26.02.2013 Views

Elevated Monoamine Oxidase A Levels in the Brain - Medizin ...

Elevated Monoamine Oxidase A Levels in the Brain - Medizin ...

Elevated Monoamine Oxidase A Levels in the Brain - Medizin ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ORIGINAL ARTICLE<br />

<strong>Elevated</strong> <strong>Monoam<strong>in</strong>e</strong> <strong>Oxidase</strong> A <strong>Levels</strong> <strong>in</strong> <strong>the</strong> Bra<strong>in</strong><br />

An Explanation for <strong>the</strong> <strong>Monoam<strong>in</strong>e</strong> Imbalance of Major Depression<br />

Jeffrey H. Meyer, MD, PhD; Nathalie G<strong>in</strong>ovart, PhD; Anahita Boovariwala, BSc; Sandra Sagrati, BSc;<br />

Doug Hussey, BSc; Armando Garcia, BSc; Trevor Young, MD, PhD; Nicole Praschak-Rieder, MD;<br />

Alan A. Wilson, PhD; Sylva<strong>in</strong> Houle, MD, PhD<br />

Context: The monoam<strong>in</strong>e <strong>the</strong>ory of depression proposes<br />

that monoam<strong>in</strong>e levels are lowered, but <strong>the</strong>re is no<br />

explanation for how monoam<strong>in</strong>e loss occurs. <strong>Monoam<strong>in</strong>e</strong><br />

oxidase A (MAO-A) is an enzyme that metabolizes<br />

monoam<strong>in</strong>es, such as seroton<strong>in</strong>, norep<strong>in</strong>ephr<strong>in</strong>e, and<br />

dopam<strong>in</strong>e.<br />

Objective: To determ<strong>in</strong>e whe<strong>the</strong>r MAO-A levels <strong>in</strong> <strong>the</strong><br />

bra<strong>in</strong> are elevated dur<strong>in</strong>g untreated depression.<br />

Sett<strong>in</strong>g: Tertiary care psychiatric hospital.<br />

Patients: Seventeen healthy and 17 depressed <strong>in</strong>dividuals<br />

with major depressive disorder that met entry criteria<br />

were recruited from <strong>the</strong> care of general practitioners<br />

and psychiatrists. All study participants were o<strong>the</strong>rwise<br />

healthy and nonsmok<strong>in</strong>g. Depressed <strong>in</strong>dividuals had been<br />

medication free for at least 5 months.<br />

Ma<strong>in</strong> Outcome Measure: Harm<strong>in</strong>e labeled with carbon<br />

11, a radioligand selective for MAO-A and positron<br />

Author Affiliations: Vivian M.<br />

Rakoff PET Imag<strong>in</strong>g Centre<br />

(Drs Meyer, G<strong>in</strong>ovart,<br />

Praschak-Rieder, Wilson, and<br />

Houle, Mss Boovariwala and<br />

Sagrati, and Messrs Hussey and<br />

Garcia) and Mood and Anxiety<br />

Disorders Division (Drs Meyer<br />

and Young), Clarke Division,<br />

Centre for Addiction and<br />

Mental Health and Department<br />

of Psychiatry, University of<br />

Toronto, Toronto, Ontario; and<br />

Department of General<br />

Psychiatry, Medical University<br />

of Vienna, Vienna, Austria<br />

(Dr Praschak-Rieder).<br />

MAJOR DEPRESSIVE DISORder<br />

is an important illness<br />

because it has a<br />

1-year prevalence of 2%<br />

to 5% and ranks fourth<br />

among causes of death or <strong>in</strong>jury. 1 For more<br />

than 30 years, it has been <strong>the</strong>orized that levels<br />

of monoam<strong>in</strong>es, such as seroton<strong>in</strong>, norep<strong>in</strong>ephr<strong>in</strong>e,<br />

and dopam<strong>in</strong>e, are generally<br />

low <strong>in</strong> <strong>the</strong> bra<strong>in</strong> dur<strong>in</strong>g untreated major depressive<br />

episodes (MDEs). 2 However, no<br />

conv<strong>in</strong>c<strong>in</strong>g mechanism of monoam<strong>in</strong>e loss<br />

has ever been found. 3-11<br />

Previous <strong>in</strong>vestigations of monoam<strong>in</strong>e<br />

transporters and monoam<strong>in</strong>e syn<strong>the</strong>sis<br />

enzymes have not identified a prom<strong>in</strong>ent<br />

monoam<strong>in</strong>e-lower<strong>in</strong>g process dur<strong>in</strong>g<br />

untreated depressive episodes. Loss of<br />

monoam<strong>in</strong>e-releas<strong>in</strong>g neurons is an unlikely<br />

mechanism of monoam<strong>in</strong>e loss, s<strong>in</strong>ce<br />

some <strong>in</strong>vestigations report no reduction<br />

<strong>in</strong> monoam<strong>in</strong>e transporters and <strong>the</strong> largest<br />

reported reductions <strong>in</strong> monoam<strong>in</strong>e<br />

transporter density <strong>in</strong>dices range from 14%<br />

to 25%. 3-8,12,13 Even <strong>the</strong> largest reported re-<br />

emission tomography, was used to measure MAO-A DV S<br />

(specific distribution volume), an <strong>in</strong>dex of MAO-A density,<br />

<strong>in</strong> different bra<strong>in</strong> regions (prefrontal cortex, anterior<br />

c<strong>in</strong>gulate cortex, posterior c<strong>in</strong>gulate cortex, caudate,<br />

putamen, thalamus, anterior temporal cortex,<br />

midbra<strong>in</strong>, hippocampus, and parahippocampus).<br />

Results: The MAO-A DV S was highly significantly elevated<br />

<strong>in</strong> every bra<strong>in</strong> region assessed (t test; P=.001 to<br />

3�10 −7 ). The MAO-A DVS was elevated on average by 34%<br />

(2 SDs) throughout <strong>the</strong> bra<strong>in</strong> dur<strong>in</strong>g major depression.<br />

Conclusions: The sizable magnitude of this f<strong>in</strong>d<strong>in</strong>g<br />

and <strong>the</strong> absence of o<strong>the</strong>r compell<strong>in</strong>g explanations for<br />

monoam<strong>in</strong>e loss dur<strong>in</strong>g major depressive episodes led<br />

to <strong>the</strong> conclusion that elevated MAO-A density is <strong>the</strong><br />

primary monoam<strong>in</strong>e-lower<strong>in</strong>g process dur<strong>in</strong>g major<br />

depression.<br />

Arch Gen Psychiatry. 2006;63:1209-1216<br />

(REPRINTED) ARCH GEN PSYCHIATRY/ VOL 63, NOV 2006 WWW.ARCHGENPSYCHIATRY.COM<br />

1209<br />

©2006 American Medical Association. All rights reserved.<br />

ductions <strong>in</strong> monoam<strong>in</strong>e transporter <strong>in</strong>dices<br />

<strong>in</strong> depression are low compared with<br />

monoam<strong>in</strong>e transporter loss observed <strong>in</strong><br />

symptomatic neurodegenerative disease.<br />

14 Moreover, no abnormality <strong>in</strong> an <strong>in</strong>dex<br />

of seroton<strong>in</strong> transporter density was<br />

found <strong>in</strong> vivo <strong>in</strong> untreated depressed <strong>in</strong>dividuals.<br />

8 Decreased monoam<strong>in</strong>e syn<strong>the</strong>sis<br />

is unlikely dur<strong>in</strong>g depression because<br />

<strong>in</strong>vestigations of monoam<strong>in</strong>e syn<strong>the</strong>sis enzymes<br />

<strong>in</strong> monoam<strong>in</strong>e nuclei tend to f<strong>in</strong>d<br />

no change or modest <strong>in</strong>creases <strong>in</strong> depressed<br />

<strong>in</strong>dividuals. 10,11,15 Studies 9 attempt<strong>in</strong>g<br />

to determ<strong>in</strong>e whe<strong>the</strong>r monoam<strong>in</strong>e precursor<br />

uptake is reduced <strong>in</strong> depression are<br />

<strong>in</strong>conclusive because <strong>the</strong>y are typically<br />

confounded by recent antidepressant use.<br />

Abnormally elevated monoam<strong>in</strong>e oxidase<br />

B density seems less likely to occur<br />

<strong>in</strong> depression, as one <strong>in</strong>vestigation 16 of<br />

monoam<strong>in</strong>e oxidase B density <strong>in</strong> <strong>the</strong> amygdala<br />

found no significant difference <strong>in</strong> depressed<br />

<strong>in</strong>dividuals.<br />

<strong>Monoam<strong>in</strong>e</strong> oxidase A (MAO-A) is a<br />

logical enzyme to <strong>in</strong>vestigate <strong>in</strong> depres-


Activity, kBq/mL<br />

Activity, kBq/mL<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Prefrontal Cortex<br />

0 20 40 60 80 100<br />

Time, m<strong>in</strong><br />

Anterior C<strong>in</strong>gulate Cortex<br />

0 20 40 60 80 100<br />

Time, m<strong>in</strong><br />

sion because it regulates levels of all 3 major monoam<strong>in</strong>es<br />

(seroton<strong>in</strong>, norep<strong>in</strong>ephr<strong>in</strong>e, and dopam<strong>in</strong>e) <strong>in</strong> <strong>the</strong> bra<strong>in</strong>. 17<br />

