28.02.2013 Views

Ab Initio Study of Silyloxonium Ions

Ab Initio Study of Silyloxonium Ions

Ab Initio Study of Silyloxonium Ions

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

5942 Organometallics, Vol. 16, No. 26, 1997 Cypryk and Apeloig<br />

Table 1. Calculated Geometrical Parameters a <strong>of</strong><br />

the SiOSi Unit in Siloxanes 4a-7a, Protonated<br />

Siloxanes 4b-7b, and Silylated Siloxanes 4c-7c<br />

species param<br />

siloxane<br />

(na) na + H + na + SiH3 +<br />

H3SiOSiH3 (4a) Si-O1.626 1.807, 1.811 1.786<br />

Si-H 1.474 1.456 1.458<br />

Si-O-Si 170.0 130.3 120.0<br />

H-Si-H 108.9 114.7 114.3<br />

(H2SiO)3 (5a) Si-O1.640 1.819 1.797<br />

Si-H 1.466 1.453 1.454<br />

Si-O-Si 133.5 130.4 124.0<br />

O-Si-O 106.5 101.4 104.8<br />

H-Si-H 110.8 115.6 115.2<br />

(H2SiO)4 (6a) Si-O1.626 1.806 1.785<br />

Si-H 1.467 1.453 1.454<br />

Si-O-Si 159.6 129.5 118.5<br />

O-Si-O 110.4 103.9, 106.7 104.9, 106.2<br />

(CH2SiH2)2O (7a) Si-O 1.657 1.808 1.808<br />

Si-H 1.476 1.459 1.460<br />

Si-O-Si 117.2 117.3 113.5<br />

O-Si-C 99.9 94.5 97.4<br />

H-Si-H 108.6 113.5 112.8<br />

a Bond distances in angstroms and bond angles in degrees.<br />

Table 2. GIAO and IGAIM 29 Si NMR Chemical<br />

Shifts (Relative to TMS a ) <strong>of</strong> Siloxanes and<br />

<strong>Silyloxonium</strong> <strong>Ions</strong> Calculated Using<br />

B3LYP/6-311+G**//6-31G*<br />

species GIAO IGAIM exptl b<br />

4a -50.9 -45.8 -38.0 (7.0)<br />

4b 17.1 21.7 (22.9) c<br />

4c 11.0 16.3 (51.1) d<br />

5a<br />

5b<br />

-41.0 -36.3 (-9.2)<br />

Si1 -12.7 -7.9<br />

Si2 5c<br />

-29.6 -24.9<br />

Siexo -13.0 -7.9 (50.2) d<br />

Si1 -21.1 -15.8 (10.0)<br />

Si2 -31.3 -26.5 (-9.6)<br />

6a -60.2 -54.9 -47.2e (-19.4)<br />

8c 29.0 32.6 (66.9) f<br />

9c 20.1 24.4 (59.0) g<br />

a δ(TMS) ) 339.5 ppm (GIAO), 343.5 ppm (IGAIM). b Values<br />

in parentheses correspond to the permethyl-substituted analogues.<br />

24 c Reference 3. d Reference 5. e Reference 7. f Chemical<br />

shift in Me3SiOEt2 + . 4 g Chemical shift in (Me3Si)2OEt + . 4<br />

The calculated 29 Si chemical shifts δ (at B3LYP/6-<br />

311+G**//HF/6-31G*), <strong>of</strong> H3SiOSiH3 are -50.0 ppm<br />

(GIAO) and -46.2 ppm (IGAIM). These values are<br />

8-12 ppm higher than the reported experimental vaue<br />

<strong>of</strong> -38.0 ppm. 24 However, calculations using the MP2/<br />

6-31G* optimized geometry gave 29 Si chemical shifts <strong>of</strong><br />

-41.4 ppm (GIAO) and -37.0 ppm (IGAIM), in very<br />

good agreement with experiment. This suggests that<br />

for correct replacement <strong>of</strong> the magnetic properties <strong>of</strong><br />

siloxanes, the correct Si-O-Si angle should be used.<br />

The measured chemical shift <strong>of</strong> Me3SiOSiMe3 is 6.8<br />

ppm, ca. 45 ppm downfield from that <strong>of</strong> 4a. 24 In order<br />

to test the reliability <strong>of</strong> the calculated 29 Si chemical<br />

shifts <strong>of</strong> 4b,c and <strong>of</strong> 5a-c, we compared them with the<br />

well-known experimental chemical shifts <strong>of</strong> their methyl-substituted<br />

analogues, assuming that substitution <strong>of</strong><br />

Si-H bySi-Me is additive and is independent <strong>of</strong> the<br />

siloxane structure. This assumption can be supported<br />

by comparison <strong>of</strong> known chemical shifts <strong>of</strong> linear and<br />

