27.02.2013 Views

Organic Thin-film Transistors Based on Polythiophene Nanowires ...

Organic Thin-film Transistors Based on Polythiophene Nanowires ...

Organic Thin-film Transistors Based on Polythiophene Nanowires ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

www.advmat.de<br />

<str<strong>on</strong>g>Organic</str<strong>on</strong>g> <str<strong>on</strong>g>Thin</str<strong>on</strong>g>-<str<strong>on</strong>g>film</str<strong>on</strong>g> <str<strong>on</strong>g>Transistors</str<strong>on</strong>g> <str<strong>on</strong>g>Based</str<strong>on</strong>g> <strong>on</strong> <strong>Polythiophene</strong><br />

<strong>Nanowires</strong> Embedded in Insulating Polymer<br />

By L<strong>on</strong>gzhen Qiu, Wi Hyoung Lee, Xiaoh<strong>on</strong>g Wang, J<strong>on</strong>g Soo Kim, Jung<br />

Ah Lim, D<strong>on</strong>gho<strong>on</strong> Kwak, Shicho<strong>on</strong> Lee, and Kilw<strong>on</strong> Cho*<br />

<str<strong>on</strong>g>Organic</str<strong>on</strong>g> thin-<str<strong>on</strong>g>film</str<strong>on</strong>g> transistors (OTFTs) have attracted c<strong>on</strong>siderable<br />

attenti<strong>on</strong> because of their potential applicati<strong>on</strong>s in large-area,<br />

flexible, and printed electr<strong>on</strong>ics. To achieve OTFT devices with<br />

desirable properties, recent research has primarily focused <strong>on</strong><br />

molecular design, [1,2] dielectric–semic<strong>on</strong>ductor interfacial engineering,<br />

[3–5] and device optimizati<strong>on</strong>. [6–11] The use of c<strong>on</strong>jugated<br />

polymer blends as active materials has brought a new way to tune<br />

and optimize the electr<strong>on</strong>ic properties of devices; for example,<br />

ambipolar field-effect charge transport has been reported in<br />

binary blends of p- and n-type c<strong>on</strong>jugated polymers or<br />

oligomers. [12,13] Semic<strong>on</strong>ducting and insulating polymer blends<br />

have also attracted increasing interest, because they can combine<br />

the electr<strong>on</strong>ic properties of semic<strong>on</strong>ducting polymers with the<br />

low cost and excellent mechanical characteristics of insulating<br />

polymers. However, the presence of the insulating comp<strong>on</strong>ent<br />

tends to degrade the device performance by diluting the current<br />

density of the <str<strong>on</strong>g>film</str<strong>on</strong>g>. [14,15]<br />

To the best of our knowledge, the <strong>on</strong>ly effective approach to<br />

overcome this drawback is c<strong>on</strong>trolling the blended <str<strong>on</strong>g>film</str<strong>on</strong>g>s to form<br />

vertically phase-separated structures, to keep the c<strong>on</strong>nectivity of<br />

the semic<strong>on</strong>ducting layer in the presence of insulating<br />

comp<strong>on</strong>ents. In recent works, the composites with this structures<br />

have been used in OTFTs to fabricate low-voltage-driven devices,<br />

to improve envir<strong>on</strong>mental stability or reduce semic<strong>on</strong>ductor<br />

cost. [16–21] However, the phase-separati<strong>on</strong> process in polymer<br />

blends is very complicated. The final morphology in the blend<br />

<str<strong>on</strong>g>film</str<strong>on</strong>g>s is highly sensitive to many factors, including the solvent<br />

evaporati<strong>on</strong> rate, solubility parameters, <str<strong>on</strong>g>film</str<strong>on</strong>g>–substrate interacti<strong>on</strong>s,<br />

the surface tensi<strong>on</strong> of the comp<strong>on</strong>ents, and the <str<strong>on</strong>g>film</str<strong>on</strong>g><br />

thickness. Vertical phase separati<strong>on</strong> can <strong>on</strong>ly take place under<br />

extreme c<strong>on</strong>diti<strong>on</strong>s. [22,23] Therefore, to develop a more facile and<br />

general method for realizing high-performance, low-semic<strong>on</strong>ductor-cost<br />

devices is of great technological and academic<br />

significance.<br />

In this paper, we show that the percolati<strong>on</strong> threshold of<br />

semic<strong>on</strong>ducting/insulating polymer blends can be drastically<br />

decreased by depositing them from a marginal solvent with<br />

temperature-dependent solubility. Morphology and crystallinestructure<br />

studies reveal that the excellent electr<strong>on</strong>ic performance<br />

of the devices derives from the efficient charge transport and the<br />

[*] Prof. K. Cho, Dr. L. Qiu, W. H. Lee, X. Wang, J. S. Kim, J. A. Lim,<br />

D. Kwak, Dr. S. Lee<br />

Department of Chemical Engineering<br />

Pohang University of Science and Technology<br />

Pohang 790-784 (Korea)<br />

E-mail: kwcho@postech.ac.kr<br />

DOI: 10.1002/adma.200802880<br />

good c<strong>on</strong>nectivity observed in highly crystalline, interc<strong>on</strong>nected<br />

