28.02.2013 Views

Triple integrals in cylindrical and spherical coordinates

Triple integrals in cylindrical and spherical coordinates

Triple integrals in cylindrical and spherical coordinates

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

MATH 209—Calculus, III<br />

Volker Runde<br />

University of Alberta<br />

Edmonton, Fall 2011


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Cyl<strong>in</strong>drical coord<strong>in</strong>ates<br />

Rectangular versus cyl<strong>in</strong>drical coord<strong>in</strong>ates<br />

x = r cos θ,<br />

y = r s<strong>in</strong> θ,<br />

z = z,<br />

r 2 = x 2 + y 2 .


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Integration <strong>in</strong> cycl<strong>in</strong>drical coord<strong>in</strong>ations, I<br />

The setup<br />

Let E ⊂ R 3 be of type I, i.e.,<br />

with<br />

E = {(x, y, z) : (x, y) ∈ D, u1(x, y) ≤ z ≤ u2(x, y)},<br />

D = {(r, θ) : α ≤ θ ≤ β, h1(θ) ≤ r ≤ h2(θ)}<br />

<strong>in</strong> polar coord<strong>in</strong>ates.


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Integration <strong>in</strong> cycl<strong>in</strong>drical coord<strong>in</strong>ations, II<br />

Theorem (change to cyl<strong>in</strong>drical coord<strong>in</strong>ates <strong>in</strong> a tiple <strong>in</strong>tegral)<br />

Given E <strong>and</strong> D as before:<br />

���<br />

f (x, y, z) dV<br />

E<br />

�� �� �<br />

u2(x,y)<br />

=<br />

f (x, y, z) dz dA<br />

D<br />

� β � h2(θ)<br />

=<br />

α<br />

h1(θ)<br />

u1(x,y)<br />

� u2(r cos θ,r s<strong>in</strong> θ)<br />

u1(r cos θ,r s<strong>in</strong> θ)<br />

f (r cos θ, r s<strong>in</strong> θ, z)r dz dr θ.


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Examples, I<br />

Example<br />

A solid E lies <strong>in</strong>side the cyl<strong>in</strong>der x 2 + y 2 = 1, below the plane<br />

z = 4, <strong>and</strong> above the paraboloid z = 1 − x 2 − y 2 .<br />

Its density ρ(x, y, z) at any po<strong>in</strong>t is proportional to the po<strong>in</strong>t’s<br />

distance from the z-axis.<br />

What is the mass of E?<br />

We have<br />

<strong>and</strong><br />

E = {(x, y, z) : x 2 + y 2 ≤ 1, 1 − x 2 − y 2 ≤ z ≤ 4}<br />

= {(r, θ, z) : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, 1 − r 2 ≤ z ≤ 4}<br />

ρ(x, y, z) = C � x 2 + y 2 = Cr.


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Examples, II<br />

Example (cont<strong>in</strong>ued)<br />

Thus:<br />

���<br />

m = C<br />

= C<br />

E<br />

� 2π � 1<br />

0<br />

0<br />

� x 2 + y 2 dV = C<br />

� 2π � 1 � 4<br />

r 2 (4 − (1 − r 2 )) dr dθ = 2Cπ<br />

�<br />

= 2Cπ r 3 �<br />

r 5 �<br />

+ �<br />

5 �<br />

0<br />

0<br />

1−r 2<br />

� 1<br />

0<br />

r=1<br />

r=0<br />

r 2 dz dr dθ<br />

3r 2 + r 4 dr<br />

�<br />

= 12Cπ<br />

.<br />

5


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Spherical coord<strong>in</strong>ates coord<strong>in</strong>ates<br />

Rectangular versus <strong>spherical</strong> coord<strong>in</strong>ates<br />

x = ρ s<strong>in</strong> φ cos θ,<br />

y = ρ s<strong>in</strong> φ s<strong>in</strong> θ,<br />

z = ρ cos φ,<br />

ρ 2 = x 2 + y 2 + z 2 .


