25.02.2013 Views

Bachelor of Engineering (Honours) in Mechanical Engineering

Bachelor of Engineering (Honours) in Mechanical Engineering

Bachelor of Engineering (Honours) in Mechanical Engineering

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

B.Eng. (Hons.) <strong>in</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

<strong>Bachelor</strong> <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> (<strong>Honours</strong>) <strong>in</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

YEAR 1<br />

All students are required to register for 60 credits <strong>in</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong>.<br />

Semester 1<br />

Compulsory Units (All students must register for these units)<br />

EPC 1102 Electrical <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Technology 5 credits<br />

MAT 1801 Mathematics for Eng<strong>in</strong>eers I 4 credits NCP<br />

MEC 1400 <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics - Statics 6 credits NCP<br />

MME 1201 Fundamentals <strong>of</strong> Material Science I 5 credits<br />

CCE 1110 Computer Programm<strong>in</strong>g 6 credits<br />

MFE 1101 <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Draw<strong>in</strong>g<br />

5 credits<br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> workload this semester: 31 credits<br />

Semester 2<br />

Compulsory Units (All students must register for these units)<br />

ESE 1231 Fundamentals <strong>of</strong> Electronics 5 credits<br />

MAT 1802 Mathematics for Eng<strong>in</strong>eers II 4 credits NCP<br />

MEC 1405 Thermodynamics I 5 credits NCP<br />

MFE 1202 Fundamentals <strong>of</strong> Manufactur<strong>in</strong>g and Mach<strong>in</strong><strong>in</strong>g 5 credits<br />

MEC 1401 Mechanics <strong>of</strong> Materials I 5 credits NCP<br />

MME 1202 Physical Metallurgy and Diffusion 5 credits<br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> workload this semester: 29 credits<br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> workload this year: 60 credits<br />

Requirement for Regular Progression to Year II: 60 credits <strong>in</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Total B.Eng. (Hons.) <strong>in</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> course this year: 60 credits<br />

- 1 -


B.Eng. (Hons.) <strong>in</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

YEAR 2<br />

All students are required to register for 60 credits <strong>in</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong>.<br />

Year (This unit starts <strong>in</strong> Semester 1 and cont<strong>in</strong>ues <strong>in</strong> Semester 2)<br />

Compulsory Unit<br />

SOR 1201 Probability, Sampl<strong>in</strong>g and Estimation 4 credits NCP<br />

Semester 1<br />

Compulsory Units (All students must register for these units)<br />

MFE 2105 <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Design Methods 2 credits<br />

MEC 2340 Fluid Mechanics I 5 credits NCP<br />

MFE 2101 <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Metrology 5 credits<br />

MEC 2300 <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics - K<strong>in</strong>ematics 5 credits NCP<br />

MME 2203 Ferrous and Non-Ferrous Metals 5 credits<br />

MEC 2308 Mechanics <strong>of</strong> Materials II 5 credits NCP<br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> workload this semester: 29 credits (<strong>in</strong>clud<strong>in</strong>g half load <strong>of</strong> Year unit)<br />

Semester 2<br />

Compulsory Units (All students must register for these units)<br />

MAT 2814 Numerical Analysis with MATLAB 4 credits NCP<br />

MEC 2306 <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics – Dynamics 5 credits NCP<br />

SCE 2210 Introduction to Control Systems 5 credits<br />

MEC 2341 Fluid Mechanics II 5 credits NCP<br />

MEC 2307 Thermodynamics II 5 credits NCP<br />

MEC 2402 <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Components 5 credits<br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> workload this semester: 31 credits (<strong>in</strong>clud<strong>in</strong>g half load <strong>of</strong> Year unit)<br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> workload this year: 60 credits<br />

Requirement for Regular Progression to year III: 60 credits <strong>in</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Total B.Eng. (Hons.) <strong>in</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> course this year: 60 credits<br />

- 2 -


B.Eng. (Hons.) <strong>in</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> workload this year: 60 credits<br />

YEAR 3<br />

All students are required to register for 60 credits <strong>in</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong>. Students must register not less<br />

than 24 credits and not more than 36 credits <strong>in</strong> one semester.<br />

Year (This unit starts <strong>in</strong> Semester 1 and cont<strong>in</strong>ues <strong>in</strong> Semester 2)<br />

Compulsory Unit<br />

ENR 3000 F<strong>in</strong>al Year Project 18 credits NCP<br />

Semester 1<br />

Compulsory Units (All students must register for these units)<br />

MAT 3815 Mathematics for Eng<strong>in</strong>eers III 4 credits NCP<br />

MEC 3007 Vibration Analysis I 5 credits NCP<br />

MME 3206 Material Degradation 5 credits<br />

MEC 3400 Environmental <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> 5 credits<br />

Semester 2<br />

Compulsory Units (All students must register for these units)<br />

MEC 3008 Vibration Analysis II 5 credits NCP<br />

MEC 3103 Heat Transfer 5 credits NCP<br />

MEC 3302 Eng<strong>in</strong>eer <strong>in</strong> Society 3 credits<br />

Elective Units<br />

Choose study-units to the value <strong>of</strong> 10 credits from the follow<strong>in</strong>g list:<br />

Semester 1<br />

MFE 3102 Mechatronics Systems Design 5 credits<br />

MME 3207 Mechanics <strong>of</strong> Material Fracture 5 credits<br />

MFE 3107 Industrial Automation 5 credits<br />

MME 3205 Jo<strong>in</strong><strong>in</strong>g processes 5 credits<br />

Semester 2<br />

ENR 3301 <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Management 5 credits<br />

MFE 3207 Quality Management and Control 5 credits<br />

MFE 3201 Technologies <strong>in</strong> Mechatronic Systems 5 credits<br />

Requirement for successful completion <strong>of</strong> Year III (f<strong>in</strong>al year): 60 credits <strong>in</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Requirement for award <strong>of</strong> B.Eng. (Hons.) <strong>in</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> : 180 credits <strong>in</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Note: This course <strong>of</strong> study is governed by “The General Regulations for University<br />

Undergraduate Awards, 2004” and by the Bye-Laws…….<br />

- 3 -


Department <strong>of</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Study-units <strong>of</strong>fered by the<br />

Department <strong>of</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Faculty <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

University <strong>of</strong> Malta<br />

- 1 -


Department <strong>of</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Level 1 units<br />

- 2 -


Department <strong>of</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MEC1400 - <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics – Statics<br />

Credits 6<br />

Lectures/tutorial hours<br />

Laboratory hours<br />

28 hours lectures, 14 hours tutorials<br />

Lecturer<br />

Prerequisites and exclusions<br />

Leads to<br />

Dr. Z. Sant<br />

MEC2300 - <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics - K<strong>in</strong>ematics, and<br />

MEC1401 - Mechanics <strong>of</strong> Materials 1<br />

Objectives This unit <strong>in</strong>troduces the concept <strong>of</strong> classical mechanics, the<br />

pr<strong>in</strong>ciples <strong>of</strong> model<strong>in</strong>g various loads and solv<strong>in</strong>g equilibrium<br />

between bodies connected by means <strong>of</strong> constra<strong>in</strong>s.<br />

Syllabus • Basic pr<strong>in</strong>ciples <strong>of</strong> Mechanics and Statics<br />

• Force systems and their description<br />

• Equivalence and equilibrium <strong>in</strong> Statics us<strong>in</strong>g vector<br />

algebra.<br />

• Applications <strong>of</strong> pr<strong>in</strong>ciple <strong>of</strong> equivalence - centroid <strong>of</strong><br />

area, centre <strong>of</strong> gravity.<br />

• Solid body constra<strong>in</strong>s and their characteristics<br />

• Equilibrium <strong>of</strong> a constra<strong>in</strong>ed solid body<br />

• System <strong>of</strong> coupled bodies <strong>in</strong> equilibrium. Trusses.<br />

• Friction and its application to mechanisms<br />

Laboratory work Can be either laboratory work, computer based project or any<br />

other assignment chosen by the course co-ord<strong>in</strong>ator<br />

Assessment 80% written exam<strong>in</strong>ation, 20% assignment<br />

Text books and resources • Meriam J.L., Kraig L.G., <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics – Statics<br />

• Hibbeler R. C., <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics – Statics<br />

- 3 -


Department <strong>of</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MEC1401 - Mechanics <strong>of</strong> Materials I<br />

Credits 5<br />

Lectures/tutorial hours<br />

Laboratory hours<br />

28 hours lectures, 7 hours tutorials<br />

Lecturer<br />

Dr. Z. Sant<br />

Prerequisites and exclusions MEC1400 - <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics – Statics<br />

Leads to MEC2308 - Mechanics <strong>of</strong> Materials II<br />

Objectives This unit <strong>in</strong>troduces the fundamental pr<strong>in</strong>ciples <strong>of</strong> solid<br />

mechanics. Theories related to the relationships between the<br />

external loads applied to a deformable body and the stress<br />

<strong>in</strong>tensities with<strong>in</strong> the body are studied and then applied to<br />

practical problems.<br />

Syllabus • Introduction to Mechanics <strong>of</strong> Materials – mechanical<br />

properties <strong>of</strong> materials, stress v.s. stra<strong>in</strong> curves, direct stresses,<br />

average shear stress, factor <strong>of</strong> safety, stress concentrations;<br />

• Tension/Compression – normal stress, deformation, stra<strong>in</strong><br />

energy;<br />

• Torsion – the elastic torsion <strong>of</strong> circular cross-sections, shear<br />

stress, deflection, stra<strong>in</strong> energy;<br />

• Bend<strong>in</strong>g <strong>of</strong> beams – the simple theory <strong>of</strong> pure bend<strong>in</strong>g,<br />

second moment <strong>of</strong> area and section modulus <strong>of</strong> beam cross<br />

sections, beams with un-symmetrical cross section, composite<br />

beams, bend<strong>in</strong>g <strong>of</strong> <strong>in</strong>itially curved beams, bend<strong>in</strong>g stress,<br />

stra<strong>in</strong> energy;<br />

• Shear stress distribution <strong>in</strong> beams – the relationship<br />

between bend<strong>in</strong>g moment, shear<strong>in</strong>g force and <strong>in</strong>tensity <strong>of</strong><br />

load<strong>in</strong>g, vertical shear stresses <strong>in</strong> beams, horizontal shear<br />

stresses, shear centre;<br />

• Slope and deflection <strong>of</strong> beams - relationship between<br />

load<strong>in</strong>g, shear<strong>in</strong>g force, bend<strong>in</strong>g moment, slope and<br />

deflection.<br />

• Deflection <strong>of</strong> beams and frameworks - energy methods,<br />

Castigliano’s theorems;<br />

• Comb<strong>in</strong>ed loads – the pr<strong>in</strong>ciple <strong>of</strong> superposition applied to<br />

bend<strong>in</strong>g stresses, direct stresses and shear stresses, skew or<br />

unsymmetrical bend<strong>in</strong>g.<br />

• Euler’s theory <strong>of</strong> elastic buckl<strong>in</strong>g<br />

Laboratory work Can be either laboratory work, computer based project or any<br />

other assignment chosen by the course co-ord<strong>in</strong>ator<br />

Assessment 80% written exam<strong>in</strong>ation, 20% assignment<br />

Text books and resources • Mechanics <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Materials, P.P. Benham, R.J.<br />

Crawford, C.G. Armstrong<br />

• Mechanics <strong>of</strong> Materials, E.P. Popov<br />

- 4 -


Department <strong>of</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MEC1405 - Thermodynamics I<br />

Credits 5<br />

Lectures/tutorial hours 28 hours lectures<br />

Laboratory hours 6 hours<br />

Lecturer Dr. M. Farrugia<br />

Prerequisites and exclusions<br />

Leads to MEC2307 - Thermodynamics II<br />

Objectives This unit <strong>in</strong>troduces the basic concepts <strong>of</strong> thermodynamics,<br />

the laws <strong>of</strong> thermodynamics, and mixtures<br />

Syllabus • Fundamental concepts<br />

Equation <strong>of</strong> state, Internal energy, Enthalpy.<br />

Zeroth Law, and First Law <strong>of</strong> Thermodynamics.<br />

• Non-Flow Processes for gases and Vapour<br />

Properties <strong>of</strong> Liquids and Vapour (Steam), Use <strong>of</strong><br />

Tables and Charts for steam.<br />

Steady Flow and Non-Flow Energy<br />

Equation. Application <strong>of</strong> the Energy Equation to Non-<br />

Flow and Flow problems, Fill<strong>in</strong>g <strong>of</strong> a rigid vessel from<br />

a ma<strong>in</strong> (non-steady).<br />

• Second Law <strong>of</strong> Thermodynamics, Carnot Cycle,<br />

Absolute thermodynamic Temperature Scale, Entropy<br />

and Reversibility, General thermodynamic relations.<br />

Exergy. Corollaries <strong>of</strong> the second Law.<br />

• Properties <strong>of</strong> Mixtures: Perfect gas mixtures; P, V, T<br />

relationship, Parts <strong>of</strong> mass; Parts <strong>of</strong> volume; Internal<br />

energy; Enthalpy; Specific heats and entropy <strong>of</strong><br />

mixtures; Gas and vapour mixtures; Psychiometric<br />

chart.<br />

Laboratory work Polytropic Processes, Marcet Boiler, Heat Pump, Latent heat<br />

<strong>of</strong> vaporization, Heat balance on IC eng<strong>in</strong>e<br />

Assessment 90% written exam<strong>in</strong>ation, 10% practical<br />

Text books and resources • Eastop and McConkey, Applied Thermodynamics for<br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Technologists.<br />

• Rogers & Mayhew, <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Thermodynamics<br />

Work and Heat Transfer<br />

- 5 -


Department <strong>of</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Level 2 units<br />

- 6 -


Department <strong>of</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MEC2300 - <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics - K<strong>in</strong>ematics<br />

Credits 5<br />

Lectures/tutorial hours<br />

Laboratory hours<br />

28 hours lectures, 7 hours tutorials<br />

Lecturer<br />

Dr. Z. Sant<br />

Prerequisites and exclusions MEC 400 - <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics - Statics<br />

Leads to MEC 2306 - <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics – Dynamics<br />

Objectives This unit <strong>in</strong>troduces the concept <strong>of</strong> movement analysis and<br />

characterization by means <strong>of</strong> path traveled, velocity, and<br />

acceleration for different types <strong>of</strong> motion.<br />

Syllabus • K<strong>in</strong>ematics <strong>of</strong> a Particle<br />

• K<strong>in</strong>ematics <strong>of</strong> System <strong>of</strong> Particles – rectil<strong>in</strong>ear motion,<br />

curvil<strong>in</strong>ear motion<br />

• Harmonic motion<br />

• Orthogonal Transformation <strong>of</strong> Vectors<br />

• Body Motion Characteristics – velocity and acceleration<br />

due to translation, rotation, general planar motion,<br />

spherical motion, general space motion<br />

• K<strong>in</strong>ematic Analysis <strong>of</strong> Planar Mechanisms – velocity<br />

and acceleration us<strong>in</strong>g analytical, grapho-analytical, and<br />

matrix method<br />

• K<strong>in</strong>ematic Analysis <strong>of</strong> Space Mechanisms – velocity<br />

and acceleration, relative velocity and acceleration us<strong>in</strong>g<br />

analytical, grapho-analytical, and matrix method.<br />

• Applications <strong>of</strong> k<strong>in</strong>ematic analysis to gear systems,<br />

Planet Mechanisms, and cams.<br />

Laboratory work Can be either laboratory work, computer based project or any<br />

other assignment chosen by the course co-ord<strong>in</strong>ator<br />

Assessment 80% written exam<strong>in</strong>ation, 20% assignment<br />

Text books and resources • Meriam J.L., Kraig L.G., <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics –<br />

Dynamics<br />

• Hibbeler R. C., <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics – Dynamics<br />

- 7 -


Department <strong>of</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

This unit is <strong>of</strong>fered to the B.Sc. (Hons.) Degree – Chemistry with Materials<br />

Unit Name MEC2303 - Mechanics <strong>of</strong> Materials for Scientists<br />

Credits 5<br />

Lectures/tutorial hours<br />

Laboratory hours<br />

28 hours lectures, 7 hours tutorials<br />

Lecturer<br />

Dr. Z. Sant<br />

Prerequisites and exclusions MEC1400 - <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics – Statics<br />

Leads to MEC2308 - Mechanics <strong>of</strong> Materials II<br />

Objectives This unit <strong>in</strong>troduces the fundamental pr<strong>in</strong>ciples <strong>of</strong> solid<br />

mechanics. Theories related to the relationships between the<br />

external loads applied to a deformable body and the stress<br />

<strong>in</strong>tensities with<strong>in</strong> the body are studied and then applied to<br />

practical problems.<br />

Syllabus • Introduction to Mechanics <strong>of</strong> Materials – mechanical<br />

properties <strong>of</strong> materials, stress v.s. stra<strong>in</strong> curves, direct stresses,<br />

average shear stress, factor <strong>of</strong> safety, stress concentrations;<br />

• Tension/Compression – normal stress, deformation, stra<strong>in</strong><br />

energy;<br />

• Torsion – the elastic torsion <strong>of</strong> circular cross-sections, shear<br />

stress, deflection, stra<strong>in</strong> energy;<br />

• Bend<strong>in</strong>g <strong>of</strong> beams – the simple theory <strong>of</strong> pure bend<strong>in</strong>g,<br />

second moment <strong>of</strong> area and section modulus <strong>of</strong> beam cross<br />

sections, beams with un-symmetrical cross section, composite<br />

beams, bend<strong>in</strong>g <strong>of</strong> <strong>in</strong>itially curved beams, bend<strong>in</strong>g stress,<br />

stra<strong>in</strong> energy;<br />

• Shear stress distribution <strong>in</strong> beams – the relationship<br />

between bend<strong>in</strong>g moment, shear<strong>in</strong>g force and <strong>in</strong>tensity <strong>of</strong><br />

load<strong>in</strong>g, vertical shear stresses <strong>in</strong> beams, horizontal shear<br />

stresses, shear centre;<br />

• Slope and deflection <strong>of</strong> beams - relationship between<br />

load<strong>in</strong>g, shear<strong>in</strong>g force, bend<strong>in</strong>g moment, slope and<br />

deflection.<br />

• Deflection <strong>of</strong> beams and frameworks - energy methods,<br />

Castigliano’s theorems;<br />

• Comb<strong>in</strong>ed loads – the pr<strong>in</strong>ciple <strong>of</strong> superposition applied to<br />

bend<strong>in</strong>g stresses, direct stresses and shear stresses, skew or<br />

unsymmetrical bend<strong>in</strong>g.<br />

• Euler’s theory <strong>of</strong> elastic buckl<strong>in</strong>g<br />

Laboratory work Can be either laboratory work, computer based project or any<br />

other assignment chosen by the course co-ord<strong>in</strong>ator<br />

Assessment 80% written exam<strong>in</strong>ation, 20% assignment<br />

Text books and resources • Mechanics <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Materials, P.P. Benham, R.J.<br />

Crawford, C.G. Armstrong<br />

• Mechanics <strong>of</strong> Materials, E.P. Popov<br />

- 8 -


Department <strong>of</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MEC2306 - <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics - Dynamics<br />

Credits 5<br />

Lectures/tutorial hours<br />

Laboratory hours<br />

28 hours lectures, 7 hours tutorials<br />

Lecturer<br />

Dr. P. Mollicone<br />

Prerequisites and exclusions MEC2300 - <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics - K<strong>in</strong>ematics<br />

Leads to MEC3007 – Vibration Analysis I<br />

Objectives<br />

Syllabus<br />

• Basic pr<strong>in</strong>ciples <strong>in</strong> dynamics – Newton’s law, Momentum,<br />

Impulse, D’Alembert’s pr<strong>in</strong>ciple, Work and Energy<br />

• Dynamics <strong>of</strong> a particle<br />

• Dynamics <strong>of</strong> system <strong>of</strong> particles<br />

• Moment <strong>of</strong> <strong>in</strong>ertia and its transformation, pr<strong>in</strong>cipal axes and<br />

pr<strong>in</strong>cipal moments <strong>of</strong> <strong>in</strong>ertia<br />

• Dynamics <strong>of</strong> rigid body due to – translation, rotation,<br />

general planar motion, spherical motion, general space<br />

motion<br />

• Dynamics <strong>of</strong> mechanisms<br />

• Rotor dynamics<br />

• Impact <strong>of</strong> solid bodies<br />

• Basic pr<strong>in</strong>ciples <strong>in</strong> analytical dynamics: Virtual Work,<br />

Lagrange Equations<br />

Laboratory work Can be either laboratory work, computer based project or any<br />

other assignment chosen by the course co-ord<strong>in</strong>ator<br />

Assessment 80% written exam<strong>in</strong>ation, 20% assignment<br />

Text books and resources • Meriam J.L., Kraig L.G., <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics –<br />

Dynamics<br />

• Hibbeler R. C., <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics – Dynamics<br />

- 9 -


Department <strong>of</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MEC2307 - Thermodynamics II<br />

Credits 5<br />

Lectures/tutorial hours 28 hours lectures<br />

Laboratory hours<br />

6 hours<br />

Lecturer<br />

Dr. M. Farrugia<br />

Prerequisites and exclusions<br />

Leads to<br />

MEC1405 - Thermodynamics I<br />

Objectives This unit <strong>in</strong>troduces the basic concepts <strong>of</strong> thermodynamics,<br />

the laws <strong>of</strong> thermodynamics, and mixtures<br />

Syllabus • Fluid Flow: Flow <strong>of</strong> Gas and Vapour through ducts <strong>of</strong><br />

constant/vary<strong>in</strong>g cross section area; Critical pressure<br />

ratio; Efficiency <strong>of</strong> nozzles and diffusers; Meta-stable<br />

state.<br />

• Combustion: Stoichiometry, products <strong>of</strong> combustion,<br />

calorific value, enthalpy <strong>of</strong> combustion, application <strong>of</strong><br />

the first law to combustion processes, adiabatic flame<br />

temperature, dissociation.<br />

• Air standard Cycles: Carnot Cycle, Otto Cycle, Joule<br />

Cycle, Diesel Cycle, Mixed Combustion Cycle,<br />

Ericsson Cycle, Sterl<strong>in</strong>g Cycle, Open and Closed Gas<br />

Turb<strong>in</strong>e Cycle, Optimization <strong>of</strong> Gas Turb<strong>in</strong>e Cycle,<br />

Cycle with Regenerator, Effects <strong>of</strong> variable specific<br />

heats, Cycle for Jet Propulsion. Air Refrigeration Cycle.<br />

• Vapour cycles: Simple Rank<strong>in</strong>e cycle, Rank<strong>in</strong>e cycle<br />

with re-heat; Regenerative cycle; Back pressure turb<strong>in</strong>e<br />

and extraction turb<strong>in</strong>e cycles; B<strong>in</strong>ary cycle, Comb<strong>in</strong>ed<br />

cycle, Simple vapour compression refrigeration cycle.<br />

Heat pump cycle.<br />

.<br />

• Air Compressors: S<strong>in</strong>gle and double act<strong>in</strong>g mach<strong>in</strong>es;<br />

