28.02.2013 Views

Math 411: Honours Complex Variables - University of Alberta

Math 411: Honours Complex Variables - University of Alberta

Math 411: Honours Complex Variables - University of Alberta

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Examples.<br />

1. Let<br />

f(z) = eiz<br />

z 2 +1 ,<br />

so that f has a simple pole at z0 = i. It follows that<br />

2. Let<br />

res(f,i) = lim(z<br />

−i)f(z) = lim<br />

z→i z→i<br />

f(z) = cos(πz)<br />

sin(πz) ,<br />

e iz<br />

z +i<br />

= − i<br />

2e .<br />

so that f has a simple pole at each n ∈ Z. For n ∈ Z, we thus have:<br />

3. Let<br />

res(f,n) = lim(z<br />

−n)<br />

z→n cos(πz)<br />

sin(πz)<br />

cos(πz)<br />

= lim(z<br />

−n)<br />

z→n<br />

= 1<br />

π lim<br />

z→n<br />

= 1<br />

π .<br />

f(z) =<br />

sin(πz)−sin(πn)<br />

πz −πn<br />

sin(πz)−sin(πn) cos(πz)<br />

1<br />

(z 2 +1) 3;<br />

then f has a pole <strong>of</strong> order 3 at z0 = i. With<br />

we have<br />

so that<br />

g(z) = (z −i) 3 f(z) =<br />

g ′ (z) = − 3<br />

(z +i) 4<br />

1<br />

(z +i) 3,<br />

and g ′′ (z) = 12<br />

(z +i) 5,<br />

res(f,i) = 1 12<br />

= −3i<br />

2(2i)<br />

5 16 .<br />

Theorem 12.1 (Residue Theorem). Let D ⊂ C be open and simply connected,<br />

z1,...,zn ∈ D be such that zj �= zk for j �= k, f : D \ {z1,...,zn} → C be holomorphic,<br />

and γ be a closed curve in D \{z1,...,zn}. Then we have<br />

�<br />

n�<br />

f(ζ)dζ = 2πi ν(γ,zj) res(f,zj).<br />

γ<br />

j=1<br />

73

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!