25.02.2013 Views

Chapter 5: Motion along a line

Chapter 5: Motion along a line

Chapter 5: Motion along a line

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Strategy for solving dynamics problems<br />

Model<br />

make simplifying assumptions (e.g., represent object as a particle)<br />

Visualise<br />

pictorial representation: draw a sketch to illustrate the motion, establish a<br />

coordinate system, define all variables and symbols, state what the<br />

problem is asking for.<br />

physical representation:<br />

- a motion diagram to establish direction of v and/or a<br />

- a free body diagram (FBD) to establish forces<br />

Solve<br />

mathematical representation: F net = F i = ma<br />

Assess<br />

correct units? reasonable numbers? answers the question?<br />

Σ i<br />

SMU PHYS1100, fall 2008, Prof. Clarke 1


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Newton’s 2 nd law must be treated as a vector equation!<br />

F Σ net = Fi = ma<br />

i<br />

is really 3 equations, one for each component.<br />

F Σ net,x = Fi,x = max i<br />

F Σ net,y = Fi,y = may i<br />

F Σ net,z = Fi,z = maz i<br />

and we must solve each separately.<br />

In this chapter, problems are in 2-D; z-components are zero.<br />

SMU PHYS1100, fall 2008, Prof. Clarke 2


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Definition: An object is in equilibrium when F net = 0, and thus<br />