Effect <strong>of</strong> clearance volume; isothermal, adiabatic and<br />

volumetric efficiency, Multi-stag<strong>in</strong>g and <strong>in</strong>tercool<strong>in</strong>g.<br />

Laboratory work • Gas Turb<strong>in</strong>e or Internal combustion eng<strong>in</strong>e<br />

• Flow <strong>of</strong> gas/vapour through nozzle and diffuser<br />

• Combustion processes<br />

• Air compressor<br />

Assessment 90% written exam<strong>in</strong>ation, 10% practical<br />

Text books and resources • Eastop and McConkey, Applied Thermodynamics for<br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Technologists.<br />

• Rogers & Mayhew, <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Thermodynamics<br />

Work and Heat Transfer<br />

- 10 -


Department <strong>of</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MEC2308 - Mechanics <strong>of</strong> Materials II<br />

Credits 5<br />

Lectures/tutorial hours 22 hours lectures, 3 hours tutorials<br />

Laboratory hours<br />

10 hours<br />

Lecturer<br />

Dr. M. Muscat<br />

Prerequisites and exclusions<br />

Leads to<br />

MEC1401 - Mechanics <strong>of</strong> Materials I<br />

Objectives This unit builds up on the eng<strong>in</strong>eer<strong>in</strong>g applications<br />

encountered <strong>in</strong> Mechanics <strong>of</strong> Materials I. It places an<br />

emphasis on the solution <strong>of</strong> the equilibrium, compatibility <strong>of</strong><br />

deformation and constitutive equations <strong>in</strong> order to solve<br />

certa<strong>in</strong> <strong>in</strong>determ<strong>in</strong>ate problems<br />

Syllabus • Analysis <strong>of</strong> plane stress and plane stra<strong>in</strong> – Equations<br />

for the transformation <strong>of</strong> plane stress and plane stra<strong>in</strong>,<br />

Mohr’s circle for plane stress and plane stra<strong>in</strong>, pr<strong>in</strong>cipal<br />

stresses and pr<strong>in</strong>cipal stra<strong>in</strong>s, electrical resistance stra<strong>in</strong><br />

gauges.<br />

• Theories <strong>of</strong> elastic failure – Maximum shear stress<br />

theory (Tresca), Shear stra<strong>in</strong> energy theory (von<br />

Misses), Maximum pr<strong>in</strong>cipal stress theory.<br />

• Analysis <strong>of</strong> columns – energy methods to calculate<br />

buckl<strong>in</strong>g load.<br />

• Design <strong>of</strong> structural connections – rivets, bolts and<br />

welds.<br />

• Statically <strong>in</strong>determ<strong>in</strong>ate structures and limit<br />

analysis.<br />

• Thick walled cyl<strong>in</strong>ders and rotat<strong>in</strong>g discs.<br />

Laboratory work This will take the form <strong>of</strong> group work and can be either<br />

laboratory work, a computer based project or any other<br />

assignment chosen by the course co-ord<strong>in</strong>ator.<br />

Assessment 80% written exam<strong>in</strong>ation, 20% practical<br />

Text books and resources • Mechanics <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Materials, P.P. Benham, R.J.<br />

Crawford, C.G. Armstrong<br />

• Mechanics <strong>of</strong> Materials, E.P. Popov<br />

• Advanced Strength and Applied Elasticity, A.C. Ugural,<br />

S.K. Fenster<br />

- 11 -


Department <strong>of</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MEC2340 – Fluid Mechanics I<br />

Credits 5<br />

Lectures/tutorial hours<br />

Laboratory hours<br />

22 hours lectures, 6 hours tutorials<br />

Lecturer<br />

Dr. T. Sant<br />

Prerequisites and exclusions Prerequisites: Mathematics and Physics ALevel Standard<br />

Leads to MEC2341 - Fluid Mechanics II<br />

Objectives This unit <strong>in</strong>troduces the basic concepts <strong>of</strong> fluid statics and<br />

fluid dynamics relevant to mechanical eng<strong>in</strong>eer<strong>in</strong>g with<br />

emphasis placed on physical understand<strong>in</strong>g.<br />

Syllabus • Fluid basics<br />

Units, dimensional formulae, pressure, shear stress,<br />

viscosity.<br />

Laboratory work • Data analysis<br />

• Fluids at rest<br />

• Fluids <strong>in</strong> motion<br />

• Data analysis<br />

Introduction to basic statistical methods and comb<strong>in</strong><strong>in</strong>g<br />

experimental uncerta<strong>in</strong>ties.<br />

• Fluid statics<br />

Pressure <strong>in</strong> a static fluid, buoyancy, equilibrium, forces<br />

on submerged bodies, stability <strong>of</strong> float<strong>in</strong>g bodies, small<br />

oscillations <strong>of</strong> float<strong>in</strong>g bodies, pressure measurement,<br />

aerostatics.<br />

• Fluid dynamics<br />

Integral relations for a control volume, differential<br />

relations to fluid flow, mass cont<strong>in</strong>uity, Bernoulli<br />

equation, conservation <strong>of</strong> energy, l<strong>in</strong>ear and angular<br />

momentum.<br />

Assessment 75% written exam<strong>in</strong>ation, 25% practical<br />

Text books and resources Fluid Mechanics by Frank M White<br />

- 12 -


Department <strong>of</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MEC2341 – Fluid Mechanics II<br />

Credits 5<br />

Lectures/tutorial hours 22 hours lectures, 6 hours tutorials<br />

Laboratory hours<br />

6 hours<br />

Lecturer<br />

Dr. C. Micallef<br />

Prerequisites and exclusions<br />

Leads to<br />

Prerequisites: MEC2340 – Fluid Mechanics I<br />

Objectives This unit is an <strong>in</strong>termediate module <strong>in</strong> fluid mechanics<br />

applicable to a wide range <strong>of</strong> eng<strong>in</strong>eer<strong>in</strong>g practice.<br />

Syllabus • Dimensional analysis and similarity<br />

Buck<strong>in</strong>gham Pi theorem, similarity, dimensionless<br />

groups, model ship test<strong>in</strong>g.<br />

• Flow <strong>in</strong> ducts<br />

Lam<strong>in</strong>ar and turbulent flow <strong>in</strong> pipes, Darcy equation,<br />

head loss - friction factor, Moody chart, m<strong>in</strong>or losses,<br />

multiple pipe systems, three reservoir problems, non<br />

circular ducts.<br />

• Flow past immersed bodies<br />

Momentum <strong>in</strong>tegral equation, boundary layer<br />

equations, flat-plate boundary layer, boundary layers<br />

with pressure gradient, experimental external flows<br />

<strong>in</strong>clud<strong>in</strong>g drag and lift.<br />

Laboratory work • Dynamic similarity<br />

• Flow <strong>in</strong> ducts<br />

• Flow past immersed bodies<br />

Assessment 75% written exam<strong>in</strong>ation, 25% practical<br />

Text books and resources Fluid Mechanics by Frank M White<br />

- 13 -


Department <strong>of</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MEC2402 – <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Components<br />

Credits 5<br />

Lectures/tutorial hours<br />

Laboratory hours<br />

28 hours<br />

Lecturer<br />

Dr. P. Mollicone<br />

Prerequisites and exclusions MEC2340 - Fluid Mechanics I, MEC2308 - Mechanics <strong>of</strong><br />

Materials and MEC1405 – Thermodynamics I<br />

Leads to<br />

Objectives The module will <strong>in</strong>troduce students to different types <strong>of</strong><br />

components, performance characteristics, <strong>in</strong>clud<strong>in</strong>g how to<br />

read manufacturers’ specs and basic formulae, how to choose<br />

a given component for a given application and how to follow<br />

and use standards such as European codes <strong>of</strong> standards.<br />

Syllabus<br />

Laboratory work<br />

Assessment 100% Assignment<br />

Boilers<br />

Steam turb<strong>in</strong>es and condensors<br />

Calorifiers, Heat exchangers, Cool<strong>in</strong>g towers<br />

Water treatment<br />

Pumps and fans<br />

Refrigeration<br />

HVAC<br />

Hydraulics & Pneumatics<br />

Compressors<br />

Prime movers<br />

Electric motors<br />

Renewable energy components<br />

Electrical components<br />

Gears<br />

Clutches<br />

Belt drives, Cha<strong>in</strong> drives<br />

Flexible jo<strong>in</strong>ts and coupl<strong>in</strong>gs<br />

Bear<strong>in</strong>gs<br />

Lubrication<br />

Fasteners, Keys, Spigots, Spl<strong>in</strong>es<br />

Text books and resources Robert L. Norton – Mach<strong>in</strong>e Design, An <strong>in</strong>tegrated Approach<br />

J.E.Shigley, C.R.Mischke, R.G.Budynas – <strong>Mechanical</strong><br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Design<br />

- 14 -


Department <strong>of</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

This unit is <strong>of</strong>fered to the Industrial <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Stream.<br />

Unit Name MEC2403 - Introductory Dynamics<br />

Credits 3<br />

Lectures/tutorial hours<br />

Laboratory hours<br />

16 hours lectures, 4 hours tutorials<br />

Lecturer<br />

Dr. P. Mollicone<br />

Prerequisites and exclusions <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics I<br />

Leads to<br />

Objectives<br />

Syllabus • Basic pr<strong>in</strong>ciples <strong>in</strong> dynamics – Newton’s law,<br />

Momentum, Impulse, D’Alembert’s pr<strong>in</strong>ciple, Work and<br />

Energy<br />

• Dynamics <strong>of</strong> a particle<br />

• Dynamics <strong>of</strong> system <strong>of</strong> particles<br />

• Moment <strong>of</strong> <strong>in</strong>ertia and its transformation, pr<strong>in</strong>cipal axes<br />

and pr<strong>in</strong>cipal moments <strong>of</strong> <strong>in</strong>ertia<br />

• Dynamics <strong>of</strong> rigid body due to – translation, rotation,<br />

general planar motion<br />

Laboratory work<br />

Assessment 100% written exam<strong>in</strong>ation<br />

Text books and resources • Meriam J.L., Kraig L.G., <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics –<br />

Dynamics<br />

• Hibbeler R. C., <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics – Dynamics<br />

- 15 -


Department <strong>of</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

This unit is <strong>of</strong>fered to the B.Sc. (Hons.) Degree – Chemistry with Materials<br />

Unit Name MEC2404 - Statics for Scientists<br />

Credits 6<br />

Lectures/tutorial hours<br />

Laboratory hours<br />

28 hours lectures, 14 hours tutorials<br />

Lecturer<br />

Prerequisites and exclusions<br />

Leads to<br />

Dr. Z. Sant<br />

MEC2300 - <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics – K<strong>in</strong>ematics and MEC1401 -<br />

Mechanics <strong>of</strong> Materials 1<br />

Objectives This unit <strong>in</strong>troduces the concept <strong>of</strong> classical mechanics, the<br />

pr<strong>in</strong>ciples <strong>of</strong> model<strong>in</strong>g various loads and solv<strong>in</strong>g equilibrium<br />

between bodies connected by means <strong>of</strong> constra<strong>in</strong>s.<br />

Syllabus • Basic pr<strong>in</strong>ciples <strong>of</strong> Mechanics and Statics<br />

• Force systems and their description<br />

• Equivalence and equilibrium <strong>in</strong> Statics us<strong>in</strong>g vector<br />

algebra.<br />

• Applications <strong>of</strong> pr<strong>in</strong>ciple <strong>of</strong> equivalence - centroid <strong>of</strong><br />

area, centre <strong>of</strong> gravity.<br />

• Solid body constra<strong>in</strong>s and their characteristics<br />

• Equilibrium <strong>of</strong> a constra<strong>in</strong>ed solid body<br />

• System <strong>of</strong> coupled bodies <strong>in</strong> equilibrium. Trusses.<br />

• Friction and its application to mechanisms<br />

Laboratory work Can be either laboratory work, computer based project or any<br />

other assignment chosen by the course co-ord<strong>in</strong>ator<br />

Assessment 80% written exam<strong>in</strong>ation, 20% assignment<br />

Text books and resources • Meriam J.L., Kraig L.G., <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics – Statics<br />

• Hibbeler R. C., <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics – Statics<br />

- 16 -


Department <strong>of</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Level 3 units<br />

- 17 -


Department <strong>of</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MEC3007 – Vibration Analysis I<br />

Credits 5<br />

Lectures/tutorial hours<br />

Laboratory hours<br />

28 hours<br />

Lecturer<br />

Dr. D. Camilleri<br />

Prerequisites and exclusions<br />

Leads to MEC3008 - Vibration Analysis II<br />

Objectives An <strong>in</strong>troductory course <strong>in</strong> <strong>Mechanical</strong> Vibration systems<br />

hav<strong>in</strong>g s<strong>in</strong>gle degree <strong>of</strong> freedom. This <strong>in</strong>cludes theory,<br />

computational aspects and applications. An emphasis <strong>of</strong> the<br />

physical significance and <strong>in</strong>terpretation built upon previous<br />

mechanics units shall be made.<br />

Syllabus • Periodic harmonic and non harmonic motion<br />

• Natural frequency <strong>of</strong> s<strong>in</strong>gle degree <strong>of</strong> freedom<br />

systems:<br />

Newton’s second law <strong>of</strong> motion<br />

Energy method<br />

Raleigh’s method<br />

• Damped free vibration <strong>of</strong> s<strong>in</strong>gle degree <strong>of</strong> freedom<br />

systems:<br />

Viscous damp<strong>in</strong>g<br />

Critical damp<strong>in</strong>g, under-damp<strong>in</strong>g and over damp<strong>in</strong>g<br />

Logarithmic decrement<br />

• Forced vibrations <strong>of</strong> viscous damped s<strong>in</strong>gle degree <strong>of</strong><br />

freedom systems:<br />

Harmonic excitation, support excitation and excitation<br />

due to rotat<strong>in</strong>g imbalance<br />

Method <strong>of</strong> complex algebra<br />

Transmissibility and vibration isolation<br />

Vibration measurement <strong>in</strong>struments<br />

• Transient analysis due to impulsive forces<br />

• Transverse vibrations <strong>of</strong> beams:<br />

The energy method and Dunkerley’s method Whirl<strong>in</strong>g <strong>of</strong><br />

shafts<br />

Laboratory work Can be either laboratory work, computer based project or any<br />

other assignment chosen by the course co-ord<strong>in</strong>ator<br />

Assessment 80% written exam<strong>in</strong>ation, 20% practical<br />

Text books and resources • Seto W., <strong>Mechanical</strong> Vibrations<br />

• Thompson W.T. theory <strong>of</strong> Vibrations with Applications<br />

- 18 -


Department <strong>of</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MEC3008 - Vibration Analysis II<br />

Credits 5<br />

Lectures/tutorial hours<br />

Laboratory hours<br />

28 hours lectures<br />

Lecturer<br />

Dr. D. Camilleri<br />

Prerequisites and exclusions MEC3007 - Vibration Analysis I<br />

Leads to<br />

Objectives This module familiarizes students with vibration analysis <strong>of</strong><br />

torsional oscillations, mutli-degree <strong>of</strong> freedom systems and<br />

cont<strong>in</strong>uous media. Numerical methods are established to<br />

identify their dynamic response.<br />

Syllabus • Torsional oscillations:<br />

Two and three rotor systems<br />

Stepped shafts, equivalent lengths and location <strong>of</strong> nodes<br />

Analysis <strong>of</strong> geared systems<br />

• Numerical and matrices methods <strong>of</strong> multi-degree <strong>of</strong><br />

freedom systems:<br />

Analysis <strong>of</strong> free, damped and forced multi-degree <strong>of</strong><br />

freedom systems<br />

Matrix analysis us<strong>in</strong>g the characteristic equation and the<br />

power iterative method<br />

Dynamic stiffness and flexibility matrices<br />

<strong>Mechanical</strong> impedance method<br />

Holzer’s method<br />

Stodola’s method<br />

Branched systems<br />

• Vibrations <strong>of</strong> cont<strong>in</strong>uous media:<br />

Longitud<strong>in</strong>al vibration <strong>of</strong> bars<br />

Transverse vibration <strong>of</strong> beams<br />

The orthogonality pr<strong>in</strong>ciple<br />

Torsional vibrations <strong>of</strong> circular shafts<br />

Laboratory work Can be either laboratory work, computer based project or any<br />

other assignment chosen by the course co-ord<strong>in</strong>ator<br />

Assessment 80% written exam<strong>in</strong>ation, 20% assignment<br />

Text books and resources • Seto W., <strong>Mechanical</strong> Vibrations<br />

• Thompson W.T. theory <strong>of</strong> Vibrations with Applications<br />

- 19 -


Department <strong>of</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MEC3103 – Heat Transfer<br />

Credits 5<br />

Lectures/tutorial hours 22 hours lectures, 6 hours tutorials<br />

Laboratory hours<br />

6 hours<br />

Lecturer<br />

Dr. C. Micallef<br />

Prerequisites and exclusions<br />

Leads to<br />

Prerequisites: MEC2307 - Thermodynamics II and MEC2341<br />

- Fluid Mechanics II<br />

Objectives This unit is an advanced module <strong>in</strong> heat transfer relevant to<br />

mechanical eng<strong>in</strong>eer<strong>in</strong>g with emphasis placed on physical<br />

understand<strong>in</strong>g.<br />

Syllabus • Conduction<br />

Thermal conductivity, thermal resistance networks,<br />

analytical and numerical solutions for one- and twodimensional<br />

steady-state conduction, one-dimensional<br />

transient and unsteady conduction.<br />

• Convection<br />

General concepts and phenomena, velocity and thermal<br />

boundary layers, Reynolds analogy, use <strong>of</strong> experimental<br />

correlations for <strong>in</strong>ternal and external flows, enhancement<br />

techniques for convective heat transfer<br />

• Radiation<br />

Emissivity, absorptivity, transmissivity, Kirchh<strong>of</strong>f's law,<br />

black body radiation heat transfer, view factors, grey<br />

body radiation exchange, radiation networks.<br />

• Boil<strong>in</strong>g and condensation heat transfer<br />

Introduction to boil<strong>in</strong>g and condensation heat transfer<br />

• Heat Exchangers<br />

Laboratory work • Conduction<br />

• Convection<br />

• Radiation<br />

•<br />

Assessment 75% written exam<strong>in</strong>ation, 25% practical<br />

Text books and resources Fundamentals <strong>of</strong> Mass and Heat Transfer by Incropera DeWitt<br />

Heat Transfer by J P Holman<br />

- 20 -


Department <strong>of</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MEC3302 – Eng<strong>in</strong>eer <strong>in</strong> Society<br />

Credits 3<br />

Lectures/tutorial hours 22 hours lectures<br />

Laboratory hours<br />

None<br />

Lecturer<br />

TBA<br />

Prerequisites and exclusions Prerequisites: none<br />

Leads to n/a<br />

Objectives This unit <strong>in</strong>troduces non-eng<strong>in</strong>eer<strong>in</strong>g issues that the<br />

pr<strong>of</strong>essional eng<strong>in</strong>eer has to deal with <strong>in</strong> his pr<strong>of</strong>essional<br />

career.<br />

Syllabus What is a pr<strong>of</strong>ession?<br />

The eng<strong>in</strong>eer<strong>in</strong>g warrant<br />

Pr<strong>of</strong>essional ethics for eng<strong>in</strong>eers<br />

Occupational Health and Safety<br />

Standards (the Malta Standards Authority, CEN, ISO,<br />

etc)<br />

Intellectual Property (patents and copyright)<br />

Industrial relations and employment<br />

Environmental Directives<br />

Authorities, networks and monopolies<br />

Companies and partnerships<br />

Entrepreneurship<br />

Quality Standard 9000<br />

Laboratory work None<br />

Assessment 90% written exam<strong>in</strong>ation, 10% assignment<br />

Text books and resources www.justice.gov.mt for relevant legislation<br />

www.mra.org.mt<br />

www.msa.org.mt<br />

www.ohsa.org.mt<br />

www.mca.org.mt<br />

Humphreys Kenneth K., What every eng<strong>in</strong>eer should<br />

know about ethics, Marcek Dekker Inc., ISBN 0-8247-<br />

8208-9.<br />

- 21 -


Department <strong>of</strong> <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MEC3400 – Environmental <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Credits 5<br />

Lectures/tutorial hours 24 hours lectures<br />

Laboratory hours<br />

4 hours for <strong>in</strong>dustrial visits<br />

Lecturer<br />

Pr<strong>of</strong>. R. Ghirlando<br />

Prerequisites and exclusions none<br />

Leads to n/a<br />

Objectives This unit <strong>in</strong>troduces the basic concepts <strong>of</strong> environmental<br />

eng<strong>in</strong>eer<strong>in</strong>g.<br />

Syllabus Introduction to Environmental <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Susta<strong>in</strong>able development<br />

Air Emissions (sources and control)<br />

Energy and the Environment<br />

Water<br />

Life Cycle Assessment Methodology<br />

Green Design<br />

Cleaner Manufacture<br />

Solid Waste management<br />

Waste m<strong>in</strong>imisation and prevention<br />

Recycl<strong>in</strong>g<br />

Environmental laws and regulations<br />

Environment management systems<br />

Environmental audits<br />

Laboratory work Replaced by visits to recycl<strong>in</strong>g and waste management sites<br />

Assessment 90% written exam<strong>in</strong>ation, 10% assignment<br />

Text books and resources State <strong>of</strong> the Environment Reports for Malta 2002, 2005, 2006.<br />

This and other <strong>in</strong>formation available on www.mepa.org.mt<br />

Masters Gilbert M. and Wendell P.Ela, Environmental<br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> and Science, Prentice Hall, ISBN 0-13-148193-2<br />

- 22 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Study-units <strong>of</strong>fered by the<br />

Dept. <strong>of</strong> Industrial and Manufactur<strong>in</strong>g Eng.<br />

Faculty <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

University <strong>of</strong> Malta<br />

- 1 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Level 1 units<br />

- 2 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MFE 1101 - <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Draw<strong>in</strong>g<br />

Credits 5<br />

Lectures/tutorial hours 24 hours lectures, 3 hours tutorials<br />

Laboratory hours Apart from the theoretical aspect, most <strong>of</strong> the lectures <strong>in</strong>clude<br />

hands-on practice on generat<strong>in</strong>g eng<strong>in</strong>eer<strong>in</strong>g draw<strong>in</strong>gs.<br />

Lecturer<br />

Ing. P. Farrugia<br />

Prerequisites and exclusions None<br />

Leads to MFE2103 – Computer-Aided <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Design<br />

