01.03.2013 Views

JST Vol. 21 (1) Jan. 2013 - Pertanika Journal - Universiti Putra ...

JST Vol. 21 (1) Jan. 2013 - Pertanika Journal - Universiti Putra ...

JST Vol. 21 (1) Jan. 2013 - Pertanika Journal - Universiti Putra ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Lemma 1.1<br />

The equation<br />

S. Ismail and K. A. Mohd Atan<br />

4 4 3<br />

x ± y = z has no solutions in the non-zero coprime integers, xyx. , ,<br />

The following theorem gives the form of solutions to the equation<br />

4 4 3<br />

x + y = z in cases when gcd( abc , , ) > 1 and x¹ y in terms of n , where<br />

4 4<br />

æ x ö æ y ö<br />

n = ç<br />

÷ + ç ÷<br />

ç<br />

ç<br />

çègcd( xyz , , )<br />

÷ ø ç çègcd(<br />

xyz , , )<br />

÷ ø and<br />

3k1 gcd( xyz , , ) n -<br />

= , where k is a positive<br />

integer with k ³ 1 .<br />

Theorem 1.3:<br />

Suppose the triplet ( abc , , ) with a¹ b and gcd = ( abc , , ) = d is a solution to the<br />

equation,<br />

4 4 3<br />

x + y = z . Let<br />

a b<br />

u = , v = and<br />

d d<br />

3k1 integer. If d n -<br />

3k1 = , then a un -<br />

3k1 = , b vn -<br />

4k1 = and c n -<br />

= .<br />

Proof:<br />

Since a = du , b = dv and<br />

From the following equation<br />

d n -<br />

3k-1 4 3k-1 4 3<br />

( un ) + ( un ) = c or<br />

Since,<br />

4 4<br />

n= u + v , we have<br />

which implies that<br />

4k1 c n -<br />

=<br />

3k1 = , we have clearly<br />

4 4 3<br />

a + b = c , it follows that:<br />

( n ) c<br />

4k- 1 3 3<br />

=<br />

4 4<br />

n= u + v . Let k be a positive<br />

a un -<br />

( n )( u + v ) = c<br />

3k-1 4 4 3<br />

3k1 = and<br />

3k1 Hence, a un -<br />

3k1 = , b vn -<br />

4k1 = and c n -<br />

3k1 = if d n -<br />

= , where<br />

124 <strong>Pertanika</strong> J. Sci. & Technol. <strong>21</strong> (1): 283 - 298 (<strong>2013</strong>)<br />

b vn -<br />

3k1 = .<br />

4 4<br />

n= u + v<br />

A corollary was obtained from the above theorem, as shown below. The forms of solution<br />

for the triplet ( abc , , )<br />

k<br />

are obtainable when<br />

c<br />

w= = n .<br />

d<br />

Corollary 1.2<br />

Suppose the triplet ( abc , , ) with a¹ b and gcd = ( abc , , ) = d is the solution to the<br />

4 4 3 a b<br />

equation x + y = z . Let u = , v = ,<br />

d d<br />

3k1 then a un -<br />

3k1 = , b vn -<br />

4k1 = and c n -<br />

= .<br />

Proof:<br />

From the equation, we have<br />

4 4 3<br />

a + b = c .<br />

4 4 4 3 3k<br />

It follows that d( u + v) = dn .<br />

c<br />

w = and<br />

d<br />

4 4<br />

n= u + v . If<br />

k<br />

w= n ,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!