Whe<strong>the</strong>r MAO-A levels <strong>in</strong> <strong>the</strong> bra<strong>in</strong> are abnormal dur<strong>in</strong>g<br />

MDEs is unknown because each previous <strong>in</strong>vestigation of<br />

MAO-A <strong>in</strong> <strong>the</strong> bra<strong>in</strong> has had at least 2 critical confounders<br />

and/or limitations, 18-23 <strong>in</strong>clud<strong>in</strong>g complete nonspecificity<br />

of technique for MAO-A vs monoam<strong>in</strong>e oxidase B, enrollment<br />

of study participants who had recently taken medication,<br />

unclear diagnosis of <strong>in</strong>dividuals who committed suicide,<br />

small sample size, and lack of differentiation between<br />

early-onset depression and late-onset depression. In contrast<br />

to <strong>the</strong> typical, early-onset depression before <strong>the</strong> age<br />

of 40 years, late-onset depression probably has a different<br />

pathophysiologic mechanism attributable to lesions and/or<br />

degenerative disease. 24<br />

The MAO-A DV S (specific distribution volume), an <strong>in</strong>dex<br />

of MAO-A density, is measurable <strong>in</strong> vivo <strong>in</strong> <strong>the</strong> bra<strong>in</strong><br />

us<strong>in</strong>g harm<strong>in</strong>e labeled with carbon 11 ([ 11 C]harm<strong>in</strong>e) posi-<br />

Activity, kBq/mL<br />

Activity, kBq/mL<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Thalamus<br />

0 20 40 60 80 100<br />

Time, m<strong>in</strong><br />

Temporal Cortex<br />

0 20 40 60 80 100<br />

Time, m<strong>in</strong><br />

Figure 1. Time activity curves for harm<strong>in</strong>e labeled with carbon 11 ([ 11 C]harm<strong>in</strong>e) demonstrat<strong>in</strong>g reversible k<strong>in</strong>etics. Time activity curves for a representative<br />

depressed <strong>in</strong>dividual (closed circles) and a healthy <strong>in</strong>dividual (open circles) are shown. This pair of study participants was chosen because each has monoam<strong>in</strong>e<br />

oxidase A (MAO-A) DV S (an <strong>in</strong>dex of MAO-A density) values with<strong>in</strong> 10% of <strong>the</strong>ir group mean, and <strong>the</strong>se 2 participants have near identical areas under <strong>the</strong>ir<br />

[ 11 C]harm<strong>in</strong>e plasma <strong>in</strong>put curves (with<strong>in</strong> 1%).<br />

tron emission tomography (PET). 25,26 [ 11 C]Harm<strong>in</strong>e is a<br />

selective, reversible PET radiotracer for MAO-A, and<br />

MAO-A DVS is an <strong>in</strong>dex of specifically bound [ 11 C]harm<strong>in</strong>e.<br />

25-27 [ 11 C]Harm<strong>in</strong>e PET demonstrates <strong>the</strong> requisite<br />

properties of a PET radiotracer for measurement of MAO-<br />

A 25-27 : harm<strong>in</strong>e has a high aff<strong>in</strong>ity (Ki=2nM) and a selective<br />

aff<strong>in</strong>ity for <strong>the</strong> MAO-A enzyme. [ 11 C]Harm<strong>in</strong>e shows<br />

high bra<strong>in</strong> uptake <strong>in</strong> humans with <strong>the</strong> greatest uptake <strong>in</strong><br />

regions with <strong>the</strong> highest MAO-A density. 25-27 [ 11 C]Harm<strong>in</strong>e<br />

also shows reversible k<strong>in</strong>etics <strong>in</strong> all regions with specific<br />

b<strong>in</strong>d<strong>in</strong>g <strong>in</strong> humans 25-27 (Figure 1). The MAO-A <strong>in</strong>hibitors<br />

can fully displace specific b<strong>in</strong>d<strong>in</strong>g of [ 11 C]harm<strong>in</strong>e<br />

<strong>in</strong> animal models, 25,27 and MAO-A <strong>in</strong>hibitors at cl<strong>in</strong>ically<br />

tolerable doses can displace 80% of specific b<strong>in</strong>d<strong>in</strong>g <strong>in</strong> humans.<br />

26 The metabolites of harm<strong>in</strong>e are polar and do not<br />

cross <strong>the</strong> blood-bra<strong>in</strong> barrier. 28 The ma<strong>in</strong> advantage of<br />

[ 11 C]harm<strong>in</strong>e over clorgyl<strong>in</strong>e labeled with carbon 11<br />

([ 11 C]clorgyl<strong>in</strong>e) is that [ 11 C]harm<strong>in</strong>e has reversible bra<strong>in</strong><br />

(REPRINTED) ARCH GEN PSYCHIATRY/ VOL 63, NOV 2006 WWW.ARCHGENPSYCHIATRY.COM<br />

1210<br />

©2006 American Medical Association. All rights reserved.


k<strong>in</strong>etics, whereas [ 11 C]clorgyl<strong>in</strong>e shows slowly reversible<br />

bra<strong>in</strong> k<strong>in</strong>etics. 29 The ma<strong>in</strong> advantage of [ 11 C]harm<strong>in</strong>e over<br />

deuterium-substituted [ 11 C]clorgyl<strong>in</strong>e is that deuteriumsubstituted<br />

[ 11 C]clorgyl<strong>in</strong>e has substantial non–MAO-A<br />

b<strong>in</strong>d<strong>in</strong>g <strong>in</strong> humans <strong>in</strong> some bra<strong>in</strong> regions. 29<br />

The hypo<strong>the</strong>sis of <strong>the</strong> present study is that <strong>the</strong> MAO-A<br />

DVS will be elevated throughout <strong>the</strong> bra<strong>in</strong> dur<strong>in</strong>g MDEs<br />

<strong>in</strong> medication-free <strong>in</strong>dividuals with major depressive disorder<br />

and typical early-onset illness. An elevation <strong>in</strong> MAO-A<br />

density is hypo<strong>the</strong>sized because greater MAO-A could excessively<br />

lower bra<strong>in</strong> monoam<strong>in</strong>e levels. 17 The location of<br />

elevated MAO-A density was hypo<strong>the</strong>sized to be throughout<br />

<strong>the</strong> bra<strong>in</strong> because monoam<strong>in</strong>e receptor abnormalities<br />

<strong>in</strong> depression consistent with lowered monoam<strong>in</strong>e levels<br />

have been reported <strong>in</strong> several bra<strong>in</strong> regions, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong><br />

prefrontal cortex, striatum, and midbra<strong>in</strong>. 3-6,8,30<br />

METHODS<br />

PARTICIPANTS<br />

Twenty <strong>in</strong>dividuals with an MDE and major depressive disorder<br />

were recruited, and 17 depressed <strong>in</strong>dividuals completed <strong>the</strong><br />

protocol (mean±SD age, 34±8 years; 8 men and 9 women).<br />

Seventeen age-matched healthy <strong>in</strong>dividuals were recruited<br />

(mean±SD age, 34±8 years; 10 men and 7 women). Each underwent<br />

an [ 11 C]harm<strong>in</strong>e PET scan. Participants were between<br />

20 and 49 years of age. Healthy participants were age<br />

matched with<strong>in</strong> 4 years to depressed patients (Table).<br />

Allstudyparticipants(MDEandhealthy)werephysicallyhealthy<br />

and nonsmok<strong>in</strong>g and had no history of neurotox<strong>in</strong> use. Participants<br />

were nonsmok<strong>in</strong>g because it is reported that smok<strong>in</strong>g can<br />

lower MAO-A levels, which could create greater variance <strong>in</strong> measurement.<br />

31 Women <strong>in</strong> perimenopause or menopause were excluded.<br />

Healthy participants were screened to rule out any Axis<br />

I disorders, and depressed participants were screened to rule out<br />

any comorbid Axis I disorders us<strong>in</strong>g <strong>the</strong> Structured Cl<strong>in</strong>ical Interview<br />

for DSM-IV. 32 All participants were screened to rule out<br />

borderl<strong>in</strong>eandantisocialpersonalitydisorderus<strong>in</strong>g<strong>the</strong>Structured<br />

Cl<strong>in</strong>ical Interview for DSM-IV for Axis II disorders. 33 All participants<br />

underwent a ur<strong>in</strong>e drug screen on <strong>the</strong> day of <strong>the</strong> [ 11 C]harm<strong>in</strong>e<br />

PET scan. All depressed patients underwent common blood<br />

tests to rule out medical causes of disturbed mood (thyroid function,<br />

electrolyte levels, and complete blood cell count).<br />

For depressed patients, <strong>the</strong> mean±SD age at onset of illness<br />

was 23±10 years. Patients were <strong>in</strong> <strong>the</strong>ir first (n=8), second<br />