when a = 0.<br />

If v = 0 too, equilibrium is static.<br />

example: If A exerts a force of 100 N west and B exerts a force<br />

of 120 N south, what force must C exert to maintain the knot<br />

in static equilibrium?<br />

A<br />

B<br />

C<br />

SMU PHYS1100, fall 2008, Prof. Clarke 3


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Newton’s 2 nd Law:<br />

broken up into components:<br />

F Σ net = Fi = T1 + T2 + T3 = ma = 0<br />

i<br />

x: F Σ net,x = Fi,x = −T1 + T3 cosθθθθ = 0<br />

i<br />

� T 3 cosθθθθ = T 1<br />

y: F Σ net,y = Fi,y = −T2 + T3 sinθθθθ = 0<br />

i<br />

� T 3 sinθθθθ = T 2<br />

divide (2) by (1) to get:<br />

tanθθθθ = T 2 /T 1<br />

SMU PHYS1100, fall 2008, Prof. Clarke 4<br />

(1)<br />

(2)<br />

(1) 2 + (2) 2 �<br />

T3 cos2θθθθ + T3 sin2θθθθ = T3 (cos2θθθθ + sin2 2 2<br />

2<br />

θ θ θ θ )<br />

2 2 2<br />

= T3 = T1 + T2 T 1<br />

y<br />

T 2<br />

θθθθ<br />

T 3<br />

T 3 cosθθθθ<br />

T 3 sinθθθθ<br />

x


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Newton’s 2 nd Law:<br />

broken up into components:<br />

F Σ net = Fi = T1 + T2 + T3 = ma = 0<br />

i<br />

x: F Σ net,x = Fi,x = −T1 + T3 cosθθθθ = 0<br />

i<br />

� T 3 cosθθθθ = T 1<br />

y: F Σ net,y = Fi,y = −T2 + T3 sinθθθθ = 0<br />

i<br />

� T 3 sinθθθθ = T 2<br />

divide (2) by (1) to get:<br />

tanθθθθ = T 2 /T 1<br />

SMU PHYS1100, fall 2008, Prof. Clarke 5<br />

(1)<br />

(2)<br />

(1) 2 + (2) 2 �<br />

T3 cos2θθθθ + T3 sin2θθθθ = T3 (cos2θθθθ + sin2 2 2<br />

2<br />

θ θ θ θ )<br />

2 2 2<br />

= T3 = T1 + T2 T 1<br />

y<br />

T 2<br />

θθθθ<br />

T 3<br />

T 3 cosθθθθ<br />

T 3 sinθθθθ<br />

x


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Newton’s 2 nd Law:<br />

broken up into components:<br />

F Σ net = Fi = T1 + T2 + T3 = ma = 0<br />

i<br />

x: F Σ net,x = Fi,x = −T1 + T3 cosθθθθ = 0<br />

i<br />

� T 3 cosθθθθ = T 1<br />

y: F Σ net,y = Fi,y = −T2 + T3 sinθθθθ = 0<br />

i<br />

� T 3 sinθθθθ = T 2<br />

divide (2) by (1) to get:<br />

tanθθθθ = T 2 /T 1<br />

SMU PHYS1100, fall 2008, Prof. Clarke 6<br />

(1)<br />

(2)<br />

(1) 2 + (2) 2 �<br />

T3 cos2θθθθ + T3 sin2θθθθ = T3 (cos2θθθθ + sin2 2 2<br />

2<br />

θ θ θ θ )<br />

2 2 2<br />

= T3 = T1 + T2 T 1<br />

y<br />

T 2<br />

θθθθ<br />

T 3<br />

T 3 cosθθθθ<br />

T 3 sinθθθθ<br />

x


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Newton’s 2 nd Law:<br />

broken up into components:<br />

F Σ net = Fi = T1 + T2 + T3 = ma = 0<br />

i<br />

x: F Σ net,x = Fi,x = −T1 + T3 cosθθθθ = 0<br />

i<br />

� T 3 cosθθθθ = T 1<br />

y: F Σ net,y = Fi,y = −T2 + T3 sinθθθθ = 0<br />

i<br />

� T 3 sinθθθθ = T 2<br />

divide (2) by (1) to get:<br />

tanθθθθ = T 2 /T 1<br />

SMU PHYS1100, fall 2008, Prof. Clarke 7<br />

(1)<br />

(2)<br />

(1) 2 + (2) 2 �<br />

T3 cos2θθθθ + T3 sin2θθθθ = T3 (cos2θθθθ + sin2 2 2<br />

2<br />

θ θ θ θ )<br />

2 2 2<br />

= T3 = T1 + T2 T 1<br />

y<br />

T 2<br />

θθθθ<br />

T 3<br />

T 3 cosθθθθ<br />

T 3 sinθθθθ<br />

x


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Newton’s 2 nd Law:<br />

broken up into components:<br />

F Σ net = Fi = T1 + T2 + T3 = ma = 0<br />

i<br />

x: F Σ net,x = Fi,x = −T1 + T3 cosθθθθ = 0<br />

i<br />

� T 3 cosθθθθ = T 1<br />

y: F Σ net,y = Fi,y = −T2 + T3 sinθθθθ = 0<br />

i<br />

� T 3 sinθθθθ = T 2<br />

divide (2) by (1) to get:<br />

tanθθθθ = T 2 /T 1<br />

SMU PHYS1100, fall 2008, Prof. Clarke 8<br />

(1)<br />

(2)<br />

(1) 2 + (2) 2 �<br />

T3 cos2θθθθ + T3 sin2θθθθ = T3 (cos2θθθθ + sin2 2 2<br />

2<br />

θ θ θ θ )<br />

2 2 2<br />

= T3 = T1 + T2 T 1<br />

y<br />

T 2<br />

θθθθ<br />

T 3<br />

T 3 cosθθθθ<br />

T 3 sinθθθθ<br />

x


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Newton’s 2 nd Law:<br />

broken up into components:<br />

F Σ net = Fi = T1 + T2 + T3 = ma = 0<br />

i<br />

x: F Σ net,x = Fi,x = −T1 + T3 cosθθθθ = 0<br />

i<br />

� T 3 cosθθθθ = T 1<br />

y: F Σ net,y = Fi,y = −T2 + T3 sinθθθθ = 0<br />

i<br />

� T 3 sinθθθθ = T 2<br />

divide (2) by (1) to get:<br />

tanθθθθ = T 2 /T 1 = 1.2 � θθθθ = 50 o<br />

ended here, 25/9/08<br />

SMU PHYS1100, fall 2008, Prof. Clarke 9<br />

(1)<br />

(2)<br />

(1) 2 + (2) 2 �<br />

T3 cos2θθθθ + T3 sin2θθθθ = T3 (cos2θθθθ + sin2 2 2<br />

2<br />

θ θ θ θ )<br />

2 2 2<br />

= T3 = T1 + T2 = 24,400 � T3 = 156 N<br />

T 1<br />

y<br />

T 2<br />

θθθθ<br />

T 3<br />

T 3 cosθθθθ<br />

T 3 sinθθθθ<br />

x


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

If v = 0 (but constant since a = 0), equilibrium is dynamic.<br />

example: A car of weight 15,000 N is towed up a hill with an<br />

inc<strong>line</strong> of 20 o at constant velocity. Friction is negligible. The<br />

tow rope is rated at 6,000 N maximum tension. Will it break?<br />

Notice we have chosen the x-axis to point up the hill,<br />

and not horizontally. See rules of thumb on page 13.<br />

SMU PHYS1100, fall 2008, Prof. Clarke 10


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Newton’s 2 F Σ net = Fi i<br />