nanofibrillar networks of semic<strong>on</strong>ductors embedded in an<br />

insulator matrix.<br />

Semic<strong>on</strong>ductor/insulator-blend mother soluti<strong>on</strong>s were prepared<br />

by blending poly(3-hexylthiophene) (P3HT) and amorphous<br />

polystyrene (PS) in dichloromethane (CH2Cl2), which is a<br />

marginal solvent for P3HT. [24] To completely dissolve P3HT, the<br />

CH2Cl2 soluti<strong>on</strong> was kept at approximately 40 8C. For comparis<strong>on</strong>,<br />

chloroform (CHCl3), which is a good solvent for P3HT, was<br />

used as a reference. <str<strong>on</strong>g>Thin</str<strong>on</strong>g> <str<strong>on</strong>g>film</str<strong>on</strong>g>s with different P3HTand PS ratios<br />

were fabricated <strong>on</strong> a silic<strong>on</strong> substrate, using spin-casting blend<br />

soluti<strong>on</strong>s with a total c<strong>on</strong>centrati<strong>on</strong> of 0.5 vol%.<br />

Field-effect characteristics were measured in the bottomc<strong>on</strong>tact,<br />

bottom-gate thin-<str<strong>on</strong>g>film</str<strong>on</strong>g> transistor (TFT) geometry, using a<br />

SiO2 <str<strong>on</strong>g>film</str<strong>on</strong>g> 300 nm thick as the dielectric layer. The dielectric<br />

surface was a bare surface without any organosilane treatment.<br />

Figure 1 shows a comparis<strong>on</strong> of the field-effect characteristics of<br />

the TFTs based <strong>on</strong> P3HT/PS blend <str<strong>on</strong>g>film</str<strong>on</strong>g>s obtained from CH2Cl2<br />

and from a reference CHCl3 soluti<strong>on</strong>. Small drain currents (IDS)<br />

are recorded for the transistors based <strong>on</strong> P3HT/PS (20:80) <str<strong>on</strong>g>film</str<strong>on</strong>g>s<br />

spin-cast from a good solvent, (CHCl3 soluti<strong>on</strong>, see Fig. 1a),<br />

whereas in the case of the 10:90 P3HT/PS devices fabricated<br />

using a marginal solvent (CH 2Cl 2) the saturati<strong>on</strong> drain current is<br />

about 10 4 times greater (see Fig. 1a and b), even though the P3HT<br />

c<strong>on</strong>tent is lower.<br />

The dependence of the field-effect mobility <strong>on</strong> the P3HTc<strong>on</strong>tent<br />

of both types of P3HT/PS blend <str<strong>on</strong>g>film</str<strong>on</strong>g>s is shown in detail in Figure 1c.<br />

The mobilities of pristine P3HTdevices spun-cast from CHCl3 and<br />

CH2Cl2 are 7.0 10 4 and 6.0 10 3 cm 2 V 1 s 1 , respectively.<br />

This result is very similar to that reported by Yang et al. [24] Using<br />

atomic force microscopy (AFM) and grazing-incidence X-ray<br />

diffracti<strong>on</strong> (GIXRD), they found that the improved electr<strong>on</strong>ic<br />

properties of the sample obtained from CH 2Cl 2 soluti<strong>on</strong> arose from<br />

the formati<strong>on</strong> of highly ordered edge-<strong>on</strong> P3HTcrystals in the <str<strong>on</strong>g>film</str<strong>on</strong>g>s.<br />

In c<strong>on</strong>sistence with previously reported results, [15,18] the mobility of<br />

the blend <str<strong>on</strong>g>film</str<strong>on</strong>g>s spin-cast from a CHCl 3 soluti<strong>on</strong> decreases<br />

m<strong>on</strong>ot<strong>on</strong>ically as the P3HT c<strong>on</strong>tent is decreased. Finally, a<br />

percolati<strong>on</strong> threshold is observed at a c<strong>on</strong>centrati<strong>on</strong> about<br />

20 wt%. On the other hand, the P3HT/PS blends obtained from<br />

a CH 2Cl 2 soluti<strong>on</strong> show a much higher mobility than those<br />

prepared from a CHCl3 soluti<strong>on</strong> (see Fig. 1a–c). The former blends<br />

show a mobility of 4.0 10 3 cm 2 V 1 s 1 —comparable to that of<br />

homo-P3HT <str<strong>on</strong>g>film</str<strong>on</strong>g>s prepared under the same c<strong>on</strong>diti<strong>on</strong>s (i.e.,<br />

6.0 10 3 cm 2 V 1 s 1 )—even at semic<strong>on</strong>ducting-polymer c<strong>on</strong>tents<br />

as low as 3 wt%. A decrease in the charge-carrier mobility is<br />

<strong>on</strong>ly observed for those devices with P3HT c<strong>on</strong>tents below 3 wt%.<br />