(n=5), or third (n=4) MDE. No patient with depression<br />

had received antidepressant treatment with<strong>in</strong> <strong>the</strong> past 5 months,<br />

and 11 depressed patients had never received antidepressant<br />

treatment. For depressed patients, a diagnosis of MDE secondary<br />

to major depressive disorder was based on <strong>the</strong> Structured<br />

Cl<strong>in</strong>ical Interview for DSM-IV for Axis I disorders 32 and a consultation<br />

with a psychiatrist (J.H.M.). For patients with MDE,<br />

<strong>the</strong> m<strong>in</strong>imum severity for enrollment was based on a cutoff score<br />

of 17 on <strong>the</strong> 17-item Hamilton Depression Rat<strong>in</strong>g Scale. 34 The<br />

mean±SD Hamilton Depression Rat<strong>in</strong>g Scale score for participants<br />

with MDE was 22±3. Additional exclusion criteria <strong>in</strong>cluded<br />

MDE with psychotic symptoms, bipolar disorder (type<br />

I or II), history of self-harm or suicidality outside episodes of<br />

depression, and history of alcohol or o<strong>the</strong>r drug abuse.<br />

For each study participant, written consent was obta<strong>in</strong>ed<br />

after <strong>the</strong> procedures had been fully expla<strong>in</strong>ed. The study and<br />

recruitment procedures were approved by <strong>the</strong> Research Ethics<br />

Board for Human Subjects at <strong>the</strong> Centre for Addiction and Mental<br />

Health, University of Toronto.<br />

Table. Sample Demographics<br />

Demographic<br />

Healthy<br />

Group<br />

(n = 17)<br />

Depressed<br />

Group<br />

(n = 17)<br />

Age, mean ± SD, y 34 ± 8 34 ± 8<br />

Women, No. 7 9<br />

Men, No. 10 8<br />

Education, mean ± SD, y 15 ± 2 15 ± 2<br />

Psychiatric diagnosis* None Major depressive episode;<br />

major depressive disorder<br />

First major depressive episode NA 8<br />

Second major depressive episode NA 5<br />

Third major depressive episode NA 4<br />

No previous antidepressant<br />

treatment<br />

NA 11<br />

Previous antidepressant<br />

treatment†<br />

NA 6<br />

Abbreviation: NA, not applicable.<br />

*Study participants did not have comorbid Axis I disorders, borderl<strong>in</strong>e<br />

personality disorder, or antisocial personality disorder.<br />

†No study participant with depression had received antidepressant<br />

treatment with<strong>in</strong> <strong>the</strong> past 5 months.<br />

IMAGE ACQUISITION AND ANALYSIS<br />

A dose of 370 MBq of <strong>in</strong>travenous [ 11 C]harm<strong>in</strong>e was adm<strong>in</strong>istered<br />

as a bolus for each PET scan. An automatic blood sampl<strong>in</strong>g<br />

system was used to measure arterial blood radioactivity cont<strong>in</strong>uously<br />

for <strong>the</strong> first 10 m<strong>in</strong>utes. Manual samples were obta<strong>in</strong>ed at<br />

5, 10, 15, 20, 30, 45, 60, and 90 m<strong>in</strong>utes. The radioactivity <strong>in</strong> whole<br />

blood and plasma was measured as described previously. 26 Frames<br />

were acquired as follows: 15 frames of 1 m<strong>in</strong>ute, <strong>the</strong>n 15 frames<br />

of 5 m<strong>in</strong>utes. [ 11 C]Harm<strong>in</strong>e was of high radiochemical purity<br />

(�96%; mean±SD, 98.4%±0.8%; n=34) and high specific activity<br />

(mean±SD, 43±18 terabecquerels/mmol at <strong>the</strong> time of <strong>in</strong>jection).<br />

The PET images were obta<strong>in</strong>ed us<strong>in</strong>g a GEMS 2048-15B<br />

camera (<strong>in</strong>tr<strong>in</strong>sic <strong>in</strong>-plane resolution; full width at half maximum,<br />

5.5 mm; Scanditronix Medical, General Electric, Uppsala,<br />

Sweden). All images were corrected for attenuation us<strong>in</strong>g a germanium<br />

68/gallium 68 transmission scan and reconstructed by<br />

filtered back projection us<strong>in</strong>g a Hann<strong>in</strong>g filter.<br />

For <strong>the</strong> region of <strong>in</strong>terest (ROI) method, each participant<br />

underwent magnetic resonance imag<strong>in</strong>g (GE Signa 1.5-T scanner;<br />

sp<strong>in</strong>-echo sequence, T1-weighted image; x, y, z voxel dimensions,<br />

0.78, 0.78, and 3 mm, respectively; GE Medical Systems,<br />

Milwaukee, Wis). The ROIs were drawn on magnetic<br />

resonance images that were coregistered to each summed<br />

[ 11 C]harm<strong>in</strong>e PET image us<strong>in</strong>g a mutual <strong>in</strong>formation algorithm.<br />

35 The location of <strong>the</strong> ROI was verified by visual assessment<br />

of <strong>the</strong> ROI on <strong>the</strong> summated [ 11 C]harm<strong>in</strong>e PET image.<br />

The ROIs were drawn to sample <strong>the</strong> prefrontal cortex, anterior<br />

c<strong>in</strong>gulate cortex, posterior c<strong>in</strong>gulate cortex, caudate, putamen,<br />

thalamus, anterior temporal cortex, midbra<strong>in</strong>, and a hippocampal<br />

and parahippocampal region. The def<strong>in</strong>itions of <strong>the</strong><br />

ROIs were similar to our previous <strong>in</strong>vestigations. 8,36 The prefrontal<br />

cortex regions (left and right) were drawn <strong>in</strong> transverse<br />

planes extend<strong>in</strong>g 32.5 mm <strong>in</strong> <strong>the</strong> z-axis and <strong>in</strong>cluded Brodmann<br />

areas 9, 10, 46, and part of 8 and 47. The anterior c<strong>in</strong>gulate<br />

cortex (Brodmann areas 24 and part of 32) was sampled from<br />

adjacent transverse planes extend<strong>in</strong>g 26 mm <strong>in</strong> <strong>the</strong> z-axis. The<br />

putamen and thalamus were drawn with<strong>in</strong> adjacent transverse<br />

planes to maximally sample <strong>the</strong> <strong>in</strong>dividual structures. These<br />

planes extended 13 mm <strong>in</strong> <strong>the</strong> z-axis. The rema<strong>in</strong><strong>in</strong>g regions<br />

were sampled from adjacent transverse planes that extended<br />

19.5 mm <strong>in</strong> <strong>the</strong> z-axis. For <strong>the</strong> temporal cortex, <strong>the</strong> anterior<br />

(REPRINTED) ARCH GEN PSYCHIATRY/ VOL 63, NOV 2006 WWW.ARCHGENPSYCHIATRY.COM<br />

1211<br />

©2006 American Medical Association. All rights reserved.


MAO-A DVs<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Healthy Participants<br />

Depressed Participants<br />

Prefrontal<br />

Cortex ∗<br />

Temporal<br />

Cortex ∗<br />

Anterior<br />

C<strong>in</strong>gulate Cortex†<br />

third of <strong>the</strong> temporal cortex was sampled, and this <strong>in</strong>cluded<br />

Brodmann area 38 and part of 20, 21, and 22. The anterior c<strong>in</strong>gulate<br />

cortex and <strong>the</strong> posterior c<strong>in</strong>gulate cortex (part of Brodmann<br />

areas 23 and 30) were drawn <strong>in</strong> transverse planes relative<br />

to <strong>the</strong> corpus callosum.<br />

The k<strong>in</strong>etics of [ 11 C]harm<strong>in</strong>e can be described with an unconstra<strong>in</strong>ed<br />

2-tissue compartment model (described as method<br />

B <strong>in</strong> our previous publication). 26 Highly identifiable fits with <strong>the</strong><br />

unconstra<strong>in</strong>ed 2-tissue compartment model are obta<strong>in</strong>able for <strong>the</strong><br />

DV S. 26 The DV S is an <strong>in</strong>dex of specific b<strong>in</strong>d<strong>in</strong>g and represents <strong>the</strong><br />

concentration of <strong>the</strong> specifically bound radiotracer <strong>in</strong> tissue relative<br />

to plasma concentration at equilibrium. (In previous publications,<br />

DV S was referred to as DVB. 26 ) The DVS can be expressed<br />

<strong>in</strong> terms of k<strong>in</strong>etic rate parameters as:<br />

where K 1 and k 2 are <strong>in</strong>flux and efflux rates for radiotracer passage<br />

across <strong>the</strong> blood-bra<strong>in</strong> barrier and k 3 and k 4 describe <strong>the</strong> radioligand<br />

transfer between <strong>the</strong> free and nonspecific compartment<br />

and <strong>the</strong> specific b<strong>in</strong>d<strong>in</strong>g compartment. K 1/k2 is similar among<br />

different <strong>in</strong>dividuals (for fur<strong>the</strong>r details see G<strong>in</strong>ovart et al 26 ).<br />

The [ 11 C]harm<strong>in</strong>e PET measure of <strong>the</strong> MAO-A DV S was previously<br />

found to be reliable. Under test-retest conditions, for<br />

<strong>the</strong> regions evaluated <strong>in</strong> this study, <strong>the</strong> mean absolute difference<br />

<strong>in</strong> MAO-A DV S, expressed as a percentage of MAO-A DV S,<br />

ranged from 5% to 17% (n=6 <strong>in</strong>dividuals) (J.H.M., A.A.W., S.H.,<br />

et al, unpublished data, 2005).<br />

STATISTICAL ANALYSIS<br />

Posterior<br />

C<strong>in</strong>gulate Cortex ∗<br />

The primary analysis was an <strong>in</strong>dependent-sample t test compar<strong>in</strong>gMAO-ADV<br />