MFE3105 – <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Design<br />

Objectives This unit covers the pr<strong>in</strong>ciples and practice <strong>of</strong> eng<strong>in</strong>eer<strong>in</strong>g<br />

draw<strong>in</strong>g. It aims at provid<strong>in</strong>g students with the basics <strong>in</strong><br />

understand<strong>in</strong>g, read<strong>in</strong>g and generat<strong>in</strong>g eng<strong>in</strong>eer<strong>in</strong>g draw<strong>in</strong>gs.<br />

Syllabus<br />

• Introduction to <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Draw<strong>in</strong>g<br />

The importance for eng<strong>in</strong>eers to express their ideas manually<br />

through draw<strong>in</strong>g; types <strong>of</strong> draw<strong>in</strong>gs used <strong>in</strong> the design stages<br />

<strong>of</strong> a technical system; roles <strong>of</strong> Computer-Aided Design<br />

(CAD) systems to produce eng<strong>in</strong>eer<strong>in</strong>g draw<strong>in</strong>gs.<br />

• General <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Draw<strong>in</strong>g Pr<strong>in</strong>ciples<br />

First vs. third angle projections; l<strong>in</strong>ework and letter<strong>in</strong>g;<br />

scales; section views; three-dimensional illustrations (e.g.<br />

isometric projection); geometrical constructions; draw<strong>in</strong>g<br />

standards (e.g. BS8888:2004); draught<strong>in</strong>g conventions<br />

associated with threads, nuts, bolts, screws, spr<strong>in</strong>gs, gears<br />

and bear<strong>in</strong>gs; dimension<strong>in</strong>g pr<strong>in</strong>ciples; general graphical<br />

symbols (e.g. to <strong>in</strong>dicate surface f<strong>in</strong>ish); common<br />

abbreviations.<br />

• Conceptual design draw<strong>in</strong>gs<br />

Importance <strong>of</strong> sketch<strong>in</strong>g; types <strong>of</strong> sketches (rough sketches,<br />

sketches drawn to scale); graphical representations<br />

commonly used <strong>in</strong> sketches (e.g. perspective projection);<br />

sketch<strong>in</strong>g techniques.<br />

• Detailed design draw<strong>in</strong>gs<br />

Draw<strong>in</strong>g layouts (s<strong>in</strong>gle-part draw<strong>in</strong>gs, assembly draw<strong>in</strong>gs);<br />

limits and fits; geometrical toleranc<strong>in</strong>g and datums; specific<br />

graphical symbols used <strong>in</strong> weld<strong>in</strong>g, pneumatics and<br />

electronics.<br />

.<br />

Laboratory work • S<strong>in</strong>ce most <strong>of</strong> the lectures <strong>in</strong>clude hands-on practice,<br />

students are required to br<strong>in</strong>g draw<strong>in</strong>g <strong>in</strong>struments.<br />

Draw<strong>in</strong>g boards will be provided.<br />

Assessment 100% - Assignment<br />

Text books and resources Simmons, C. & Maguire, D. (2004) "Manual <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Draw<strong>in</strong>g to British and International Standards", Newnes,<br />

ISBN 0-7506-5120-2.<br />

- 3 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MFE1202 - Fundamentals <strong>of</strong> Manufactur<strong>in</strong>g & Mach<strong>in</strong><strong>in</strong>g<br />

Credits 5<br />

Lectures/tutorial hours 24 hours lectures, 4 hours tutorials<br />

Laboratory hours<br />

6 hours<br />

Lecturer<br />

Prerequisites and exclusions<br />

Dr. M.A. Saliba<br />

Leads to MFE2201 – Advanced Manufactur<strong>in</strong>g Processes and<br />

MFE2204 – Manufactur<strong>in</strong>g Systems<br />

Objectives This module presents to the students an <strong>in</strong>troduction to the<br />

fundamental pr<strong>in</strong>ciples <strong>of</strong> manufactur<strong>in</strong>g, and a descriptive<br />

and analytical approach to mach<strong>in</strong><strong>in</strong>g technology and<br />

processes.<br />

Syllabus • Manufactur<strong>in</strong>g Fundamentals<br />

• Introduction to Manufactur<strong>in</strong>g Technologies<br />

• Elements <strong>of</strong> Mach<strong>in</strong>e Tool Design<br />

• Tool Geometry and Chip Formation<br />

• Mechanics <strong>of</strong> Cutt<strong>in</strong>g (S<strong>in</strong>gle Po<strong>in</strong>t Tools)<br />

• Cutt<strong>in</strong>g Tool Technology<br />

• Turn<strong>in</strong>g, Drill<strong>in</strong>g and Related Operations<br />

• Mill<strong>in</strong>g Mach<strong>in</strong>e Operations<br />

• Gr<strong>in</strong>d<strong>in</strong>g and other Abrasive Processes<br />

• Broach<strong>in</strong>g, Saw<strong>in</strong>g, Fil<strong>in</strong>g, Shap<strong>in</strong>g and Plan<strong>in</strong>g<br />

• Shape, Tolerance and Surface F<strong>in</strong>ish<br />

• Selection <strong>of</strong> Cutt<strong>in</strong>g Conditions<br />

Laboratory work • Tangential Force on a Lathe Tool<br />

• Gr<strong>in</strong>d<strong>in</strong>g Demonstration<br />

Assessment 80% written exam<strong>in</strong>ation, 20% practical<br />

Text books and resources Black S.C., Chiles V., Lissaman A.J., Mart<strong>in</strong> S.J., “Pr<strong>in</strong>ciples<br />

<strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Manufacture”, Arnold, 1996.<br />

Groover M. P., “Fundamentals <strong>of</strong> Modern Manufactur<strong>in</strong>g”,<br />

2nd edition, John Wiley and Sons, 2002<br />

- 4 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Level 2 units<br />

- 5 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MFE2101 - <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Metrology<br />

Credits 5<br />

Lectures/tutorial hours 26 hours lectures, 4 hours tutorials<br />

Laboratory hours<br />

6 hours<br />

Lecturer<br />

Ing. Tania Briffa<br />

Prerequisites and exclusions /<br />

Leads to /<br />

Objectives This unit <strong>in</strong>troduces the students to the idea <strong>of</strong> standards and<br />

standardizations, and to gaug<strong>in</strong>g and measurement<br />

applications.<br />

Syllabus • Measurement and gaug<strong>in</strong>g. Use and care <strong>of</strong> various<br />

measur<strong>in</strong>g and gaug<strong>in</strong>g <strong>in</strong>struments. Angular and taper<br />

measurement. Use <strong>of</strong> s<strong>in</strong>ebar, precision levels, and angle<br />

gauges. The pr<strong>in</strong>ciple <strong>of</strong> the Angle Dekkor and<br />

autocollimator. The rotary table and divid<strong>in</strong>g head.<br />

Precision polygon. Methods <strong>of</strong> taper angle measurement.<br />

Use <strong>of</strong> telescopic and hole gauges. Flatness, straightness<br />

and roundness measurement.<br />

• Sources <strong>of</strong> errors <strong>in</strong> l<strong>in</strong>ear measurement.<br />

• Design <strong>of</strong> limit gauges.<br />

• General <strong>in</strong>spection equipment - The reference surface,<br />

surface table and surface plates. Toolmakers’ flat.<br />

Straight edges. Mean true plane <strong>of</strong> a surface plate. Right<br />

angle and box angle plate. Eng<strong>in</strong>eers’ square. Eng<strong>in</strong>eers’<br />

parallel. Vee and ‘B’ blocks. Use <strong>of</strong> calibrated balls,<br />

rollers and p<strong>in</strong>s. Taper parallel.<br />

• Use <strong>of</strong> optics <strong>in</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Metrology.<br />

• Comparators.<br />

• Thread measurement.<br />

• Emerg<strong>in</strong>g trends – Micro and Nano metrology.<br />

Laboratory work • Dimensional Measurement Exercises<br />

Assessment 80% written exam<strong>in</strong>ation, 20% project<br />

Text books and resources • Shotbolt & Galyer, Metrology for Eng<strong>in</strong>eers, ISBN<br />

03043 18442.<br />

• Lissman, Pr<strong>in</strong>ciples <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Production, ISBN<br />

03400 48530.<br />

• Wilken<strong>in</strong>g & Koenders, Nanoscale Calibration Standards<br />

and Methods, ISBN 3-527-40502-X<br />

- 6 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MFE 2103 – Computer-Aided <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Design<br />

Credits 5<br />

Lectures/tutorial hours 14 hours lectures<br />

Laboratory hours<br />

12 hours<br />

Lecturers<br />

Dr. J.C. Borg, Ing. P. Farrugia<br />

Prerequisites and exclusions MFE1101 – <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Draw<strong>in</strong>g<br />

Leads to MFE3105– <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Design<br />

Objectives<br />

By the end <strong>of</strong> this module, students will acquire knowledge<br />

on the pr<strong>in</strong>ciples <strong>of</strong> Computer Aided <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Design for<br />

a range <strong>of</strong> sectors <strong>in</strong>clud<strong>in</strong>g <strong>Mechanical</strong> and Manufactur<strong>in</strong>g.<br />

This knowledge transfer will be achieved through a structured<br />

mix <strong>of</strong> theory and practice.<br />

Lectures: • Introduction to CAED; The role <strong>of</strong> C.A.E.D. <strong>in</strong> the<br />

Design Process & In Industry;<br />

• Computer Hardware; Typical hardware configurations for<br />

C.A.E.D. applications.<br />

• Computer S<strong>of</strong>tware for C.A.D.; Model representations:<br />

2D, 3D, wire-frame, surface and solid models (CSG & B-<br />

REP);<br />

• Product Modell<strong>in</strong>g us<strong>in</strong>g C.A.D.; Entity Manipulation;<br />

Feature-based and Parametric model<strong>in</strong>g;<br />

• 3D Model data standards - GKS, I.G.E.S, STEP/PDES,<br />

DXF, VRML, STL.<br />

• Pr<strong>in</strong>ciples <strong>of</strong> Render<strong>in</strong>g techniques;<br />

• Virtual & Augmented Reality (VR/AR) Systems;<br />

• Knowledge Intensive C.A.D; Product Life Cycle Modell<strong>in</strong>g<br />

(PLM) Systems;<br />

• CAD simulation <strong>of</strong> mechanisms; CAD & Rapid<br />

Prototyp<strong>in</strong>g.<br />

• Synchronous/Asynchronous Collaborative Design Tools.<br />

Practical Sessions<br />

Practical sessions us<strong>in</strong>g a commercial C.A.E.D. system will be<br />

used <strong>in</strong> six sessions <strong>of</strong> 2hrs each, allow<strong>in</strong>g students to acquire<br />

hands-on experience on:<br />

• 2D Geometric Model<strong>in</strong>g;<br />

• 3D Surface & Solid model<strong>in</strong>g;<br />

• Generation <strong>of</strong> Detail Design Draw<strong>in</strong>gs from 3D models;<br />

• CAD Model Data Exchange;<br />

Assessment 50% Project, 50% Lab-based exam<br />

Text books and resources • MCMahon C. & Browne: CADCAM From Pr<strong>in</strong>ciples to<br />

Practice, ISBN 020156021.<br />

• Rooney Joe & Steadman P., Pr<strong>in</strong>ciples <strong>of</strong> Computer Aided<br />

Design, Pitman/Open University, ISBN 0273 026720.<br />

- 7 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

This unit is <strong>of</strong>fered only to the <strong>Mechanical</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MFE 2105 – <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Design Methods<br />

Credits 2<br />

Lectures/tutorial hours 26 hours lectures<br />

Practical hours<br />

14 hours <strong>of</strong> design project<br />

Lecturers<br />

Dr.J.C. Borg, Ing. P. Farrugia<br />

Prerequisites and exclusions MFE1101 – <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Draw<strong>in</strong>g<br />

MFE 2103 – Computer Aided <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Design<br />

Leads to F<strong>in</strong>al Year Project<br />

Objectives This module <strong>in</strong>troduces students to systematic design<br />

methodologies. The aim is to provide students with a<br />

scientific basis for eng<strong>in</strong>eer<strong>in</strong>g design methodology to enable<br />

them to systematically create solutions to eng<strong>in</strong>eer<strong>in</strong>g<br />

problems.<br />

Semester 1 / Lectures<br />

Assessment 100% Assignment<br />

Text books and resources<br />

• Artefact Theories; Theory <strong>of</strong> Technical systems;<br />

• Design Process Model; Design Theory;<br />

• Design Problem Analysis, Synthesis, Solution Analysis,<br />

Evaluation;<br />

• QFD, PDS, Morphological charts ; SCAMPER, FMEA;<br />

• Design For X Methodologies - Design for Manufacture &<br />

Assembly; Design for the Environment;<br />

• Manag<strong>in</strong>g/Co-ord<strong>in</strong>at<strong>in</strong>g Design Projects,<br />

• Manag<strong>in</strong>g Product Variety and Commonality. Design <strong>of</strong><br />

Product Platforms;<br />

• Mach<strong>in</strong>e Design Elements Selection (eg bear<strong>in</strong>gs, gears,<br />

belts, etc.)<br />

• Design <strong>in</strong> Industry;<br />

• Roozenburg N.F.M & Eekels J., Product Design:<br />

Fundamentals and Methods<br />

JohnWiley&SonsLtd,Wiltshire,1995.<br />

• Pahl G. & Beitz W., <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Design - A Systematic<br />

Approach 2nd edition, Spr<strong>in</strong>ger-Verlag, London, 1996.<br />

- 8 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MFE2201 – Advanced Manufactur<strong>in</strong>g Processes<br />

Credits 5<br />

Lectures/tutorial hours 24 hours lectures, 4 hours tutorials<br />

Laboratory hours<br />

6 hours<br />

Lecturer<br />

Ing. Pierre Vella<br />

Prerequisites and exclusions<br />

Leads to<br />

MFE1202 – Fundamentals <strong>of</strong> Manufactur<strong>in</strong>g & Mach<strong>in</strong><strong>in</strong>g<br />

Objectives This module is primarily aimed to <strong>in</strong>troduce students to<br />

modern advanced manufactur<strong>in</strong>g processes, which are<br />

<strong>in</strong>creas<strong>in</strong>gly f<strong>in</strong>d<strong>in</strong>g new applications <strong>in</strong> <strong>in</strong>dustry for the<br />

development <strong>of</strong> new products and devices. The students will<br />

also be given an overview <strong>of</strong> Computer Numerical Controlled<br />

(CNC) Mach<strong>in</strong><strong>in</strong>g and part programm<strong>in</strong>g.<br />

Syllabus • CNC Mach<strong>in</strong><strong>in</strong>g and Part Programm<strong>in</strong>g.<br />

• Limitations <strong>of</strong> conventional processes. Introduction to<br />

non-conventional processes.<br />

• Thermal processes <strong>in</strong>clud<strong>in</strong>g Electro Discharge<br />

Mach<strong>in</strong><strong>in</strong>g (spark erosion), Electron Beam Mach<strong>in</strong><strong>in</strong>g,<br />

Plasma Arc Mach<strong>in</strong><strong>in</strong>g, Laser Beam Mach<strong>in</strong><strong>in</strong>g.<br />

• Chemical processes such as Electrochemical mach<strong>in</strong><strong>in</strong>g<br />

(ECM), Photo Chemical Mach<strong>in</strong><strong>in</strong>g, Chemical<br />

Mach<strong>in</strong><strong>in</strong>g.<br />

• <strong>Mechanical</strong> processes such as Ultrasonic Mach<strong>in</strong><strong>in</strong>g,<br />

Abrasive Flow Mach<strong>in</strong><strong>in</strong>g, Abrasive Jet Mach<strong>in</strong><strong>in</strong>g.<br />

• Areas <strong>of</strong> application <strong>of</strong> non-conventional mach<strong>in</strong><strong>in</strong>g.<br />

• Rapid Manufactur<strong>in</strong>g (RM) and Rapid Tool<strong>in</strong>g (RT).<br />

• Manufactur<strong>in</strong>g <strong>in</strong> Electronics<br />

• Micro and nano mach<strong>in</strong><strong>in</strong>g.<br />

• Manufactur<strong>in</strong>g Processes at the micro and nano scales.<br />

Laboratory work These lectures will be supplemented by a series <strong>of</strong> practical<br />

exercises <strong>in</strong> the laboratory as detailed below. An assignment<br />

will be given to the students later <strong>in</strong> the course.<br />

• CNC Mach<strong>in</strong><strong>in</strong>g us<strong>in</strong>g the C<strong>in</strong>c<strong>in</strong>nati VMC<br />

• EDM us<strong>in</strong>g the Dieter Hansen<br />

Assessment 80% written exam<strong>in</strong>ation, 20% practical<br />

Text books and resources Kalpakjian, S. & Schmid S.R., Manufactur<strong>in</strong>g Processes for<br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Materials, 4th Edition, Prentice Hall, 2003, ISBN<br />

0-13-140871-9.<br />

- 9 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MFE2204 - Manufactur<strong>in</strong>g Systems<br />

Credits 5<br />

Lectures/tutorial hours<br />

Laboratory hours<br />

31 hours lectures, 4 hours tutorials<br />

Lecturer<br />

Dr. C. Pace<br />

Prerequisites and exclusions MFE1202 – Fundamentals <strong>of</strong> Manufactur<strong>in</strong>g & Mach<strong>in</strong><strong>in</strong>g<br />

Leads to<br />

Objectives The objective <strong>of</strong> the module is to give students an<br />

<strong>in</strong>troductory overview and awareness <strong>of</strong> the characteristics <strong>of</strong><br />

manufactur<strong>in</strong>g systems, from the pr<strong>in</strong>ciple subdivisions <strong>in</strong> the<br />

activities with<strong>in</strong> a manufactur<strong>in</strong>g system to the technologies<br />

applied with<strong>in</strong> manufactur<strong>in</strong>g systems. Students will also be<br />

<strong>in</strong>troduced to Lean Manufactur<strong>in</strong>g<br />

Syllabus • An Introduction to Manufactur<strong>in</strong>g - the economic<br />

importance <strong>of</strong> manufactur<strong>in</strong>g, manufactur<strong>in</strong>g sectors,<br />

manufactur<strong>in</strong>g activities;<br />

• Manufactur<strong>in</strong>g Activities : fabrication, assembly, test<strong>in</strong>g<br />

and material transfer, Resources <strong>of</strong> production,<br />

eng<strong>in</strong>eer<strong>in</strong>g <strong>in</strong> manufactur<strong>in</strong>g <strong>in</strong>dustries - product design,<br />

R&D, materials and process eng<strong>in</strong>eer<strong>in</strong>g, manufactur<strong>in</strong>g<br />

eng<strong>in</strong>eer<strong>in</strong>g, <strong>in</strong>dustrial eng<strong>in</strong>eer<strong>in</strong>g, quality eng<strong>in</strong>eer<strong>in</strong>g,<br />

control eng<strong>in</strong>eer<strong>in</strong>g.<br />

• Production System Types and Production Layouts – The<br />

importance <strong>of</strong> material flow considerations; job, batch,<br />

cellular/GT and flow production, layout types; process,<br />

product, cellular. Pr<strong>in</strong>ciples <strong>of</strong> Layout Plann<strong>in</strong>g.<br />

• Plann<strong>in</strong>g Activities <strong>in</strong> Manufactur<strong>in</strong>g Systems: Process<br />

Plann<strong>in</strong>g, l<strong>in</strong>e balanc<strong>in</strong>g <strong>in</strong> flow l<strong>in</strong>es, Production Plann<strong>in</strong>g<br />

: Capacity Plann<strong>in</strong>g, Plann<strong>in</strong>g <strong>of</strong> resources.<br />

• The role <strong>of</strong> technology <strong>in</strong> Manufactur<strong>in</strong>g Systems :<br />

production technologies; automated production systems,<br />

flexible manufactur<strong>in</strong>g systems, plann<strong>in</strong>g and control<br />

technologies; manufactur<strong>in</strong>g execution systems.<br />

• Introduction to Lean Manufactur<strong>in</strong>g.<br />

Laboratory work •<br />

Assessment 80% written exam<strong>in</strong>ation, 20% assignment<br />

Text books and resources Groover M.P., 2001. Automation, Production Systems, and<br />

Computer-Integrated Manufactur<strong>in</strong>g, Prentice Hall.<br />

Haslehurst M., 1981. Manufactur<strong>in</strong>g Technology, 3rd edition,<br />

Edward Arnold.<br />

- 10 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Level 3 units<br />

- 11 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MFE3102 - Mechatronics Systems Design<br />

Credits 5<br />

Lectures/tutorial hours 29 hours lectures<br />

Laboratory hours<br />

6 hours<br />

Lecturer<br />

Dr. C. Pace<br />

Prerequisites and exclusions SCE2210 - Introduction to Control Systems<br />

Aim The aim <strong>of</strong> this module is to provide students with an<br />

understand<strong>in</strong>g <strong>of</strong> the pr<strong>in</strong>ciples <strong>of</strong> Mechatronics <strong>in</strong> product<br />

and process development. The focus will be on the need for<br />

<strong>in</strong>tegrat<strong>in</strong>g diverse technologies <strong>in</strong> develop<strong>in</strong>g successful<br />

systems that satisfy customer requirements.<br />

Objectives At the end <strong>of</strong> the module the students should be able to:<br />

1. Understand the significance <strong>of</strong> <strong>in</strong>tegrat<strong>in</strong>g electronic and<br />

microprocessor based systems <strong>in</strong> mechanical products and<br />

processes;<br />

2. Appreciate the complexity that arises from develop<strong>in</strong>g<br />

such systems and what the system development<br />

requirements are;<br />

3. Comprehend which technologies are <strong>in</strong>volved <strong>in</strong> such<br />

systems and understand the pr<strong>in</strong>ciples <strong>in</strong>volved <strong>in</strong> the<br />

<strong>in</strong>tegration <strong>of</strong> these technologies;<br />

4. Appreciate the role <strong>of</strong> system model<strong>in</strong>g and the pr<strong>in</strong>ciples<br />

<strong>in</strong>volved <strong>in</strong> the analysis and development <strong>of</strong> Mechatronic<br />

systems;<br />

5. Comprehend aspects <strong>of</strong> the design approach relevant to<br />

Mechatronic product and process development.<br />

Syllabus 1. What is Mechatronics? - Microprocessors <strong>in</strong> modern<br />

eng<strong>in</strong>eer<strong>in</strong>g systems and the need <strong>of</strong> <strong>in</strong>tegration; basic<br />

def<strong>in</strong>itions; key elements <strong>of</strong> Mechatronics; Mechatronics<br />

as a framework for <strong>in</strong>tegrat<strong>in</strong>g technologies; Mechatronics<br />