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Integration <strong>in</strong> <strong>spherical</strong> coord<strong>in</strong>ates, I<br />

Def<strong>in</strong>ition<br />

A set of the form<br />

{(r, θ, φ) : r ∈ [a, b], θ ∈ [α, β], φ ∈ [c, d]}<br />

with a ≥ 0, β − α ≤ 2π, <strong>and</strong> d − c ≤ π is called a <strong>spherical</strong><br />

wedge.<br />

Question<br />

How does one evaluate ���<br />

wedge?<br />

E<br />

f (x, y, z) dV if E is a <strong>spherical</strong>


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Integration <strong>in</strong> <strong>spherical</strong> coord<strong>in</strong>ates, II<br />

As <strong>in</strong> rectangular coord<strong>in</strong>ates. . .<br />

Divide E <strong>in</strong>to small <strong>spherical</strong> wedges Ej,k,ℓ, <strong>and</strong> pick a support<br />

po<strong>in</strong>t (x ∗ j,k,ℓ , y ∗<br />

j,k,ℓ , z∗ j,k,ℓ ) ∈ Ej,k,ℓ.<br />

Then:<br />

���<br />

f (x, y, z) dV<br />

with<br />

E<br />

= lim<br />

n,m,ν→∞<br />

n�<br />

m�<br />

ν�<br />

j=1 k=1 ℓ=1<br />

∆Vj,k,ℓ = volume of Ej,k,ℓ.<br />

f (x ∗ ∗<br />

j,k,ℓ , yj,k,ℓ , z∗ j,k,ℓ )∆Vj,k,ℓ


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Integration <strong>in</strong> <strong>spherical</strong> coord<strong>in</strong>ates, III<br />

Question<br />

What is the volume of Ej,k,ℓ, i.e., a very small <strong>spherical</strong> wedge?<br />

Answer<br />

∆Vj,k,ℓ ≈ ρ 2 j s<strong>in</strong> φℓ∆ρ∆θ∆φ.


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Integration <strong>in</strong> <strong>spherical</strong> coord<strong>in</strong>ates, IV<br />

Consequence<br />

���<br />

E<br />

f (x, y, z) dV = lim<br />

n,m,ν→∞<br />

n�<br />

m�<br />

ν�<br />

j=1 k=1 ℓ=1<br />

f (ρ ∗ j s<strong>in</strong> φ ∗ ℓ cos θ∗ k , ρ∗ j s<strong>in</strong> φ ∗ ℓ s<strong>in</strong> θ∗ k , ρ∗ j cos φ ∗ ℓ )ρ2 s<strong>in</strong> φ∆ρ∆θ∆φ<br />

� d � β � b<br />

=<br />

f (ρ s<strong>in</strong> φ cos θ, ρ s<strong>in</strong> φ s<strong>in</strong> θ, ρ cos φ)<br />

c<br />

α<br />

a<br />

ρ 2 s<strong>in</strong> φ dρ dθ dφ.


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Integration <strong>in</strong> <strong>spherical</strong> coord<strong>in</strong>ates, V<br />

Theorem (change to <strong>spherical</strong> coord<strong>in</strong>ates <strong>in</strong> a tiple <strong>in</strong>tegral)<br />

Let<br />

E := {(ρ, θ, φ) : α ≤ θ ≤ β,<br />

Then:<br />

���<br />

E<br />

f (x, y, z) dV<br />

c ≤ φ ≤ d, ≤ g1(θ, φ) ≤ ρ ≤ g2(θ, φ)}.<br />

� d � β � g2(θ,φ)<br />

=<br />

f (ρ s<strong>in</strong> φ cos θ, ρ s<strong>in</strong> φ s<strong>in</strong> θ, ρ cos φ)<br />

c<br />

α<br />

g1(θ,φ)<br />

ρ 2 s<strong>in</strong> φ dρ dθ dφ.


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Examples, III<br />

Example<br />

Let<br />

Evaluate ���<br />

In <strong>spherical</strong> coord<strong>in</strong>ates:<br />

E = {(x, y, z) : x 2 + y 2 + z 2 ≤ 1}.<br />

E<br />

e (x2 +y 2 +z 2 ) 3 2 dV .<br />

E = {(ρ, θ, φ) : ρ ∈ [0, 1], θ ∈ [0, 2π], φ ∈ [0, π]}.


