28.02.2013 Views

Math 411: Honours Complex Variables - University of Alberta

Math 411: Honours Complex Variables - University of Alberta

Math 411: Honours Complex Variables - University of Alberta

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

four subtriangles, denoted by ∆(z0,z1,z2), ∆(z1,z3,z2), ∆(z1,w,z3), and ∆(z2,z3,z).<br />

As in the pro<strong>of</strong> <strong>of</strong> Goursat’s Lemma, we have<br />

� � � � �<br />

f = f + f + f + f.<br />

∂∆<br />

∂∆(z0,z1,z2)<br />

∂∆(z1,z3,z2)<br />

∂∆(z1,w,z3)<br />

∂∆(z2,z3,z)<br />

Since ∆(z1,z3,z2),∆(z1,w,z3),∆(z2,z3,z) ⊂ D\{z0}, and since f is holomorphic on<br />

D \{z0}, Goursat’s Lemma yields<br />

� � �<br />

f = f = f = 0,<br />

∂∆(z1,z3,z2)<br />

so that �<br />

It follows that<br />

��<br />

�<br />

�<br />

�<br />

∂∆<br />

�<br />

�<br />

f�<br />

� =<br />

��<br />

�<br />

�<br />

�<br />

∂∆(z0,z1,z2)<br />

∂∆<br />

∂∆(z1,w,z3)<br />

�<br />

f =<br />

∂∆(z0,z1,z2)<br />

∂∆(z2,z3,z)<br />

f.<br />

�<br />

�<br />

f�<br />

� ≤ ℓ(∂∆(z0,z1,z2)) sup |f(ζ)|.<br />

ζ∈∂∆(z0,z1,z2)<br />

Since|f|iscontinuouson∆, itisboundedabovebysomeM > 0. Byplacingz1 andz2<br />

sufficiently close to z0, we see that ℓ(∂∆(z0,z1,z2)) can be made smaller than every<br />

ǫ/M > 0. We deduce that �<br />

f = 0. The result then follows from Theorem 5.2.<br />

∂∆<br />

Let z0 ∈ C, and let r > 0. Slightly abusing notation, we use ∂Br(z0) to denote<br />

the boundary <strong>of</strong> Br(z0) oriented counterclockwise.<br />

Lemma 5.2. Let D ⊂ C be open, let z0 ∈ D, and let r > 0 be such that Br[z0] ⊂ D.<br />

Then �<br />

1<br />

dζ = 2πi<br />

ζ −z<br />

for all z ∈ Br(z0).<br />

∂Br(z0)<br />

Pro<strong>of</strong>. Through direct computation, we saw on pg. 24 that<br />

�<br />

1<br />

dζ = 2πi.<br />

ζ −z0<br />

∂Br(z0)<br />

Let z ∈ Br(z0), and choose ǫ > 0 such that Bǫ[z] ⊂ Br(z0), so that<br />

�<br />

1<br />

dζ = 2πi.<br />

ζ −z<br />

We need to show that<br />

� �<br />

1<br />

dζ =<br />

ζ −z<br />

∂Br(z0)<br />

∂Bǫ(z)<br />

∂Bǫ(z)<br />

�<br />

1<br />

dζ = −<br />

ζ −z ∂Bǫ(z) −<br />

1<br />

ζ −z dζ.<br />

33

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!