Furthermore, the observed percolati<strong>on</strong>-threshold c<strong>on</strong>centrati<strong>on</strong> is<br />

below 1 wt%. These results are very close to the best results reported<br />

Adv. Mater. 2009, 21, 1349–1353 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1349<br />

COMMUNICATION


COMMUNICATION<br />

Figure 1. Field-effect transistor performance of P3HT/PS blends obtained from CH2Cl2 and<br />

CHCl3 soluti<strong>on</strong>s. IDS is the drain–source current, VDS is the drain–source voltage, and VGS is the<br />

gate–source voltage. a) Typical transfer characteristics of devices based <strong>on</strong> a P3HT/PS (10:90)<br />

blend from a CH2Cl2 soluti<strong>on</strong> and a P3HT/PS (20:80) blend from a CHCl3 soluti<strong>on</strong>. b) Output<br />

characteristics of a device based <strong>on</strong> a P3HT/PS (10:90) blend from a CH2Cl2 soluti<strong>on</strong>. c) Average<br />

field-effect mobility measured in the saturati<strong>on</strong> regi<strong>on</strong> as a functi<strong>on</strong> of the P3HT c<strong>on</strong>tent in the<br />

blends. d) Effect of the CHCl 3 c<strong>on</strong>tent in the mixed CH 2Cl 2/CHCl 3 solvent <strong>on</strong> the field-effect<br />

mobility of the P3HT/PS (10:90) blend.<br />

for TFT devices based <strong>on</strong> semic<strong>on</strong>ducting/insulating polymer<br />

blends. [18] To further study the effect of solubility <strong>on</strong> the electr<strong>on</strong>ic<br />

properties of semic<strong>on</strong>ducting/insulating polymer blends, a<br />

mixture of CHCl 3 and CH 2Cl 2 was used as solvent to prepare<br />

blend mother soluti<strong>on</strong>s. It is clearly shown in Figure 1d that the<br />

field-effect mobility of the blends m<strong>on</strong>ot<strong>on</strong>ically decreases with<br />

increase in CHCl3 c<strong>on</strong>centrati<strong>on</strong> in the mixed solvent.<br />

Transport of charge carriers within the blend <str<strong>on</strong>g>film</str<strong>on</strong>g> can <strong>on</strong>ly<br />

occur in the semic<strong>on</strong>ductor comp<strong>on</strong>ent. Therefore, the TFT<br />

characteristics are extremely dependent <strong>on</strong> the morphology of the<br />

P3HT phase. To investigate the morphology of this phase, we<br />

selectively removed the PS phase by immersing the sample in<br />

cyclohexane for 10 min. Cyclohexane is a good solvent for PS, but<br />

does not dissolve P3HT. Scanning electr<strong>on</strong> microscopy (SEM)<br />

studies were performed to elucidate the morphology of the<br />

remaining P3HT phase obtained from both CHCl3 and CHCl2<br />

soluti<strong>on</strong>s. Figure 2a and b show SEM images of the P3HT phase<br />

in samples spin-cast from a CHCl 3 soluti<strong>on</strong> at different P3HT<br />

c<strong>on</strong>tents. A bic<strong>on</strong>tinuous network of P3HT and PS is observed in<br />

the blend <str<strong>on</strong>g>film</str<strong>on</strong>g> c<strong>on</strong>taining comparable amounts of the two<br />

comp<strong>on</strong>ents (60:40, Fig. 2a). [15,25] In the case of the blends<br />

c<strong>on</strong>taining 10 wt% P3HT (Fig. 2b), isolated spherical P3TH<br />

domains with a diameter of about 100–500 nm are observed. The<br />

field-effect characteristics and morphology results clearly reveal<br />

that a decrease in the c<strong>on</strong>nectivity of the P3HTphase is the reas<strong>on</strong><br />

for the degradati<strong>on</strong> of the electr<strong>on</strong>ic properties up<strong>on</strong> reducing the<br />

P3HT c<strong>on</strong>tent in the P3HT/PS blend obtained from the CHCl 3<br />

soluti<strong>on</strong>.<br />

A dramatic change occurs if CH2Cl2 is employed as the solvent<br />

during the sample-preparati<strong>on</strong> procedure (see Fig. 2c and d).<br />

www.advmat.de<br />

Here, a network composed of very l<strong>on</strong>g fibers<br />

(with a typical width of 25–40 nm and a length<br />

of several micrometers) has been observed.<br />

Although the density of nanofibers decreases<br />

at lower P3HT c<strong>on</strong>tents, an interc<strong>on</strong>nected<br />

network can be obtained, even at the P3HT<br />

c<strong>on</strong>centrati<strong>on</strong>s as low as 1 wt%. This interc<strong>on</strong>nected<br />

network ensures the c<strong>on</strong>nectivity of<br />

c<strong>on</strong>ducting channels between source and drain<br />

electrodes. We also studied the morphologies<br />

of P3HT/PS (10:90) <str<strong>on</strong>g>film</str<strong>on</strong>g>s spin-cast from<br />