Sbetweendepressedandhealthy<strong>in</strong>dividualsforeach<br />

bra<strong>in</strong> region, s<strong>in</strong>ce it was expected that MAO-A DV S would be significantly<br />

elevated <strong>in</strong> each bra<strong>in</strong> region <strong>in</strong> <strong>the</strong> depressed group. We<br />

chose to exam<strong>in</strong>e each <strong>in</strong>dividual region because it would also be<br />

of<strong>in</strong>terestwhe<strong>the</strong>r<strong>the</strong>rewerenodifferences<strong>in</strong>somebra<strong>in</strong>regions.<br />

Thalamus ∗ Caudate† Putamen† Hippocampus† Midbra<strong>in</strong>‡<br />

Figure 2. Comparison of monoam<strong>in</strong>e oxidase A (MAO-A) DVS (an <strong>in</strong>dex of MAO-A density) between depressed and healthy study participants. On average, MAO-A<br />

DV S was elevated by 34% or 2 SDs <strong>in</strong> depressed <strong>in</strong>dividuals. The hippocampal region also samples <strong>the</strong> parahippocampus. Differences between groups were highly<br />

statistically significant <strong>in</strong> each region. *P�1�10 −5 ;†P�1�10 −4 ;‡P=.001.<br />

DVs = K1 ×<br />

k2 k3 k4 RESULTS<br />

As expected, given <strong>the</strong> previous report of no relationship<br />

between age or sex with MAO-A density, 37 <strong>the</strong>re was no<br />

relationship between age or sex and regional MAO-A DV S<br />

<strong>in</strong> our sample (analysis of covariance; effect of age, F 1,32=0.3<br />

to 0.001; P=.50 to .98; analysis of variance; effect of sex,<br />

F1,32=0.4 to 0.001; P=.50 to .98).<br />

There was a highly significant elevation <strong>in</strong> MAO-A DVS<br />

<strong>in</strong> all regions <strong>in</strong> <strong>the</strong> depressed group compared with <strong>the</strong><br />

healthy group (<strong>in</strong>dependent-sample t test, P=.001 to<br />

�.001; mean difference <strong>in</strong> MAO-A DVS between groups,<br />

34%; mean effect size, 2) (Figure 2). Because this was<br />

not <strong>the</strong> situation of a s<strong>in</strong>gle significant f<strong>in</strong>d<strong>in</strong>g among a<br />

number of nonsignificant f<strong>in</strong>d<strong>in</strong>gs, a correction for multiple<br />

comparisons was not performed. A multiple analysis<br />

of variance was also performed, with regional MAO-A<br />

DVS as <strong>the</strong> dependent variable and diagnosis as a predictor<br />

variable (effect of diagnosis: F 9,24=5.8; P� .001).<br />

To exam<strong>in</strong>e whe<strong>the</strong>r MAO-A DVS is related to particular<br />

cl<strong>in</strong>ical characteristics <strong>in</strong> addition to diagnosis,<br />

secondary post hoc analyses were performed us<strong>in</strong>g <strong>the</strong><br />

Pearson correlation coefficient, correlat<strong>in</strong>g regional<br />

MAO-A DVS with <strong>the</strong> follow<strong>in</strong>g cl<strong>in</strong>ical characteristics:<br />

duration of illness, episode number, duration of episode,<br />

illness severity based on <strong>the</strong> 17-item Hamilton<br />

Depression Rat<strong>in</strong>g Scale Score, 34 and lifetime history of<br />

antidepressant treatment. None of <strong>the</strong> correlations<br />

reached <strong>the</strong> trend level (P�.10).<br />

COMMENT<br />

The ma<strong>in</strong> f<strong>in</strong>d<strong>in</strong>g was that MAO-A DVS, <strong>the</strong> <strong>in</strong>dex of<br />

MAO-A density, was elevated throughout <strong>the</strong> bra<strong>in</strong> on<br />

average by 34% (2 SDs). <strong>Monoam<strong>in</strong>e</strong> oxidase A metabo-<br />

(REPRINTED) ARCH GEN PSYCHIATRY/ VOL 63, NOV 2006 WWW.ARCHGENPSYCHIATRY.COM<br />

1212<br />

©2006 American Medical Association. All rights reserved.


A B<br />

MAO-A<br />

Vesicle Conta<strong>in</strong><strong>in</strong>g<br />

<strong>Monoam<strong>in</strong>e</strong><br />

C D<br />

MAO-A<br />

Presynaptic<br />

Transporter<br />

<strong>Monoam<strong>in</strong>e</strong><br />

<strong>Monoam<strong>in</strong>e</strong><br />

Postsynaptic<br />

Receptor<br />

lizes all 3 major monoam<strong>in</strong>es (seroton<strong>in</strong>, norep<strong>in</strong>ephr<strong>in</strong>e,<br />

and dopam<strong>in</strong>e) 17 <strong>in</strong> <strong>the</strong> bra<strong>in</strong>, and no previous study<br />

has conv<strong>in</strong>c<strong>in</strong>gly expla<strong>in</strong>ed why monoam<strong>in</strong>e levels may<br />

be low dur<strong>in</strong>g MDEs; <strong>the</strong>refore, it is plausible that an elevation<br />

<strong>in</strong> bra<strong>in</strong> MAO-A density is <strong>the</strong> primary monoam<strong>in</strong>e-lower<strong>in</strong>g<br />

process dur<strong>in</strong>g MDEs.<br />

<strong>Elevated</strong> bra<strong>in</strong> MAO-A density dur<strong>in</strong>g MDEs has important<br />

implications for <strong>the</strong> monoam<strong>in</strong>e <strong>the</strong>ory of depression<br />

when comb<strong>in</strong>ed with previous neuroimag<strong>in</strong>g results<br />

<strong>in</strong> medication-free depressed patients 4,8,36,38 (ie, no<br />

medication for �3 months). An advanced monoam<strong>in</strong>e<br />

<strong>the</strong>ory (Figure 3A-D) can be conceptualized: Dur<strong>in</strong>g<br />

an MDE, elevated MAO-A levels <strong>in</strong>crease <strong>the</strong> metabolism<br />

of monoam<strong>in</strong>es such as seroton<strong>in</strong>, norep<strong>in</strong>ephr<strong>in</strong>e,<br />

and dopam<strong>in</strong>e. Thereafter, <strong>in</strong>dividual monoam<strong>in</strong>e transporter<br />

densities have a secondary <strong>in</strong>fluence on specific<br />

extracellular monoam<strong>in</strong>e levels. If <strong>the</strong> monoam<strong>in</strong>e transporter<br />

density for a particular monoam<strong>in</strong>e is low, <strong>the</strong> effect<br />

of greater monoam<strong>in</strong>e metabolism on extracellular monoam<strong>in</strong>e<br />

levels is somewhat attenuated, result<strong>in</strong>g <strong>in</strong> a moderate<br />

monoam<strong>in</strong>e loss. Long-term, moderate loss of a particular<br />

monoam<strong>in</strong>e <strong>in</strong> specific bra<strong>in</strong> regions eventually<br />

results <strong>in</strong> moderate severity of particular symptoms. If<br />

<strong>the</strong> monoam<strong>in</strong>e transporter density for a particular monoam<strong>in</strong>e<br />

is not low dur<strong>in</strong>g an MDE, <strong>the</strong>n <strong>the</strong> extracellular<br />

concentration of <strong>the</strong> monoam<strong>in</strong>e is severely reduced and<br />

symptoms associated with long-term regional loss of that<br />

particular monoam<strong>in</strong>e eventually become severe. In short,<br />

MAO-A<br />

MAO-A<br />

Presynaptic<br />

Transporter<br />

<strong>Monoam<strong>in</strong>e</strong><br />

<strong>Monoam<strong>in</strong>e</strong><br />

Postsynaptic<br />

Receptor<br />

Figure 3. Modernization of monoam<strong>in</strong>e <strong>the</strong>ory of depression. A, Description of monoam<strong>in</strong>e release <strong>in</strong> a synapse <strong>in</strong> a healthy person. B, Dur<strong>in</strong>g a major depressive<br />

episode, monoam<strong>in</strong>e oxidase A (MAO-A) density is elevated, result<strong>in</strong>g <strong>in</strong> greater metabolism of monoam<strong>in</strong>es, such as seroton<strong>in</strong>, norep<strong>in</strong>ephr<strong>in</strong>e, and dopam<strong>in</strong>e, <strong>in</strong><br />

<strong>the</strong> bra<strong>in</strong>. C and D, Range of outcomes. If <strong>the</strong> monoam<strong>in</strong>e transporter density for a particular monoam<strong>in</strong>e is low dur<strong>in</strong>g a major depressive episode (C), <strong>the</strong> effect<br />

of an elevated MAO-A level on reduc<strong>in</strong>g that particular monoam<strong>in</strong>e <strong>in</strong> <strong>the</strong> extracellular space is somewhat attenuated, result<strong>in</strong>g <strong>in</strong> a moderate loss of monoam<strong>in</strong>e.<br />

This eventually results <strong>in</strong> a moderate severity of symptoms associated with long-term loss of that particular monoam<strong>in</strong>e. If <strong>the</strong> monoam<strong>in</strong>e transporter density for<br />

a particular monoam<strong>in</strong>e is not low dur<strong>in</strong>g a major depressive episode (D), <strong>the</strong>n <strong>the</strong>re is no protection aga<strong>in</strong>st <strong>the</strong> effect of elevated MAO-A levels. The extracellular<br />

concentration of <strong>the</strong> monoam<strong>in</strong>e is severely reduced, and symptoms associated with long-term loss of that particular monoam<strong>in</strong>e eventually become severe.<br />