= T + n + w = ma = 0<br />

x: F Σ net,x = Fi,x = T −−−− w sinθθθθ = 0<br />

i<br />

nd Law:<br />

broken up into components:<br />

y<br />

� T = w sinθθθθ (1)<br />

y: F Σ net,y = Fi,y = n −−−− w cosθθθθ = 0<br />

i<br />

� n = w cosθθθθ (2)<br />

Since we are only asked about T, (2)<br />

is of no further interest to us. From<br />

(1), we have:<br />

T = (15,000) sin(20 o ) = 5,130 N<br />

Since T < 6,000 N, the rope does not break.<br />

SMU PHYS1100, fall 2008, Prof. Clarke 11<br />

w<br />

n<br />

θθθθ<br />

T<br />

w cosθθθθ<br />

θθθθ<br />

w sinθθθθ<br />

x


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Continuing with the same example, now suppose the tower<br />

grows impatient, and accelerates up the hill at 1.0 ms-2 .<br />

Whither the rope now?<br />

To the FBD, we add an acceleration<br />

vector. This changes the x-component<br />

of Newton’s 2 nd Law:<br />

x: F Σ net,x = Fi,x = T −−−− w sinθθθθ = ma<br />

i<br />

� T = w sinθθθθ + mg = w sinθθθθ + a a<br />

g ( g)<br />

� T = (15,000) sin(20 o ) + 1.0<br />

( ) 9.8<br />

= 6,660 N, and the rope breaks.<br />

SMU PHYS1100, fall 2008, Prof. Clarke 12<br />

y<br />

w<br />

n<br />

θθθθ<br />

T<br />

w cosθθθθ<br />

a<br />

θθθθ<br />

w sinθθθθ<br />

x


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Why did we choose an inc<strong>line</strong>d coordinate system in the<br />

previous example?<br />

Rule of thumb: Choose your coordinate system so that a lies<br />

<strong>along</strong> either the x-axis or the y-axis.<br />

- simplifies equations by having a appear in only one.<br />

Subordinate rule of thumb: If a = 0, choose your coordinate<br />

system so that most of the forces lie <strong>along</strong> either the x-axis or<br />