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Examples, IV<br />

Example (cont<strong>in</strong>ued)<br />

Then:<br />

���<br />

E<br />

e (x2 +y 2 +z 2 ) 3 2 dV<br />

� π<br />

=<br />

0<br />

� π<br />

=<br />

0<br />

� 2π � 1<br />

e<br />

0 0<br />

(ρ2 s<strong>in</strong>2 φ cos2 θ+ρ2 s<strong>in</strong>2 φ s<strong>in</strong>2 θ+ρ2 cos2 φ) 3 2<br />

ρ 2 s<strong>in</strong> φ dρ dθ dφ<br />

� 2π � 1<br />

e<br />

0 0<br />

(ρ2 s<strong>in</strong>2 φ+ρ2 cos2 φ) 3 2 2<br />

ρ s<strong>in</strong> φ dρ dθ dφ<br />

� π � 2π � 1<br />

=<br />

e<br />

0 0 0<br />

ρ3<br />

ρ 2 s<strong>in</strong> φ dρ dθ dφ = · · ·


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Examples, V<br />

Example (cont<strong>in</strong>ued)<br />

� π<br />

· · · =<br />

0<br />

� 2π � 1<br />

0<br />

0<br />

e ρ3<br />

ρ 2 s<strong>in</strong> φ dρ dθ dφ<br />

� π<br />

= 2π<br />

0<br />

� π<br />

= 2π s<strong>in</strong> φ<br />

0<br />

�� 1<br />

= 2π e<br />

0<br />

ρ3<br />

ρ 2 dρ<br />

� 1<br />

e<br />

0<br />

ρ3<br />

ρ 2 s<strong>in</strong> φ dρ dφ<br />

�� 1<br />

e<br />

0<br />

ρ3<br />

ρ 2 �<br />

dρ dφ<br />

� 1<br />

� �� π �<br />

s<strong>in</strong> φ dφ = 4π<br />

0<br />

= 4π<br />

3<br />

� 1<br />

0<br />

0<br />

e ρ3<br />

ρ 2 dρ<br />

e u du = 4π<br />

(e − 1).<br />

3


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Examples, VI<br />

Example<br />

Let H be the upper hemisphere above the xy-plane <strong>and</strong> below<br />

the sphere x 2 + y 2 + z 2 = 1, i.e.,<br />

H = {(x, y, z) : x 2 + y 2 + z 2 ≤ 1, z ≥ 0}.<br />

What is ���<br />

H x 2 + y 2 dV ?<br />

In <strong>spherical</strong> coord<strong>in</strong>ates:<br />

�<br />

�<br />

H = (ρ, θ, φ) : ρ ∈ [0, 1], θ ∈ [0, 2π], φ ∈ 0, π<br />

��<br />

.<br />

2


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Examples, VII<br />

Example (cont<strong>in</strong>ued)<br />

Then:<br />

���<br />

H<br />

=<br />

=<br />

x 2 + y 2 dV<br />

� 2π<br />

0<br />

� 2π<br />

0<br />

� π<br />

2<br />

0<br />

� π<br />

2<br />

0<br />

� 1<br />

0<br />

� 1<br />

0<br />

=<br />

(ρ 2 cos 2 θ s<strong>in</strong> 2 φ + ρ 2 s<strong>in</strong> 2 θ s<strong>in</strong> 2 φ)<br />