Some postsynaptic receptors <strong>in</strong>crease <strong>in</strong> density when <strong>the</strong>ir endogenous monoam<strong>in</strong>e level is low <strong>in</strong> <strong>the</strong> long term. Mostly, MAO-A is found <strong>in</strong> norep<strong>in</strong>ephr<strong>in</strong>ereleas<strong>in</strong>g<br />

neurons but is reported to be detectable <strong>in</strong> o<strong>the</strong>r cells, such as seroton<strong>in</strong>-releas<strong>in</strong>g neurons and glia. Even so, MAO-A metabolizes seroton<strong>in</strong>,<br />

norep<strong>in</strong>ephr<strong>in</strong>e, and dopam<strong>in</strong>e <strong>in</strong> vivo.<br />

elevated MAO-A levels can be viewed as a general monoam<strong>in</strong>e-lower<strong>in</strong>g<br />

process (with no relationship to particular<br />

symptoms), whereas <strong>the</strong> regional density of monoam<strong>in</strong>e<br />

transporters has a selective <strong>in</strong>fluence on particular<br />

monoam<strong>in</strong>es (with a strong relationship with particular<br />

symptoms).<br />

Data to support this advancement of <strong>the</strong> monoam<strong>in</strong>e<br />

model are found <strong>in</strong> <strong>in</strong>vestigations of drug-free (ie, no<br />

medication for �3 months), depressed <strong>in</strong>dividuals with<br />

early-onset depression who do not have comorbid psychiatric<br />

or medical illnesses. 4,8,36,38 This <strong>in</strong>cludes 4 earlier<br />

PET bra<strong>in</strong> imag<strong>in</strong>g studies 4,8,36,38 <strong>in</strong> addition to <strong>the</strong> present<br />

study. The b<strong>in</strong>d<strong>in</strong>g potential (BP) is often measured<br />

<strong>in</strong> PET studies and is an <strong>in</strong>dex of receptor density. Dur<strong>in</strong>g<br />

MDEs, greater regional seroton<strong>in</strong> transporter BP is<br />

associated with more severely pessimistic th<strong>in</strong>k<strong>in</strong>g (dysfunctional<br />

attitudes), 8 and greater striatal dopam<strong>in</strong>e<br />

transporter BP is associated with more severe motor<br />

retardation. 4 In addition, dur<strong>in</strong>g MDEs, <strong>in</strong>creased cortex<br />

seroton<strong>in</strong> 2 BP occurs when severe pessimism is<br />

present, 36 and <strong>in</strong>creased striatal dopam<strong>in</strong>e 2 BP occurs<br />

when severe motor retardation is present. 38 Increased<br />

seroton<strong>in</strong> 2 receptor density can occur when seroton<strong>in</strong><br />

is lowered <strong>in</strong> <strong>the</strong> long term, 39-42 and <strong>in</strong>creased dopam<strong>in</strong>e<br />

2 BP (as measured with PET with raclopride labeled<br />

with carbon 11) can occur when <strong>the</strong> extracellular dopam<strong>in</strong>e<br />

level is low. 38 These studies 4,8,36,38 argue that<br />

patients with MDEs and greater monoam<strong>in</strong>e transporter<br />

(REPRINTED) ARCH GEN PSYCHIATRY/ VOL 63, NOV 2006 WWW.ARCHGENPSYCHIATRY.COM<br />

1213<br />

©2006 American Medical Association. All rights reserved.


density are additionally vulnerable to monoam<strong>in</strong>e loss,<br />

show up-regulation (or <strong>in</strong>crease <strong>in</strong> BP) of receptors sensitive<br />

to monoam<strong>in</strong>e loss, and have greater severity of<br />

particular symptoms.<br />

This advancement <strong>in</strong> monoam<strong>in</strong>e <strong>the</strong>ory relies on <strong>the</strong><br />

pr<strong>in</strong>ciple that a s<strong>in</strong>gle explanation for <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs that<br />

directly support it is likely to be <strong>the</strong> correct explanation.<br />

Although one could conceive of different explanations<br />

for <strong>in</strong>dividual f<strong>in</strong>d<strong>in</strong>gs, 4,8,36,38 it would be extremely<br />

difficult to generate an alternative, s<strong>in</strong>gle, cohesive<br />

explanation for <strong>the</strong> entire study series. The statistical significance<br />

of <strong>the</strong> comparison of mean regional MAO-A DVS<br />

for <strong>the</strong> current study was P=3�10 −6 , and <strong>the</strong> statistical<br />

significances of <strong>the</strong> previous 4 studies were high (P=.003<br />

for elevations <strong>in</strong> prefrontal seroton<strong>in</strong> 2 BP <strong>in</strong> depression<br />

with severe pessimistic th<strong>in</strong>k<strong>in</strong>g, P=.005 for elevation <strong>in</strong><br />

striatal dopam<strong>in</strong>e 2 BP for depressed <strong>in</strong>dividuals with motor<br />

retardation, P�.001 for correlation between prefrontal<br />

seroton<strong>in</strong> transporter BP and pessimistic th<strong>in</strong>k<strong>in</strong>g, and<br />

P=.006 for correlation between striatal dopam<strong>in</strong>e transporter<br />

BP and motor retardation). Each study sample was<br />

ga<strong>the</strong>red separately. In general, <strong>the</strong> probability of multiple<br />

<strong>in</strong>dependent chance events occurr<strong>in</strong>g toge<strong>the</strong>r can<br />

be estimated by multiply<strong>in</strong>g <strong>the</strong> probability of each separate<br />

event occurr<strong>in</strong>g. For each study, <strong>the</strong> significance reflects<br />

<strong>the</strong> likelihood of <strong>the</strong> f<strong>in</strong>d<strong>in</strong>g occurr<strong>in</strong>g by chance<br />

alone. If one took <strong>the</strong> specific viewpo<strong>in</strong>t that <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs<br />

of <strong>the</strong>se studies are unrelated, <strong>in</strong>dependent chance<br />

events (ie, <strong>the</strong>re is no common model to expla<strong>in</strong> <strong>the</strong>m),<br />

<strong>the</strong>n <strong>the</strong> probability of all of <strong>the</strong>se f<strong>in</strong>d<strong>in</strong>gs occurr<strong>in</strong>g toge<strong>the</strong>r<br />

results <strong>in</strong> a P value of 2.7�10 −16 . Given <strong>the</strong> result<strong>in</strong>g<br />

statistical significance, it is exceed<strong>in</strong>gly unlikely<br />

that <strong>the</strong>se f<strong>in</strong>d<strong>in</strong>gs represent <strong>in</strong>dependent chance events.<br />

In addition, <strong>the</strong> entire sample consisted of 89 depressed<br />

and 103 healthy <strong>in</strong>dividuals. Depressed patients were drug<br />

free for at least 3 months plus 5 half-lives of medication.<br />

None had comorbid medical illnesses or Axis I psychiatric<br />

illness, 4,8,36,38 and 94% of <strong>the</strong> sample was nonsmok<strong>in</strong>g.<br />

The collective set of highly significant f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong><br />

unbiased samples across a series of studies to support a<br />

common <strong>the</strong>ory must be considered strongly.<br />

Our monoam<strong>in</strong>e model of depression is consistent with<br />

many o<strong>the</strong>r f<strong>in</strong>d<strong>in</strong>gs of monoam<strong>in</strong>e research <strong>in</strong> depression.<br />

This modern model views elevated MAO-A levels<br />

as a pathologic process that results <strong>in</strong> excessive loss of 3<br />

major monoam<strong>in</strong>es, s<strong>in</strong>ce <strong>in</strong>creas<strong>in</strong>g monoam<strong>in</strong>e levels<br />

through antidepressant <strong>in</strong>hibition of MAO-A or <strong>in</strong>hibition<br />

of monoam<strong>in</strong>e transporter function are longstand<strong>in</strong>g<br />

<strong>the</strong>rapeutic treatments. 30 This model also predicts<br />

that <strong>in</strong>dices of monoam<strong>in</strong>e loss should be best<br />

detected <strong>in</strong> subgroups with high severity of particular<br />

symptoms. Therefore, <strong>in</strong>vestigations that compare monoam<strong>in</strong>e<br />

abnormalities between depressed and healthy <strong>in</strong>dividuals<br />

and do not selectively sample <strong>in</strong>dividuals with<br />

severe symptom clusters should f<strong>in</strong>d abnormalities <strong>in</strong> depression<br />

at a rate exceed<strong>in</strong>g chance but not at a frequency<br />

near 100%, as is observed. 3-8,30,38<br />

In this advanced monoam<strong>in</strong>e model, it is proposed that<br />

long-term ra<strong>the</strong>r than short-term monoam<strong>in</strong>e loss is important<br />

for several reasons. First, <strong>the</strong> period for which<br />

monoam<strong>in</strong>e receptor abnormalities are found <strong>in</strong> <strong>the</strong> studies<br />

directly support<strong>in</strong>g this model 4,8,36,38 spans <strong>the</strong> months<br />

to years an MDE is typically present before treatment. 1 Second,<br />

long-term <strong>in</strong>creas<strong>in</strong>g of monoam<strong>in</strong>e levels reduces<br />

symptoms substantially more than short-term <strong>in</strong>creas<strong>in</strong>g<br />

of monoam<strong>in</strong>e levels. 30 Third, monoam<strong>in</strong>e levels <strong>in</strong>creased<br />