CHCl3/CH2Cl2 mixtures with different CHCl3<br />

c<strong>on</strong>centrati<strong>on</strong>s, by means of SEM (see Fig. 2e<br />

and f). Comparing these results with those<br />

obtained for <str<strong>on</strong>g>film</str<strong>on</strong>g>s prepared from neat CHCl3<br />

(Fig. 2b) and CH2Cl2 (Fig. 2c) soluti<strong>on</strong>s, it can<br />

be seen that with a decrease in the CHCl 3<br />

c<strong>on</strong>centrati<strong>on</strong> in the mixed solvent (which also<br />

means a decrease in the solubility), the P3HT<br />

phase slowly changes from isolated, spherical<br />

particles to an interc<strong>on</strong>nected, nanofibrillar<br />

network. Up<strong>on</strong> comparing the results of<br />

P3HT/PS blends from CHCl3, CH2Cl2, and<br />

their mixture, in terms of electr<strong>on</strong>ic properties<br />

and morphological characteristics, it is reas<strong>on</strong>able<br />

to c<strong>on</strong>clude that the excellent electr<strong>on</strong>ic<br />

properties of the P3HT/PS blend cast from the<br />

CH2Cl2 soluti<strong>on</strong>s are derived from the formati<strong>on</strong><br />

of a network composed of P3HT nanofibers<br />

with high aspect ratio. This result is further c<strong>on</strong>firmed by the<br />

relatively small change observed in the field-effect performance of<br />

the blends up<strong>on</strong> etching of the PS phase (see Fig. S1, Supporting<br />

Informati<strong>on</strong>).<br />

We also carried out GIXRD measurements <strong>on</strong> the blend <str<strong>on</strong>g>film</str<strong>on</strong>g>s,<br />

to further investigate the crystalline structure and molecular<br />

orientati<strong>on</strong> of their P3HTphase. Figure 3a shows a comparis<strong>on</strong> of<br />

the 2D GIXRD patterns of P3HT/PS (10:90) <str<strong>on</strong>g>film</str<strong>on</strong>g>s spin-cast from<br />

both CH2Cl2 and CHCl3 soluti<strong>on</strong>s. It can be seen that the pattern<br />

of the CHCl3-based blend exhibits a typical halo attributed to<br />

amorphous PS, as well as a very weak and broad (100) diffracti<strong>on</strong><br />

band from P3HT. C<strong>on</strong>versely, the CH2Cl2-based <str<strong>on</strong>g>film</str<strong>on</strong>g> shows<br />

rather sharp and well-resolved P3HT (100) and (200) diffracti<strong>on</strong>s.<br />

Clearly, the crystallinity of the P3HT phase in the CH2Cl2-based<br />

<str<strong>on</strong>g>film</str<strong>on</strong>g>s is much higher than that of the CHCl 3-based <str<strong>on</strong>g>film</str<strong>on</strong>g>s. The<br />

observed (l00) peaks of P3HT, with higher-order peaks al<strong>on</strong>g the<br />

qz axis, suggest that the P3HTmolecules adopt edge-<strong>on</strong> structures<br />

with their (100) axis normal to the substrate, which is extremely<br />

beneficial for charge transport in the TFTdevices. [4,26] This results<br />

agrees well with the nanofibrillar morphology observed using<br />

SEM.<br />

The formati<strong>on</strong> of P3HT nanofibers by changing the solubility<br />

has been previously reported in the literature. [27,28] It was reported<br />

that these nanofibers showed excellent 1D charge-transport<br />

characteristics al<strong>on</strong>g the nanofiber axis, because the P3HT chains<br />

pack a lamellar structure, with 2D c<strong>on</strong>jugated sheets formed by<br />

interchain stacking perpendicular to the nanofiber axis. [29–33] In<br />

ourcase, CH 2Cl 2 is amarginal solvent forP3HT, and itssolubility is<br />

str<strong>on</strong>gly temperature dependent. Figure 3b shows the temperature-dependent<br />

UV–vis absorpti<strong>on</strong> spectra of this soluti<strong>on</strong>. At<br />

1350 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Adv. Mater. 2009, 21, 1349–1353


www.advmat.de<br />

Figure 2. SEM images of P3HT/PS <str<strong>on</strong>g>film</str<strong>on</strong>g>s with various P3HT c<strong>on</strong>tents, prepared by means of spincasting<br />

from soluti<strong>on</strong>s of CHCl3, CH2Cl2, and their mixture, after selectively dissolving PS with<br />

cyclohexane.a,b)Filmsspin-castfromCHCl3withdifferentP3HTc<strong>on</strong>tents:a)60wt%andb)10wt%.<br />

c,d) Films spin-cast from CH2Cl2 with different P3HT c<strong>on</strong>tents: c) 10 wt% and d) 5 wt%, e,f) P3HT/<br />

