27.02.2013 Views

In-situ monitoring of InGaAsN MQW structures - Laytec

In-situ monitoring of InGaAsN MQW structures - Laytec

In-situ monitoring of InGaAsN MQW structures - Laytec

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

MICRONOVA<br />

<strong>In</strong>-<strong>situ</strong> <strong>monitoring</strong> <strong>of</strong> <strong>In</strong>GaAsN <strong>MQW</strong><br />

<strong>structures</strong><br />

Outi Reentilä<br />

Micro and Nanosciences Laboratory<br />

Micronova<br />

Helsinki University <strong>of</strong> Technology (TKK)<br />

Finland<br />

LayTec in-<strong>situ</strong> seminar in Bratislava<br />

June 3rd 2007<br />

1


MICRONOVA<br />

http://www.micronova.fi/<br />

OUTLINE<br />

1. MOVPE growth <strong>of</strong> dilute nitrides<br />

2. <strong>In</strong>-<strong>situ</strong> <strong>monitoring</strong> <strong>of</strong> thin layer growth<br />

Slope method<br />

QW composition using matrix method<br />

3. Summary<br />

2


MICRONOVA<br />

MOVPE GROWTH<br />

Growth <strong>of</strong> dilute nitride <strong>MQW</strong> samples by low pressure Thomas Swan MOVPE<br />

system, ex-<strong>situ</strong> characterization by HR-XRD, PL, AFM...<br />

3


MICRONOVA<br />

Example, SESAM<br />

structure:<br />

Fabry-Perot oscillations<br />

are observed during<br />

growth <strong>of</strong> thick layers,<br />

fine structure seen for<br />

growth <strong>of</strong> thin <strong>In</strong>GaAsN<br />

QWs (7 nm thick).<br />

IN-SITU REFLECTANCE MONITORING<br />

<strong>In</strong>-<strong>situ</strong> <strong>monitoring</strong> by LayTec’s EpiTT at 635 nm.<br />

<strong>In</strong>-<strong>situ</strong> reflectance (632 nm)<br />

0.50<br />

0.45<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

<strong>In</strong>-<strong>situ</strong> <strong>monitoring</strong> <strong>of</strong> an absorber structure<br />

on GaAs/AlAs Bragg mirror<br />

growth <strong>of</strong> GaAs spacing layers<br />

growth <strong>of</strong> <strong>MQW</strong> region<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

Time <strong>of</strong> growth (s)<br />

fine structure<br />

4


MICRONOVA<br />

SLOPE METHOD<br />

• no complete Fabry-Perot oscillations<br />

• increasing (decreasing) reflectance during QW (barrier) growth<br />

Reflectance<br />

0.309<br />

0.305<br />

0.301<br />

0.297<br />

0.293<br />

QW<br />

barrier<br />

slope ∆R/∆ /∆ /∆t /∆<br />

QW<br />

barrier<br />

QW<br />

QW<br />

barrier<br />

barrier<br />

1400 1500 1600 1700<br />

Time (s)<br />

T(setpoint)=575C<br />

5


MICRONOVA<br />

SLOPE METHOD<br />

Rough analysis <strong>of</strong> the QW composition using a slope method:<br />

Slope <strong>of</strong> the 1st QW (10 -4 x1/nm)<br />

12<br />

9<br />

6<br />

3<br />

0<br />

15 %<br />

17 %<br />

12 %<br />

7 %<br />

<strong>In</strong> 0.18 Ga 0.82 As on GaAs<br />

<strong>In</strong>GaAsN on GaAs<br />

-1 0 1 2 3 4 5 6<br />

QW nitrogen content (%)<br />

GaAsN on GaAs<br />

6


MICRONOVA<br />

Reflectance<br />

MATRIX METHOD<br />

For more sophisticated <strong>MQW</strong> in-<strong>situ</strong> analysis:<br />

use <strong>of</strong> matrix method to calculate theoretical reflectance curves.<br />

0.55<br />

0.50<br />

0.45<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

GaAs on GaAs<br />

AlGaAs layer<br />

GaAs layer<br />

Temperature ramp<br />

690 o C - 670 o C<br />

measured<br />

calculated<br />

0 200 400 600 800 1000<br />

Time <strong>of</strong> structure growth (s)<br />

From simulation:<br />

GaAs at 670°C<br />

n = 4.2-0.3i<br />

AlGaAs at 690°C:<br />

n = 3.3-0.03i<br />

(growth rates<br />

determined by XRD)<br />

O. Reentilä et al., J. Appl. Phys.<br />

101 033533 (2007)<br />

7


MICRONOVA<br />

Measured real and imaginary parts <strong>of</strong> refractive index <strong>of</strong> <strong>In</strong> xGa 1-xAs<br />