the y-axis.<br />

- reduces the task of resolving force vectors into x- and ycomponents.<br />

SMU PHYS1100, fall 2008, Prof. Clarke 13


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Clicker question 5.1<br />

Resolve T into its x- and ycomponents<br />

for the coordinate<br />

system shown.<br />

a) T x = T; T y = 0<br />

b) T x = 0; T y = T<br />

c) T x = T cosθθθθ; T y = T sinθθθθ<br />

d) T x = T sinθθθθ; T y = T cosθθθθ<br />

SMU PHYS1100, fall 2008, Prof. Clarke 14<br />

y<br />

θθθθ<br />

T<br />

x


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Clicker question 5.1<br />

Resolve T into its x- and ycomponents<br />

for the coordinate<br />

system shown.<br />

a) T x = T; T y = 0<br />

b) T x = 0; T y = T<br />

c) T x = T cosθθθθ; T y = T sinθθθθ<br />

d) T x = T sinθθθθ; T y = T cosθθθθ<br />

SMU PHYS1100, fall 2008, Prof. Clarke 15<br />

y<br />

θθθθ<br />

T x<br />

The x-component is adjacent<br />

to θθθθ and gets the cosθθθθ.<br />

The y-component is opposite<br />

to θθθθ and gets the sinθθθθ.<br />

T<br />

T y<br />

x


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Clicker question 5.2<br />

Resolve w into its x- and ycomponents<br />

for the coordinate<br />

system shown.<br />

a) w x = w; w y = 0<br />

b) w x = 0; w y = −w<br />

c) w x = −w cosθθθθ; w y = −w sinθθθθ<br />

d) w x = −w sinθθθθ; w y = −w cosθθθθ<br />

e) w x = w cosθθθθ; w y = −w sinθθθθ<br />

f) w x = w sinθθθθ; w y = −w cosθθθθ<br />

SMU PHYS1100, fall 2008, Prof. Clarke 16<br />

y<br />

θθθθ<br />

w<br />

x


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Clicker question 5.2<br />

Resolve w into its x- and ycomponents<br />

for the coordinate<br />

system shown.<br />

a) w x = w; w y = 0<br />

b) w x = 0; w y = −w<br />

c) w x = −w cosθθθθ; w y = −w sinθθθθ<br />

d) w x = −w sinθθθθ; w y = −w cosθθθθ<br />

e) w x = w cosθθθθ; w y = −w sinθθθθ<br />

f) w x = w sinθθθθ; w y = −w cosθθθθ<br />

Here, we had to see that θθθθ<br />

is also the angle between<br />

w and the y-axis, and that<br />

both components point in<br />

their negative directions.<br />

SMU PHYS1100, fall 2008, Prof. Clarke 17<br />

y<br />

θθθθ<br />

w<br />

θθθθ<br />

w y<br />

w x<br />

x


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Clicker question 5.3<br />

Resolve w into its x- and ycomponents<br />

for the coordinate<br />

system shown.<br />

a) w x = w; w y = 0<br />

b) w x = 0; w y = −w<br />

c) w x = −w cosθθθθ; w y = −w sinθθθθ<br />

d) w x = −w sinθθθθ; w y = −w cosθθθθ<br />

e) w x = w cosθθθθ; w y = −w sinθθθθ<br />

f) w x = w sinθθθθ; w y = −w cosθθθθ<br />

SMU PHYS1100, fall 2008, Prof. Clarke 18<br />

θθθθ<br />

w<br />

y<br />

x


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Clicker question 5.3<br />

Resolve w into its x- and ycomponents<br />

for the coordinate<br />

system shown.<br />

a) w x = w; w y = 0<br />

b) w x = 0; w y = −w<br />

c) w x = −w cosθθθθ; w y = −w sinθθθθ<br />

d) w x = −w sinθθθθ; w y = −w cosθθθθ<br />

e) w x = w cosθθθθ; w y = −w sinθθθθ<br />

f) w x = w sinθθθθ; w y = −w cosθθθθ<br />

SMU PHYS1100, fall 2008, Prof. Clarke 19<br />

θθθθ<br />

w y<br />

θθθθ<br />

w x<br />

It doesn’t matter whether we<br />

measure θθθθ between the x-axis<br />

and the horizontal, or<br />

between the y-axis and the<br />

vertical; it’s the same angle.<br />

Here, the x-component points<br />

in the +x direction.<br />

θθθθ<br />

w<br />

y<br />

x


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

A model for friction…<br />

Any two solid surfaces in contact will “stick” to each other, even if very<br />

weakly, via electrostatic bonds between molecules that come in very close<br />

proximity to each other. When the surfaces are at relative rest, these bonds<br />

have more time to set up than when the<br />

surfaces are in relative motion.<br />

Thus, the maximum static friction, f s,max ,<br />

ought to be greater than the kinetic<br />

friction, f k .<br />

SMU PHYS1100, fall 2008, Prof. Clarke (figures from Doug Davis @ Eastern Illinois University) 20


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Even though the detailed physics of two surfaces in contact is very<br />

complex, experiments reveal a very simple model for friction.<br />

Consider a block at rest on the surface of a table. Gradually increase the<br />

horizontal force, F pull , on the cord. When F pull reaches a critical level, f s,max ,<br />

the block suddenly moves. The frictional force, f, reduces to f k and remains<br />

constant, regardless of how much higher F pull gets.<br />

Experimentally, one finds f s,max = µµµµ s n and f k = µµµµ k n where µµµµ s > µµµµ k are the<br />

coefficients of static and kinetic friction respectively (Table 5.1, pg. 133).<br />

n<br />

F pull<br />

F pull<br />

SMU PHYS1100, fall 2008, Prof. Clarke 21<br />

f<br />

f s,max<br />

f k<br />

0 static region kinetic region


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Note that f s is not always µµµµ s n. When F pull = 0, f s = 0 too.<br />

