01.03.2013 Views

d(GC) - Association of Biotechnology and Pharmacy

d(GC) - Association of Biotechnology and Pharmacy

d(GC) - Association of Biotechnology and Pharmacy

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Current Trends in <strong>Biotechnology</strong> <strong>and</strong> <strong>Pharmacy</strong><br />

Vol. 6 (2) 145-165 April 2012, ISSN 0973-8916 (Print), 2230-7303 (Online)<br />

Table 3. Temperature optima <strong>and</strong> stability alongwith pH optima <strong>and</strong> stability <strong>of</strong> tannases from<br />

various sources<br />

Sources Temperature Temperature pH optima, pH<br />

optima, stability, (ºC) range (pH) stability Reference<br />

range (ºC)<br />

A. foetidus, 40 5-55 5.0 3.0-6.0 Mukherjee<br />

R. oryzae <strong>and</strong> Banerjee (35)<br />

Paecilomyces 50, 20-80 90 4.5, 4.5-6.5 3.5-8.5 Battestin<br />

variotii <strong>and</strong> Macedo (60)<br />

A. niger 30, 20-70 20-70 5.0, 5.0-6.5 3.0-9.0 Sabu et al. (104)<br />

Selenomonas 30-40 60 7.0 — Skene <strong>and</strong><br />

ruminantium Brooker (78)<br />

A. niger 35, 20-45 4-50 6.0 3.5-8.0 Barthomeuf<br />

et al. (85)<br />

P. variable 50 25-80 5.0 3.0-8.0 Sharma et al. (99)<br />

A oryzae 40, 25-75 50 5.5 4.5-6.0 Abdel-Naby<br />

et al. (101)<br />

A. niger 55 30-90 6.0 3.5-7.0 Ramirez-Coronel<br />

et al. (38)<br />

Verticillium sp. 20-25 40-50 — 4.5-7.5 Kar et al. (109)<br />

L.plantarum 30 20-60 5.0 4.5-6.5 Rodriguez<br />

et al. (107)<br />

A. niger 70 40-60 5.5 2.0-8.0 Lekha<br />

<strong>and</strong> Lonsane (1)<br />

A.flavus 40 30-50 5.0-6.0 3.0-8.0 Batra <strong>and</strong><br />

P. restrictum Saxena (52)<br />

P. charlesii<br />

Bacillus cereus 40 40 4.5 3.0-7.0 Mondal et al. (66)<br />

Quercus robur 35-40 55 4.3-5.0 3.8-7.8 Niehaus <strong>and</strong><br />

Gross (19)<br />

P. variotti 30-50 30-50 5.0-7.0 4.0-8.0 Manjit et al. (8)<br />

concentrations some metals act as c<strong>of</strong>actors<br />

enhancing the enzymatic activity, but at high<br />

concentrations the effect is inhibitory (9).<br />

Therefore, the effect <strong>of</strong> metals <strong>and</strong> ions on<br />

purified <strong>and</strong> partially purified tannase was<br />

evaluated at concentrations ranging from 0.5 to<br />

2.0 mM by several researchers. Mg ++ <strong>and</strong> Hg ++<br />

stimulated maximum tannase activity at 1.0 mM,<br />

but Ba ++ , Ca ++ , Zn ++ , <strong>and</strong> Ag + inhibited it slightly<br />

whereas Fe +++ , Co ++ completely inhibited tannase<br />

activity at the same concentration (109). Also<br />

tannase from A. niger GH1 was highly inhibited<br />

by Fe +++ , mildly inhibited by Cu ++ <strong>and</strong> Zn ++ while<br />

the same concentration <strong>of</strong> Co ++ enhanced the<br />

enzyme activity (9). Kasieczka-Burnecka et al.<br />

Dinesh Prasad et al<br />

156<br />

(65) also reported similar findings for TAH I <strong>and</strong><br />

TAH II, where only Mg ++ ions activated both the<br />

tannases <strong>and</strong> the other metal ions (Zn ++ , Cu ++ ,<br />

K + , Cd ++ , Ag + , Fe +++ , Mn ++ , Co ++ , Hg ++ , Pb ++ <strong>and</strong><br />

Sn ++ ) acted as inhibitors.<br />

In another report <strong>of</strong> Kar et al. (109), Br- — — <strong>and</strong> S O stimulated tannase whereas, CO3 ,<br />

2 3<br />

OH- , inhibited the activity <strong>of</strong> the enzyme. Mg ++<br />

acts as an activator on tannase produced by coculture<br />

<strong>of</strong> R. oryzae <strong>and</strong> A. foetidus (37). Metal<br />

ions like K + , Ca ++ <strong>and</strong> Zn ++ did not affect L.<br />

plantarum tannase activity but Mg ++ , Hg ++ partially<br />

inhibited at 1mM (107). Similarly in the report <strong>of</strong><br />

Barthomeuf et al. (85) tannase from A. niger was

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!