28.02.2013 Views

Math 411: Honours Complex Variables - University of Alberta

Math 411: Honours Complex Variables - University of Alberta

Math 411: Honours Complex Variables - University of Alberta

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

98 CHAPTER 14. HARMONIC FUNCTIONS<br />

Definition. Let r > 0. The Poisson kernel for Br(0) is defined as<br />

for z ∈ Br(0) and ζ ∈ ∂Br(0).<br />

Pr(ζ,z) := r2 −|z| 2<br />

2π|ζ −z| 2<br />

Lemma 14.1. Let D ⊂ C be open, let r > 0 be such that Br[0] ⊂ D, and let<br />

f: D → C be holomorphic. Then we have<br />

for z ∈ Br(0).<br />

f(z) = 1<br />

2π<br />

� 2π<br />

0<br />

f(re iθ ) r2 −|z| 2<br />

|reiθ dθ =<br />

−z| 2<br />

� 2π<br />

f(re<br />

0<br />

iθ )Pr(re iθ ,z)dθ.<br />

Pro<strong>of</strong>. Fix z ∈ Br(0), and define g(w) := f(w)<br />

r2 , which is holomorphic for w in<br />

−wz<br />

Br+ǫ(0) for some ǫ > 0. The Cauchy Integral Formula then yields<br />

f(z)<br />

r2 � � 2π<br />

1 g(ζ) 1 g(re<br />

= g(z) = dζ =<br />

−|z| 2 2πi ζ −z 2πi<br />

iθ )ireiθ reiθ dθ<br />

−z<br />

= 1<br />

2π<br />

so that<br />

∂Br(0)<br />

0<br />

� 2π<br />

f(re<br />

0<br />

iθ )reiθ (r2 −reiθz)(re iθ � 2π<br />

1 f(re<br />

dθ=<br />

−z) 2π 0<br />

iθ )<br />

(re−iθ −z)(reiθ � 2π<br />

1<br />

dθ=<br />

−z) 2π 0<br />

f(z) = 1<br />

� 2π<br />

2π 0<br />

f(re iθ ) r2 −|z| 2<br />

|reiθ dθ.<br />

−z| 2<br />

Remark. If we apply Lemma 14.1 to the function f = 1 we see for all z ∈ Br(0) that<br />

� 2π<br />

0<br />

Pr(re iθ ,z)dθ = 1.<br />

Theorem 14.2 (Poisson’s Integral Formula). Let r > 0, and let u: Br[0] → R be<br />

continuous such that u|Br(0) is harmonic. Then<br />

holds for all z ∈ Br(0).<br />

u(z) =<br />

� 2π<br />

u(re<br />

0<br />

iθ )Pr(re iθ ,z)dθ<br />

Pro<strong>of</strong>. Suppose first that u extends to BR(0) for some R > r as a harmonic function.<br />

Then u has a harmonic conjugate v on BR(0), so that f := u + iv is holomorphic.<br />

By Lemma 14.1, we have, for z ∈ Br(0), that<br />

=<br />

u(z)+iv(z) = f(z)<br />

� 2π<br />

f(re<br />

0<br />

iθ )Pr(re iθ � 2π<br />

,z)dθ =<br />

0<br />

u(re iθ )Pr(re iθ � 2π<br />

,z)dθ+i v(re<br />

0<br />

iθ )Pr(re iθ ,z)dθ,<br />

f(reiθ )<br />

|reiθ dθ,<br />

−z| 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!