f s,max= µµµµ sn is the maximum static<br />

frictional force the surface can exert<br />

before the “sticking” molecular bonds<br />

break, and after which the kinetic<br />

frictional force takes over.<br />

The direction of f is tangential to the<br />

surface, and thus perpendicular to n.<br />

The direction of f s is opposite to the<br />

motion it is preventing.<br />

The direction of f k is opposite to the<br />

velocity.<br />

velocity frog would have if<br />

there were no f s<br />

SMU PHYS1100, fall 2008, Prof. Clarke 22


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

example for the board (e.g. 5.6 from text): A 50 kg box is<br />

pushed across the floor (µµµµ k = 0.20) at a steady speed of 2.0 ms -1 .<br />

a) How much force is exerted on the box?<br />

b) If the force is stopped, how far will the box slide <strong>along</strong> the<br />

floor before coming to rest?<br />

notes 5.1<br />

SMU PHYS1100, fall 2008, Prof. Clarke 23


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

example for the board (e.g. 5.7 from text): A 50.0 kg steel filing<br />

cabinet is in the back of a dump truck. The steel bed of the<br />

truck (µµµµ s = 0.80) is slowly raised.<br />

a) What is the magnitude and direction of the static frictional<br />

force when the bed is tilted by 20 o ?<br />

b) At what angle does the cabinet begin to slide?<br />

notes 5.2<br />

SMU PHYS1100, fall 2008, Prof. Clarke 24


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Clicker question 5.4<br />

Consider the static or kinetic frictional force, if any, between the box and<br />

table when the table is tilted as shown in the four cases. The box is<br />

stationary in cases 1, 2, and 3 with the box just on the verge of slipping in<br />

case 3. The box slides with constant speed in case 4.<br />

Which of the following is true?<br />

a) 0 < f s,1 < f s,2 < f k,4 < f s,3 = µµµµ s n b) 0 = f s,1 < f s,2 < f k,4 < f s,3 = µµµµ s n<br />

c) µµµµ k n = f k,4 < f s,1 = f s,2 = f s,3 = µµµµ s n d) 0 = f s,1 < f k,4 < f s,2 = f s,3 = µµµµ s n<br />

f s,1<br />

f s,2<br />

1 2<br />

3<br />

4<br />

SMU PHYS1100, fall 2008, Prof. Clarke 25<br />

f s,3<br />

f k,4<br />

v


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Clicker question 5.4<br />

Consider the static or kinetic frictional force, if any, between the box and<br />

table when the table is tilted as shown in the four cases. The box is<br />

stationary in cases 1, 2, and 3 with the box just on the verge of slipping in<br />

case 3. The box slides with constant speed in case 4.<br />

Which of the following is true?<br />

a) 0 < f s,1 < f s,2 < f k,4 < f s,3 = µµµµ s n b) 0 = f s,1 < f s,2 < f k,4 < f s,3 = µµµµ s n<br />

c) µµµµ k n = f k,4 < f s,1 = f s,2 = f s,3 = µµµµ s n d) 0 = f s,1 < f k,4 < f s,2 = f s,3 = µµµµ s n<br />

f s,1<br />

f s,2<br />

1 2<br />

3<br />

4<br />

SMU PHYS1100, fall 2008, Prof. Clarke 26<br />

f s,3<br />

f k,4<br />

v


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Clicker question 5.5<br />

You push lightly against the computer sitting on your desk<br />

and it doesn’t move. You push harder still, and it still won’t<br />

budge. This is because…<br />

a) The friction between the computer and the table<br />

increases the harder you push.<br />

b) The amount of friction is constant, but you haven’t<br />

pushed hard enough to overcome this force.<br />

c) The friction between the computer and the table<br />

decreases the more you push.<br />

d) None of the above.<br />

SMU PHYS1100, fall 2008, Prof. Clarke 27


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Clicker question 5.5<br />

You push lightly against the computer sitting on your desk<br />

and it doesn’t move. You push harder still, and it still won’t<br />

budge. This is because…<br />

a) The friction between the computer and the table<br />

increases the harder you push.<br />

b) The amount of friction is constant, but you haven’t<br />

pushed hard enough to overcome this force.<br />

c) The friction between the computer and the table<br />

decreases the more you push.<br />

d) None of the above.<br />

SMU PHYS1100, fall 2008, Prof. Clarke 28


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Mass, weight, and apparent weight<br />

