27.02.2013 Views

Download full document - Automatic Control

Download full document - Automatic Control

Download full document - Automatic Control

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

To achieve a matrix that describes all of the three points P C in the base frame {R} one has to<br />

i<br />

R<br />

multiply P C with the rotational matrix i<br />

iR z<br />

The result is the matrix PC<br />

PC = PC<br />

⋅ i<br />

R<br />

i<br />

R<br />

z<br />

⎡cos(<br />

α1)(<br />

l<br />

=<br />

⎢<br />

⎢<br />

cos( α 2)(<br />

l<br />

⎢⎣<br />

cos( α3<br />

)( l<br />

⎡cosαi − sinα<br />

i<br />

=<br />

⎢<br />

⎢<br />

sinα<br />

i cosα<br />

⎢⎣<br />

0 0<br />

R<br />

i R z<br />

i<br />

A<br />

A<br />

A<br />

cos( θ ) + R)<br />

1<br />

cos( θ ) + R)<br />

2<br />

cos( θ ) + R)<br />

3<br />

− ( R + l<br />

− ( R + l<br />

− ( R + l<br />

______________________________________________________________________________<br />

Public Report ELAU GmbH, Marktheidenfeld<br />

17<br />

A<br />

A<br />

A<br />

0⎤<br />

0<br />

⎥<br />

⎥<br />

1⎥⎦<br />

cos( θ )) sin( α )<br />

1<br />

cos( θ )) sin( α )<br />

2<br />

cos( θ )) sin( α )<br />

3<br />

1<br />

2<br />

3<br />

− l<br />

− l<br />

− l<br />

A<br />

A<br />

A<br />

sin( θ1)<br />

⎤<br />

sin( θ )<br />

⎥<br />

2 ⎥<br />

sin( θ ) ⎥ 3 ⎦<br />

Then can three spheres be created with the forearms lengths lB as radius, and their centre in P Ci<br />

respectively.<br />

2<br />

2<br />

2 2<br />

The equation for a sphere is ( x − x0<br />

) + ( y − y0<br />

) + ( z − z0<br />

) = r which gives the three<br />

equations<br />

⎧<br />

⎪<br />

⎨<br />

⎪<br />

⎩<br />

2<br />

2<br />

2<br />

( x − [ cos( α1)(<br />

lA<br />

cos( θ1)<br />

+ R)<br />

] ) + ( y − [ − ( R + lA<br />

cos( θ1))<br />

sin( α1)<br />

] ) + ( z − [ − lA<br />

sin( θ1)<br />

] )<br />

2<br />

2<br />

( x − [ cos( α 2)(<br />

lA<br />

cos( θ2<br />

) + R)<br />

] ) + ( y − [ − ( R + lA<br />

cos( θ2<br />

)) sin( α 2)<br />

] ) + ( z − [ − lA<br />

sin( θ2<br />

) ] )<br />

2<br />

2<br />

( x − [ cos( α )( l cos( θ ) + R)<br />

] ) + ( y − [ − ( R + l cos( θ )) sin( α ) ] ) + ( z − [ − l sin( θ ) ] )<br />

2<br />

A<br />

3<br />

A<br />

Eq. 4.1<br />

With help from computer this equation system can be solved. There will be two solutions that<br />

describe the two intersection points of the three spheres. Then the solution that is within the<br />

robots working area must be chosen. With the base frame {R} in this case it will lead to the<br />

solution with negative z coordinate.<br />

4.4 INVERSE KINEMATICS<br />

The inverse kinematics of a parallel manipulator determines the θi angle of each actuated<br />

revolute joint given the (x,y,z) position of the travel plate in base-frame {R}, see Figure 4.5.<br />

3<br />

2<br />

A<br />

3<br />

2<br />

2<br />

= l<br />

= l<br />

= l<br />

2<br />

B<br />

2<br />

B<br />

2<br />

B

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!