<strong>in</strong> products and processes; development aspects <strong>of</strong> an<br />

automobile as a Mechatronic system example.<br />

2. System Integration – Integration <strong>of</strong> Technologies,<br />

Pr<strong>in</strong>iciples <strong>of</strong> <strong>in</strong>tegration <strong>of</strong> technologies <strong>in</strong> products and<br />

processes. Systems Development – hierarchical<br />

approaches to comprehend<strong>in</strong>g complex system design<br />

problems, identification <strong>of</strong> <strong>in</strong>terfaces, <strong>in</strong>terface<br />

characteristics, system evaluation.<br />

3. Actuation and Measurement Systems Design Issues – The<br />

Mechatronic system and <strong>in</strong>formation flow; Information<br />

<strong>in</strong>put <strong>in</strong> Mechatronics Systems – role <strong>of</strong> measurement<br />

systems and typical sens<strong>in</strong>g requirements; Information<br />

output <strong>in</strong> Mechatronic Systems – role <strong>of</strong> actuation systems<br />

- 12 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

and typical actuation requirements. Data acquisition and<br />

communication – communication and <strong>in</strong>formation flow<br />

<strong>in</strong>terfac<strong>in</strong>g requirements<br />

4. The Role <strong>of</strong> Modell<strong>in</strong>g and Control <strong>in</strong> Mechatronics<br />

Modell<strong>in</strong>g as part <strong>of</strong> the design process; stages <strong>in</strong> the<br />

<strong>in</strong>vestigation <strong>of</strong> the dynamic characteristics <strong>of</strong> systems,<br />

physical model<strong>in</strong>g, equations <strong>of</strong> motion, analogies,<br />

characteristics <strong>of</strong> dynamic system; steps for Mechatronic<br />

systems control development.<br />

Laboratory Work • Familiarisation with Data acquisition hardware and<br />

S<strong>of</strong>tware.<br />

Assessment Exam – 50%, Practical – 20%, Assignment – 30%<br />

Reference Texts • Introduction to Mechatronics, Appu Kuttan, ISBN<br />

0195687817, Oxford University Press<br />

- 13 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MFE 3105 – <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Design<br />

Credits 10<br />

Lectures/tutorial hours 26 hours lectures<br />

Practical hours<br />

14 hours <strong>of</strong> design project<br />

Lecturers<br />

Dr. J.C. Borg, Ing. P. Farrugia<br />

Prerequisites and exclusions MFE1101 – <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Draw<strong>in</strong>g<br />

MFE 2103 – Computer Aided <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Design<br />

Leads to F<strong>in</strong>al Year Project<br />

Objectives This module runs over two semesters and consists <strong>of</strong> lectures<br />

on systematic design methodologies <strong>in</strong> the first semester<br />

complimented with an eng<strong>in</strong>eer<strong>in</strong>g design project which will<br />

have to be carried out by the student work<strong>in</strong>g as part <strong>of</strong> a team<br />

<strong>in</strong> the second semester. The aim is to provide students with a<br />

scientific basis for eng<strong>in</strong>eer<strong>in</strong>g design methodology to enable<br />

them to systematically create solutions to<br />

mechanical/<strong>in</strong>dustrial eng<strong>in</strong>eer<strong>in</strong>g problems, irrespective <strong>of</strong><br />

their doma<strong>in</strong>.<br />

Semester 1 / Lectures<br />

Semester 2 / Design Project<br />

• Artefact Theories; Theory <strong>of</strong> Technical systems;<br />

• Design Process Model; Design Theory;<br />

• Design Problem Analysis, Synthesis, Solution Analysis,<br />

Evaluation;<br />

• QFD, PDS, Morphological charts ; SCAMPER, FMEA;<br />

• Design For X Methodologies - Design for Manufacture &<br />

Assembly; Design for the Environment;<br />

• Manag<strong>in</strong>g/Co-ord<strong>in</strong>at<strong>in</strong>g Design Projects,<br />

• Manag<strong>in</strong>g Product Variety and Commonality. Design <strong>of</strong><br />

Product Platforms;<br />

• Mach<strong>in</strong>e Design Elements Selection (eg bear<strong>in</strong>gs, gears,<br />

belts, etc.)<br />

• Design <strong>in</strong> Industry;<br />

• Just before the start <strong>of</strong> semester 2, each student team will<br />

be assigned its design project.<br />

• Dur<strong>in</strong>g the 2 nd semester, an appo<strong>in</strong>ted team leader will<br />

manage the project team to systematically carry out various<br />

activities rang<strong>in</strong>g from problem analysis up to solution<br />

detail<strong>in</strong>g/model<strong>in</strong>g;<br />

• At the end <strong>of</strong> the Semester, the team will submit their<br />

design solution (<strong>in</strong> the form <strong>of</strong> solution draw<strong>in</strong>gs, models<br />

and a technical report );<br />

• The <strong>in</strong>dividual teams will make a presentation <strong>of</strong> their<br />

projects dur<strong>in</strong>g which they will be <strong>in</strong>terviewed and orally<br />

exam<strong>in</strong>ed;<br />

Assessment 30% Assignment; 70% Design project<br />

- 14 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Text books and resources<br />

• Roozenburg N.F.M & Eekels J., Product Design:<br />

Fundamentals and Methods<br />

JohnWiley&SonsLtd,Wiltshire,1995.<br />

• Pahl G. & Beitz W., <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Design - A Systematic<br />

Approach 2nd edition, Spr<strong>in</strong>ger-Verlag, London, 1996.<br />

- 15 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MFE3107 - Industrial Automation<br />

Credits 5<br />

Lectures/tutorial hours 24 hours lectures, 4 hours tutorials<br />

Laboratory hours<br />

6 hours<br />

Lecturer<br />

Dr. M.A. Saliba<br />

Prerequisites and exclusions SCE2210 - Introduction to Control Systems<br />

Leads to MFE4101 – Robotics<br />

Objectives The objective <strong>of</strong> this module is to familiarize the student with<br />

the various aspects <strong>of</strong> <strong>in</strong>dustrial automation.<br />

Syllabus • Basic pr<strong>in</strong>ciples <strong>of</strong> automation<br />

• Build<strong>in</strong>g blocks <strong>of</strong> automation<br />

• Elements <strong>of</strong> <strong>in</strong>dustrial control systems<br />

• Numerical control<br />

• Mechanization <strong>of</strong> parts handl<strong>in</strong>g<br />

• Automated production, assembly and <strong>in</strong>spection<br />

• Actuators and sensors used <strong>in</strong> automation<br />

• Introduction to <strong>in</strong>dustrial robots<br />

• Introduction to robot programm<strong>in</strong>g<br />

• Programmable logic controllers (PLCs)<br />

• Implementation <strong>of</strong> automation<br />

• Ethics <strong>in</strong> automation<br />

Laboratory work • Robot demonstration<br />

• PLC programm<strong>in</strong>g<br />

• Industrial automation demonstration<br />

Assessment 80% written exam<strong>in</strong>ation, 20% assignment<br />

Text books and resources C. Ray Asfahl, “Robots and Manufactur<strong>in</strong>g Automation”, 2nd<br />

Edition, John Wiley and Sons, 1992.<br />

Groover, M.P., “Automation, Production Systems, and<br />

Computer-Integrated Manufactur<strong>in</strong>g”, 2nd Edition, Prentice-<br />

Hall, 2001.<br />

- 16 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MFE3108 – Public Speak<strong>in</strong>g & Presentation<br />

Credits 2<br />

Lectures/tutorial hours 6 hours lectures, 20 hours practical sessions<br />

Laboratory hours<br />

Lecturer<br />

Dr. M.A. Saliba<br />

Prerequisites and exclusions<br />

Leads to<br />

Objectives The objective <strong>of</strong> this module is to <strong>in</strong>still <strong>in</strong>to the students the<br />

fundamentals <strong>of</strong> effective speech preparation, organization<br />

and delivery. This is done partly through theory, and ma<strong>in</strong>ly<br />

through supervised and evaluated practical sessions.<br />

Syllabus The module consists <strong>of</strong> a number <strong>of</strong> <strong>in</strong>troductory lectures<br />

dur<strong>in</strong>g which the pr<strong>in</strong>ciples <strong>of</strong> effective public speak<strong>in</strong>g are<br />

expla<strong>in</strong>ed, followed by a series <strong>of</strong> practical sessions dur<strong>in</strong>g<br />

which the students deliver prepared speeches to the class, and<br />

take other roles such as session chairs and speech evaluators.<br />

Laboratory work<br />

Assessment 100% practical<br />

Text books and resources<br />

- 17 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MFE3201 Technologies <strong>in</strong> Mechatronic Systems<br />

Credits 5<br />

Lectures/tutorial hours 29 hours lectures,<br />

Laboratory hours<br />

6 hours<br />

Lecturer<br />

Dr. C. Pace<br />

Prerequisites and exclusions MFE3102 – Mechatronics Systems Design<br />

Aim The aim <strong>of</strong> this module is to provide students with a deeper<br />

understand<strong>in</strong>g <strong>of</strong> the specific technologies found <strong>in</strong><br />

Mechatronic systems. The focus will be on sensory and<br />

actuation technologies as well as on microprocessor based<br />

controllers. The module will also aim to give an <strong>in</strong>sight <strong>in</strong>to<br />

newer technologies ma<strong>in</strong>ly related to Micro-Electro<br />

<strong>Mechanical</strong> systems as well as <strong>in</strong>telligent mach<strong>in</strong>es.<br />

Objectives At the end <strong>of</strong> the module the students should be able to:<br />

1. Understand the pr<strong>in</strong>ciples beh<strong>in</strong>d the operation and use <strong>of</strong><br />

sensory and actuation systems, and apply them to the<br />

<strong>in</strong>tegration <strong>of</strong> such technologies <strong>in</strong> Mechatronic Systems;<br />

2. Understand the use <strong>of</strong> microcontroller technologies <strong>in</strong><br />

Mechatronic systems, with specific focus on<br />

Programmable Logic Controllers;<br />

3. Program and Simulate Programmable Logic Controller<br />

Operations;<br />

4. Comprehend the elements that constitute an <strong>in</strong>telligent<br />

mach<strong>in</strong>e;<br />

5. Appreciate and be aware <strong>of</strong> the technological aspects <strong>of</strong><br />

Micro-Electro <strong>Mechanical</strong> Systems MEMS and their areas<br />

<strong>of</strong> application.<br />

Syllabus 1. Measurement Systems<br />

Classification <strong>of</strong> measurement systems; Sensory system<br />

model<strong>in</strong>g for acceleration, l<strong>in</strong>ear and rotary displacement and<br />

velocity, force, torque, pressure, flow, temperature and<br />

proximity sens<strong>in</strong>g; Measurement system <strong>in</strong>terfac<strong>in</strong>g.<br />

2. Actuation Systems<br />

Classification <strong>of</strong> Actuation Systems; Actuation system<br />

model<strong>in</strong>g for electromechanical and fluid power systems;<br />

Actuation System <strong>in</strong>terfac<strong>in</strong>g.<br />

3. Computer Systems <strong>in</strong> Mechatronics and Intelligent Mach<strong>in</strong>es<br />

Mechatronic use <strong>of</strong> computer systems for <strong>in</strong>formation<br />

process<strong>in</strong>g and control; Operat<strong>in</strong>g pr<strong>in</strong>ciples for embedded<br />

microcontrollers; Programmable Logic Controller (PLC)<br />

- 18 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

operation and ladder diagram programm<strong>in</strong>g,; Interfac<strong>in</strong>g <strong>of</strong><br />

controllers with other system devices <strong>in</strong>clud<strong>in</strong>g Human-<br />

Mach<strong>in</strong>e Interfac<strong>in</strong>g; Comprehend<strong>in</strong>g the transformation from<br />

self-regulation to reason<strong>in</strong>g and ‘<strong>in</strong>telligent’ systems; elements<br />

<strong>of</strong> <strong>in</strong>telligent systems – perception, cognition, plann<strong>in</strong>g and<br />

execution; outl<strong>in</strong>e <strong>of</strong> architectures for <strong>in</strong>telligence.<br />

4. MEMS<br />

A brief <strong>in</strong>troduction to MEMs; the pr<strong>in</strong>ciples <strong>of</strong> scal<strong>in</strong>g;<br />

Overview <strong>of</strong> fabrication technologies; Examples <strong>of</strong> MEMs.<br />

Laboratory Work • Fluid Power systems Development<br />

o Fluid Power System Simulation<br />

o Fluid Power System Implementation<br />

• PLC Programm<strong>in</strong>g<br />

Assessment Exam – 70%, Practical – 10%, Assignment – 20%<br />

Reference Texts • Introduction to Mechatronics, Appu Kuttan, ISBN<br />

0195687817, Oxford University Press<br />

• Mechatronics an Integrated Approach, Clarence W.<br />

De Silva ISBN: 0849312744, CRC Press<br />

- 19 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MFE3207 – Quality Management and Control<br />

Credits 5<br />

Lectures/tutorial hours 26 hours lectures, 4 hours tutorials<br />

Laboratory hours<br />

6 hours<br />

Lecturer<br />

Ing. T. Briffa<br />

Prerequisites and exclusions /<br />

Leads to MFE4213 – Quality & Reliability <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Objectives To provide a fundamental coverage <strong>of</strong> quality control<br />

concepts, especially the application <strong>of</strong> statistical techniques to<br />

quality control and quality assurance.<br />

Syllabus � Introduction to quality. Short history <strong>of</strong> quality. Def<strong>in</strong>ition<br />

<strong>of</strong> terms used. Inspection, Quality Control and Quality<br />

Assurance. Concept <strong>of</strong> quality assurance. Quality<br />

management.<br />

� Quality costs – appraisal, preventive and failure costs.<br />

� Sampl<strong>in</strong>g Tehcniques – Operat<strong>in</strong>g characteristic curves,<br />

AQL, use <strong>of</strong> BS 6000.<br />

� Concept <strong>of</strong> variation and probability, standard frequency<br />

distributions and their presentation eg: normal, b<strong>in</strong>omial,<br />

poisson, tally charts and histograms. Use <strong>of</strong> Standard<br />

Normal Distribution for quality control. Tests for<br />

Normality. Skewness and Kurtosis, use <strong>of</strong> Normal<br />

Probability paper, Chi-Test.<br />

� Range and mean. SPC – Variable Charts and attribute<br />

Charts. Process Capability <strong>in</strong>dices.<br />

� Use <strong>of</strong> computer packages for <strong>in</strong>putt<strong>in</strong>g statistical data and<br />

its <strong>in</strong>terpretation.<br />

� Problem Solv<strong>in</strong>g – PDCA cycle, benchmark<strong>in</strong>g,<br />

bra<strong>in</strong>storm<strong>in</strong>g, Cause and Effect diagrams, Pareto analysis,<br />

TOPS etc.<br />

� Kaisen and Quality Circles.<br />

� Quality Management Systems – ISO 9000 and QS 9000<br />

series.<br />

� Failure Mode and Effect Analysis (FMEA)<br />

Laboratory work � SPC<br />

� Problem Solv<strong>in</strong>g<br />

Assessment 80% written exam<strong>in</strong>ation, 20% project<br />

Text books and resources � Logothetis N., Manag<strong>in</strong>g for Total Quality, ISBN<br />

0135535123<br />

- 20 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MFE 3208 – Computer Integrated Manufactur<strong>in</strong>g<br />

Credits 5<br />

Lectures/tutorial hours 26 hours lectures<br />

Laboratory hours<br />

8 hours<br />

Lecturers<br />

Dr. J. Borg, Ing. P. Vella, Ing. P. Farrugia<br />

Prerequisites and exclusions MFE 2103 – Computer Aided <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Design<br />

Leads to MFE 4212 – Comp. Simulation <strong>in</strong> Product & Process Dev. and<br />

MFE 4211 – Artificial Intelligence <strong>in</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Objectives This module aims to <strong>in</strong>troduce students to the multi-faceted<br />

role which Information Technology (IT) plays <strong>in</strong> Advanced<br />

Manufactur<strong>in</strong>g Technology (AMT). By the end <strong>of</strong> this<br />

module, students would be able to select elements to design a<br />

CIM system. In addition, students will learn CNC part<br />

programm<strong>in</strong>g that is central to a CIM environment.<br />

Syllabus • Why and What is CIM? Manufactur<strong>in</strong>g Paradigm shift;<br />

Manufactur<strong>in</strong>g Transformations; Types <strong>of</strong><br />

Automation; Islands <strong>of</strong> Automation vs<br />

Integration; Elements <strong>of</strong> a CIM System; CNC mach<strong>in</strong>e<br />

tools, Robots and Material Handl<strong>in</strong>g Systems; AGVs;<br />

AS/RS, FMS Cells.<br />

• CNC Mach<strong>in</strong>e Tool Technology - NC versus CNC; 2.5<br />

axis, 3 axis, 5 axis; feedback devices.<br />

• Heidenha<strong>in</strong> Manual Programm<strong>in</strong>g 1 - Absolute versus<br />

Polar Coord<strong>in</strong>ates; Tool <strong>of</strong>fset compensations; Auxiliary<br />

Functions; Simple Part Program.<br />

• Heidenha<strong>in</strong> Manual Programm<strong>in</strong>g 2 - Introduction to M/C<br />

canned cycles.<br />

• Heidenha<strong>in</strong> Manual Programm<strong>in</strong>g 3 - Complex<br />

programm<strong>in</strong>g example #A.<br />

• Heidenha<strong>in</strong> Manual Programm<strong>in</strong>g 4 - Complex<br />

programm<strong>in</strong>g example #B.<br />

• Role <strong>of</strong> Product Models for CIM; Types <strong>of</strong> PMs; Neutral<br />

Representation <strong>of</strong> Product Models; <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Databases; Time-dependent and <strong>in</strong>dependent data; PDM<br />

• The roles <strong>of</strong> Computer-Aided Design/Computer-Aided<br />

Manufactur<strong>in</strong>g (CAD/CAM) <strong>in</strong> manufactur<strong>in</strong>g –<br />

Pr<strong>in</strong>ciples <strong>of</strong> Computer Aided Part Programm<strong>in</strong>g; Post-<br />

Process<strong>in</strong>g;<br />

• Familiarisation with a commercial CAD/CAM package;<br />

• Manufactur<strong>in</strong>g Information Communication Technology;<br />

Open Systems <strong>in</strong> Manufactur<strong>in</strong>g; ISO-7 layer; MAP;<br />

Pr<strong>in</strong>ciples <strong>of</strong> Computer Networks; Enterprise Wide<br />

Integration; The Distributed Enterprise; E-manufactur<strong>in</strong>g<br />

• Manufactur<strong>in</strong>g Intelligence For Flexible Automation;<br />

- 21 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Knowledge Process<strong>in</strong>g; Intelligent Systems; The Role <strong>of</strong><br />

AI <strong>in</strong> Manufactur<strong>in</strong>g; Adaptive Control; Mach<strong>in</strong>e Vision;<br />

Ma<strong>in</strong>tenance Systems.<br />

• Pr<strong>in</strong>ciple <strong>of</strong> Image Process<strong>in</strong>g; Illum<strong>in</strong>ation Techniques;<br />

Applications <strong>of</strong> IP <strong>in</strong> Manufactur<strong>in</strong>g Processes.<br />

• The Design <strong>of</strong> FMS and CIM Systems; Systems Th<strong>in</strong>k<strong>in</strong>g;<br />

Group Technology; IDEFx, CIMOSA concepts; CIM<br />

System Simulation.<br />

Laboratory work • The above lectures will be complimented with practical<br />

lectures, which will <strong>in</strong>clude <strong>in</strong>dustrial visits and hands-on<br />

experience <strong>of</strong> CNC part programm<strong>in</strong>g. In addition,<br />

students will be expected to submit assignments related to<br />

CAD/CAM and CNC part programm<strong>in</strong>g.<br />

Assessment<br />

Text books and resources<br />

20% project, 80% exam<br />

Roger Hannan, 1997. Computer Integrated Manufactur<strong>in</strong>g<br />

from concepts to realisation, Addison-Wesley.<br />

Groover Mikell P., 1987. Automation, Production Systems<br />

and Computer Integrated Manufactur<strong>in</strong>g, Prentice Hall.<br />

- 22 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Level 4 units<br />

- 23 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MFE4101 - Robotics<br />

Credits 5<br />

Lectures/tutorial hours 24 hours lectures, 4 hours tutorials<br />

Laboratory hours<br />

6 hours<br />

Lecturer<br />

Dr. M.A. Saliba<br />

Prerequisites and exclusions Prerequisites: MEC1400 – <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics - Statics,<br />

MEC2300 – <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Mechanics - K<strong>in</strong>ematics, MEC2403<br />

– Introductory Dynamics, SCE2210 – Introduction to Control<br />

Systems, MFE3107 - Industrial Automation<br />

Leads to<br />

Objectives This module gives the students an <strong>in</strong>-depth understand<strong>in</strong>g <strong>of</strong><br />

the methods <strong>of</strong> selection and <strong>of</strong> the use <strong>of</strong> robots <strong>in</strong> <strong>in</strong>dustry,<br />

as well as an <strong>in</strong>troduction to the pr<strong>in</strong>ciples <strong>of</strong> robot design.<br />

Syllabus • Introduction to Robotics<br />

• Robot Classification<br />

• Robot Programm<strong>in</strong>g<br />

• Robot End Effectors<br />

• Safety, Economic, and Social Issues <strong>in</strong> Robotics<br />

• Robot Arm K<strong>in</strong>ematics<br />

• Introduction to Robot Dynamics and Control<br />

Laboratory work • Robot programm<strong>in</strong>g exercises<br />

Assessment 60% written exam<strong>in</strong>ation, 40% assignment<br />

Text books and resources J. A. Rehg, “Introduction to Robotics <strong>in</strong> CIM Systems”, 4th<br />

Edition, Prentice Hall, 2000.<br />

C. Ray Asfahl, “Robots and Manufactur<strong>in</strong>g Automation”, 2nd<br />

Edition, John Wiley and Sons, 1992.<br />

L. Sciavicco and B. Siciliano, “Model<strong>in</strong>g and Control <strong>of</strong><br />

Robot Manipulators”, McGraw-Hill, 1996.<br />

- 24 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MFE4110 – Ma<strong>in</strong>tenance Management<br />

Credits 5<br />

Lectures/tutorial hours 28 hours<br />

Laboratory hours<br />

8<br />

Lecturer<br />

Ing. P. Vella<br />

Prerequisites and exclusions<br />

Leads to<br />

ENR2100 - <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Systems Elements<br />

Objectives This module is primarily aimed to <strong>in</strong>troduce students to the<br />

techniques, technologies and strategies <strong>of</strong> modern<br />

ma<strong>in</strong>tenance. Students will be exposed to both the theoretical<br />

and practical aspects <strong>of</strong> ma<strong>in</strong>tenance eng<strong>in</strong>eer<strong>in</strong>g and<br />

management, <strong>in</strong> order to ga<strong>in</strong> the knowledge needed to be<br />

able to optimise the ma<strong>in</strong>tenance <strong>of</strong> <strong>in</strong>dustrial assets.<br />