mass, m, is a measure of the quantity of matter (kg).<br />

weight, w, is the gravitational force exerted on m (N). w = mg<br />

Take the earth away and your weight, w, disappears, but the amount of<br />

matter in your body, m, remains the same.<br />

apparent weight, w app, is the magnitude of the contact force<br />

that supports the weight, w.<br />

e.g., when you stand on a scale, the scale actually measures the normal<br />

force preventing you from falling through the scale. The normal force that<br />

registers on the dial is your apparent weight.<br />

Often, w app = w. However, if m is accelerating in a direction parallel to g,<br />

w app will not be the same as w.<br />

SMU PHYS1100, fall 2008, Prof. Clarke 29


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

e.g., a man stands on a (spring) scale in an elevator<br />

accelerating upward with acceleration a. Find his<br />

apparent weight, F sp.<br />

F Σ net = Fi,y = Fsp − w = ma<br />

i<br />

a<br />

� Fsp = w + ma = w + mg g<br />

� Fsp = w 1 + a ( g)<br />

exercise: show that if the elevator is<br />

accelerating downward instead, the<br />

man’s apparent weight is given by:<br />

Fsp = w ( 1 −−−−<br />

a) g<br />

ended here, 30/9/08<br />

SMU PHYS1100, fall 2008, Prof. Clarke 30


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Weightlessness is when the apparent weight is zero, not the<br />

weight itself.<br />

e.g., what is the weight and apparent weight<br />

of a rock in free-fall?<br />

w = mg = 0 is the only force acting on m,<br />

(ignoring drag) and causes the rock to<br />

accelerate downward with acceleration g.<br />

Thus:<br />

wapp = w (<br />

g<br />

1 −−−− g)<br />

= 0<br />

So, when m is in freefall, w app = 0 and we say m is weightless<br />

even though its actual weight is not zero. The term weightless<br />

is evidently a bit of a misnomer.<br />

SMU PHYS1100, fall 2008, Prof. Clarke 31<br />

m<br />

mg<br />

g


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Air drag. Like friction, air drag is a<br />

very complicated process. However,<br />

experiments show that a relatively<br />

simple expression for the air drag<br />

force, D, usually suffices:<br />

D = bAv 2<br />

where b is the drag coefficient = 0.25<br />

kg s -1 for air, A is the “presentation<br />

cross section area” of the object, and v<br />

is its speed relative to the air.<br />

The concept of “presentation cross<br />

section area” is illustrated to the right.<br />

SMU PHYS1100, fall 2008, Prof. Clarke 32


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Terminal speed. Because air drag increases with velocity<br />

(in fact, as v 2 ), a falling object will reach a speed, v term , such that<br />

