28.02.2013 Views

Math 411: Honours Complex Variables - University of Alberta

Math 411: Honours Complex Variables - University of Alberta

Math 411: Honours Complex Variables - University of Alberta

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

60 CHAPTER 9. HOLOMORPHIC FUNCTIONS ON ANNULI<br />

Then F is entire with lim |F(z)|= lim |h2(z) − h1(z)|= 0. Hence, F is bounded<br />

|z|→∞ |z|→∞<br />

andentire and thus constant by Liouville’s theorem. Since lim<br />

|z|→∞<br />

|F(z)|= 0, this means<br />

that F ≡ 0, so that g1 = g2 and h1 = h2.<br />

To show that g and h exists, for z ∈ Ar,R(z0) choose ρ and P such that<br />

Define<br />

r < ρ < |z −z0|< P < R.<br />

G: Ar,R(z0) → C, ζ ↦→<br />

� f(ζ)−f(z)<br />

ζ−z , ζ �= z,<br />

f ′ (z), ζ = z.<br />

ThenGiscertainlyholomorphiconAr,R(z0)\{z}. BecauseitiscontinuousonAr,R(z0),<br />

Riemann’sRemovabilityCriterionimpliesthatGisinfactholomorphiconall<strong>of</strong>Ar,R(z0).<br />

It follows from Cauchy’s Integral Theorem for Annuli that<br />

� �<br />

G(ζ)dζ = G(ζ)dζ,<br />

i.e.<br />

�<br />

∂Bρ(z0)<br />

�<br />

f(ζ)<br />

dζ −f(z)<br />

ζ −z<br />

∂Bρ(z0)<br />

∂Bρ(z0)<br />

1<br />

ζ −z dζ<br />

� �� �<br />

=0<br />

�<br />

=<br />

∂BP(z0)<br />

∂BP(z0)<br />

Let us define the holomorphic functions (cf. Lemma 5.4)<br />

h(z) := −1<br />

�<br />

f(ζ)<br />

2πi ζ −z dζ<br />

on C\Bρ[z0] and<br />

∂Bρ(z0)<br />

g(z) := 1<br />

�<br />

f(ζ)<br />

2πi ∂BP(z0) ζ −z dζ<br />

�<br />

f(ζ) 1<br />

dζ −f(z)<br />

ζ −z ∂BP(z0) ζ −z dζ,<br />

� �� �<br />

=2πi<br />

on BP(z0), noting from Cauchy’s Integral Theorem for Annuli that these definitions<br />

are independent <strong>of</strong> the precise choices <strong>of</strong> ρ ∈ (r,|z−z0|) and P ∈ (|z−z0|,R). Then<br />

the above result may be expressed as<br />

and thus<br />

Finally, we note that h satisfies<br />

|h(z)|≤ ρ sup<br />

−2πih(z) = 2πig(z)−2πif(z)<br />

ζ∈∂Bρ(z0)<br />

f(z) = g(z)+h(z).<br />

� � sup |f(ζ)|<br />

�<br />

�<br />

f(ζ) � ζ∈∂Bρ(z0)<br />

�<br />

�ζ<br />

−z � ≤ ρ<br />

dist(z,∂Bρ(z0)) −→<br />

|z|→∞ 0.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!