PS(10:90) blendsspin-castfromaCHCl3/CH2Cl2 mixture:e)5:95andf) 10:90.The scale baris1 mm.<br />

room temperature, we observed obvious absorpti<strong>on</strong> bands at<br />

l ¼ 515, 550, and 600 nm (these signals are typical of highly<br />

ordered P3HT chains), [34,35] whereas the absorpti<strong>on</strong> band at<br />

l ¼ 445 nm—attributed to dissolved individual P3HT chains—is<br />

quite weak. These results suggest that large porti<strong>on</strong>s of the P3HT<br />

molecules in the CH2Cl2 soluti<strong>on</strong> have solidified at room<br />

temperature, to form nanofibers. As the temperature increases,<br />

the intensities of the low-energy absorpti<strong>on</strong> bands decrease, and<br />

the maximum absorpti<strong>on</strong> blue-shifts to l ¼ 445 nm, thus indicatingthattheP3HTchains<br />

aregradually dissolved.Therefore, whena<br />

warm CH 2Cl 2 soluti<strong>on</strong> (at 40 8C) c<strong>on</strong>taining P3HT and PS is<br />

dropped <strong>on</strong>to a SiO2/Si substrate held at room temperature, the<br />

P3HT immediately solidifies from the soluti<strong>on</strong> and self-assembles<br />

(as a result of the change in solvent solubility), thereby forming<br />

well-interc<strong>on</strong>nected nanofibers. On the other hand, the PS<br />

comp<strong>on</strong>ent still remains liquid at this stage (due to its good<br />

dissolving ability in cold CH2Cl2), and can <strong>on</strong>ly solidify after<br />

removal of most of the solvent during the spin-coating process. As a<br />

result, the P3HT nanofibers are expected to be buried in a PS<br />

matrix. AFM images of the top surface, the bottom surface, and the<br />

interface (after PS etching) of P3HT/PS (10:90) clearly c<strong>on</strong>firm this<br />

structure (see Fig. 4a). Figure 4b shows a schematic representati<strong>on</strong><br />

of the formati<strong>on</strong> of embedded P3HT nanofibers in a PS matrix<br />

during the fabricati<strong>on</strong> process.<br />

Envir<strong>on</strong>mental instability poses a crucial<br />

restricti<strong>on</strong> in the applicati<strong>on</strong> of OTFTs. Encapsulating<br />

the active semic<strong>on</strong>ductor with an<br />

insulating-polymer layer has proven to be an<br />

effective method to improve the envir<strong>on</strong>mental<br />

stability. [17,36] In the P3HT/PS blend obtained<br />

from CH2Cl2 soluti<strong>on</strong>s, the P3HT nanofibers<br />

are embedded in an insulating PS matrix, which<br />

renders this structure extremely beneficial for<br />

improving the envir<strong>on</strong>mental stability of the<br />

devices. Figure 5a shows a comparis<strong>on</strong> of the<br />

transfer characteristics of TFTs based <strong>on</strong><br />

pristine P3HT and a P3HT/PS (10:90) blend<br />

after different exposure times to air. The<br />

degradati<strong>on</strong> in the performance of the pristine<br />

P3HT-based device is very pr<strong>on</strong>ounced. After<br />

<strong>on</strong>e week of exposure to air, the threshold<br />

voltage increases from 17 to 68 V, and the<br />

current <strong>on</strong>/off ratio decreases from 10 3 to 10.<br />

On the c<strong>on</strong>trary, the stability is dramatically<br />

improved in the device based <strong>on</strong> P3HT/PS<br />

(10:90). The <strong>on</strong> and off currents remained<br />

almost unchanged after 7 days, and the shift in<br />

the threshold voltage (from 10 to 20 V) was far<br />

below that observed in the pristine P3HTdevice.<br />

In c<strong>on</strong>trast to the rigorous c<strong>on</strong>diti<strong>on</strong>s<br />

involved in the preparati<strong>on</strong> of vertically<br />

phase-separated structures (e.g., the need for<br />

suitable substrate-surface energy, polymer<br />

pairs, and/or processing temperature), [17,18,21]<br />

the solubility-induced formati<strong>on</strong> of embedded<br />

P3HT nanofibrillar structures is facile and<br />

reproducible. Therefore, these blends are<br />

Figure 3. a) 2D GIXRD patterns of P3HT/PS (10:90) <str<strong>on</strong>g>film</str<strong>on</strong>g>s spin-cast from<br />

CHCl3 (left) and CH2Cl2 (right) soluti<strong>on</strong>s. The inset shows 1D out-of-plane Xrayprofilesextractedfromthe2Dpatterns.b)Absorpti<strong>on</strong>spectraofa0.5<br />

vol%<br />

P3HT/PS (5:95)soluti<strong>on</strong>inCH2Cl2 as a functi<strong>on</strong>ofthe temperature.The inset<br />

shows photographs of the soluti<strong>on</strong> at about 40 8C and at room temperature.<br />

Adv. Mater. 2009, 21, 1349–1353 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1351<br />