Syllabus • Term<strong>in</strong>ologies, technologies and strategies <strong>of</strong><br />

ma<strong>in</strong>tenance<br />

• Ma<strong>in</strong>tenance plann<strong>in</strong>g and control,<br />

• Objectives <strong>of</strong> the ma<strong>in</strong>tenance department,<br />

• Types <strong>of</strong> failures,<br />

• Types <strong>of</strong> ma<strong>in</strong>tenance and ma<strong>in</strong>tenance strategies,<br />

• Structures <strong>of</strong> ma<strong>in</strong>tenance departments<br />

• Documentation and computerized ma<strong>in</strong>tenance<br />

management<br />

• Ma<strong>in</strong>tenance <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Systems<br />

• Methods <strong>of</strong> ma<strong>in</strong>tenance optimization: Total Productive<br />

Ma<strong>in</strong>tenance (TPM), Reliability Centered Ma<strong>in</strong>tenance<br />

(RCM)<br />

• Design/redesign <strong>of</strong> eng<strong>in</strong>eer<strong>in</strong>g systems to improve<br />

ma<strong>in</strong>ta<strong>in</strong>ability and reduce life cycle costs;<br />

• Performance <strong>in</strong>dicators used <strong>in</strong> ma<strong>in</strong>tenance<br />

Laboratory work<br />

Assessment 80% written exam<strong>in</strong>ation, 20% assignment<br />

Text books and resources Terry Wireman, Total Productive Ma<strong>in</strong>tenance, Industrial<br />

Press, Inc; 2Rev Ed edition, ISBN-10: 0831131721<br />

- 25 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MFE4211 – Artificial Intelligence <strong>in</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Credits 5<br />

Lectures/tutorial hours 20 hrs<br />

Laboratory hours<br />

10 hrs<br />

Lecturer<br />

Dr. J.C. Borg<br />

Prerequisites and exclusions<br />

Leads to<br />

CCE 1110 – Computer Programm<strong>in</strong>g<br />

Objectives To provide an <strong>in</strong>troduction and overview <strong>of</strong> Artificial<br />

Intelligence and its role <strong>in</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> for the development <strong>of</strong><br />

smart/<strong>in</strong>telligent systems. By the end <strong>of</strong> this module, students<br />

should be able to identify areas <strong>in</strong> which AI tools and<br />

techniques could be applied successfully.<br />

Syllabus • What is AI?; History <strong>of</strong> AI; AI and the real world;<br />

Branches <strong>in</strong> AI. Benefits <strong>of</strong> us<strong>in</strong>g AI techniques <strong>in</strong><br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong>.<br />

• Data, Information and Knowledge; Knowledge Elicitation<br />

techniques.<br />

• Typical knowledge representation schemes; Search<br />

strategies; heuristics.<br />

• Captur<strong>in</strong>g Expertise: Expert Systems; Anatomy <strong>of</strong> Expert<br />

Systems; Inference eng<strong>in</strong>e; Expert System Shells;<br />

Examples.<br />

• Identification and selection <strong>of</strong> AI application doma<strong>in</strong>s;<br />

Application <strong>of</strong> Rule-based ESs; Production Systems.<br />

Strategy to build<strong>in</strong>g an Expert System; Select<strong>in</strong>g a<br />

suitable shell; Rask specification; Handl<strong>in</strong>g Uncerta<strong>in</strong>ty.<br />

• Knowledge based systems, Expert systems, Case-Based<br />

Reason<strong>in</strong>g Systems.<br />

• Fuzzy logic; Neural Networks; Truth Ma<strong>in</strong>tenance<br />

Systems.<br />

• The eng<strong>in</strong>eer’s tasks: <strong>in</strong>terpretation, fault f<strong>in</strong>d<strong>in</strong>g,<br />

monitor<strong>in</strong>g production plann<strong>in</strong>g, design; Use <strong>of</strong> AI for<br />

problem solv<strong>in</strong>g, consultation and tra<strong>in</strong><strong>in</strong>g purposes.<br />

• Typical applications <strong>of</strong> AI <strong>in</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> (I): AI <strong>in</strong><br />

Design; Decision Support Systems; Intelligent CAD<br />

Systems; AI applications to Concurrent <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong>; AI<br />

<strong>in</strong> Manufactur<strong>in</strong>g Control Systems; Schedul<strong>in</strong>g.<br />

• Typical applications <strong>of</strong> AI <strong>in</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> (II):<br />

Applications <strong>of</strong> AI <strong>in</strong> Condition Monitor<strong>in</strong>g &<br />

Ma<strong>in</strong>tenance Management Systems; Pattern Recognition;<br />

Robotics and Mach<strong>in</strong>e Vision.<br />

Laboratory work • Hands-on us<strong>in</strong>g an expert system shell.<br />

• To develop an AI-based system for an agreed eng<strong>in</strong>eer<strong>in</strong>g<br />

problem.<br />

- 26 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Assessment Project – 100%<br />

Text books and resources • Giarratano, J.C. & Riley G.D., 1994. Expert Systems:<br />

Pr<strong>in</strong>ciples and Programm<strong>in</strong>g. USA, PWS.<br />

• Jackson P., Introduction to Expert Systems, 2nd edition,<br />

Addison-Wesley, 1990<br />

• Sriran D. & Tong C., Artificial Intelligence <strong>in</strong><br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Design, Vols. I, II & III. Academic Press Ltd.<br />

• Wasserman Philip D., Neural Comput<strong>in</strong>g Theory: Theory<br />

and Practice.<br />

- 27 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MFE4212 – Computer Simulation <strong>in</strong> Product and Process<br />

Development<br />

Credits 5<br />

Lectures/tutorial hours 26 hours lectures, 4 hours tutorials<br />

Laboratory hours<br />

6 hours<br />

Lecturer<br />

Ing. T. Briffa<br />

Prerequisites and exclusions /<br />

Leads to /<br />

Objectives This unit <strong>in</strong>troduces the students to computer based tools that<br />

can be used <strong>in</strong><br />

Syllabus � Computer Modell<strong>in</strong>g Environment and its effect on<br />

Product Development<br />

� Function Modell<strong>in</strong>g Techniques<br />

� Geometric Modell<strong>in</strong>g<br />

� F<strong>in</strong>ite Element Modell<strong>in</strong>g & Analysis<br />

� K<strong>in</strong>ematic Modell<strong>in</strong>g <strong>of</strong> Mechanisms<br />

� Dynamic Modell<strong>in</strong>g & Analysis <strong>of</strong> <strong>Mechanical</strong> Systems<br />

� Simulation Fundamentals and Types<br />

� Computer graphics <strong>in</strong> product visualisation<br />

� Visualisation techniques<br />

� Web-based product modell<strong>in</strong>g and visualisation<br />

� Manufactur<strong>in</strong>g systems simulation<br />

Laboratory work � Computer modell<strong>in</strong>g us<strong>in</strong>g different packages<br />

Assessment 80% written exam<strong>in</strong>ation, 20% project<br />

Text books and resources � Christopher A. Chung, Simulation Model<strong>in</strong>g Handbook:<br />

A Practical Approach (Industrial and Manufactur<strong>in</strong>g<br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Series), ISBN 0849312418<br />

- 28 -


Department <strong>of</strong> Industrial and Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MFE4213 – Quality and Reliability <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Credits 5<br />

Lectures/tutorial hours 26 hours lectures, 4 hours tutorials<br />

Laboratory hours<br />

6 hours<br />

Lecturer<br />

Ing. T. Briffa<br />

Prerequisites and exclusions MFE3207 – Quality Management and Control<br />

Leads to /<br />

Objectives<br />

Syllabus � Advanced SPC.<br />

� Calibration AND test<strong>in</strong>g.<br />

� Strategic Quality Plann<strong>in</strong>g.<br />

� Total Quality Management.<br />

� Dem<strong>in</strong>g Management Approach to Quality, Crosby and<br />

Juran methods.<br />

� Design <strong>of</strong> Experiments.<br />

� Failure Mode and Effect Analysis (FMEA) AND quality<br />

function Deployment (QFD).<br />

� Reliability theory – MTTF, MTBF, failure rate curve, life<br />

test<strong>in</strong>g, geometric distribution – exponential, Weibull.<br />

� Reliability concepts for systems conta<strong>in</strong><strong>in</strong>g components<br />

<strong>in</strong> series.<br />

� Team Oriented Problem Solv<strong>in</strong>g (TOPS).<br />

Laboratory work � Practical TQM exerscises<br />

Assessment 80% written exam<strong>in</strong>ation, 20% project<br />

Text books and resources � Stephen George and Arnold Weimerskirch, Total Quality<br />

Management: Strategies and Techniques Proven at<br />

Today’s Most Successful Companies, ISBN 0471191744<br />

- 29 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Study-units <strong>of</strong>fered by the<br />

Dept. <strong>of</strong> Metallurgy and Materials Eng.<br />

Faculty <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

University <strong>of</strong> Malta<br />

- 1 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Level 1 units<br />

- 2 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MME1201 – Fundamentals <strong>of</strong> Material Science I<br />

Credits 5<br />

Lectures/tutorial hours 24 hours lectures, 8 hours tutorials<br />

Laboratory hours<br />

8 hours<br />

Lecturer<br />

Prerequisites and exclusions<br />

Mr. K. Zammit<br />

Leads to MME2002 – Physical Metallurgy<br />

Objectives This course presents the fundamentals <strong>of</strong> materials, <strong>in</strong>clud<strong>in</strong>g<br />

metals, polymers, ceramics and semi-conductors while giv<strong>in</strong>g<br />

the student an appreciation <strong>of</strong> the relationship between material<br />

properties, such as strength, conductivity, ductility,<br />

hardenability and toughness among others as well as the<br />

specific material structure.<br />

Syllabus • Introduction to Materials<br />

A review <strong>of</strong> the different classes <strong>of</strong> materials together with their<br />

basic properties. Several examples will be highlighted.<br />

• Atomic Structure & Interatomic Bond<strong>in</strong>g<br />

The basic structure and electronic configuration <strong>of</strong> the atom and<br />

the periodic table. The different types <strong>of</strong> bonds that can exist<br />

between atoms, i.e. metallic, ionic, covalent and secondary<br />

bonds.<br />

• The Structure <strong>of</strong> Crystall<strong>in</strong>e Materials<br />

The difference between crystall<strong>in</strong>e and non-crystall<strong>in</strong>e<br />

materials. S<strong>in</strong>gle crystals and polycrystall<strong>in</strong>e materials. Crystal<br />

structure, lattices and unit cells. Metallic crystal systems<br />

<strong>in</strong>clud<strong>in</strong>g BCC, FCC and HCP. Density computation.<br />

Crystallographic directions and planes. L<strong>in</strong>ear and planar<br />

densities.<br />

• Imperfections <strong>in</strong> Solids<br />

Po<strong>in</strong>t defects, Vacancies and Self-<strong>in</strong>terstitials. Impurities <strong>in</strong><br />

solids, solid-solutions. Dislocations, <strong>in</strong>terfacial defects, volume<br />

defects etc.<br />

• Strengthen<strong>in</strong>g Mechanisms<br />

Dislocations and plastic deformation. Slip systems and<br />

tw<strong>in</strong>n<strong>in</strong>g. Dislocation climb, work harden<strong>in</strong>g, solid-solution<br />

harden<strong>in</strong>g, effect <strong>of</strong> gra<strong>in</strong> size.<br />

• <strong>Mechanical</strong> Properties <strong>of</strong> Materials<br />

The tensile test and the stress-stra<strong>in</strong> diagram. Hooke's Law,<br />

yield, tensile and fracture strength. Anelasticity, Resilience and<br />

stiffness. The difference between eng<strong>in</strong>eer<strong>in</strong>g and true stress<br />

- 3 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

and stra<strong>in</strong>. Hardness and Impact test<strong>in</strong>g.<br />

• Electrical Properties <strong>of</strong> Materials<br />

Electronic and ionic conduction. Energy band structure <strong>in</strong><br />

solids. Electron mobility. Resistivity. Electrical characteristics<br />

<strong>of</strong> common materials. Semi-conductors. Intr<strong>in</strong>sic and extr<strong>in</strong>sic<br />

semi-conduction. Dielectric behaviour and materials.<br />

Ferroelectricity and Piezoelectricity.<br />

• Thermal Properties <strong>of</strong> Materials<br />

Heat Capacity, thermal expansion, thermal conductivity and<br />

thermal stresses.<br />

• Optical Properties <strong>of</strong> Materials<br />

Light <strong>in</strong>teractions with solids. Atomic and electronic<br />

<strong>in</strong>teractions. Refraction, reflection, absorption, transmission,<br />

colour, opacity and translucency. Lum<strong>in</strong>escence and<br />

photoconductivity. Lasers.<br />

• Magnetic Properties <strong>of</strong> Materials<br />

Diamagnetism and Paramagnetism. Ferromagnetism. Doma<strong>in</strong>s<br />

and Hysteresis. S<strong>of</strong>t and hard magnets. Magnetic storage.<br />

Superconductivity.<br />

Laboratory work • The Tensile Test<br />

• Sample preparation for microstructural exam<strong>in</strong>ation.<br />

Assessment 75% written exam<strong>in</strong>ation, 25% projects<br />

Text books and resources • Callister W.D., Material Science and <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong>, Wiley.<br />

• Shackelford James F., Introduction to Materials Science for<br />

Eng<strong>in</strong>eers, Prentice Hall.<br />

- 4 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MME1202 – Physical Metallurgy and Diffusion<br />

Credits 5<br />

Lectures/tutorial hours 26 hours lectures, 8 hours tutorials<br />

Laboratory hours<br />

6 hours<br />

Lecturer<br />

Ms. A. Zammit<br />

Prerequisites and exclusions<br />

Leads to<br />

Prerequisites: MME1201 - Fundamentals <strong>of</strong> Materials Science I<br />

Objectives This unit <strong>in</strong>troduces the basic topics <strong>in</strong> metallurgy, giv<strong>in</strong>g the<br />

student the tools to work with and understand metallurgical<br />

processes and concepts. The mechanisms <strong>of</strong> diffusion and<br />

factors affect<strong>in</strong>g it are described.<br />

Syllabus • The formation <strong>of</strong> alloys<br />

Purpose. The solid solution: substitutional and <strong>in</strong>terstitial.<br />

Intermediate phases. Eutectics and Eutectoids. Strengthen<strong>in</strong>g<br />

mechanisms <strong>in</strong> alloys<br />

• Equilibrium phase diagrams<br />

Importance to eng<strong>in</strong>eer. Construction <strong>of</strong> simple phase diagram,<br />

solubility limit, phase equilibria, <strong>in</strong>terpretation <strong>of</strong> phase<br />

diagrams, different types <strong>of</strong> phase diagrams.<br />

• The iron-carbon system<br />

Fe-Fe3C phase diagram, development <strong>of</strong> microstructures.<br />

Effect <strong>of</strong> alloy<strong>in</strong>g elements on: polymorphic transformation<br />

temperature, gra<strong>in</strong> growth, eutectoid po<strong>in</strong>t and transformation<br />

rates.<br />

• Non Feusus Systems<br />

• Heat treatment<br />

Anneal<strong>in</strong>g, normaliz<strong>in</strong>g, harden<strong>in</strong>g, temper<strong>in</strong>g etc.<br />

Microstructural changes dur<strong>in</strong>g heat treatment. Development <strong>of</strong><br />

TTT diagrams. The Jom<strong>in</strong>y test, CCT diagrams.<br />

• Diffusion<br />

Mechanisms <strong>of</strong> diffusion, steady and non-steady state diffusion,<br />

Fick’s law, factors affect<strong>in</strong>g diffusion<br />

Laboratory work • Effect <strong>of</strong> heat treatment and carbon content on the<br />

deformation behaviour <strong>of</strong> pla<strong>in</strong> carbon steels.<br />

• Jom<strong>in</strong>y test<br />

Assessment 75% written exam<strong>in</strong>ation, 25% projects<br />

Text books and resources • Higg<strong>in</strong>s, R.A., <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Metallurgy Part1 Applied<br />

Physical Metallurgy, Edward Arnold<br />

• Smallman R.E., Modern Physical Metallurgy, Butterwoth<br />

• Callister W.D., Fundamentals <strong>of</strong> Materials Science and<br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong>, John Wiley and Sons Inc.<br />

- 5 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Level 2 units<br />

- 6 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MME2203 – Ferrous and Non-Ferrous Metals<br />

Credits 5<br />

Lectures/tutorial hours 24 hours lectures, 8 hours tutorials<br />

Laboratory hours<br />

8 hours<br />

Lecturer<br />

Mr. J. Buhagiar<br />

Prerequisites and exclusions Prerequisites: MME1202 - Physical Metallurgy and Diffusion<br />

Leads to MME4213 – Material Test<strong>in</strong>g Procedures and Standards and<br />

MME4209 - Nano and Biomaterials<br />

Objectives The objective <strong>of</strong> the course is to <strong>in</strong>troduce the student to the<br />

vast range <strong>of</strong> ferrous and non ferrous alloys. Reference is<br />

made to applications, limitations, methods <strong>of</strong> production and<br />

properties for these alloys<br />

Syllabus • Ferrous Alloys<br />

Commercial Steels: The designations <strong>of</strong> these steels such<br />

as alloy steels, marag<strong>in</strong>g steels, high strength low alloy,<br />

dual phase steels and mechanically alloyed steels will be<br />

discussed.<br />

Cast Irons: Grey, ductile, malleable and austempered<br />

ductile iron will be discussed together with their<br />

production, alloy<strong>in</strong>g chemistry, structure mechanical<br />

properties and applications will be outl<strong>in</strong>ed.<br />

Sta<strong>in</strong>less Steels: The alloy<strong>in</strong>g chemistry <strong>of</strong> these steels<br />

and their importance <strong>in</strong> terms <strong>of</strong> their superior corrosion<br />

properties and strength will be discussed.<br />

• Non-Ferrous alloys<br />

Copper alloys: Electrical properties <strong>of</strong> these alloys<br />

together with brasses and bronzes.<br />

Super alloys: Nickel based super alloys development and<br />

applications will be discussed together with dispersion<br />

hardened alloys.<br />

Light alloys: Titanium, alum<strong>in</strong>ium and Magnesium alloys<br />

will be discussed <strong>in</strong> some detail. Outl<strong>in</strong><strong>in</strong>g the importance<br />

<strong>of</strong> these alloys <strong>in</strong> the modern society where energy<br />

conservation is an asset.<br />

Laboratory work • Microstructure / property relationship <strong>of</strong> sta<strong>in</strong>less steels<br />

• On Site cast<strong>in</strong>g <strong>of</strong> Alum<strong>in</strong>ium alloys<br />

Assessment 75% written exam<strong>in</strong>ation, 25% projects<br />

Text books and resources • Smallman & Ngan, Physical Metallurgy & Advanced<br />

Materials (Butterworth)<br />

• Davis, ASM Specialty Handbook: Sta<strong>in</strong>less Steel (ASM)<br />

• Polmear, Light Alloys: Metallurgy <strong>of</strong> Light Metals<br />

(Butterworth)<br />

- 7 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MME2204 - Fundamentals <strong>of</strong> Material Science II<br />

Credits 5<br />

Lectures/tutorial hours 26 hours lectures, 8 hours tutorials<br />

Laboratory hours<br />

6 hours<br />

Lecturer<br />

Mr. J. Betts<br />

Prerequisites and exclusions Prerequisites: MME1201- Fundamentals <strong>of</strong> Materials Science I<br />

Leads to MME4213 – Material Test<strong>in</strong>g Procedures and Standards;<br />

MME3208 - Materials Selection; year 3 topics – Polymers;<br />

Ceramics; Composites<br />

Objectives This unit <strong>in</strong>troduces the structure and properties <strong>of</strong> polymers,<br />

ceramics and composites and presents some applications and<br />

methods <strong>of</strong> process<strong>in</strong>g.<br />

Syllabus 1. Introduc<strong>in</strong>g Ceramics, polymers and composites –<br />

description <strong>of</strong> unit; comparison <strong>of</strong> general properties and<br />

applications <strong>of</strong> materials (<strong>in</strong>clud<strong>in</strong>g metals); taxonomy <strong>of</strong><br />

these materials; description <strong>of</strong> coursework+labs.<br />

2. Ceramics – structures <strong>of</strong> ceramic materials <strong>in</strong>clud<strong>in</strong>g<br />

prototype crystall<strong>in</strong>e structures, structures <strong>of</strong> silica-based<br />

materials <strong>in</strong>clud<strong>in</strong>g glass.<br />

3. Ceramics – application-based properties <strong>of</strong> ceramic<br />

materials <strong>in</strong>clud<strong>in</strong>g mechanical, thermal, electrical and<br />

corrosion-resistant properties, and typical applications<br />

which utilize these properties.<br />

4. Ceramics – fabrication <strong>of</strong> ceramic components<br />

<strong>in</strong>clud<strong>in</strong>g an <strong>in</strong>troduction to s<strong>in</strong>ter<strong>in</strong>g, clay products and<br />

glass fabrication, with applications <strong>of</strong> these processes.<br />

5. Polymers – structures <strong>of</strong> polymers <strong>in</strong>troduc<strong>in</strong>g the<br />

concept <strong>of</strong> polymerization and some polymer structure<br />

concepts and morphologies. Brief <strong>in</strong>troduction to<br />

elastomers and crystall<strong>in</strong>ity <strong>in</strong> polymers.<br />

6. Polymers – application-based properties <strong>of</strong> polymers<br />

<strong>in</strong>clud<strong>in</strong>g mechanical and corrosion resistant properties,<br />

and typical applications which utilize these properties.<br />

7. Polymers - fabrication <strong>of</strong> polymer components<br />

<strong>in</strong>clud<strong>in</strong>g an <strong>in</strong>troduction to plastic <strong>in</strong>jection mould<strong>in</strong>g<br />

and extrusion.<br />

8. Composites – the composite material concept<br />

<strong>in</strong>clud<strong>in</strong>g the rule <strong>of</strong> mixtures; a taxonomy <strong>of</strong><br />

composites; bond<strong>in</strong>g <strong>of</strong> composite components; the<br />

critical fibre length; properties <strong>of</strong> fibre-re<strong>in</strong>forced<br />

polymers.<br />

9. Composites – fabrication <strong>of</strong> composites <strong>in</strong>clud<strong>in</strong>g<br />

pultrusion, filament w<strong>in</strong>d<strong>in</strong>g, pre-impregnated<br />

composites, and the production <strong>of</strong> metal matrix<br />

composites.<br />

- 8 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

10. Composites – adapt<strong>in</strong>g composites to applications<br />

<strong>in</strong>clud<strong>in</strong>g examples <strong>of</strong> use <strong>of</strong> fibre-re<strong>in</strong>forced composites;<br />

sandwich composites; lam<strong>in</strong>ates; metal matrix<br />

composites; ceramic matrix composites.<br />

Tutorials Tutorial 1 – Best <strong>of</strong> Both Worlds: design<strong>in</strong>g composite<br />

materials<br />

Tutorial 2 – Polymers and ceramics on Materials Selection<br />

Charts: locat<strong>in</strong>g these materials on materials selection charts;<br />

the application niches <strong>of</strong> polymers and ceramics<br />

Tutorial 3 – Open session: Q&A session<br />

Laboratory work Design and test<strong>in</strong>g <strong>of</strong> a composite material: the students are<br />

grouped <strong>in</strong> threes and have to design a composite material,<br />

fabricate it, and then test it <strong>in</strong> flexure conditions on<br />

tensile/compression test<strong>in</strong>g mach<strong>in</strong>e.<br />

Assessment 75% written exam<strong>in</strong>ation, 25% projects<br />

Text books and resources W.D. Callister: Materials Science and <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong>: An<br />