<strong>in</strong> <strong>the</strong> long term, consequent to antidepressant adm<strong>in</strong>istration,<br />

<strong>in</strong>fluence secondary and tertiary messenger<br />

system targets, such as cyclic adenos<strong>in</strong>e monophosphate<br />

response element b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> and bra<strong>in</strong>-derived neurotrophic<br />

factor, particularly <strong>in</strong> animal models. 43 Available<br />

evidence demonstrates that <strong>the</strong>se targets are abnormal<br />

dur<strong>in</strong>g MDEs. 43 An advanced model of long-term<br />

monoam<strong>in</strong>e loss has <strong>the</strong> advantage of potentially be<strong>in</strong>g consistent<br />

with secondary and tertiary messenger <strong>the</strong>ories of<br />

depression if long-term monoam<strong>in</strong>e loss <strong>in</strong>fluences <strong>the</strong><br />

same secondary and tertiary messenger targets as monoam<strong>in</strong>e<br />

levels <strong>in</strong>creased <strong>in</strong> <strong>the</strong> long term.<br />

An important facet of this advanced monoam<strong>in</strong>e model<br />

is that, depend<strong>in</strong>g on <strong>the</strong> comb<strong>in</strong>ations of long-term seroton<strong>in</strong>,<br />

norep<strong>in</strong>ephr<strong>in</strong>e, or dopam<strong>in</strong>e loss, one would expect<br />

different comb<strong>in</strong>ations of <strong>the</strong> associated symptoms<br />

dur<strong>in</strong>g depressive episodes. This is entirely consistent with<br />

<strong>the</strong> particular def<strong>in</strong>ition of an MDE that requires 5 of 9<br />

symptoms. 44 In addition, this advanced monoam<strong>in</strong>e model<br />

proposes that variable levels of long-term monoam<strong>in</strong>e loss<br />

result <strong>in</strong> variable levels of symptom severity across <strong>in</strong>dividuals,<br />

as is commonly observed.<br />

A significant problem <strong>in</strong> depression research is a lack<br />

of valid animal models. 43 An important implication of this<br />

study is that new animal models of major depression can<br />

be created that have chronic monoam<strong>in</strong>ergic abnormalities<br />

similar to what is found <strong>in</strong> untreated depressive episodes.<br />

For example, dexamethasone adm<strong>in</strong>istration to<br />

older Sprague-Dawley rats can <strong>in</strong>crease MAO-A density<br />

<strong>in</strong> <strong>the</strong> bra<strong>in</strong> by 300%, 45 and Wistar rats can be genetically<br />

selected to breed high platelet seroton<strong>in</strong> transporter<br />

density and low platelet seroton<strong>in</strong> density subl<strong>in</strong>es.<br />

46 Breed<strong>in</strong>g of rat subl<strong>in</strong>es with high bra<strong>in</strong><br />

monoam<strong>in</strong>e transporter density and expos<strong>in</strong>g <strong>the</strong>se animals<br />

to an MAO-A–<strong>in</strong>creas<strong>in</strong>g paradigm could generate<br />

a new animal model of depression with long-term monoam<strong>in</strong>e<br />

loss.<br />

There are some limitations <strong>in</strong> this work. Our study has<br />

<strong>the</strong> major advantage of measur<strong>in</strong>g MAO-A DVS <strong>in</strong> vivo. On<br />

<strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong>re are some disadvantages with PET.<br />

The resolution of PET does not permit detailed localization<br />

of MAO-A at <strong>the</strong> cellular level. For example, an <strong>in</strong>crease<br />

<strong>in</strong> MAO-A density could be attributed to a greater<br />

density of MAO-A per mitochondrion or an <strong>in</strong>crease <strong>in</strong> mitochondrial<br />

density with<strong>in</strong> MAO-A–conta<strong>in</strong><strong>in</strong>g neurons.<br />

A second issue is that, although MAO-A DVS is an <strong>in</strong>dex<br />

of MAO-A density, it also reflects 2 o<strong>the</strong>r parameters, namely<br />

free and nonspecific b<strong>in</strong>d<strong>in</strong>g and MAO-A aff<strong>in</strong>ity for <strong>the</strong><br />

radioligand. These o<strong>the</strong>r parameters are unlikely to <strong>in</strong>fluence<br />

<strong>the</strong> <strong>in</strong>terpretations of this study. The estimates of free<br />

and nonspecific b<strong>in</strong>d<strong>in</strong>g <strong>in</strong> <strong>the</strong> present study (found by obta<strong>in</strong><strong>in</strong>g<br />

<strong>the</strong> difference between total distribution volume 26<br />

and specific distribution volume) were similar <strong>in</strong> patients<br />

and healthy controls, and an elevation <strong>in</strong> MAO-A aff<strong>in</strong>ity<br />

would be expected to have a similar functional effect of <strong>in</strong>creas<strong>in</strong>g<br />

monoam<strong>in</strong>e removal through <strong>in</strong>creased b<strong>in</strong>d<strong>in</strong>g<br />

to monoam<strong>in</strong>es. We also acknowledge <strong>in</strong> <strong>the</strong> <strong>in</strong>terpretation<br />

of this study that <strong>the</strong>re are o<strong>the</strong>r neurochemical and<br />

(REPRINTED) ARCH GEN PSYCHIATRY/ VOL 63, NOV 2006 WWW.ARCHGENPSYCHIATRY.COM<br />

1214<br />

©2006 American Medical Association. All rights reserved.


neuropathologic models of depression (which may be <strong>in</strong>terrelated).<br />

In addition, this article is not <strong>in</strong>tended to argue<br />

that o<strong>the</strong>r neurochemical and neuropathologic processes<br />

do not play a role <strong>in</strong> antidepressant treatment. F<strong>in</strong>ally,<br />

we acknowledge that scientific models of disease are typically<br />

replaced with more complicated scientific models of<br />

disease, and it is possible that this new <strong>the</strong>ory of monoam<strong>in</strong>e<br />

dysregulation <strong>in</strong> untreated MDEs will be replaced<br />

by a more complicated <strong>the</strong>ory at a future date.<br />

Future study should <strong>in</strong>vestigate why MAO-A levels are<br />

elevated dur<strong>in</strong>g MDEs. It is well known that <strong>the</strong> plasma<br />

cortisol concentration is elevated dur<strong>in</strong>g depression, 30,43<br />

and it was demonstrated that dexamethasone adm<strong>in</strong>istration<br />

can substantially <strong>in</strong>crease MAO-A activity <strong>in</strong><br />

19-month-old Sprague-Dawley rats. 45 S<strong>in</strong>ce dexamethasone<br />

and cortisol both have agonist effects on glucocorticoid<br />

receptors, it is possible (should this animal model<br />

be representative of adult humans) that greater cortisol<br />

agonist effects dur<strong>in</strong>g depressive episodes contribute to<br />

an elevation <strong>in</strong> MAO-A levels. It would also be <strong>in</strong>terest<strong>in</strong>g<br />

to explore a relationship between genotypes and<br />

MAO-A levels through complex models such as geneenvironment<br />

<strong>in</strong>teraction designs <strong>in</strong> large samples. 47 It<br />

seems unlikely that a simple, s<strong>in</strong>gle genotype to MAO-A<br />

activity relationship will be explanatory, s<strong>in</strong>ce Balciuniene<br />

et al 48 did not f<strong>in</strong>d any simple, s<strong>in</strong>gle-genotype relationship<br />

to MAO-A activity <strong>in</strong> a postmortem study of<br />

humans.<br />

This is <strong>the</strong> first study, to our knowledge, to measure<br />

MAO-A levels <strong>in</strong> <strong>the</strong> bra<strong>in</strong> <strong>in</strong> medication-free <strong>in</strong>dividuals<br />

dur<strong>in</strong>g MDEs secondary to major depressive disorder.<br />

An <strong>in</strong>dex of MAO-A density, <strong>the</strong> MAO-A DVS, was<br />

elevated by 34% (or 2 SDs) <strong>in</strong> depressed <strong>in</strong>dividuals. The<br />

sizable magnitude of this f<strong>in</strong>d<strong>in</strong>g and <strong>the</strong> absence of o<strong>the</strong>r<br />

compell<strong>in</strong>g explanations for a primary monoam<strong>in</strong>elower<strong>in</strong>g<br />

process dur<strong>in</strong>g MDEs led to <strong>the</strong> conclusion that<br />

elevated MAO-A density should be viewed as <strong>the</strong> primary<br />

monoam<strong>in</strong>e-lower<strong>in</strong>g process dur<strong>in</strong>g untreated major<br />

depression. This f<strong>in</strong>d<strong>in</strong>g has major implications for<br />

moderniz<strong>in</strong>g <strong>the</strong> monoam<strong>in</strong>e <strong>the</strong>ory of depression. Taken<br />

<strong>in</strong> conjunction with o<strong>the</strong>r studies of seroton<strong>in</strong> and dopam<strong>in</strong>e<br />

receptors <strong>in</strong> medication-free depressed <strong>in</strong>dividuals,<br />

4,8,36,38 it can be argued that monoam<strong>in</strong>e transporter<br />

density has a secondary role to <strong>in</strong>fluence long-term loss<br />

of specific monoam<strong>in</strong>es, result<strong>in</strong>g <strong>in</strong> a model of variable<br />

severity of long-term monoam<strong>in</strong>e loss dur<strong>in</strong>g untreated<br />

major depression. Important implications of <strong>the</strong> new<br />

monoam<strong>in</strong>e <strong>the</strong>ory of depression are that different comb<strong>in</strong>ations<br />

of severe long-term monoam<strong>in</strong>e loss can expla<strong>in</strong><br />

