

12, 1352.<br />

(48) Bagal, L. I.; Pevzner, M. S.; Egorov, A. P.; Samarenko, V.<br />

Ya. Chem. Heterocycl. Compd. (Engl. Transl.) 1970, 6,<br />

928.<br />

(49) von Philipsborn, W., Müller, R. Angew<strong>and</strong>te Chemie (Int.<br />

Ed.) 1986, 25,386.<br />

(50) Pērez, J. D.; Wunderlin, D. A. J. Org. Chem. 1987, 52,<br />

3637.<br />

(51) Stillman, W. B.; Scott, A. B.; Clampit, J. M. DE 974,602,<br />

1961; Chem. Abstr. 1962, 57, 10808.<br />

(52) (a) Camaggi, C. M.; Leardino, R.; Placucci, G. J. Chem.<br />

Soc., Perkin Trans. 2 1974, 1195. (b) Vakhreeva, K. I.;<br />

Gusarov, A. N.; Zvolinskii, V. P.; Zemtsova, M. N.;<br />

Zimichev, A. V.; Lipkin, A. E.; Sharonov, K. G.; Yudashkin,<br />

A. V. Tezisy Dokl. 14 th Nauchn. Sess. Khim. Tekhnol. Org.<br />

Soedin. Sery Sernistykh Neftei 1976, ed. Bakhtalze, I. G.,<br />

Riga, USSR: Zinatne, pp. 192-193; Chem. Abstr. 1978, 89,<br />

6169.<br />

(53) Gol’dfarb, Ya. L.; Fabrichnyi, B. P.; Shalavina, I. F. J. Gen.<br />

Chem. USSR (Engl. Transl.) 1959, 29, 3596.<br />

(54) Borgen, G.; Gronowirz, S.; Dahlbom, R.; Holmberg, B.<br />

Acta Chem. Sc<strong>and</strong>. 1966, 20, 2593.<br />

(55) Prijs, B.; Ostertag, J.; Erlenmeyer, H. Helv. Chim. Acta<br />

1947, 30, 1200.


708<br />

O 2 N<br />

O<br />

S<br />

R 1<br />

R 1<br />

X=S, Y=Z=C,<br />

R 1 =Me, Et; R 2 =H<br />

f. HNO 3 , AcOH<br />

70-75 o C, 8 h<br />

Graphical Abstract<br />

O 2 N<br />

O 2 N<br />

R 2<br />

N<br />

NH 4 NO 3 , TFAA,<br />

0-5 o C<br />

AcNO2 ,<br />

-40-45 oC X=O, Y=Z=C,<br />

R 1 =Me, Et; R 2 =H<br />

z<br />

S<br />

X<br />

R<br />

Y<br />

R 1<br />

X=S, Y=C, Z=N,<br />

R 1 =H, CH 3<br />

NO 2 (CH 3 )<br />

R 1<br />

H 2 O 2 , H 2 SO 4 ,<br />

0-25 o C, 16h<br />

X=Y=Z=N,<br />

R=Me, Et<br />

N<br />

H 2<br />

N<br />

H 2<br />

O 2 N<br />

X=Y=N, Z=C,<br />

R=Me, Ph; R 2 =NO 2<br />

i) RNHNH 2 , HNO 3<br />

ii) NaNO 2 , H 2 SO 4<br />

NH 2<br />

N N<br />

R<br />

N CN<br />

CH 3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!