Introduction, 7th Edition<br />

- 9 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Level 3 units<br />

- 10 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MME3205 – Jo<strong>in</strong><strong>in</strong>g Processes<br />

Credits 5<br />

Lectures/tutorial hours 26 hours lectures, 6 hours tutorials<br />

Laboratory hours<br />

8 hours<br />

Lecturer<br />

Pr<strong>of</strong>. M. Grech<br />

Prerequisites and exclusions<br />

Leads to<br />

Prerequisites: MME1201- Fundamentals <strong>of</strong> Metallurgy Science I<br />

Objectives This course covers the methods used to jo<strong>in</strong> materials by<br />

physical and chemical techniques and aims to give the student a<br />

basic understand<strong>in</strong>g <strong>of</strong> what actually occurs dur<strong>in</strong>g these<br />

processes. These vary from the conventional ones such as the<br />

weld<strong>in</strong>g <strong>of</strong> metals to novel processes such as diffusion bond<strong>in</strong>g<br />

<strong>of</strong> glasses. Although the actual procedures <strong>of</strong> these methods are<br />

described, the content is directed more towards the behaviour <strong>of</strong><br />

the material itself with emphasis on aspects such as jo<strong>in</strong>t design<br />

preparation.<br />

Syllabus • Introduction. Classification <strong>of</strong> Jo<strong>in</strong><strong>in</strong>g.<br />

Basic concepts. Economic importance <strong>of</strong> jo<strong>in</strong><strong>in</strong>g. Typical<br />

<strong>in</strong>dustrial applications, Weld<strong>in</strong>g symbols.<br />

• Solder<strong>in</strong>g and Braz<strong>in</strong>g.<br />

Practice <strong>of</strong> solder<strong>in</strong>g. Jo<strong>in</strong>t types and preparation. Fluxes. Heat<br />

sources and heat transfer. Braz<strong>in</strong>g practice. Filler materials.<br />

Heat sources. Different types <strong>of</strong> braz<strong>in</strong>g. Braze weld<strong>in</strong>g.<br />

• Weld<strong>in</strong>g.<br />

Oxy-acetylene weld<strong>in</strong>g, arc-weld<strong>in</strong>g, fusion weld<strong>in</strong>g, resistance<br />

weld<strong>in</strong>g, spot weld<strong>in</strong>g, electron beam weld<strong>in</strong>g, Thermit<br />

weld<strong>in</strong>g, MIG, TIG, MAG, etc. Practice, jo<strong>in</strong>t design and<br />

preparation. Filler materials.<br />

• Basic Science <strong>of</strong> Jo<strong>in</strong><strong>in</strong>g Processes.<br />

Sources <strong>of</strong> heat energy, the flame, the electric arc. Chemical<br />

reactions dur<strong>in</strong>g weld<strong>in</strong>g, oxidation reaction, protection <strong>of</strong> weld<br />

pool with fluxes or gases. Theory <strong>of</strong> distortion.<br />

• Metallurgy <strong>of</strong> Weld<strong>in</strong>g.<br />

Microstructural changes dur<strong>in</strong>g weld<strong>in</strong>g, the effect <strong>of</strong> heat on<br />

metals. Pre-treatment and post-treatment <strong>of</strong> welds. Behaviour <strong>of</strong><br />

ferrous and non-ferrous metals. Fracture <strong>of</strong> welds.<br />

• Inspection and Test<strong>in</strong>g <strong>of</strong> Welds and Jo<strong>in</strong>ts.<br />

<strong>Mechanical</strong> test<strong>in</strong>g. Non-destructive test<strong>in</strong>g. Weld defects.<br />

• Adhesives. Contact adhesives.<br />

Polyester, polyamide and polyurethane melt adhesives.<br />

Toughened acrylic and epoxy adhesives. Silicone adhesives.<br />

<strong>Mechanical</strong> properties and fracture mechanics. Jo<strong>in</strong>t design.<br />

• Jo<strong>in</strong><strong>in</strong>g <strong>of</strong> Ceramics. Metal/ceramic jo<strong>in</strong><strong>in</strong>g and<br />

ceramic/ceramic jo<strong>in</strong><strong>in</strong>g.<br />

- 11 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Thermo-chemical considerations. Diffusion bond<strong>in</strong>g. Braz<strong>in</strong>g<br />

methods. Jo<strong>in</strong>t design.<br />

Laboratory work Microstructural comparison <strong>of</strong> various types <strong>of</strong> welds.<br />

Field work at Shipbuild<strong>in</strong>g/Sta<strong>in</strong>less Steel.<br />

Assessment 75% written exam<strong>in</strong>ation, 25% projects<br />

Text books and resources • Milner D.R. & Apps R.L., Introduction to Weld<strong>in</strong>g and<br />

Braz<strong>in</strong>g, Pergamon Press<br />

• Smith F.J., Fundamental <strong>of</strong> Fabrication and Weld<strong>in</strong>g<br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong>.<br />

• De Garmo E.P., Black J.T. & Rohser R.A., Materials<br />

and Process<strong>in</strong>g <strong>in</strong> Manufactur<strong>in</strong>g, Macmillan<br />

Publish<strong>in</strong>g Co.<br />

- 12 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MME3206 – Material Degradation<br />

Credits 5<br />

Lectures/tutorial hours 24 hours lectures, 8 hours tutorials<br />

Laboratory hours<br />

8 hours<br />

Lecturer<br />

Dr. S. Abela<br />

Prerequisites and exclusions<br />

Leads to<br />

Prerequisites: MME1201- Fundamentals <strong>of</strong> Metallurgy Science I<br />

Objectives Wear corrosion cost the country millions <strong>of</strong> pounds. This<br />

course aims at <strong>in</strong>creas<strong>in</strong>g the student awareness <strong>of</strong> the various<br />

mechanisms lead<strong>in</strong>g to material degradation. Design<br />

considerations and various ways <strong>of</strong> prevent<strong>in</strong>g or controll<strong>in</strong>g<br />

mechanisms lead<strong>in</strong>g to material degradation are also studied.<br />

Syllabus • Film Growth:<br />

Mechanism <strong>of</strong> oxidation; High temperature oxidation,<br />

protective film pois<strong>in</strong>g, volatile <strong>in</strong>hibitors, Factors<br />

<strong>in</strong>fluenc<strong>in</strong>g service life.<br />

• Electrochemical Corrosion:<br />

Electromechanical corrosion, effect <strong>of</strong> overpotatial, the<br />

effect <strong>of</strong> galvanic couples, and electrochemical corrosion<br />

mechanisms (Hands on).<br />

• Corrosion by Acids, Alkalis and Pure Water:<br />

Action <strong>of</strong> non-oxidis<strong>in</strong>g acids; Attack by nitric acid;<br />

Choice <strong>of</strong> materials for corrosion resistance; Graphical<br />

construction for corrosion velocity; Corrosion by pure<br />

water (Hands on).<br />

• Influence <strong>of</strong> Environment:<br />

Atmospheric attack; Corrosion <strong>of</strong> buried metal work;<br />

Corrosion <strong>of</strong> immersed metals; Metal subjected to rapidly<br />

mov<strong>in</strong>g water (Hands on).<br />

• Passivity and Inhibition:<br />

Nomenclature; Anodic <strong>in</strong>hibitors; Organic <strong>in</strong>hibitors; Other<br />

<strong>in</strong>hibitive systems; Inhibitive pre-treatment before<br />

pa<strong>in</strong>t<strong>in</strong>g.<br />

• K<strong>in</strong>etics and Chemical Thermodynamics:<br />

The laws govern<strong>in</strong>g film growth <strong>in</strong> air; Basic chemical<br />

thermodynamics.<br />

• Wear and related physical phenomena:<br />

An <strong>in</strong>troduction to the various physical wear mechanisms<br />

(Hands on).<br />

• Synergistic effects between wear and corrosion:<br />

The comb<strong>in</strong>ed action <strong>of</strong> wear and corrosion (Hands on).<br />

Tutorials • Bra<strong>in</strong> storm<strong>in</strong>g sessions: Corrosion problems will be<br />

<strong>in</strong>troduced to the students. Through discussions and<br />

- 13 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

literature research the students will be required to provide<br />

solutions for such problems and compile a short report<br />

(maximum 2000 words).<br />

Laboratory work • Galvanic corrosion, wear, and electroplat<strong>in</strong>g<br />

Assessment 50% written exam<strong>in</strong>ation, 50% projects<br />

Text books and resources • Stansbury and Duchanan, Fundamentals <strong>of</strong> electrochemical<br />

corrosion.<br />

• Evans Ulick R., An Introduction to Metallic Corrosion.<br />

• Friction, Wear, and Lubrication a textbook <strong>in</strong> tribology.<br />

ISBN 0-0801-8080-9.<br />

• Degradation <strong>of</strong> metals <strong>in</strong> atmosphere. ISBN 0-8031-0966-0<br />

- 14 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MME3207 – Mechanics <strong>of</strong> Material Fracture<br />

Credits 5<br />

Lectures/tutorial hours 24 hours lectures, 8 hours tutorials<br />

Laboratory hours<br />

8 hours<br />

Lecturer<br />

Mr. G. Cassar<br />

Prerequisites and exclusions<br />

Leads to<br />

Prerequisites: MEC1401 - Mechanics <strong>of</strong> MaterialsI<br />

Objectives The objective <strong>of</strong> the course is to <strong>in</strong>troduce the student to the<br />

mechanisms and mechanics <strong>of</strong> failure, <strong>in</strong>clud<strong>in</strong>g high<br />

temperature– creep and progressive fracture – fatigue.<br />

The module also <strong>in</strong>troduces non-destructive techniques<br />

Syllabus • Fracture Mechanics<br />

Def<strong>in</strong>ition <strong>of</strong> fracture toughness and the effect <strong>of</strong> variables on<br />

K. Plane stress vs. plane stra<strong>in</strong> behaviour. Fracture toughness<br />

test<strong>in</strong>g; standard and non-standard techniques.<br />

Stress-Field theory <strong>of</strong> fracture <strong>in</strong>clud<strong>in</strong>g; the critical Stess-State<br />

Criterion, pr<strong>in</strong>ciples <strong>of</strong> crack propagation and stress<br />

concentration factors and stra<strong>in</strong>.<br />

The Energy <strong>of</strong> Fracture; Griffith Theory <strong>of</strong> Brittle Fracture –<br />

Energy Balance Approach.<br />

Crack tip plasticity and plastic zone size determ<strong>in</strong>ation. Irv<strong>in</strong>’s<br />

1 st and 2 nd estimation <strong>of</strong> plastic zone.<br />

Differentiation between LEFM and EPFM.<br />

• Creep<br />

Introduction and def<strong>in</strong>ition. Stages <strong>of</strong> creep under constant load<br />

and temperature. Mechanisms <strong>of</strong> creep; dislocation glide,<br />

dislocation creep, gra<strong>in</strong> boundary slid<strong>in</strong>g, diffusion creep.<br />

Tertiary creep and fracture.<br />

Determ<strong>in</strong>ation <strong>of</strong> time to failure.<br />

Deformation mechanism maps and case studies.<br />

Creep resistant alloys.<br />

• Fatigue<br />

Introduction, def<strong>in</strong>ition and post-failure recognition through<br />

characteristic structural features <strong>of</strong> fatigue.<br />

Stages <strong>of</strong> fatigue crack growth and crack propagation.<br />

Prediction <strong>of</strong> fatigue crack growth under constant amplitude<br />

load<strong>in</strong>g. Application <strong>of</strong> Paris and Forman equations for life<br />

prediction.<br />

Variables affect<strong>in</strong>g fatigue behaviour and susceptibility.<br />

• Non-Destructive test<strong>in</strong>g<br />

Non-Destructive Test<strong>in</strong>g/Inspection; common techniques and<br />

applications and their role <strong>in</strong> design<br />

Laboratory work Fracture toughness test<strong>in</strong>g<br />

- 15 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Assessment 75% written exam<strong>in</strong>ation, 25% projects<br />

Text books and resources • R. J. Sanford, Pr<strong>in</strong>ciples <strong>of</strong> Fracture Mechanics, Prentice<br />

Hall, 2003<br />

• J. A. Coll<strong>in</strong>s, Failure <strong>of</strong> Materials <strong>in</strong> <strong>Mechanical</strong> Design –<br />

Analysis, Prediction, Prevention, Wiley Interscience, 1993<br />

- 16 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MME3208 - Materials Selection<br />

Credits 5<br />

Lectures/tutorial hours 24 hours lectures, 16 hours tutorials (reduced to proportion<br />

allocated for 4 credits)<br />

Laboratory hours<br />

n/a<br />

Lecturer<br />

Mr. J. Betts<br />

Prerequisites and exclusions Prerequisites: MME1202 - Physical Metallurgy and Diffusion,<br />

MME1201 - Fundamentals <strong>of</strong> Material Science I, MME2204 –<br />

Fundamentals <strong>of</strong> Material Science II and<br />

MME2203 - Ferrous & Non Ferrous Alloys<br />

Leads to Year 3 topics<br />

Objectives This unit presents approaches to the selection <strong>of</strong> materials for a<br />

product component design.<br />

Syllabus 1. Introduc<strong>in</strong>g Materials Selection – a presentation <strong>of</strong> the<br />

course concept and contents; an overview <strong>of</strong> approaches for<br />

materials selection; over- and under-design; Functions,<br />

Objectives and Constra<strong>in</strong>ts.<br />

2. The design process – the place <strong>of</strong> materials selection <strong>in</strong><br />

design; <strong>in</strong>formation on materials; translation, screen<strong>in</strong>g and<br />

rank<strong>in</strong>g; <strong>in</strong>spiration; <strong>in</strong>novation.<br />

3. Cost – material cost components; cost as an overrid<strong>in</strong>g<br />

consideration and otherwise; the resource base and reserve; cost<br />

fluctuations and predictions.<br />

4. Materials selection charts – the concept <strong>of</strong> materials<br />

selection charts; different chart types; us<strong>in</strong>g selection charts.<br />

5. Materials selection techniques – rank<strong>in</strong>g; weighted<br />

rank<strong>in</strong>g; <strong>in</strong>troduction to materials <strong>in</strong>dices.<br />

6. Materials <strong>in</strong>dices – simple materials <strong>in</strong>dices; materials<br />

<strong>in</strong>dices and selection charts; examples <strong>of</strong> use.<br />

7. Materials <strong>in</strong>dices – multiple materials <strong>in</strong>dices;<br />

examples <strong>of</strong> use.<br />

8. Materials for ship structures – the application <strong>of</strong><br />

materials selection considerations to the requirements <strong>of</strong><br />

materials for naval architecture requirements.<br />

- 17 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

9. Materials for space – the application <strong>of</strong> materials<br />

selection considerations to the requirements <strong>of</strong> materials for<br />

space eng<strong>in</strong>eer<strong>in</strong>g requirements.<br />

Tutorials Tutorials 1 and 2: A consideration <strong>of</strong> materials selection case<br />

studies<br />

Tutorials 3 and 4: Consultation sessions on assignment task<br />

Tutorial 5: Open session: Q&A session<br />

Coursework Materials selection exercise: each student is <strong>in</strong>dividually<br />

allocated a s<strong>in</strong>gle component for which the material or<br />

materials has/have to be selected by apply<strong>in</strong>g the techniques<br />

presented <strong>in</strong> the course lectures whilst bas<strong>in</strong>g on design<br />

methodology and sound eng<strong>in</strong>eer<strong>in</strong>g pr<strong>in</strong>ciples. The student<br />

would be required to present a written text and a PowerPo<strong>in</strong>t<br />

presentation which would be delivered <strong>in</strong> class.<br />

Assessment 50% written exam<strong>in</strong>ation, 50% projects<br />

Text books and resources Textbook:<br />

Materials and Design, M.F. Ashby, K. Johnson<br />

Recommended resources:<br />

Materials eng<strong>in</strong>eer<strong>in</strong>g, science, process<strong>in</strong>g and design, M.F.<br />

Ashby et al<br />

Materials Selection <strong>in</strong> <strong>Mechanical</strong> Design, M.F.Ashby<br />

- 18 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MME3210 – Materials Process<strong>in</strong>g Techniques<br />

Credits 5<br />

Lectures/tutorial hours 26 hours lectures, 8 hours tutorials<br />

Laboratory hours<br />

6 hours<br />

Lecturer<br />

Mr. B. Mallia<br />

Prerequisites and exclusions<br />

Leads to<br />

Prerequisites: MME1201 - Fundamentals <strong>of</strong> Material Science I<br />

and MME2204 – Fundamentals <strong>of</strong> Material Science II<br />

Objectives This unit covers the fundamentals <strong>of</strong> the wide range <strong>of</strong><br />

manufactur<strong>in</strong>g processes for eng<strong>in</strong>eer<strong>in</strong>g materials. Their<br />

capabilities, limitations and suitability for different materials<br />

are described, provid<strong>in</strong>g an <strong>in</strong>sight for the students to f<strong>in</strong>d<br />

solutions for product manufacture.<br />

Syllabus • Introduction<br />

Select<strong>in</strong>g materials and manufactur<strong>in</strong>g processes, economics,<br />

responsibility <strong>of</strong> eng<strong>in</strong>eers.<br />

• Cast<strong>in</strong>g processes<br />

Introduction, solidification, melt<strong>in</strong>g furnaces, different types <strong>of</strong><br />

cast<strong>in</strong>g processes (sand, die, <strong>in</strong>got cast<strong>in</strong>g etc), advantages and<br />

limitations, economics<br />

• Bulk deformation processes <strong>of</strong> metals<br />

Introduction, forg<strong>in</strong>g, roll<strong>in</strong>g, extrusion, draw<strong>in</strong>g, defects <strong>in</strong><br />

components, advantages and limitations<br />

• Sheet metal form<strong>in</strong>g processes<br />

Sheet metal characteristics, shear<strong>in</strong>g, bend<strong>in</strong>g, stretch form<strong>in</strong>g,<br />

bulg<strong>in</strong>g, rubber form<strong>in</strong>g, sp<strong>in</strong>n<strong>in</strong>g, high energy rate form<strong>in</strong>g,<br />

superplastic form<strong>in</strong>g, advantages and limitations, economics<br />

• Polymer process<strong>in</strong>g<br />

Thermoplastics, thermosets, Process<strong>in</strong>g <strong>of</strong> Plastics: extrusion,<br />

<strong>in</strong>jection mold<strong>in</strong>g, blow mold<strong>in</strong>g, rotational mold<strong>in</strong>g,<br />

therm<strong>of</strong>orm<strong>in</strong>g, compression mold<strong>in</strong>g, transfer mold<strong>in</strong>g,<br />

cast<strong>in</strong>g, cold form<strong>in</strong>g. Process<strong>in</strong>g <strong>of</strong> re<strong>in</strong>forced plastics:<br />

Mold<strong>in</strong>g, filament w<strong>in</strong>d<strong>in</strong>g, pultrusion and pulfrom<strong>in</strong>g. Product<br />

quality. Economics<br />

• Metal powders, ceramics, glass, and composite process<strong>in</strong>g<br />

Powder metallurgy: Introduction, powder production and<br />

characteristics, blend<strong>in</strong>g compaction, s<strong>in</strong>ter<strong>in</strong>g, f<strong>in</strong>ish<strong>in</strong>g<br />

operations. Advantages and limitations over other processes.<br />

Ceramic process<strong>in</strong>g: Introduction, Cast<strong>in</strong>g, plastic form<strong>in</strong>g,<br />

press<strong>in</strong>g, dry<strong>in</strong>g and fir<strong>in</strong>g, F<strong>in</strong>ish<strong>in</strong>g operations. Glass form<strong>in</strong>g<br />

<strong>of</strong>: flat sheet, rods, tub<strong>in</strong>g, discrete products. Composites<br />

process<strong>in</strong>g: Metal matrix and ceramic matrix.<br />

• Selection <strong>of</strong> manufactur<strong>in</strong>g processes<br />

Process selection considerations, case study<br />

- 19 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Laboratory work • Production <strong>of</strong> Alum<strong>in</strong>ium cast<strong>in</strong>g<br />

Assessment 75% written exam<strong>in</strong>ation, 25% projects<br />

Text books and resources • Kalpakjian, S. and Schmid, S.R., Manufactur<strong>in</strong>g Processes<br />

for <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Materials, fourth edition, Prentice Hall<br />

• Edward L. and Endeam M., Manufactur<strong>in</strong>g with Materials,<br />

Butterwoth<br />

• Dieter G.E., <strong>Mechanical</strong> Metallurgy, McGraw-Hill<br />

• Swift K.G. and Booker J.D., Process selection: from design<br />

to manufacture, Arnold<br />

- 20 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MME3211 – Pr<strong>in</strong>ciples <strong>of</strong> Material Characterization<br />

Credits 5<br />

Lectures/tutorial hours 20 hours lectures, 8 hours tutorials<br />

Laboratory hours<br />

12 hours<br />

Lecturer<br />

Dr. S. Abela<br />

Prerequisites and exclusions<br />

Leads to<br />

Prerequisites: MME1201 - Fundamentals <strong>of</strong> Material Science I<br />

and MME2204 – Fundamentals <strong>of</strong> Material Science II<br />

Objectives This module describes modern analytical methods <strong>in</strong> simplified<br />

terms and emphasizes the most common applications and<br />

limitations <strong>of</strong> each method. The <strong>in</strong>tent is to familiarize the<br />

student with the techniques and give him sufficient knowledge<br />

to <strong>in</strong>teract with the appropriate analytical specialists, thereby<br />

enabl<strong>in</strong>g materials characterization and troubleshoot<strong>in</strong>g to be<br />

conducted effectively and efficiently.<br />

Syllabus • Interaction <strong>of</strong> high energy beams with matter. Properties<br />