<strong>the</strong> variety of symptom cluster presentations found<br />

<strong>in</strong> MDEs and that great potential exists to generate more<br />

complex animal models of persistent monoam<strong>in</strong>e loss that<br />

may closely resemble <strong>the</strong> monoam<strong>in</strong>ergic abnormalities<br />

of untreated depression.<br />

Submitted for Publication: January 1, 2006; f<strong>in</strong>al revision<br />

received February 22, 2006; accepted February 23, 2006.<br />

Correspondence: Jeffrey H. Meyer, MD, PhD, College<br />

Street Site, Centre for Addiction and Mental Health, PET<br />

Centre, 250 College St, Toronto, Ontario, Canada M5T<br />

1R8 (jeff.meyer@camhpet.ca).<br />

F<strong>in</strong>ancial Disclosure: Dr Meyer has received grant sup-<br />

port for o<strong>the</strong>r projects from Eli Lilly, GlaxoSmithKl<strong>in</strong>e,<br />

and Lundbeck.<br />

Fund<strong>in</strong>g/Support: This research received project support<br />

from <strong>the</strong> Canadian Institutes of Health Research<br />

(FRN-69052).<br />

Additional Information: To be presented <strong>in</strong> part at a symposia<br />

at <strong>the</strong> Society of Biological Psychiatry; May 19, 2006;<br />

Toronto, Ontario.<br />

Acknowledgment: We thank technicians Alv<strong>in</strong>a Ng, BSc,<br />

and Ken S<strong>in</strong>gh, BSc, research assistant Ir<strong>in</strong>a Vitcu, BSc,<br />

chemist Alexandra Chestakova, MSc, and eng<strong>in</strong>eers Terry<br />

Bell, BTech, and Ted Brandts-Harris, BASc, for <strong>the</strong>ir assistance<br />

with this project. We thank Stephen Kish, PhD,<br />

for his suggestions regard<strong>in</strong>g <strong>the</strong> manuscript.<br />

REFERENCES<br />

1. Ustun TB, Ayuso-Mateos JL, Chatterji S, Ma<strong>the</strong>rs C, Murray CJ. Global burden<br />

of depressive disorders <strong>in</strong> <strong>the</strong> year 2000. Br J Psychiatry. 2004;184:<br />

386-392.<br />

2. Schildkraut JJ, Kety SS. Biogenic am<strong>in</strong>es and emotion. Science. 1967;156:<br />

21-37.<br />

3. Mann JJ, Huang YY, Underwood MD, Kassir SA, Oppenheim S, Kelly TM, Dwork<br />

AJ, Arango V. A seroton<strong>in</strong> transporter gene promoter polymorphism (5-<br />

HTTLPR) and prefrontal cortical b<strong>in</strong>d<strong>in</strong>g <strong>in</strong> major depression and suicide. Arch<br />

Gen Psychiatry. 2000;57:729-738.<br />

4. Meyer JH, Kruger S, Wilson AA, Christensen BK, Gould<strong>in</strong>g VS, Schaffer A, M<strong>in</strong>ifie<br />

C, Houle S, Hussey D, Kennedy SH. Lower dopam<strong>in</strong>e transporter b<strong>in</strong>d<strong>in</strong>g potential<br />

<strong>in</strong> striatum dur<strong>in</strong>g depression. Neuroreport. 2001;12:4121-4125.<br />

5. Klimek V, Schenck JE, Han H, Stockmeier CA, Ordway GA. Dopam<strong>in</strong>ergic abnormalities<br />

<strong>in</strong> amygdaloid nuclei <strong>in</strong> major depression: a postmortem study. Biol<br />

Psychiatry. 2002;52:740-748.<br />

6. Klimek V, Stockmeier C, Overholser J, Meltzer HY, Kalka S, Dilley G, Ordway GA.<br />

Reduced levels of norep<strong>in</strong>ephr<strong>in</strong>e transporters <strong>in</strong> <strong>the</strong> locus coeruleus <strong>in</strong> major<br />

depression. J Neurosci. 1997;17:8451-8458.<br />

7. Stockmeier CA. Involvement of seroton<strong>in</strong> <strong>in</strong> depression: evidence from postmortem<br />

and imag<strong>in</strong>g studies of seroton<strong>in</strong> receptors and <strong>the</strong> seroton<strong>in</strong> transporter.<br />

J Psychiatr Res. 2003;37:357-373.<br />

8. Meyer JH, Houle S, Sagrati S, Carella A, Hussey DF, G<strong>in</strong>ovart N, Gould<strong>in</strong>g V, Kennedy<br />

J, Wilson AA. Bra<strong>in</strong> seroton<strong>in</strong> transporter b<strong>in</strong>d<strong>in</strong>g potential measured with carbon<br />

11-labeled DASB positron emission tomography: effects of major depressive<br />

episodes and severity of dysfunctional attitudes. Arch Gen Psychiatry. 2004;<br />

61:1271-1279.<br />

9. Rosa-Neto P, Diksic M, Okazawa H, Leyton M, Ghadirian N, Mzengeza S, Nakai<br />

A, Debonnell G, Blier P, Benkelfat C. Measurement of bra<strong>in</strong> regional alpha-<br />

[11C]methyl-L-tryptophan trapp<strong>in</strong>g as a measure of seroton<strong>in</strong> syn<strong>the</strong>sis <strong>in</strong> medication-free<br />

patients with major depression. Arch Gen Psychiatry. 2004;61:<br />

556-563.<br />

10. Zhu MY, Klimek V, Dilley GE, Haycock JW, Stockmeier C, Overholser JC, Meltzer<br />

HY, Ordway GA. <strong>Elevated</strong> levels of tyros<strong>in</strong>e hydroxylase <strong>in</strong> <strong>the</strong> locus coeruleus<br />

<strong>in</strong> major depression. Biol Psychiatry. 1999;46:1275-1286.<br />

11. Boldr<strong>in</strong>i M, Underwood MD, Mann JJ, Arango V. More tryptophan hydroxylase<br />

<strong>in</strong> <strong>the</strong> bra<strong>in</strong>stem dorsal raphe nucleus <strong>in</strong> depressed suicides. Bra<strong>in</strong> Res. 2005;<br />

1041:19-28.<br />

12. Aust<strong>in</strong> MC, Whitehead RE, Edgar CL, Janosky JE, Lewis DA. Localized decrease<br />

<strong>in</strong> seroton<strong>in</strong> transporter-immunoreactive axons <strong>in</strong> <strong>the</strong> prefrontal cortex of depressed<br />

subjects committ<strong>in</strong>g suicide. Neuroscience. 2002;114:807-815.<br />

13. Neumeister A, Willeit M, Praschak-Rieder N, Asenbaum S, Stastny J, Hilger E,<br />

Pirker W, Konstant<strong>in</strong>idis A, Kasper S. Dopam<strong>in</strong>e transporter availability <strong>in</strong> symptomatic<br />

depressed patients with seasonal affective disorder and healthy controls.<br />

Psychol Med. 2001;31:1467-1473.<br />

14. Hornykiewicz O. Biochemical aspects of Park<strong>in</strong>son’s disease. Neurology. 1998;<br />

51(suppl 2):S2-S9.<br />

15. Bonkale WL, Murdock S, Janosky JE, Aust<strong>in</strong> MC. Normal levels of tryptophan<br />

hydroxylase immunoreactivity <strong>in</strong> <strong>the</strong> dorsal raphe of depressed suicide victims.<br />

J Neurochem. 2004;88:958-964.<br />

16. Karolewicz B, Klimek V, Zhu H, Szebeni K, Nail E, Stockmeier CA, Johnson L,<br />

Ordway GA. Effects of depression, cigarette smok<strong>in</strong>g, and age on monoam<strong>in</strong>e<br />

oxidase B <strong>in</strong> amygdaloid nuclei. Bra<strong>in</strong> Res. 2005;1043:57-64.<br />

17. Shih JC, Chen K, Ridd MJ. <strong>Monoam<strong>in</strong>e</strong> oxidase: from genes to behaviour. Annu<br />

Rev Neurosci. 1999;22:197-217.<br />

(REPRINTED) ARCH GEN PSYCHIATRY/ VOL 63, NOV 2006 WWW.ARCHGENPSYCHIATRY.COM<br />

1215<br />

©2006 American Medical Association. All rights reserved.