D = mg. Here, the net force on m is zero,<br />

a = 0, and m falls at the constant and socalled<br />

terminal speed, v term, given by:<br />

D = bAv 2<br />

term= mg � vterm= with b set to ¼ for air.<br />

4mg<br />

A<br />

e.g., for a skydiver of mass m = 75 kg<br />

“laying flat”, A = 1.8 m x 0.4 m = 0.72 m 2 ,<br />

� v term = 64 ms −1 (230 km/hr)<br />

e.g., skydiver “standing”, A = 0.3 m x 0.4 m<br />

w = mg<br />

= 0.12 m<br />

SMU PHYS1100, fall 2008, Prof. Clarke 33<br />

2 � vterm = 157 ms−1 (560 km/hr)<br />

m<br />

D<br />

F net = 0<br />

v term


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

example for the board (Fig. 5.21<br />

from text)<br />

A ball of mass m and radius r<br />

moves up and down vertically.<br />

In the absence of air drag, the<br />

ball would be in free-fall with<br />

acceleration –g.<br />

Including air drag,<br />

a) what is the acceleration of<br />

the ball on the way up?<br />

b) what is the acceleration of<br />

the ball on the way down?<br />

notes 5.3<br />

SMU PHYS1100, fall 2008, Prof. Clarke 34


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

example for the board (e.g.,<br />

5.10 from text)<br />

A wooden sled with mass (including<br />

rider and supplies) 200 kg is pulled<br />

by a dog team over snow (µµµµ k = 0.06)<br />

with two ropes (inc<strong>line</strong>d at θθθθ = 10 o to<br />

the horizontal) attaching the sled to<br />

the team. It takes the dogs 15 metres<br />

to reach their cruising speed of 5 ms -1 .<br />

a) What is the tension in the ropes while the dogs<br />

are accelerating (assumed to be constant)?<br />

b) What is the tension in the ropes at cruising<br />

speed?<br />

notes 5.4<br />

SMU PHYS1100, fall 2008, Prof. Clarke 35


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

example for the board (e.g., 5.11 from text)<br />

A 100 kg box rests on the floor of a flatbed truck. The coefficients of<br />

friction between the box and the floor are µµµµ s = 0.3 and µµµµ k = 0.2.<br />

a) What is the maximum acceleration the truck can have without causing<br />

the box to slip?<br />

notes 5.5<br />

b) Suppose the truck is accelerating at this maximum acceleration and a<br />

bump causes the box to start slipping. If the distance between the centre<br />

of the box and the end of the flatbed is 3.0 m, how long does it take for<br />

the box to fall off the end of the truck?<br />

SMU PHYS1100, fall 2008, Prof. Clarke 36


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Clicker question 5.6<br />

An elevator is going UP at constant speed. The only two forces<br />

on the elevator are tension, T, from a cable pulling UP, and the<br />

weight of the elevator and its contents, w, pulling DOWN. How<br />

does the magnitude of T compare to the magnitude of w?<br />

a) T > w<br />

b) T = w<br />

c) T < w<br />

d) not enough information to tell<br />

SMU PHYS1100, fall 2008, Prof. Clarke 37


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Clicker question 5.6<br />

An elevator is going UP at constant speed. The only two forces<br />

on the elevator are tension, T, from a cable pulling UP, and the<br />

weight of the elevator and its contents, w, pulling DOWN. How<br />

does the magnitude of T compare to the magnitude of w?<br />

a) T > w<br />

b) T = w<br />

c) T < w<br />

d) not enough information to tell<br />

SMU PHYS1100, fall 2008, Prof. Clarke 38


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Clicker question 5.7<br />

Consider the tension in the cable holding up an elevator<br />

under the following three situations:<br />

1) the elevator is stationary;<br />

2) the elevator is being accelerated upwards at 2.0 ms −2 ;<br />

3) the elevator is being accelerated downward at 2.0 ms −2 ;<br />

Rank these situations from greatest tension to lowest tension<br />

in the cable:<br />

a) 2,1,3 b) 2,3,1 c) 3,1,2 d) all the same<br />

SMU PHYS1100, fall 2008, Prof. Clarke 39


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Clicker question 5.7<br />

Consider the tension in the cable holding up an elevator<br />

under the following three situations:<br />

1) the elevator is stationary;<br />

2) the elevator is being accelerated upwards at 2.0 ms −2 ;<br />

3) the elevator is being accelerated downward at 2.0 ms −2 ;<br />

Rank these situations from greatest tension to lowest tension<br />

in the cable:<br />

a) 2,1,3 b) 2,3,1 c) 3,1,2 d) all the same<br />

SMU PHYS1100, fall 2008, Prof. Clarke 40


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Clicker question 5.8<br />

Now consider the tension in the cable holding up an elevator<br />

under the following three situations:<br />

1) the elevator is stationary;<br />

2) the elevator is moving upwards at constant speed;<br />

3) the elevator is moving downward at constant speed;<br />

Rank these situations from greatest tension to lowest tension<br />

in the cable:<br />

a) 2,1,3 b) 2,3,1 c) 3,1,2 d) all the same<br />

SMU PHYS1100, fall 2008, Prof. Clarke 41


<strong>Chapter</strong> 5: <strong>Motion</strong> <strong>along</strong> a <strong>line</strong><br />

Clicker question 5.8<br />

Now consider the tension in the cable holding up an elevator<br />

under the following three situations:<br />

1) the elevator is stationary;<br />

2) the elevator is moving upwards at constant speed;<br />

3) the elevator is moving downward at constant speed;<br />

Rank these situations from greatest tension to lowest tension<br />

in the cable:<br />

a) 2,1,3 b) 2,3,1 c) 3,1,2 d) all the same<br />

SMU PHYS1100, fall 2008, Prof. Clarke 42

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!