cyclic oligosiloxanes with those <strong>of</strong> their methylated<br />

analogues. The SiH2 groups in linear and unstrained<br />

cyclic siloxanes appear in the range -48 to -52 ppm,<br />

Table 3. Calculated Charges (6-31G*) around the<br />

Oxonium Center in Model Siloxanes According to<br />

Mulliken and NBO Population Analysisa Mulliken NBO<br />

a b c a b c<br />

4 H(O) 0.55 0.58<br />

O -0.84 -0.95 -1.02 -1.35 -1.16 -1.32<br />

Si 0.92 0.91 0.91 1.47 1.37 1.36<br />

H(Si) -0.17 -0.06 -0.08 -0.27 -0.19 -0.19<br />

SiH3 b 0.42 0.7 0.67 0.67 0.78 0.78<br />

5 H1 0.54 0.57<br />

Siexo 0.91 1.35<br />

H3Siexo 0.66 0.76<br />

O1 -0.87 -0.96 -1.03 -1.35 -1.18 -1.35<br />

Si1 1.21 1.22 1.22 1.93 1.9 1.89<br />

H(Si1 ) -0.17 -0.09 -0.09 -0.29 -0.24 -0.24<br />

Si1H2 b 0.87 1.04 1.03 1.35 1.42 1.41<br />

6 H1 0.54 0.57<br />

Siexo 0.9 1.36<br />

H3Siexo 0.65 0.64<br />

O1 -0.84 -0.95 -1.02 -1.37 -1.18 -1.34<br />

Si1 1.2 1.21 1.23 1.95 1.89 1.89<br />

H(Si1 ) -0.18 -0.1 -0.09 0.29 0.23 -0.21<br />

Si1H2 b 0.84 1.01 1.0 1.37 1.45 1.49<br />

7 H1 0.55 0.58<br />

Siexo 0.91 1.37<br />

H3Siexo 0.66 0.75<br />

O1 -0.87 -0.95 -1.02 -1.32 -1.16 -1.33<br />

Si2 1.02 1.01 1.02 1.66 1.61 1.61<br />

H(Si2 ) -0.17 -0.08 -0.08 -0.27 -0.21 -0.21<br />

Si2H2 b 0.69 0.86 0.89 1.13 1.2 1.2<br />

a For atom numbering see Chart 1. b Charge on the entire group.<br />

whereas SiHMe groups appear at -34 to -37 ppm and<br />

SiMe2 groups at -19 to -24 ppm. 7,24 Thus, substitution<br />

<strong>of</strong> one H by Me shifts the 29 Si signal by 13-15 ppm<br />

downfield. Disiloxanes R3SiOSiR3, where R ) HorMe,<br />

obey this correction as well. 24 Further support for this<br />

assumption is provided by the fact that the difference<br />

between the calculated chemical shift <strong>of</strong> 5a and that<br />

measured for D3 is 31.8 ppm (GIAO) and 27.0 ppm<br />

(IGAIM), as expected for the substitution <strong>of</strong> two Si-H<br />

bonds by two Si-Me groups.<br />

For silyloxonium cations the change in the 29 Si<br />

chemical shift due to substitution <strong>of</strong> Si-H bySi-Me is<br />

difficult to determine because <strong>of</strong> the lack <strong>of</strong> experimental<br />

data. For instance, according to IGAIM calculations,<br />

the 29 Si signal <strong>of</strong> (H3Si)3O + is shielded by 35 ppm<br />

compared to that <strong>of</strong> (Me3Si)3O + . 6 This difference between<br />

the 29 Si chemical shifts <strong>of</strong> the exocyclic silicon<br />

atoms in 5c and 2 is 58 ppm (IGAIM), while the<br />

corresponding difference between the endocyclic Si 1<br />

atoms in these species is 26 ppm. 6 Calculations suggest<br />

that in the silylated disiloxane 4c the Si atoms are more<br />

shielded than those in the corresponding protonated<br />

analogue 4b. This is in contrast to the data reported<br />

for (Me3Si)2OH + and (Me3Si)3O + (Table 2). 4,6<br />

Charge Distribution and Orbital Analysis. The<br />

atomic charges in all the studied species were calculated<br />

using both the Mulliken population analysis 11 and the<br />

natural population analysis (NPA), which is based on<br />

natural bond orbital (NBO) theory. 12 The results are<br />

collected in Table 3, and the numbering system is given<br />

in Chart 1. The two methods gave different absolute<br />

values (as is well-known) but similar qualitative results,<br />

and they are therefore discussed together.<br />

The calculations show that the charge at the silicon<br />

atoms directly bonded to the oxonium oxygen is approximately<br />

the same as in the corresponding neutral

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!