28.02.2013 Views

Math 411: Honours Complex Variables - University of Alberta

Math 411: Honours Complex Variables - University of Alberta

Math 411: Honours Complex Variables - University of Alberta

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 2<br />

<strong>Complex</strong> Differentiation<br />

Definition. Let D ⊂ C, and let z0 be an interior point <strong>of</strong> D, i.e. there exists ǫ > 0<br />

such that Bǫ(z0) := {z ∈ C : |z − z0|< ǫ} ⊂ D. A function f : D → C is called<br />

complex differentiable at z0 if<br />

exists.<br />

f ′ f(z)−f(z0)<br />

(z0) := lim<br />

z→z0 z −z0<br />

Proposition 2.1. Let D ⊂ C, let z0 ∈ intD, and let f: D → C be complex differentiable<br />

at z0. Then f is continuous at z0.<br />

f(z)−f(z0)<br />

Pro<strong>of</strong>. Since lim<br />

z→z0 z −z0<br />

f(z)−f(z0)<br />

0 = lim(z<br />

−z0) lim<br />

z→z0 z→z0 z −z0<br />

so that f(z0) = lim f(z).<br />

z→z0<br />

exists, we have<br />

= lim(z<br />

−z0)<br />

z→z0<br />

f(z)−f(z0)<br />

z −z0<br />

= lim(f(z)−f(z0)),<br />

z→z0<br />

Proposition 2.2. Let D ⊂ C, and let f,g : D → C be complex differentiable at<br />

z0 ∈ intD. Then the following functions are complex differentiable at z0: f +g, fg,<br />

and, if g(z0) �= 0, f<br />

g<br />

and<br />

. Moreover, we have:<br />

(f +g) ′ (z0) = f ′ (z0)+g ′ (z0),<br />

(fg) ′ (z0) = f ′ (z0)g(z0)+f(z0)g ′ (z0),<br />

� � ′<br />

f<br />

g<br />

(z0) = f′ (z0)g(z0)−f(z0)g ′ (z0)<br />

g(z0) 2<br />

.<br />

9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!