ρ 2 s<strong>in</strong> φ dρ dφ dθ<br />

ρ 4 (cos 2 θ + s<strong>in</strong> 2 θ) s<strong>in</strong> 3 φ dρ dφ dθ<br />

� 2π<br />

0<br />

� π<br />

2<br />

0<br />

� 1<br />

0<br />

ρ 4 s<strong>in</strong> 3 φ dρ dφ dθ = · · ·


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Examples, VIII<br />

Example (cont<strong>in</strong>ued)<br />

· · · =<br />

� 2π<br />

0<br />

= 2π<br />

5<br />

� π<br />

2<br />

0<br />

= 2π<br />

� π<br />

2<br />

0<br />

= − 2π<br />

5<br />

� 1<br />

ρ 4 s<strong>in</strong> 3 φ dρ dφ dθ<br />

0<br />

�� 1<br />

0<br />

ρ 4 �<br />

dρ<br />

�� π<br />

2<br />

s<strong>in</strong> 3 φ dφ = 2π<br />

5<br />

� 0<br />

1<br />

0<br />

� π<br />

2<br />

0<br />

s<strong>in</strong> 3 φ dφ<br />

�<br />

s<strong>in</strong> φ(1 − cos 2 φ) dφ<br />

� 1<br />

1 − u 2 du = 2π<br />

1 − u<br />

5 0<br />

2 du<br />

= 2π<br />

�<br />

u −<br />

5<br />

u3<br />

� �<br />

u=1 �<br />

�<br />

3 �<br />

u=0<br />

= 4π<br />

15 .


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Examples, IX<br />

Example<br />

Determ<strong>in</strong>e the volume V of the solid E that lies above the<br />

cone z = � x 2 + y 2 <strong>and</strong> below the sphere x 2 + y 2 + z2 = z.<br />

Note:<br />

x 2 + y 2 + z 2 = z ⇐⇒ x 2 + y 2 �<br />

+ z − 1<br />

�2 =<br />

2<br />

1<br />

4 .<br />

Project E onto the xy-plane <strong>and</strong> obta<strong>in</strong> D:<br />

�<br />

D = (x, y) : x 2 + y 2 ≤ 1<br />

�<br />

4<br />

� �<br />

= (r, θ) : r ∈ 0, 1<br />

�<br />

�<br />

, θ ∈ [0, 2π] .<br />

2


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Examples, X<br />

Example (cont<strong>in</strong>ued)<br />

Note:<br />

(x, y, z) ∈ E ⇐⇒<br />

(x, y) ∈ D <strong>and</strong> � x 2 + y 2 ≤ z ≤<br />

Hence, <strong>in</strong> cyl<strong>in</strong>drical coord<strong>in</strong>ates:<br />

E =<br />

�<br />

�<br />

(r, θ, z) : r ∈ 0, 1<br />

�<br />

, θ ∈ [0, 2π],<br />

2<br />

r ≤ z ≤<br />

� 1<br />

4 − x 2 − y 2 + 1<br />

2<br />

�<br />

1<br />

4 − r 2 + 1<br />

�<br />

2


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Examples, XI<br />

Example (cont<strong>in</strong>ued)<br />

Then:<br />

���<br />

V =<br />

E<br />

1 dV<br />

=<br />

= 2π<br />

� 2π<br />

� 1<br />

2<br />

0 0<br />

� 1<br />

2<br />

0<br />

= 2π<br />

� � 1<br />

4 −r 2 + 1<br />

2<br />

r dz dr dθ<br />

r<br />

��<br />

1<br />

4 − r 2 + 1<br />

�<br />

− r r dr<br />

2<br />

�� 1<br />

� 1<br />

2<br />

2<br />

0<br />

r<br />

� 1<br />

4 − r 2 dr +<br />

0<br />

r<br />

2 − r 2 �<br />

dr .


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Examples, XII<br />

Example (cont<strong>in</strong>ued)<br />

On the side:<br />

<strong>and</strong><br />

� 1<br />

2<br />

0<br />

r<br />

� 1<br />

2<br />

0<br />

r<br />

2 − r 2 dr =<br />

r 2<br />

4<br />

� 1<br />

4 − r 2 dr = − 1<br />

2<br />

− r 3<br />

3<br />

� 0<br />

1<br />

4<br />

= 1<br />

2<br />

�<br />

�<br />

�<br />

�<br />

r= 1<br />

2<br />

r=0<br />

√ u du<br />

� 1<br />

4<br />

0<br />

= 1 1 1<br />

− =<br />

16 24 48<br />

√ u du = u 3<br />

2<br />

3<br />

�<br />

�<br />

�<br />

�<br />

�<br />

u= 1<br />

4<br />

u=0<br />

= 1<br />

24 .