QW as a function <strong>of</strong> <strong>In</strong> content x:<br />

Imaginary part κ<br />

-0.28<br />

-0.30<br />

-0.32<br />

-0.34<br />

-0.36<br />

-0.38<br />

-0.40<br />

-0.42<br />

<strong>In</strong>GaAs QWs AND THE MATRIX METHOD<br />

GaAs<br />

GaAs<br />

0 5 10 15 20 25 30<br />

<strong>In</strong>GaAs indium content (%)<br />

<strong>In</strong>dium content more accurately from imaginary part (κ).<br />

4.08<br />

4.06<br />

4.04<br />

4.02<br />

4.00<br />

3.98<br />

3.96<br />

Real part n<br />

O. Reentilä et al., J. Appl. Phys. 101 033533 (2007)<br />

8


MICRONOVA<br />

Calculated curves for <strong>In</strong>GaAs/GaAs <strong>MQW</strong> <strong>structures</strong> (different indium<br />

contents) using n and κ obtained by fitting to measured curves.<br />

Reflectance change (%)<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

<strong>In</strong>GaAs QWs AND THE MATRIX METHOD<br />

50 100 150 200<br />

Time (s)<br />

25 %<br />

20 %<br />

15 %<br />

10 %<br />

5 %<br />

O. Reentilä et al., J. Appl. Phys. 101 033533 (2007)<br />

9


MICRONOVA<br />

Real part n<br />

For (<strong>In</strong>)GaAsN:<br />

• linear dependency between the imaginary part and [N]<br />

• no dependency was found in the real part when [N] was varied<br />

4.08<br />

4.05<br />

4.02<br />

3.99<br />

4.08<br />

4.05<br />

4.02<br />

3.99<br />

4.08<br />

4.05<br />

4.02<br />

3.99<br />

0 1 2 3 4 5 6<br />

0 1 2 3 4 5 6<br />

0 1 2 3 4 5 6<br />

Nitrogen content (%)<br />

<strong>In</strong>GaAsN QWs AND THE MATRIX METHOD<br />

0 % <strong>In</strong><br />

12 % <strong>In</strong><br />

17 % <strong>In</strong><br />

Imaginary part<br />

-0.30<br />

-0.35<br />

-0.40<br />

-0.45<br />

-0.50<br />

GaAs<br />

<strong>In</strong> 0.12 GaAs<br />

<strong>In</strong> 0.17 GaAs<br />

0 % <strong>In</strong><br />

12 % <strong>In</strong><br />

17 % <strong>In</strong><br />

C(0) = -1.078<br />

C(0.12) = -1.62<br />

C(0.17) = -2.44<br />

0 1 2 3 4 5<br />

<strong>In</strong>GaAsN nitrogen content (%)<br />

O. Reentilä et al., Appl. Phys. Lett. 89, 231919 (2006)<br />

10


MICRONOVA<br />

SUMMARY<br />

• Dilute nitride samples fabricated by low-pressure MOVPE<br />

system were studied by in-<strong>situ</strong> reflectometry and several ex<strong>situ</strong><br />

measurements<br />

• Growth <strong>of</strong> <strong>MQW</strong> <strong>structures</strong> can be monitored and the layers<br />

(at least partially) analysed during growth<br />

• More work is needed to resolve<br />

• the effect <strong>of</strong> strain on the refractive index<br />

• in-<strong>situ</strong> <strong>monitoring</strong> <strong>of</strong> the growth rate AND the refractive index<br />

at the same time, i.e., full in-<strong>situ</strong> characterization <strong>of</strong> the <strong>MQW</strong><br />

<strong>structures</strong><br />

• the reason why n is not changing when the nitrogen content is<br />

varied<br />

11


MICRONOVA<br />

RELATED PUBLICATIONS<br />

O. Reentilä, M. Mattila, M. Sopanen, H. Lipsanen, Nitrogen content <strong>of</strong> GaAsN quantum<br />

wells by in-<strong>situ</strong> <strong>monitoring</strong> during MOVPE growth, Journal <strong>of</strong> Crystal Growth, 290 345-349<br />

(2006)<br />

O. Reentilä, M. Mattila, L. Knuuttila, T. Hakkarainen, M. Sopanen, H. Lipsanen, <strong>In</strong> <strong>situ</strong><br />

determination <strong>of</strong> nitrogen content in <strong>In</strong>GaAsN quantum wells, Journal <strong>of</strong> Applied Physics,<br />

100 013509 (2006)<br />

O. Reentilä, M. Mattila, L. Knuuttila, T. Hakkarainen, M. Sopanen, H. Lipsanen, Comparison<br />

<strong>of</strong> H2 and N2 as carrier gas in MOVPE growth <strong>of</strong> <strong>In</strong>GaAsN quantum wells, Journal <strong>of</strong> Crystal<br />

Growth, 298 536-539 (2007)<br />

O. Reentilä, M. Mattila, M. Sopanen, H. Lipsanen, <strong>In</strong>-<strong>situ</strong> determination <strong>of</strong> <strong>In</strong>GaAs and<br />

GaAsN composition in multi-quantum-well <strong>structures</strong>, Journal <strong>of</strong> Applied Physics, 101<br />

033533 (2007)<br />

O. Reentilä, M. Mattila, M. Sopanen, H. Lipsanen, Simultaneous determination <strong>of</strong> indium<br />

and nitrogen contents <strong>of</strong> <strong>In</strong>GaAsN quantum wells by optical in-<strong>situ</strong> <strong>monitoring</strong>, Applied<br />

Physics Letters, 89 231919 (2006)<br />

12


MICRONOVA<br />

ACKNOWLEDGEMENTS<br />

M. Sc. Marco Mattila<br />

Dr. Teppo Hakkarainen<br />

Dr. Lauri Knuuttila<br />

Docent Markku Sopanen<br />

Pr<strong>of</strong>. Harri Lipsanen<br />

Micro and Nanosciences Laboratory, Micronova<br />

Helsinki University <strong>of</strong> Technology<br />

Finland<br />

13

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!