COMMUNICATION


COMMUNICATION<br />

Figure 4. a) AFM topography (top) and phase (bottom) images for a P3HT/PS (5:95) blend spincast<br />

from a CH2Cl2 soluti<strong>on</strong>: top surface (left), bottom surface (middle), and interface after<br />

selectively dissolving PS (right). The scale bar is 500 nm. b) Schematic representati<strong>on</strong> of the<br />

formati<strong>on</strong> of a nanofibrillar network in the PS matrix.<br />

suitable for the fabricati<strong>on</strong> of flexible TFTs <strong>on</strong> plastic substrates<br />

via soluti<strong>on</strong> processing (see Fig. 5b).The average field-effect<br />

mobility of the flexible TFTs at the saturati<strong>on</strong> regime is<br />

4.8 10 3 cm 2 V 1 s 1 , which is similar to the mobility of the<br />

devices obtained <strong>on</strong> silic<strong>on</strong> substrates.<br />

In c<strong>on</strong>clusi<strong>on</strong>, this work dem<strong>on</strong>strates that the use of a<br />

marginal solvent (namely, CH2Cl2) renders it possible to achieve<br />

an electr<strong>on</strong>ic performance comparable to that found for pristine<br />

P3HT in blends comprising P3HT and amorphous PS, at P3HT<br />

c<strong>on</strong>tent as low as 3 wt%. SEM and GIXRD studies disclose that<br />

Figure 5. a) Changes in the transfer characteristics of the device based <strong>on</strong> pure P3HT (left) and<br />

P3HT/PS (10:90, right) <str<strong>on</strong>g>film</str<strong>on</strong>g>s (spin-cast from CH2Cl2 soluti<strong>on</strong>s) up<strong>on</strong> exposure to air. b) Fieldeffect<br />

characteristic of a flexible TFT device based <strong>on</strong> a P3HT/PS (10:90) blend spin-cast from<br />

CH2Cl2. The insets at the left- and right-hand side of b) show a schematic cross-secti<strong>on</strong> and a<br />

digital-camera image of a P3HT/PS TFT <strong>on</strong> a flexible substrate, respectively.<br />

www.advmat.de<br />

these excellent electr<strong>on</strong>ic properties arise from<br />

a network of highly crystalline P3HT nanofibers<br />

embedded in an insulating PS matrix.<br />

This structure allows good encapsulati<strong>on</strong> of the<br />

active P3HT nanofibers, which significantly<br />

improves the envir<strong>on</strong>mental stability of the<br />

devices. In additi<strong>on</strong>, this simple, mild, and<br />

reproducible method is suitable for the<br />

fabricati<strong>on</strong> of large-area, flexible electr<strong>on</strong>ic<br />

devices. This nanofibrillar structure is quite<br />

different to previously reported vertically<br />

phase-separated structures, and opens a new<br />

route to the fabricati<strong>on</strong> of OTFTs with low<br />

semic<strong>on</strong>ductor cost, high envir<strong>on</strong>mental stability,<br />

and good mechanical properties.<br />

Experimental<br />

Regioregular P3HT (Mw ¼ 40 kg mol 1 ) was<br />

obtained from Rieke Metals Inc. Amorphous PS<br />

(Mw ¼ 240 kg mol 1 ), poly-4-vinylphenol (PVP,<br />

Mw ¼ 20,000 g mol 1 ), poly(melamine-co-formaldehyde), methylated<br />

(PMF, Mw ¼ 511 g mol 1 ), propylene glycol m<strong>on</strong>omethyl ether acetate<br />

(PGMEA), chloroform, dichloromethane, and cyclohexane were purchased<br />

from Aldrich Chemical Co. All materials were used as received without<br />

further purificati<strong>on</strong>.<br />

Field-effect transistors with bottom-gate bottom-c<strong>on</strong>tact c<strong>on</strong>figurati<strong>on</strong><br />

were fabricated using heavily doped n-type Si wafers as the gate<br />

electrodes—with a thermally grown silic<strong>on</strong> dioxide (SiO2) layer 300 nm<br />

thick (capacitance ¼ 10.8 nF cm 2 ) as the gate dielectric. The gold source<br />

and drain electrodes (100 nm <strong>on</strong> a 2 nm adhesi<strong>on</strong> layer of titanium) were<br />

deposited through shadow mask. The channel length and width were fixed<br />

at 100 and 800 mm, respectively. P3HT/PS blended <str<strong>on</strong>g>film</str<strong>on</strong>g>s with different<br />

P3HT c<strong>on</strong>tent were achieved by spin-coating CHCl 3<br />

and warm CH 2Cl 2 soluti<strong>on</strong>s (0.5 vol%). The samples<br />

for GIXRD measurements were spun-cast <strong>on</strong> bare Si<br />

wafers with about 2 nm SiO2 at the same c<strong>on</strong>diti<strong>on</strong>s.<br />