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Examples, XIII<br />

Example (cont<strong>in</strong>ued)<br />

Therefore:<br />

V = 2π<br />

� � 1<br />

2<br />

�<br />

1<br />

r<br />

0 4 − r 2 dr +<br />

� �<br />

1 1<br />

= 2π +<br />

24 48<br />

= π<br />

8 .<br />

� 1<br />

2<br />

0<br />

r<br />

2 − r 2 �<br />

dr


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Examples, XIV<br />

Example (cont<strong>in</strong>ued)<br />

Pass to <strong>spherical</strong> coord<strong>in</strong>ates.<br />

For (x, y, z) on the sphere:<br />

ρ cos φ = z = x 2 + y 2 + z 2<br />

= ρ 2 cos 2 θ s<strong>in</strong> 2 φ + ρ 2 s<strong>in</strong> 2 θ s<strong>in</strong> 2 φ + ρ 2 cos 2 φ = ρ 2 .<br />

Hence, the sphere is:<br />

�<br />

�<br />

(ρ, θ, φ) : θ ∈ [0, 2π], φ ∈<br />

0, π<br />

2<br />

� �<br />

, ρ = cos φ .


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Examples, XV<br />

Example (cont<strong>in</strong>ued)<br />

For (x, y, z) on the cone:<br />

ρ cos φ = z = � x 2 + y 2<br />

�<br />

= ρ2 cos2 θ s<strong>in</strong>2 φ + ρ2 s<strong>in</strong>2 θ s<strong>in</strong>2 φ = ρ s<strong>in</strong> φ.<br />

Hence, the cone is:<br />

{(ρ, θ, φ) : ρ ≥ 0, θ ∈ [0, 2π], φ ∈ [0, π], cos φ = s<strong>in</strong> φ}<br />

�<br />

= (ρ, θ, φ) : ρ ≥ 0, θ ∈ [0, 2π], φ = π<br />

�<br />

.<br />

4


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Examples, XV<br />

Example (cont<strong>in</strong>ued)<br />

It follows that<br />

�<br />

�<br />

E = (ρ, θ, φ) : θ ∈ [0, 2π], φ ∈ 0, π<br />

�<br />

�<br />

, 0 ≤ ρ ≤ cos φ .<br />

4<br />

Hence:<br />

���<br />

V =<br />

E<br />

1 dV =<br />

= 2π<br />

�<br />

= 2π<br />

� π<br />

4<br />

0<br />

s<strong>in</strong> φ<br />

� 2π<br />

0<br />

� π<br />

4<br />

0<br />

ρ 3<br />

3<br />

� π<br />

4<br />

� cos φ<br />

0 0<br />

�� cos φ<br />

s<strong>in</strong> φ<br />

0<br />

� �<br />

ρ=cos φ �<br />

�<br />

� dφ = 2π<br />

3<br />

ρ=0<br />

ρ 2 s<strong>in</strong> φ dρ dφ dθ<br />

ρ 2 �<br />

dρ dφ<br />

� 1<br />

4<br />

0<br />

s<strong>in</strong> φ cos 3 φ dφ<br />

= · · ·


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates<br />

<strong>Triple</strong><br />

<strong><strong>in</strong>tegrals</strong> <strong>in</strong><br />

<strong>spherical</strong><br />

coord<strong>in</strong>ates<br />

Examples, XVI<br />

Example (cont<strong>in</strong>ued)<br />

· · · = 2π<br />

3<br />

= 2π<br />

3<br />

� 1<br />

4<br />

u= 1<br />

√<br />

2<br />

� 1<br />

√2<br />

s<strong>in</strong> φ cos<br />

0<br />

3 φ dφ = − 2π<br />

u<br />

3 1<br />

3 du<br />

⎛<br />

⎝ u4<br />

⎞<br />

�u=1<br />

�<br />

� ⎠<br />

4 � = 2π<br />

� �<br />

1 1<br />

− =<br />

3 4 16<br />

2π<br />

3<br />

3 π<br />

=<br />

16 8 .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!