28.02.2013 Views

Math 411: Honours Complex Variables - University of Alberta

Math 411: Honours Complex Variables - University of Alberta

Math 411: Honours Complex Variables - University of Alberta

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

12.1. APPLICATIONS OF THE RESIDUE THEOREM TO REAL INTEGRALS77<br />

so that<br />

f(z) = 1<br />

iz ·<br />

=<br />

=<br />

� a+ 1<br />

2<br />

1<br />

� z + 1<br />

z<br />

−4iz<br />

(z 2 +2az +1) 2<br />

−4iz<br />

(z −z1) 2 (z −z2) 2,<br />

where z1 and z2 are again given by Eq. 12.1.<br />

At z1, the function f has a pole <strong>of</strong> order two. In order to calculate res(f,z1),<br />

set<br />

g(z) := (z −z1) 2 f(z) = −4iz<br />

(z −z2) 2,<br />

so that<br />

it follows that<br />

�� 2<br />

g ′ �<br />

1 2z<br />

(z) = −4i −<br />

(z −z2) 2 (z −z2) 3<br />

�<br />

= −4i<br />

(z −z2) 3[(z<br />

−z2)−2z]<br />

= 4i(z +z2)<br />

;<br />

(z −z2) 3<br />

res(f,z1) = g ′ (z1)<br />

From Proposition 12.1, we conclude that<br />

Problem 12.1.<br />

� 2π<br />

0<br />

= −4i(−2a)<br />

8 �√ a2 −1 �3 −ai<br />

= �√ �3 .<br />

a2 −1<br />

dt<br />

(a+cost) 2 = 2πi res(f,z1) =<br />

2πa<br />

�√ a 2 −1 � 3 .<br />

Let D ⊂ C be open, let f: D → C be holomorphic, and let z0 ∈ D be a zero <strong>of</strong> order<br />

one <strong>of</strong> f. Show that �<br />

1<br />

res<br />

f ;z0<br />

�<br />

= 1<br />

f ′ (z0) .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!