To obtain the flexible transistors, a water-based ink of<br />

the c<strong>on</strong>ducting polymer, poly(3,4-ethylenedioxythiophene),<br />

doped with PS sulf<strong>on</strong>ic acid (PEDOT/PSS,<br />

Bayer AG) was spin-coated as gate electrode <strong>on</strong>to a<br />

polyarylate (PAR, Ferrania Technologies) sheet. Then,<br />

a dielectric layer 600 nm thick (capacitance ¼ 6.6 nF<br />

cm 2 ) was formed by spin-coating ( 2000 rpm) a<br />

PGMEA soluti<strong>on</strong> comprising 11 wt% PVP and 8 wt %<br />

PMF <strong>on</strong>to the PAR sheet, with subsequent crosslinking<br />

for 1 h at 180 8C in a vacuum oven. After<br />

evaporating the gold source and drain electrodes, a<br />

<str<strong>on</strong>g>film</str<strong>on</strong>g> was spin-coated from a 0.5 vol% CH 2Cl 2 soluti<strong>on</strong><br />

of P3HT/PS (10:90) blend.<br />

The electrical characteristics of the TFT devices<br />

were measured in the accumulati<strong>on</strong> mode using<br />

Keithley 4200 and 236 source/measure units at room<br />

temperature and under ambient c<strong>on</strong>diti<strong>on</strong>s. The<br />

capacitance was determined using an Agilent 4284<br />

precisi<strong>on</strong> LCR meter. The <str<strong>on</strong>g>film</str<strong>on</strong>g> morphologies were<br />

characterized using an atomic force microscope<br />

(Digital Instruments Multimode) operating in the<br />

tapping mode and a field-emissi<strong>on</strong> scanning electr<strong>on</strong><br />

microscope (Hitachi S-4800). Two-dimensi<strong>on</strong>al<br />

GIXRD measurements were performed <strong>on</strong> the 4C2<br />

beamlines at the Pohang Accelerator Laboratory<br />

(PAL) in Korea. Soluti<strong>on</strong>-state UV–vis absorpti<strong>on</strong><br />

spectra were recorded at various temperature with a<br />

1352 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Adv. Mater. 2009, 21, 1349–1353


www.advmat.de<br />

heating rate of 0.1 8C min 1 (from room temperature to 41 8C) using an<br />

Agilent 8453(HP) UV–vis spectrophotometer equipped with a temperature-c<strong>on</strong>trol<br />

system.<br />

Acknowledgements<br />

This work was supported by a grant (F0004021-2008-31) from the<br />

Informati<strong>on</strong> Display R&D Center under the 21st Century Fr<strong>on</strong>tier R&D<br />

Program, Creative Research Initiative-Accelerati<strong>on</strong> Research (R17-2008-<br />

029-01000-0), the ERC Program of KOSEF (R11-2003-006-06004-0), the<br />

Regi<strong>on</strong>al Technology Innovati<strong>on</strong> Program (RTI04-01-04), and the POST-<br />

ECH Core Research Program. The authors thank the Pohang Accelerator<br />

Laboratory for providing the synchrotr<strong>on</strong> radiati<strong>on</strong> sources at 4C2, 8C1,<br />

and 10C1 beam lines used in this study. Supporting Informati<strong>on</strong> is available<br />

<strong>on</strong>line from Wiley InterScience or from the author.<br />

Received: September 29, 2008<br />

Revised: November 13, 2008<br />

Published <strong>on</strong>line: December 30, 2008<br />

[1] B. S. Ong, Y. L. Wu, P. Liu, S. Gardner, J. Am. Chem. Soc. 2004, 126, 3378.<br />

[2] I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. Macd<strong>on</strong>ald, M.<br />

Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. M. Zhang, M. L. Chabinyc,<br />

R. J. Kline, M. D. McGehee, M. F. T<strong>on</strong>ey, Nat. Mater. 2006, 5, 328.<br />

[3] S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H.<br />

Shimotani, N. Yoshimoto, S. Ogawa, Y. Iwasa, Nat. Mater. 2004, 3, 317.<br />

[4] R. J. Kline, M. D. McGehee, M. F. T<strong>on</strong>ey, Nat. Mater. 2006, 5, 222.<br />

[5] A. Facchetti, M. H. Yo<strong>on</strong>, T. J. Marks, Adv. Mater. 2005, 17, 1705.<br />

[6] Z. Bao, A. Dodabalapur, A. J. Lovinger, Appl. Phys. Lett. 1996, 69, 4108.<br />

[7] J. F. Chang, B. Q. Sun, D. W. Breiby, M. M. Nielsen, T. I. Solling, M. Giles, I.<br />

McCulloch, H. Sirringhaus, Chem. Mater. 2004, 16, 4772.<br />

[8] D. J. Gundlach, J. E. Royer, S. K. Park, S. Subramanian, O. D. Jurchescu, B.<br />

H. Hamadani, A. J. Moad, R. J. Kline, L. C. Teague, O. Kirillov, C. A. Richter,<br />

J. G. Kushmerick, L. J. Richter, S. R. Parkin, T. N. Jacks<strong>on</strong>, J. E. Anth<strong>on</strong>y, Nat.<br />

Mater. 2008, 7, 216.<br />

[9] K. C. Dickey, J. E. Anth<strong>on</strong>y, Y. L. Loo, Adv. Mater. 2006, 18, 1721.<br />

[10] D. M. DeL<strong>on</strong>gchamp, B. M. Vogel, Y. Jung, M. C. Gurau, C. A. Richter, O. A.<br />

Kirillov, J. Obrzut, D. A. Fischer, S. Sambasivan, L. J. Richter, E. K. Lin,<br />