<strong>of</strong> electrons. The scatter<strong>in</strong>g <strong>of</strong> electrons by the atoms <strong>in</strong> the<br />

specimen, Electromagnetic spectrum.<br />

• Optical, atomic force and electron microscopy:<br />

a) The optical microscope: components, operation, specimen<br />

preparation, image analysis <strong>in</strong>clud<strong>in</strong>g phase analysis,<br />

limitations.<br />

b) The scann<strong>in</strong>g electron microscope: Pr<strong>in</strong>ciple <strong>of</strong> operation:<br />

components and characteristics, applications.<br />

c) Transmission Electron Microscope: Pr<strong>in</strong>ciple <strong>of</strong> operation:<br />

components and characteristics, applications.<br />

d) The AFM and STM: Contact and non contact mode <strong>of</strong><br />

operation, applications and limitations.<br />

f) Sample preparation.<br />

• X-Ray Spectroscopy:<br />

a) Pr<strong>in</strong>ciple <strong>of</strong> X-ray diffraction, Bragg’s Law<br />

b) X-ray equipment: components and characteristics<br />

c) X-ray diffraction techniques<br />

• Different electromagnetic radiation spectroscopy<br />

methods.<br />

Adsorption and emission spectroscopy, pr<strong>in</strong>ciple <strong>of</strong><br />

operation, <strong>in</strong>terpretation <strong>of</strong> results, applications.<br />

• Static and Dynamic mechanical analysis<br />

Hands on topics, Measurement <strong>of</strong> mechanical properties <strong>of</strong><br />

materials.<br />

- 21 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Tutorials • Research project: The student will be required to prepare a<br />

presentation and a short report (max 10,000 words) to<br />

describe the applications, limitations, and equipment used for<br />

a specific characterization technique which will be assigned<br />

at the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> the semester.<br />

• Demonstrations: The demonstration will cover the procedure<br />

to be followed, the operation <strong>of</strong> the characterization<br />

equipment, and <strong>in</strong>terpretation <strong>of</strong> results (subject on the<br />

availability <strong>of</strong> the equipment)<br />

Laboratory work • X-ray diffraction, Scann<strong>in</strong>g electron Microscopy (subject on<br />

availability)<br />

Assessment 50% written exam<strong>in</strong>ation, 50% projects<br />

Text books and resources • ASM Metals handbook<br />

• Flewitt P. & Wild R., Microstructural characterization <strong>of</strong><br />

metals and alloys.<br />

• P. E. J. Flewitt, R. K. Wild, Physical methods for material<br />

characterization<br />

• Col<strong>in</strong> N. Banwell, Ela<strong>in</strong>e M. McCash, Fundamentals <strong>of</strong><br />

Molecular Spectroscopy<br />

- 22 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MME 3212 - Introduction to Surface <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Credits 5<br />

Lectures/tutorial hours 26 hours lectures, 4 hours tutorials<br />

Laboratory hours<br />

10 hours<br />

Lecturer<br />

Dr. S. Abela<br />

Prerequisites and exclusions Prerequisites: MME1201 - Fundamentals <strong>of</strong> Material Science<br />

I, MME2204 – Fundamentals <strong>of</strong> Material Science II and<br />

MME1202 - Physical Metallurgy and Diffusion<br />

Leads to Year 4, 5 topics<br />

Objectives This unit presents the philosophy and application <strong>of</strong> the<br />

surface eng<strong>in</strong>eer<strong>in</strong>g <strong>of</strong> components, aided by a number <strong>of</strong><br />

demonstrations <strong>of</strong> practical applications.<br />

Syllabus 11. Introduc<strong>in</strong>g Surface <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> – the concept <strong>of</strong><br />

surface eng<strong>in</strong>eer<strong>in</strong>g; the requirement for surface<br />

eng<strong>in</strong>eer<strong>in</strong>g; advantages and disadvantages <strong>of</strong> surface<br />

eng<strong>in</strong>eer<strong>in</strong>g; a taxonomy <strong>of</strong> surface eng<strong>in</strong>eer<strong>in</strong>g<br />

processes.<br />

12. Coat<strong>in</strong>g processes – electroplat<strong>in</strong>g; electroless coat<strong>in</strong>g;<br />

galvaniz<strong>in</strong>g; pa<strong>in</strong>t<strong>in</strong>g; sol-gel coat<strong>in</strong>gs; enamell<strong>in</strong>g;<br />

glaz<strong>in</strong>g. Requirements for coat<strong>in</strong>g processes.<br />

13. <strong>Mechanical</strong> processes – shot peen<strong>in</strong>g; examples <strong>of</strong><br />

application.<br />

14. Thermal processes – surface heat treatment; flame,<br />

<strong>in</strong>duction and laser surface heat treatment; cryogenic<br />

treatment; requirements for thermal processes; examples<br />

<strong>of</strong> application.<br />

15. Thermochemical processes – solid, liquid and gas phase<br />

thermochemical process<strong>in</strong>g; plasma process<strong>in</strong>g; nitrid<strong>in</strong>g,<br />

carburiz<strong>in</strong>g, carbonitrid<strong>in</strong>g; requirements for<br />

thermochemical processes; examples <strong>of</strong> applications.<br />

16. Chemical and Physical Vapour Deposition – chemical<br />

vapour deposition; physical vapour deposition;<br />

requirements for cvd and pvd; examples <strong>of</strong> applications.<br />

17. Ion beam processes – ion implantation; ion beam<br />

assisted deposition; PI 3 ; requirements for ion beam<br />

process<strong>in</strong>g; examples <strong>of</strong> applications.<br />

18. Thermal spray<strong>in</strong>g – the thermal spray<strong>in</strong>g process;<br />

HVOF coat<strong>in</strong>g; plasma spray<strong>in</strong>g; cold spray<strong>in</strong>g;<br />

requirements for spray<strong>in</strong>g processes; application <strong>of</strong><br />

spray<strong>in</strong>g processes.<br />

19. Laser surface eng<strong>in</strong>eer<strong>in</strong>g – surface remelt<strong>in</strong>g; alloy<strong>in</strong>g;<br />

particle impregnation; cladd<strong>in</strong>g; surface shock<br />

process<strong>in</strong>g; laser-assisted vapour deposition; laser beam<br />

mark<strong>in</strong>g. Examples <strong>of</strong> practical applications.<br />

- 23 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

20. Preparation for coat<strong>in</strong>g processes – pretreatment; grit<br />

blast<strong>in</strong>g; clean<strong>in</strong>g <strong>of</strong> surfaces; surface f<strong>in</strong>ish. Examples <strong>of</strong><br />

practical applications.<br />

21. The economics <strong>of</strong> surface eng<strong>in</strong>eer<strong>in</strong>g – preparation<br />

and process costs; bulk vs. surface properties;<br />

performance enhancement.<br />

22. Materials selection – bulk vs. surface properties;<br />

selection <strong>of</strong> the correct surface treatment; case studies.<br />

Tutorials Tutorials 1 and 2 : Q&A sessions<br />

Coursework Coursework:<br />

1. Onl<strong>in</strong>e session on laser remelt<strong>in</strong>g and surface heat<br />

treatment.<br />

2. Onl<strong>in</strong>e session on ion beam process<strong>in</strong>g and PVD.<br />

3. Onl<strong>in</strong>e session on nitrid<strong>in</strong>g.<br />

4. Process evaluation – microhardness, wear test<strong>in</strong>g and<br />

corrosion test<strong>in</strong>g.<br />

5.<br />

Laboratory sessions Lab sessions:<br />

1. Laser surface heat treatment and remelt<strong>in</strong>g<br />

2. Plasma nitrid<strong>in</strong>g<br />

3. PVD<br />

4. Shot peen<strong>in</strong>g<br />

5. Process evaluation – microhardness, wear test<strong>in</strong>g and<br />

corrosion test<strong>in</strong>g (coursework)<br />

Assessment 50% written exam<strong>in</strong>ation, 50% projects<br />

Text books and resources Textbook:<br />

- 24 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Level 4 units<br />

- 25 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MME4109 – Nano and Biomaterials<br />

Credits 5<br />

Lectures/tutorial hours 26 hours lectures, 8 hours tutorials<br />

Laboratory hours<br />

6 hours<br />

Lecturer<br />

Mr. J. Buhagiar<br />

Prerequisites and exclusions<br />

Leads to<br />

Prerequisites: MME2203 - Ferrous and Non Ferrous Alloys,<br />

MME1201 - Fundamentals <strong>of</strong> Material Science I and<br />

MME2204 – Fundamentals <strong>of</strong> Material Science II.<br />

Objectives Biomaterials: The objective is to provide a balanced,<br />

<strong>in</strong>sightful view <strong>of</strong> biomaterials were the classes <strong>of</strong> materials<br />

used <strong>in</strong> medic<strong>in</strong>e will be outl<strong>in</strong>ed together with their<br />

applications <strong>in</strong> medic<strong>in</strong>e, biology and artificial organs.<br />

Syllabus • Nano-Materials<br />

Introduction to Nanotechnology: Def<strong>in</strong>ition and classification<br />

<strong>of</strong> nanomaterials. Virtues and potential hazards <strong>of</strong> work<strong>in</strong>g <strong>in</strong><br />

the nanodoma<strong>in</strong>.<br />

Nanoscale <strong>Mechanical</strong> Properties: Measurement techniques<br />

for the quantification <strong>of</strong> basic mechanical properties<br />

<strong>in</strong>clud<strong>in</strong>g: hardness, elastic modulus, fracture toughness,<br />

fatigue strength and scratch resistance. Use <strong>of</strong> STM and<br />

AFM on th<strong>in</strong> films.<br />

Chemical and mechanical synthesis <strong>of</strong> nanoparticles.<br />

Introduction to the deposition and properties <strong>of</strong><br />

nanostructured coat<strong>in</strong>gs<br />

Nanomaterials and Nanostructures; <strong>in</strong>clud<strong>in</strong>g CNTs and<br />

buckyballs.<br />

• Biomaterials<br />

Introduction: An outl<strong>in</strong>e on the classes <strong>of</strong> materials which<br />

are currently be<strong>in</strong>g used as biomaterials.<br />

Metals: The three alloys: sta<strong>in</strong>less steels, cobalt-chromium<br />

and titanium will be discussed together with their applications<br />

and limitations.<br />

Ceramics: Ceramics, Glasses and Glass-Ceramics will be<br />

discussed together with their applications and limitations <strong>in</strong><br />

the biomaterials world.<br />

- 26 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Polymers: Polymers, composites, hydro-gels, medical fibres<br />

and textiles will be covered together with their possible<br />

applications and limitations <strong>in</strong> medic<strong>in</strong>e.<br />

Conclusion: A brief <strong>in</strong>sight <strong>of</strong> how to improve biomaterials<br />

by surface eng<strong>in</strong>eer<strong>in</strong>g will be given with a focus on metallic<br />

and polymeric biomaterials.<br />

Laboratory work • On Site visit to a biomedical laboratory<br />

• Demonstration <strong>of</strong> material/product features at the<br />

nanoscale us<strong>in</strong>g state <strong>of</strong> the art characterisation equipment<br />

<strong>in</strong> materials lab<br />

Assessment 75% written exam<strong>in</strong>ation, 25% projects<br />

Text books and resources • Ratner et al., Biomaterials Science: An <strong>in</strong>troduction to<br />

materials <strong>in</strong> medic<strong>in</strong>e (Elsevier)<br />

• Edited: Helsen et al., Metals as Biomaterials (Wiley)<br />

• M. Di Ventra, S. Evoy, J. R. Hefl<strong>in</strong>, Introduction to<br />

Nanoscale Science and Technology, KAP, 2004<br />

• A. S. Edelste<strong>in</strong>, R. C. Cammarata (Editors),<br />

Nanomaterials: Sythesis, Properties and Applications,<br />

IoP, 2002<br />

- 27 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MME4116 – Polymeric Materials<br />

Credits 5<br />

Lectures/tutorial hours 28 hours lectures, 6 hours tutorials<br />

Laboratory hours<br />

6 hours<br />

Lecturer<br />

Dr. S. Abela<br />

Prerequisites and exclusions Prerequisites: MME1201 - Fundamentals <strong>of</strong> Material Science<br />

I and MME 2204 – Fundamentals <strong>of</strong> Material Science II<br />

Leads to None<br />

Objectives This unit presents concepts and methodologies <strong>of</strong> polymer<br />

eng<strong>in</strong>eer<strong>in</strong>g. The orig<strong>in</strong> <strong>of</strong> the wide range <strong>of</strong> mechanical and<br />

chemical properties will be traced down to its roots such that<br />

the student can discrim<strong>in</strong>ate between different polymers.<br />

Syllabus 1. Bond<strong>in</strong>g <strong>in</strong> solids: Difference between metallic,<br />

covalent and electrovalent bond<strong>in</strong>g <strong>in</strong> solids. Arrangement<br />

<strong>of</strong> atoms <strong>in</strong> crystall<strong>in</strong>e solids. Secondary bond<strong>in</strong>g <strong>in</strong> solids<br />

and relation between the type <strong>of</strong> bond<strong>in</strong>g and the physical<br />

properties <strong>of</strong> solids.<br />

2. Macro Molecular Solids: The polymeric cha<strong>in</strong><br />

“backbone”, the mer, chemistry and structure. The<br />

comb<strong>in</strong>ed effect <strong>of</strong> the primary and secondary bond<strong>in</strong>g, on<br />

the physical properties <strong>of</strong> polymeric materials.<br />

3. Functional Groups: Insight <strong>in</strong>to the polymeric<br />

backbone. Function <strong>of</strong> the various components <strong>of</strong> the<br />

backbone and side groups. The chemical makeup <strong>of</strong> the<br />

polymeric cha<strong>in</strong>.<br />

4. The Molecular Structure: Introduction to the relation<br />

between the macromolecular structure and weight and the<br />

physical properties <strong>of</strong> polymers.<br />

5 Polymerization: Active sites, condensation<br />

polymerization, addition polymerization, degree on<br />

polymerization, molecular weight.<br />

6. Degradation <strong>of</strong> Polymers: Shear<strong>in</strong>g <strong>of</strong> primary bonds<br />

by the application <strong>of</strong> stress. Effect <strong>of</strong> radiation, heat,<br />

aggressive chemicals and solvents.<br />

7. Polymeric Materials <strong>in</strong> Manufactur<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong>:<br />

Compression mould<strong>in</strong>g, extrusion, co-Draw<strong>in</strong>g (conductor<br />

<strong>in</strong>sulation), blow mould<strong>in</strong>g, film extrusion, cast<strong>in</strong>g,<br />

Pa<strong>in</strong>ts, sealants, and adhesive.<br />

8. Surface <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> <strong>of</strong> Polymers: Metallization <strong>of</strong><br />

polymeric films, magnetron sputter<strong>in</strong>g, vacuum<br />

deposition, electro less plat<strong>in</strong>g, ion implantation.<br />

9. Polymer Assemblies: Jo<strong>in</strong><strong>in</strong>g <strong>of</strong> polymers, dimensional<br />

stability.<br />

10. Nomenclature: The chemical and <strong>in</strong>dustrial names <strong>of</strong><br />

some <strong>of</strong> the most common polymers<br />

- 28 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Tutorials Tutorial 1 – <strong>Mechanical</strong> properties <strong>of</strong> polymers at various<br />

temperatures<br />

Laboratory work Tensile test.<br />

Creep test.<br />

Fatigue test<strong>in</strong>g.<br />

Coursework Degradation <strong>in</strong>vestigation: <strong>in</strong>dividual students are assigned<br />

a set <strong>of</strong> specimens each. The specimen will be exposed to UV<br />

radiation for various durations. The students would have to<br />

describe the outcome <strong>in</strong> a report <strong>in</strong> writ<strong>in</strong>g. The case would<br />

also be presented to the class and discussed dur<strong>in</strong>g a tutorial<br />

session.<br />

Assessment 50% written exam<strong>in</strong>ation, 50% projects<br />

Recommended read<strong>in</strong>g Polymer Chemistry Edited by Malcolm P. Stevens<br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> with polymers Edited by Peter C. Powell and A.<br />

Jan Ingen Housz<br />

- 29 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MME4213 - Materials Test<strong>in</strong>g Procedures and Standards<br />

Credits 5<br />

Lectures/tutorial hours 28 hours lectures, 6 hours tutorials<br />

Laboratory hours<br />

6 hours<br />

Lecturer<br />

Mr. B. Mallia<br />

Prerequisites and exclusions Prerequisites: MME1201 - Fundamentals <strong>of</strong> Material Science I<br />

and MME2204 – Fundamentals <strong>of</strong> Material Science II<br />

Leads to None<br />

Objectives This unit presents concepts and methodologies <strong>of</strong> polymer<br />

eng<strong>in</strong>eer<strong>in</strong>g. The orig<strong>in</strong> <strong>of</strong> the wide range <strong>of</strong> mechanical and<br />

chemical properties will be traced down to its roots such that<br />

the student can discrim<strong>in</strong>ate between different polymers.<br />

Syllabus 1. Bond<strong>in</strong>g <strong>in</strong> solids: Difference between metallic,<br />

covalent and electrovalent bond<strong>in</strong>g <strong>in</strong> solids.<br />

Arrangement <strong>of</strong> atoms <strong>in</strong> crystall<strong>in</strong>e solids. Secondary<br />

bond<strong>in</strong>g <strong>in</strong> solids and relation between the type <strong>of</strong><br />

bond<strong>in</strong>g and the physical properties <strong>of</strong> solids.<br />

2. Macro Molecular Solids: The polymeric cha<strong>in</strong><br />

“backbone”, the mer, chemistry and structure. The<br />

comb<strong>in</strong>ed effect <strong>of</strong> the primary and secondary<br />

bond<strong>in</strong>g, on the physical properties <strong>of</strong> polymeric<br />

materials.<br />

3. Functional Groups: Insight <strong>in</strong>to the polymeric<br />

backbone. Function <strong>of</strong> the various components <strong>of</strong> the<br />

backbone and side groups. The chemical makeup <strong>of</strong><br />

the polymeric cha<strong>in</strong>.<br />

4. The Molecular Structure: Introduction to the<br />

relation between the macromolecular structure and<br />

weight and the physical properties <strong>of</strong> polymers.<br />

5 Polymerization: Active sites, condensation<br />

polymerization, addition polymerization, degree on<br />

polymerization, molecular weight.<br />

6. Degradation <strong>of</strong> Polymers: Shear<strong>in</strong>g <strong>of</strong> primary bonds<br />

by the application <strong>of</strong> stress. Effect <strong>of</strong> radiation, heat,<br />

aggressive chemicals and solvents.<br />

7. Polymeric Materials <strong>in</strong> Manufactur<strong>in</strong>g<br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong>: Compression mould<strong>in</strong>g, extrusion, co-<br />

Draw<strong>in</strong>g (conductor <strong>in</strong>sulation), blow mould<strong>in</strong>g, film<br />

extrusion, cast<strong>in</strong>g, Pa<strong>in</strong>ts, sealants, and adhesive.<br />

8. Surface <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> <strong>of</strong> Polymers: Metallization <strong>of</strong><br />

polymeric films, magnetron sputter<strong>in</strong>g, vacuum<br />

deposition, electro less plat<strong>in</strong>g, ion implantation.<br />

9. Polymer Assemblies: Jo<strong>in</strong><strong>in</strong>g <strong>of</strong> polymers,<br />

dimensional stability.<br />

- 30 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

10. Nomenclature: The chemical and <strong>in</strong>dustrial names <strong>of</strong><br />

some <strong>of</strong> the most common polymers<br />

Tutorials Tutorial 1 – <strong>Mechanical</strong> properties <strong>of</strong> polymers at various<br />

temperatures<br />

Laboratory work Tensile test.<br />

Creep test.<br />

Fatigue test<strong>in</strong>g.<br />

Coursework Degradation <strong>in</strong>vestigation: <strong>in</strong>dividual students are assigned<br />

a set <strong>of</strong> specimens each. The specimen will be exposed to UV<br />

radiation for various durations. The students would have to<br />

describe the outcome <strong>in</strong> a report <strong>in</strong> writ<strong>in</strong>g. The case would<br />

also be presented to the class and discussed dur<strong>in</strong>g a tutorial<br />

session.<br />

Assessment 50% written exam<strong>in</strong>ation, 50% projects<br />

Recommended read<strong>in</strong>g Polymer Chemistry Edited by Malcolm P. Stevens<br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> with polymers Edited by Peter C. Powell and A.<br />

Jan Ingen Housz<br />

- 31 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MME4214 - <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Ceramics<br />

Credits 5<br />

Lectures/tutorial hours 20 hours lectures, 8 hours tutorials<br />

Laboratory hours<br />

6 hours<br />

Lecturer<br />

Mr. J.C. Betts<br />

Prerequisites and exclusions Prerequisites: MME1201 - Fundamentals <strong>of</strong> Material Science<br />

I and MME2204 – Fundamentals <strong>of</strong> Material Science II<br />

Leads to MSc<br />

Objectives This unit presents the structures and properties and ceramics<br />

and composites and presents some applications and methods<br />

<strong>of</strong> process<strong>in</strong>g.<br />

Syllabus Introduction: classification <strong>of</strong> ceramics, historical<br />

development, technologic and economic significance.<br />

Ceramic structure: bond<strong>in</strong>g and defects <strong>in</strong> ceramic<br />

chemical structures; crystal and amorphous structures;<br />

polymorphism; ceramic transformations and phase<br />

diagrams.<br />

Physical properties: thermal, mechanical, electrical and<br />

optical properties <strong>of</strong> ceramics; the statistics <strong>of</strong> failure.<br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> ceramic process<strong>in</strong>g: the s<strong>in</strong>ter<strong>in</strong>g process;<br />

powder press<strong>in</strong>g and s<strong>in</strong>ter<strong>in</strong>g fabrication processes;<br />

s<strong>in</strong>ter<strong>in</strong>g defects; slip cast<strong>in</strong>g, ceramic <strong>in</strong>jection<br />

mould<strong>in</strong>g, tape cast<strong>in</strong>g; refractories; s<strong>in</strong>gle crystal<br />

process<strong>in</strong>g.<br />

Clay-based ceramics: form<strong>in</strong>g processes for<br />

hydroplastic ceramics; dry<strong>in</strong>g and fir<strong>in</strong>g; glaz<strong>in</strong>g.<br />

Glass: glass composition, process<strong>in</strong>g temperatures, and<br />

fabrication methods; form<strong>in</strong>g <strong>of</strong> glass plates, hollow ware<br />

and fibres; anneal<strong>in</strong>g and temper<strong>in</strong>g.<br />

Cement: types <strong>of</strong> cement; calc<strong>in</strong>ation; process<strong>in</strong>g <strong>of</strong><br />

cements; future trends; concrete.<br />

Tutorials Tutorial 1 – Design<strong>in</strong>g with ceramics<br />

Tutorial 2 – Innovative applications <strong>of</strong> ceramic materials<br />

Tutorial 3 – Open session: Q&A session<br />

Laboratory work Design and test<strong>in</strong>g <strong>of</strong> a composite material<br />