18. Grote SS, Moses SG, Rob<strong>in</strong>s E, Hudgens RW, Cron<strong>in</strong>ger AB. A study of selected<br />

catecholam<strong>in</strong>e metaboliz<strong>in</strong>g enzymes: a comparison of depressive suicides and<br />

alcoholic suicides with controls. J Neurochem. 1974;23:791-802.<br />

19. Gottfries CG, Oreland L, Wiberg A, W<strong>in</strong>blad B. Lowered monoam<strong>in</strong>e oxidase activity<br />

<strong>in</strong> bra<strong>in</strong>s from alcoholic suicides. J Neurochem. 1975;25:667-673.<br />

20. Mann JJ, Stanley M. Postmortem monoam<strong>in</strong>e oxidase enzyme k<strong>in</strong>etics <strong>in</strong> <strong>the</strong><br />

frontal cortex of suicide victims and controls. Acta Psychiatr Scand. 1984;<br />

69:135-139.<br />

21. Sherif F, Marcusson J, Oreland L. Bra<strong>in</strong> gamma-am<strong>in</strong>obutyrate transam<strong>in</strong>ase and<br />

monoam<strong>in</strong>e oxidase activities <strong>in</strong> suicide victims. Eur Arch Psychiatry Cl<strong>in</strong> Neurosci.<br />

1991;241:139-144.<br />

22. Ordway GA, Farley JT, Dilley GE, Overholser JC, Meltzer HY, Balraj EK, Stockmeier<br />

CA, Klimek V. Quantitative distribution of monoam<strong>in</strong>e oxidase A <strong>in</strong> bra<strong>in</strong>stem monoam<strong>in</strong>e<br />

nuclei is normal <strong>in</strong> major depression. Bra<strong>in</strong> Res. 1999;847:71-79.<br />

23. Galva MD, Bondiolotti GP, Olasmaa M, Picotti GB. Effect of ag<strong>in</strong>g on lazabemide<br />

b<strong>in</strong>d<strong>in</strong>g, monoam<strong>in</strong>e oxidase activity and monoam<strong>in</strong>e metabolites <strong>in</strong> human frontal<br />

cortex. J Neural Transm Gen Sect. 1995;101:83-94.<br />

24. Krishnan KR. Biological risk factors <strong>in</strong> late life depression. Biol Psychiatry. 2002;<br />

52:185-192.<br />

25. Bergstrom M, Westerberg G, Langstrom B. 11C-harm<strong>in</strong>e as a tracer for monoam<strong>in</strong>e<br />

oxidase A (MAO-A): <strong>in</strong> vitro and <strong>in</strong> vivo studies. Nucl Med Biol. 1997;<br />

24:287-293.<br />

26. G<strong>in</strong>ovart N, Meyer JH, Boovariwala A, Hussey D, Rab<strong>in</strong>er EA, Houle S, Wilson<br />

AA. Positron emission tomography quantification of [11C]-harm<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g to<br />

monoam<strong>in</strong>e oxidase-A <strong>in</strong> <strong>the</strong> human bra<strong>in</strong>. J Cereb Blood Flow Metab. 2005;<br />

26:330-344.<br />

27. Bergstrom M, Westerberg G, Kihlberg T, Langstrom B. Syn<strong>the</strong>sis of some 11Clabelled<br />

MAO-A <strong>in</strong>hibitors and <strong>the</strong>ir <strong>in</strong> vivo uptake k<strong>in</strong>etics <strong>in</strong> rhesus monkey bra<strong>in</strong>.<br />

Nucl Med Biol. 1997;24:381-388.<br />

28. Tweedie DJ, Burke MD. Metabolism of <strong>the</strong> beta-carbol<strong>in</strong>es, harm<strong>in</strong>e and harmol,<br />

by liver microsomes from phenobarbitone- or 3-methylcholanthrenetreated<br />

mice: identification and quantitation of two novel harm<strong>in</strong>e metabolites.<br />

Drug Metab Dispos. 1987;15:74-81.<br />

29. Fowler JS, Logan J, D<strong>in</strong>g YS, Franceschi D, Wang GJ, Voklow ND, Pappas N,<br />

Schlyer D, Gatley SF, Alexoff D, Felder C, Biegon A, Zhu W. Non-MAO A b<strong>in</strong>d<strong>in</strong>g<br />

of clorgyl<strong>in</strong>e <strong>in</strong> white matter <strong>in</strong> human bra<strong>in</strong>. J Neurochem. 2001;79:<br />

1039-1046.<br />

30. Nemeroff CB, Owens MJ. Treatment of mood disorders. Nat Neurosci. 2002;<br />

5(suppl):1068-1070.<br />

31. Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, Shea C, Alexoff D, MacGregor<br />

RR, Schler DJ, Zezulkova I, Wolf AP. Bra<strong>in</strong> monoam<strong>in</strong>e oxidase A <strong>in</strong>hibition <strong>in</strong><br />

cigarette smokers. Proc Natl Acad Sci U S A. 1996;93:14065-14069.<br />

32. First M, Spitzer R, Williams J, Gibbon M. Structured Cl<strong>in</strong>ical Interview for DSM-IV<br />

Axis I Disorders, Patient Edition (SCID-P), version 2. New York, NY: Biometrics<br />

Research; 1995.<br />

33. Blais MA, Norman DK. A psychometric evaluation of <strong>the</strong> DSM-IV personality disorder<br />

criteria. J Personal Disord. 1997;11:168-176.<br />

34. Hamilton M. A rat<strong>in</strong>g scale for depression. J Neurol Neurosurg Psychiatry. 1960;<br />

23:56-62.<br />

35. Studholme C, Hill D, Hawkes D. An overlap <strong>in</strong>variant entropy measure of 3D medical<br />

image alignment. Pattern Recognit. 1999;32:71-86.<br />

36. Meyer JH, McMa<strong>in</strong> S, Kennedy SH, Korman L, Brown GM, DaSilva JN, Wilson<br />

AA, Blak T, Eynan-Harvey R, Gould<strong>in</strong>g VS, Houle S, L<strong>in</strong>ks P. Dysfunctional attitudes<br />

and 5-HT(2) receptors dur<strong>in</strong>g depression and self-harm. Am J Psychiatry.<br />

2003;160:90-99.<br />

37. Saura J, Andres N, Andrade C, Ojuel J, Eriksson K, Mahy N. Biphasic and regionspecific<br />

MAO-B response to ag<strong>in</strong>g <strong>in</strong> normal human bra<strong>in</strong>. Neurobiol Ag<strong>in</strong>g. 1997;<br />

18:497-507.<br />

38. Meyer JH, McNeeley HE, Sagrati S, Boovariwala A, Mart<strong>in</strong> K, Verhoeff NPLG, Wilson<br />

AA, Houle S. <strong>Elevated</strong> putamen D2 receptor b<strong>in</strong>d<strong>in</strong>g potential <strong>in</strong> major depression<br />

with motor retardation: an [ 11 C]raclopride positron emission tomography<br />

study. Am J Psychiatry. 2006;163:1594-1602.<br />

39. Stockmeier CA, Kellar KJ. In vivo regulation of <strong>the</strong> seroton<strong>in</strong>-2 receptor <strong>in</strong> rat<br />

bra<strong>in</strong>. Life Sci. 1986;38:117-127.<br />

40. Roth BL, McLean S, Zhu X, Chuang D. Characterization of two [3H]ketanser<strong>in</strong><br />

recognition sites <strong>in</strong> rat striatum. J Neurochem. 1987;49:1833-1838.<br />

41. O’Regan D, Kwok RP, Yu PH, Bailey BA, Greenshaw AJ, Boulton AA. A behavioural<br />

and neurochemical analysis of chronic and selective monoam<strong>in</strong>e oxidase<br />

<strong>in</strong>hibition. Psychopharmacology (Berl). 1987;92:42-47.<br />

42. Todd KG, McManus DJ, Baker GB. Chronic adm<strong>in</strong>istration of <strong>the</strong> antidepressants<br />

phenelz<strong>in</strong>e, desipram<strong>in</strong>e, clomipram<strong>in</strong>e, or maprotil<strong>in</strong>e decreases b<strong>in</strong>d<strong>in</strong>g<br />

to 5-hydroxytryptam<strong>in</strong>e2A receptors without affect<strong>in</strong>g benzodiazep<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g<br />

sites <strong>in</strong> rat bra<strong>in</strong>. Cell Mol Neurobiol. 1995;15:361-370.<br />

43. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology<br />

of depression. Neuron. 2002;34:13-25.<br />

44. American Psychiatric Association. Diagnostic and Statistical Manual of Mental<br />

Disorders. 4th ed. Wash<strong>in</strong>gton, DC: American Psychiatric Association; 1994.<br />

45. Slotk<strong>in</strong> TA, Seidler FJ, Ritchie JC. Effects of ag<strong>in</strong>g and glucocorticoid treatment<br />

on monoam<strong>in</strong>e oxidase subtypes <strong>in</strong> rat cerebral cortex: <strong>the</strong>rapeutic implications.<br />

Bra<strong>in</strong> Res Bull. 1998;47:345-348.<br />

46. Jernej B, Cic<strong>in</strong>-Sa<strong>in</strong> L. Platelet seroton<strong>in</strong> level <strong>in</strong> rats is under genetic control.<br />

Psychiatry Res. 1990;32:167-174.<br />

47. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harr<strong>in</strong>gton H, McClay J, Mill<br />

J, Mart<strong>in</strong> J, Braithwaite A, Poulton R. Influence of life stress on depression:<br />

moderation by a polymorphism <strong>in</strong> <strong>the</strong> 5-HTT gene. Science. 2003;301:<br />

386-389.<br />

48. Balciuniene J, Emilsson L, Oreland L, Pettersson U, Jaz<strong>in</strong> E. Investigation of <strong>the</strong><br />

functional effect of monoam<strong>in</strong>e oxidase polymorphisms <strong>in</strong> human bra<strong>in</strong>. Hum<br />

Genet. 2002;110:1-7.<br />

(REPRINTED) ARCH GEN PSYCHIATRY/ VOL 63, NOV 2006 WWW.ARCHGENPSYCHIATRY.COM<br />

1216<br />

©2006 American Medical Association. All rights reserved.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!