Chem. Mater. 2005, 17, 5610.<br />

[11] R. Ruiz, A. Papadimitratos, A. C. Mayer, G. G. Malliaras, Adv. Mater. 2005,<br />

17, 1795.<br />

[12] E. J. Meijer, D. M. De Leeuw, S. Setayesh, E. Van Veenendaal, B. H.<br />

Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk, Nat.<br />

Mater. 2003, 2, 678.<br />

[13] A. Babel, Y. Zhu, K. F. Cheng, W. C. Chen, S. A. Jenekhe, Adv. Funct. Mater.<br />

2007, 17, 2542.<br />

[14] J. S. Liu, E. Sheina, T. Kowalewski, R. D. McCullough, Angew. Chem. Int. Ed.<br />

2001, 41, 329.<br />

[15] A. Babel, S. A. Jenekhe, Macromolecules 2004, 37, 9835.<br />

[16] L. L. Chua, P. K. H. Ho, H. Sirringhaus, R. H. Friend, Adv. Mater. 2004, 16,<br />

1609.<br />

[17] A. C. Arias, F. Endicott, R. A. Street, Adv. Mater. 2006, 18, 2900.<br />

[18] S. Goffri, C. Muller, N. Stingelin-Stutzmann, D. W. Breiby, C. P. Radano, J.<br />

W. Andreasen, R. Thomps<strong>on</strong>, R. A. J. Janssen, M. M. Nielsen, P. Smith, H.<br />

Sirringhaus, Nat. Mater. 2006, 5, 950.<br />

[19] A. Salleo, A. C. Arias, Adv. Mater. 2007, 19, 3540.<br />

[20] C. Muller, S. Goffri, D. W. Breiby, J. W. Andreasen, H. D. Chanzy, R. A. J.<br />

Janssen, M. M. Nielsen, C. P. Radano, H. Sirringhaus, P. Smith, N.<br />

Stingelin-Stutzmann, Adv. Funct. Mater. 2007, 17, 2674.<br />

[21] L. Z. Qiu, J. A. Lim, X. H. Wang, W. H. Lee, M. Hwang, K. Cho, Adv. Mater.<br />

2008, 20, 1141.<br />

[22] S. Y. Heriot, R. A. L. J<strong>on</strong>es, Nat. Mater. 2005, 4, 782.<br />

[23] S. Walheim, M. Boltau, J. Mlynek, G. Krausch, U. Steiner, Macromolecules<br />

1997, 30, 4995.<br />

[24] H. Yang, S. W. LeFevre, C. Y. Ryu, Z. N. Bao, Appl. Phys. Lett. 2007, 90,<br />

172116.<br />

[25] G. H. Lu, H. W. Tang, Y. P. Qu, L. G. Li, X. N. Yang, Macromolecules 2007,<br />

40, 6579.<br />

[26] D. H. Kim, Y. D. Park, Y. Jang, H. Yang, Y. H. Kim, J. I. Han, D. G. Mo<strong>on</strong>, S.<br />

Park, T. Chang, C. Chang, M. Joo, C. Y. Ryu, K. Cho, Adv. Funct. Mater. 2005,<br />

15, 77.<br />

[27] K. J. Ihn, J. Moult<strong>on</strong>, P. Smith, J. Polym. Sci. Part B: Polym. Phys. 1993, 31,<br />

735.<br />

[28] N. Kiriy, E. Jahne, H. J. Adler, M. Schneider, A. Kiriy, G. Gorodyska, S. Minko,<br />

D. Jehnichen, P. Sim<strong>on</strong>, A. A. Fokin, M. Stamm, Nano Lett. 2003, 3,<br />

707.<br />

[29] J. A. Merlo, C. D. Frisbie, J. Polym. Sci. Part B: Polym. Phys. 2003, 41,<br />

2674.<br />

[30] J. A. Merlo, C. D. Frisbie, J. Phys. Chem. B 2004, 108, 19169.<br />

[31] H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu, Z. N. Bao, Adv. Funct. Mater.<br />

2005, 15, 671.<br />

[32] D. H. Kim, Y. Jang, Y. D. Park, K. Cho, J. Phys. Chem. B 2006, 110, 15763.<br />

[33] D. H. Kim, J. T. Han, Y. D. Park, Y. Jang, J. H. Cho, M. Hwang, K. Cho,<br />

Adv.Mater. 2006, 18, 719.<br />

[34] S. Bers<strong>on</strong>, R. De Bettignies, S. Bailly, S. Guillerez, Adv. Funct. Mater. 2007,<br />

17, 1377.<br />

[35] L. Ma, W. H. Lee, Y. D. Park, J. S. Kim, H. S. Lee, K. Cho, Appl. Phys. Lett.<br />

2008, 92, 063310.<br />

[36] J. Ficker, A. Ullmann, W. Fix, H. Rost, W. Clemens, J. Appl. Phys. 2003, 94,<br />

2638.<br />

Adv. Mater. 2009, 21, 1349–1353 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1353<br />

COMMUNICATION

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!