01.03.2013 Views

d(GC) - Association of Biotechnology and Pharmacy

d(GC) - Association of Biotechnology and Pharmacy

d(GC) - Association of Biotechnology and Pharmacy

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Current Trends in <strong>Biotechnology</strong> <strong>and</strong> <strong>Pharmacy</strong><br />

Vol. 6 (2) 145-165 April 2012, ISSN 0973-8916 (Print), 2230-7303 (Online)<br />

case <strong>of</strong> acetone <strong>and</strong> formaldehyde only 49 <strong>and</strong><br />

12% <strong>of</strong> residual activity was retained. The effect<br />

<strong>of</strong> different solvents at two levels (20 <strong>and</strong> 60% v/<br />

v) was tested (9) <strong>and</strong> it was found that at 60% <strong>of</strong><br />

concentration, ethanol <strong>and</strong> acetone completely<br />

inhibited the tannase activity, whereas<br />

tetrahydr<strong>of</strong>uran <strong>and</strong> formaldehyde exhibited<br />

inhibitory effect only at 20% (v/v). Propanol acts<br />

as an activator in the range <strong>of</strong> 3.6 - 7.3% (v/v),<br />

but higher concentration inhibits the propyl gallate<br />

synthesis by denaturation <strong>of</strong> tannase (100).<br />

Stability in organic solvents suggests suitability<br />

<strong>of</strong> tannase for synthetic reactions, <strong>and</strong> opens new<br />

path to synthesize novel compounds <strong>of</strong><br />

pharmaceutical interest.<br />

Conclusions<br />

This review focuses on the recent<br />

advances on the scientific <strong>and</strong> technological<br />

aspects <strong>of</strong> tannase fermentation techniques<br />

(SmF, SSF <strong>and</strong> LSF) <strong>and</strong> downstream<br />

processing. Recent advances in submerged <strong>and</strong><br />

solid state fermentation <strong>of</strong> tannase bioprocessing<br />

have been explained thoroughly. Additionally this<br />

review includes a list <strong>of</strong> agro-industrial residues<br />

used for high yield cost effective fermentation <strong>of</strong><br />

tannase. A detailed depiction <strong>of</strong> physicochemical<br />

characterization like pH <strong>and</strong> temperature<br />

stability, stability in non-aqueous solvents, effects<br />

<strong>of</strong> metals <strong>and</strong> ions, surfactants <strong>and</strong> denaturants<br />

including special features represents a<br />

comparative <strong>and</strong> unique collection <strong>of</strong> information<br />

for future researchers <strong>and</strong> industrial need.<br />

Moreover this review gives clear idea <strong>of</strong> future<br />

perspectives on bioprocessing strategies to<br />

reduce the production cost <strong>of</strong> tannase by<br />

using agro-industrial residues <strong>and</strong> increased<br />

feasibility <strong>of</strong> scale-up studies towards<br />

commercialization.<br />

Acknowledgment<br />

Council <strong>of</strong> Scientific <strong>and</strong> Industrial<br />

Research (CSIR), India is duly acknowledged for<br />

Junior <strong>and</strong> Senior Research Fellowship awarded<br />

to Dinesh Prasad.<br />

Dinesh Prasad et al<br />

158<br />

References<br />

1. Lekha, P.K. <strong>and</strong> Lonsane, B.K. (1994).<br />

Comparative titers, location <strong>and</strong> properties<br />

<strong>of</strong> tannin acyl hydrolase produced by<br />

Aspergillus niger PKL 104 in solid-state,<br />

liquid surface <strong>and</strong> submerged<br />

fermentations. Process Biochem, 29: 497-<br />

503.<br />

2. Sabu, A., P<strong>and</strong>ey, A., Jaafar, D.M. <strong>and</strong><br />

Szakacs, G. (2005a). Tamarind seed<br />

powder <strong>and</strong> palm kernel cake: two novel<br />

agro residues for the production <strong>of</strong> tannase<br />

under solid state fermentation by<br />

Aspergillus niger ATCC 16620. Bioresource<br />

Technol, 96: 1223-1228.<br />

3. Li, M., Kai, Y., Qiang, H. <strong>and</strong> Dongying, J.<br />

(2006). Biodegradation <strong>of</strong> gallotannins <strong>and</strong><br />

ellagitannins. J Basic Microbiol, 46: 68-84.<br />

4. Aguilera-Carbo, A., Augur, C., Prado-<br />

Barragan, L.A., Favela-Torres, E. <strong>and</strong><br />

Aguilar, C.N. (2009). Microbial production<br />

<strong>of</strong> ellagic acid <strong>and</strong> biodegradation <strong>of</strong><br />

ellagitannins. Appl Microbiol Biotechnol, 78:<br />

189-199.<br />

5. Aguilar, C.N., Rodriguez, R., Gutierrez-<br />

Sanchez, G., Augur, C., Favela-Torres, E.,<br />

Lilia, A., Prado-Barragan, Ramirez-Coronel,<br />

A., Juan,C. <strong>and</strong> Contreras-Esquivel.<br />

(2007). Microbial tannases: advances <strong>and</strong><br />

perspectives. Appl Microbiol Biotechnol, 76:<br />

47-59.<br />

6. Bradoo, S., Gupta, R. <strong>and</strong> Saxena, R.K.<br />

(1997). Parametric optimization <strong>and</strong><br />

biochemical regulation <strong>of</strong> extracellular<br />

tannase from Aspergillus japonicas.<br />

Process Biochem, 32(2): 135-139.<br />

7. Costa, A.M., Ribeiro, W.X., Elaine Kato,<br />

Monteiro, A.R.G. <strong>and</strong> Peralta, R.M. (2008).<br />

Production <strong>of</strong> tannase by Aspergillus tamarii<br />

in submerged cultures. Braz Arch Biol<br />

Technol, 51(2): 399-404.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!