Abrasion/erosion <strong>of</strong> ceramics.<br />

Assessment 80% written exam<strong>in</strong>ation, 20% projects<br />

Text books and resources M.W.Barsoum, Fundamentals <strong>of</strong> Ceramics, McGraw-Hill,<br />

ISBN 978-0070055216<br />

- 32 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name MME4215 - Composite Materials<br />

Credits 5<br />

Lectures/tutorial hours 28 hours lectures, 6 hours tutorials<br />

Laboratory hours<br />

6 hours<br />

Lecturer<br />

Mr. J. Betts<br />

Prerequisites and exclusions Prerequisites: MME1201 - Fundamentals <strong>of</strong> Material Science I<br />

and MME2204 – Fundamentals <strong>of</strong> Material Science II<br />

Leads to None<br />

Objectives The aim <strong>of</strong> this course is to <strong>in</strong>troduce the student to advanced<br />

materials, and to make him aware <strong>of</strong> the vast selection <strong>of</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g materials available to him as an eng<strong>in</strong>eer. The<br />

first part <strong>of</strong> the course deals with monolithic materials which<br />

are specifically designed for advanced composite materials, a<br />

very powerful tool for the design <strong>of</strong> new materials. The<br />

course also <strong>in</strong>troduces the student to materials designed to<br />

operate <strong>in</strong> demand<strong>in</strong>g conditions and to consider how surface<br />

eng<strong>in</strong>eer<strong>in</strong>g techniques can be used to enhance the<br />

performance <strong>of</strong> components <strong>in</strong> diverse <strong>in</strong>dustrial areas.<br />

Syllabus<br />

• Advanced Polymeric Materials. New polymeric materials<br />

such as Kevlar. Advanced design with and fabrication <strong>of</strong><br />

polymers. Case studies.<br />

• Advanced Ceramic Materials. Advanced powder<br />

synthesis techniques. Advanced process<strong>in</strong>g methods.<br />

Microstructural design and gra<strong>in</strong> boundary eng<strong>in</strong>eer<strong>in</strong>g.<br />

Case studies.<br />

• Introduction to Composite Materials. Phase selection<br />

criteria. Re<strong>in</strong>forc<strong>in</strong>g mechanisms. Interfaces, advantages<br />

and disadvantages.<br />

• Polymer Composites. Re<strong>in</strong>forc<strong>in</strong>g and matrix materials.<br />

Prepregs. Fiber w<strong>in</strong>d<strong>in</strong>g techniques. Fabrication<br />

techniques. Lam<strong>in</strong>ates. <strong>Mechanical</strong> behaviour, etc.<br />

• Metal Composites. Types <strong>of</strong> re<strong>in</strong>forcement. Chemical<br />

compatibility. Fabrication processes. <strong>Mechanical</strong><br />

behaviour and properties. Case studies.<br />

• Ceramic Composites. Matrices and re<strong>in</strong>forcement. Why<br />

to re<strong>in</strong>force ceramics. Fabrication methods. Crack<br />

propagation and mechanical behaviour.<br />

• Surface <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong>. Reasons for surface eng<strong>in</strong>eer<strong>in</strong>g.<br />

Introduction to surface modification processes <strong>in</strong>clud<strong>in</strong>g:<br />

Carburiz<strong>in</strong>g, Nitrid<strong>in</strong>g, Nitrocarburiz<strong>in</strong>g, Ion<br />

Implantation, Shot Peen<strong>in</strong>g and laser techniques.<br />

Introduction to coat<strong>in</strong>g processes <strong>in</strong>clud<strong>in</strong>g: Plat<strong>in</strong>g,<br />

- 33 -


Department <strong>of</strong> Metallurgy and Materials <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

PVD, CVD and Thermal Spray<strong>in</strong>g.<br />

Characteristics/applications/limitations <strong>of</strong> the various<br />

techniques<br />

Tutorials Tutorial 1 – Design<strong>in</strong>g an operational test<br />

Tutorial 2 – Test<strong>in</strong>g <strong>of</strong> composite materials<br />

Laboratory work Tribological properties <strong>of</strong> surface eng<strong>in</strong>eered tool steel.<br />

Comparison <strong>of</strong> PVD, nitrided, ion implanted steels.<br />

Coursework Fatigue <strong>in</strong>vestigation: <strong>in</strong>dividual students are assigned a<br />

specimen each. A standard rotary bend<strong>in</strong>g fatigue test at high<br />

load would be carried out on these specimens which would<br />

have different treatments applied to them.<br />

The students would have to describe the outcome <strong>in</strong> a report<br />

<strong>in</strong> writ<strong>in</strong>g. The case would also be presented to the class and<br />

discussed dur<strong>in</strong>g a tutorial session.<br />

Assessment 50% written exam<strong>in</strong>ation, 50% projects<br />

Recommended read<strong>in</strong>g • AK<strong>in</strong>g R.G., Surface treatment and f<strong>in</strong>ish <strong>of</strong><br />

alum<strong>in</strong>ium, (Pergamon Press)<br />

• Straafford K.N., Datta P.K., Grag J.S., Surface<br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Practice, (Ellis Horltoow)<br />

• Richorson R.W., Modern Ceramic <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong>,<br />

(Marcel Dekker)<br />

- 34 -


Faculty <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Study-units <strong>of</strong>fered by the<br />

Faculty <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Faculty <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

University <strong>of</strong> Malta<br />

- 1 -


Faculty <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Level 1 units<br />

- 2 -


Faculty <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Level 2 units<br />

- 3 -


Faculty <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name ENR2000 – Team Project<br />

Credits 5<br />

Lectures/tutorial hours 8 hours<br />

Laboratory hours 20 hours<br />

Lecturer Various project supervisors<br />

Prerequisites and exclusions None<br />

Leads to<br />

Objectives In this unit students work <strong>in</strong> teams to design, implement, test<br />

and validate a technical solution to a given requirement <strong>in</strong> the<br />

field <strong>of</strong> electrical and electronics eng<strong>in</strong>eer<strong>in</strong>g.<br />

Syllabus Projects will ma<strong>in</strong>ly <strong>in</strong>volve a comb<strong>in</strong>ation <strong>of</strong> elements <strong>of</strong><br />

electronic/electrical hardware, algorithm and s<strong>of</strong>tware design.<br />

As part <strong>of</strong> the unit, students shall also attend a series <strong>of</strong> formal<br />

lectures on good practice <strong>in</strong> general problem solv<strong>in</strong>g, design<br />

approaches, project plann<strong>in</strong>g and time management, team<br />

work, report writ<strong>in</strong>g and presentation (preparation and<br />

delivery).<br />

Laboratory work • Project<br />

Assessment As mentioned above<br />

Text books and resources<br />

At the end <strong>of</strong> the project, each team is expected to<br />

demonstrate operation <strong>of</strong> the implemented solution, submit a<br />

20 page project report and deliver a short presentation on the<br />

project. All team members shall participate <strong>in</strong> the write-up <strong>of</strong><br />

the report and the delivery <strong>of</strong> the presentation.<br />

The unit will be assessed through progress supervision,<br />

project demonstration, student <strong>in</strong>terviews, technical report<strong>in</strong>g<br />

and public presentation. The unit will be assessed on the merit<br />

<strong>of</strong>:<br />

• Technical issues: technical research, design,<br />

implementation, workmanship and success, test<strong>in</strong>g<br />

and validation procedures, project demonstration.<br />

• Management and participation issues: project<br />

plann<strong>in</strong>g, project management, role performance,<br />

team work.<br />

• Presentation issues: report, <strong>in</strong>terview, presentation.<br />

Students will be rewarded for tak<strong>in</strong>g proactive roles and<br />

<strong>in</strong>itiatives and for develop<strong>in</strong>g <strong>in</strong>dependent th<strong>in</strong>k<strong>in</strong>g.<br />

- 4 -


Faculty <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name ENR2100 - <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Systems Elements<br />

Credits 4<br />

Lectures/tutorial hours 24 hours<br />

Laboratory hours<br />

4 hours<br />

Lecturers<br />

Sr. S. Abela, Ing. P. Vella<br />

Prerequisites and exclusions Prerequisites: None<br />

Leads to MFE4110 – Ma<strong>in</strong>tenance Management<br />

Objectives This unit provides the student with an <strong>in</strong>troduction to basic<br />

eng<strong>in</strong>eer<strong>in</strong>g solutions, an overview <strong>of</strong> the specialized<br />

components/ assemblies/ materials used <strong>in</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

systems, and the pr<strong>in</strong>ciples and methodologies used to<br />

ma<strong>in</strong>ta<strong>in</strong> and improve such systems. In addition to all this it<br />

gives an opportunity to the student to study/ explore topics <strong>of</strong><br />

his/her <strong>in</strong>terest and to present the relevant f<strong>in</strong>d<strong>in</strong>gs.<br />

Syllabus • Introduction to Basic <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Solutions. Typical<br />

topics are:<br />

o Structures and structural elements: Stiffeners, stays,<br />

torsion bars, fillets, webs, corrugations,<br />

o bolts, nuts, screws, clamps, rivets, weld<strong>in</strong>g, solder<strong>in</strong>g,<br />

adhesives,<br />

self align<strong>in</strong>g features; spigots, tapered components,<br />

dowels, crown<strong>in</strong>g, bellows<br />

o spr<strong>in</strong>gs<br />

o Bear<strong>in</strong>gs<br />

o Transmission <strong>of</strong> power: shafts, wire ropes, pulleys, gears,<br />

gearboxes, cha<strong>in</strong>s, keys, spl<strong>in</strong>es, clutches, coupl<strong>in</strong>gs, veebelts,<br />

etc<br />

o Pressure seals: Static and Dynamic seals<br />

o Tailpipes, manifolds, diffusers, spr<strong>in</strong>klers, radiators,<br />

o Quick release fitt<strong>in</strong>gs,<br />

o Pa<strong>in</strong>ts, varnishes, coat<strong>in</strong>gs, conversion treatments and<br />

clads.<br />

• Components/ Assemblies/ Materials used <strong>in</strong><br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Solutions. Indicative topics are:<br />

o <strong>Mechanical</strong> Pumps, sorption pumps, ion pumps, and<br />

educators; positive displacement or not, types, critical<br />

clearances, lifetime, use<br />

o Feedback devices; resolvers, limit switches, stra<strong>in</strong><br />

gauges, load cells, thermometers, gas detectors, pressure<br />

- 5 -


Faculty <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Laboratory work<br />

Assessment 100% Assignment<br />

gauges and switches, thermocouples, thermistors<br />

o Control and <strong>in</strong>telligent devices; the governor, the PLC,<br />

cams, computer DAQ, dedicated controllers, hard wired<br />

control, Brakes.<br />

o Pipe fitt<strong>in</strong>gs, valves, feed regulators, pressure control<br />

units, l<strong>in</strong>e filters, dampers, accumulators<br />

o Heat exchangers, heat recovery (economizers), catalytic<br />

convertors, shoot blowers, deaireators.<br />

o ion exchange membranes, reverse osmosis, filters,<br />

Heat pumps, re-heaters, turbo<br />

o Prime movers: electric motors, IC eng<strong>in</strong>es, steam<br />

eng<strong>in</strong>es, rockets, jets, sails, w<strong>in</strong>d turb<strong>in</strong>es, pneumatic /<br />

hydraulic actuators.<br />

o Manufactur<strong>in</strong>g equipment related components/<br />

assemblies: vibratory bowl feeders, vision systems, pick<br />

and place, etc<br />

o Generators<br />

o Coolants, <strong>in</strong>hibitors, lubricants, hydraulic oils,<br />

• Analysis Typical <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Systems<br />

o A number <strong>of</strong> eng<strong>in</strong>eer<strong>in</strong>g systems will be analysed: e.g<br />

HVAC systems; hoist<strong>in</strong>g equipment; manufactur<strong>in</strong>g<br />

equipment; Domestic and <strong>in</strong>dustrial appliances such as<br />

Dishwashers, automatic wash<strong>in</strong>g mach<strong>in</strong>es; etc<br />

• Ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g and Improv<strong>in</strong>g <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Systems.<br />

Typical topics are:<br />

o Equipment ma<strong>in</strong>tenance, Equipment Effectiveness, Total<br />

Productive<br />

Ma<strong>in</strong>tenance (TPM), Implement<strong>in</strong>g TPM.<br />

Text books and resources Robert L. Norton – Mach<strong>in</strong>e Design, An <strong>in</strong>tegrated Approach<br />

J.E.Shigley, C.R.Mischke, R.G.Budynas – <strong>Mechanical</strong><br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Design<br />

- 6 -


Faculty <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Level 3 units<br />

- 7 -


Faculty <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name ENR3000 – F<strong>in</strong>al Year Project<br />

Credits 18<br />

Lectures/tutorial hours<br />

Laboratory hours<br />

Lecturer<br />

Prerequisites and exclusions<br />

Leads to<br />

Objectives<br />

TBA<br />

Syllabus F<strong>in</strong>al year projects <strong>in</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> are open-ended problems<br />

for which the aims and objectives must be def<strong>in</strong>ed, a<br />

programme <strong>of</strong> work del<strong>in</strong>eated and then carried out <strong>in</strong> a<br />

structured way.<br />

Laboratory work<br />

Assessment 100% project<br />

The type <strong>of</strong> work, design, experimental, simulation analysis,<br />

etc will depend on the project specification and may<br />

concentrate more on one area than another or be multidiscipl<strong>in</strong>ed<br />

accord<strong>in</strong>g to the knowledge ga<strong>in</strong>ed by the student<br />

dur<strong>in</strong>g the previous years <strong>of</strong> the course. However all projects<br />

are expected to have an element <strong>of</strong> design, implementation<br />

and test<strong>in</strong>g.<br />

The project presentation and project report should<br />

demonstrate how well the student has achieved the <strong>in</strong>tentions<br />

beh<strong>in</strong>d the work <strong>in</strong> relation to the project specification.<br />

Text books and resources Students are expected to consult the paper “Notes for the<br />

presentation <strong>of</strong> f<strong>in</strong>al year dissertations” by Pr<strong>of</strong>. R. Ghirlando.<br />

- 8 -


Faculty <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name ENR3301 – <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Management<br />

Credits 5<br />

Lectures/Tutorial hours<br />

Laboratory hours<br />

28 hours lectures / 7 hours tutorials/ presentations<br />

Lecturer<br />

TBA<br />

Prerequisites and exclusions<br />

Leads to<br />

None<br />

Objectives This module is primarily aimed to expose students to different<br />

aspects <strong>of</strong> bus<strong>in</strong>ess/ management pr<strong>in</strong>ciples, concepts and<br />

techniques. The course will also <strong>in</strong>troduce students to<br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Project Management.<br />

Syllabus • Introduction to Management <strong>in</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

• Introduction to Human Resource management and<br />

Industrial Relations<br />

• Leadership and Direct<strong>in</strong>g the Shopfloor<br />

• Motivat<strong>in</strong>g and Communicat<strong>in</strong>g your personnel<br />

• Plann<strong>in</strong>g, Organis<strong>in</strong>g and Controll<strong>in</strong>g a Quality<br />

system<br />

• Be<strong>in</strong>g a creative Eng<strong>in</strong>eer <strong>in</strong> a management position<br />

• Introduc<strong>in</strong>g F<strong>in</strong>ance to an Eng<strong>in</strong>eer<br />

• Tak<strong>in</strong>g Decisions us<strong>in</strong>g your Accounts<br />

• Build<strong>in</strong>g a Simple Manufactur<strong>in</strong>g F<strong>in</strong>ancial Budget<br />

• Basic F<strong>in</strong>ancial Account<strong>in</strong>g<br />

• Plann<strong>in</strong>g and forecast<strong>in</strong>g your Cash Flow<br />

• Us<strong>in</strong>g F<strong>in</strong>ancial Ratios to gauge performance<br />

• Start<strong>in</strong>g your own <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Bus<strong>in</strong>ess<br />

• Introduction to <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Project Management<br />

Laboratory work<br />

Assessment 80% written exam<strong>in</strong>ation, 20% assignment<br />

Text books and resources Fraidoon Mazda , <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Management, First Edition,<br />

Prentice Hall; ISBN-10: 0201177986<br />

- 9 -


Faculty <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Level 4 units<br />

- 10 -


Faculty <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name ENR4012 – F<strong>in</strong>al Year Project<br />

Credits 25<br />

Lectures/tutorial hours<br />

Laboratory hours<br />

Lecturer<br />

Prerequisites and exclusions<br />

Leads to<br />

Objectives<br />

Various<br />

Syllabus F<strong>in</strong>al year projects for the degree <strong>Bachelor</strong>s <strong>in</strong> Advanced<br />

Industrial <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> will concern eng<strong>in</strong>eer<strong>in</strong>g problems<br />

assigned by the University (and <strong>in</strong> certa<strong>in</strong> cases orig<strong>in</strong>at<strong>in</strong>g<br />

from <strong>in</strong>dustry) for which the aims and objectives must be<br />

clearly def<strong>in</strong>ed, a program <strong>of</strong> work del<strong>in</strong>eated and then<br />

carried out <strong>in</strong> a structured way. The nature <strong>of</strong> the problem (eg<br />

design, experimental, simulation analysis, etc) will depend on<br />

the project specification and may concentrate more on one<br />

area than another or be multi-discipl<strong>in</strong>ed accord<strong>in</strong>g to the<br />

knowledge ga<strong>in</strong>ed by the student dur<strong>in</strong>g the previous years <strong>of</strong><br />

the course. Advanced Industrial <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> student projects<br />

are expected to have an element <strong>of</strong> solution design,<br />

implementation and test<strong>in</strong>g. The f<strong>in</strong>al year project<br />

presentation and project report should demonstrate that the<br />

student has taken a scientific approach to the decisions made<br />

dur<strong>in</strong>g the execution <strong>of</strong> the project.<br />

Laboratory work<br />

Assessment 100% project<br />

Text books and resources Students are expected to consult the paper “Notes for the<br />

presentation <strong>of</strong> f<strong>in</strong>al year dissertations” by Pr<strong>of</strong>. R. Ghirlando.<br />

- 11 -


Department <strong>of</strong> Industrial Electrical Power Conversion <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Study-units <strong>of</strong>fered by the<br />

Department <strong>of</strong> Industrial Electrical<br />

Power Conversion<br />

Faculty <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

University <strong>of</strong> Malta<br />

- 1 -


Department <strong>of</strong> Industrial Electrical Power Conversion <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Level 1 units<br />

- 2 -


Department <strong>of</strong> Industrial Electrical Power Conversion <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name EPC1101 - Electrical Circuit Theory I<br />

Credits 5<br />

Lectures/tutorial hours 25 hours lectures, 3 hours tutorials<br />

Laboratory hours 6 hours<br />

Lecturer Dr.C. Caruana and Dr.C. Spiteri Sta<strong>in</strong>es<br />

Prerequisites and exclusions none<br />

Leads to EPC1201 - Electrical Circuit Theory II<br />

Objectives To develop the necessary tools required for the dc, ac and<br />

transient analysis and understand<strong>in</strong>g <strong>of</strong> the characteristics <strong>of</strong><br />

electrical and electronic circuits modeled as lumped elements.<br />

Syllabus<br />

• Electrical quantities: voltage, current, charge, resistance,<br />

capacitance, <strong>in</strong>ductance, power, frequency, phase, peak,<br />

r.m.s values.<br />

• Network analysis: Ohm's law, Kirch<strong>of</strong>f's laws, Mesh Current<br />

Analysis, Nodal Analysis, Theven<strong>in</strong> and Norton's theorems,<br />

Millman's theorem, Maximum Power Transfer. L<strong>in</strong>ear and<br />

non-l<strong>in</strong>ear networks, super-position theorem, voltage and<br />

current sources.<br />

• Def<strong>in</strong>itions <strong>of</strong> Electric and Magnetic Fields, Capacitance<br />

and Inductance.<br />

• D.C. Transients: Charg<strong>in</strong>g and discharg<strong>in</strong>g <strong>of</strong> a capacitor,<br />

l<strong>in</strong>ear and exponential, <strong>in</strong>ductor transients.<br />

• A.C. Theory: behaviour <strong>of</strong> resistors, <strong>in</strong>ductors and<br />

capacitors with s<strong>in</strong>usoidal signals, reactance, impedance,<br />

phasor diagrams, j-notation, basic RLC circuits, real power,<br />

reactive power, apparent power, power factor,<br />

Laboratory work • Ohms Law (L<strong>in</strong>ear and non-l<strong>in</strong>ear behaviou)<br />

• D.C. Network Analysis: (Kirch<strong>of</strong>f's Laws, Theven<strong>in</strong>,<br />

Norton's Theorems, Super position)<br />

• D.C. Transients (Charg<strong>in</strong>g and discharg<strong>in</strong>g)<br />

Assessment 90% written exam<strong>in</strong>ation, 10% practical<br />

Text books and resources • Boylestad Introductory Circuit Analysis Prentice Hall<br />

• Nilsson, Electrical Circuits, Addison Wesley ISBN 0-210-<br />

58179-5.<br />

- 3 -


Department <strong>of</strong> Industrial Electrical Power Conversion <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

This unit is <strong>of</strong>fered only to the <strong>Mechanical</strong> and Industrial <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Streams<br />

Unit Name EPC 1102 - Electrical <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Technology<br />

Credits 5<br />

Lectures/tutorial hours 22 hours lectures, 6 hours tutorials<br />

Laboratory hours 6 hours<br />

Lecturer Dr. C. Caruana and Dr. C. Spiteri Sta<strong>in</strong>es<br />

Prerequisites and exclusions Mathematics and Physics at A level standard<br />

Leads to n/a<br />

Objectives This module <strong>in</strong>troduces mechanical eng<strong>in</strong>eers to the basic<br />

pr<strong>in</strong>ciples <strong>of</strong> electrical eng<strong>in</strong>eer<strong>in</strong>g to enable them to<br />

understand these systems and to help them select the most<br />

appropriate equipment for a particular application.<br />

Syllabus • Circuit Theory<br />

DC and AC circuits, resistances, <strong>in</strong>ductors and capacitors,<br />

Kirch<strong>of</strong>f’s laws, steady state analysis <strong>of</strong> AC and DC circuits,<br />

Bridge measurements, power dissipation.<br />

• Power Generation<br />

S<strong>in</strong>gle and three phase generators, transformers, 3-phase<br />

connections, power dissipation. Delta/Star transformation.<br />

• Motors and Drives<br />

Magnetism, DC mach<strong>in</strong>es. The d.c. motor and d.c. generator:<br />

DC mach<strong>in</strong>e speed control, Series wound, shunt and<br />

compound wound. Induction motors, Inverters drives, V/f<br />

control.<br />

Laboratory work • Ohms Law (L<strong>in</strong>ear and non-l<strong>in</strong>ear behaviou)<br />

• D.C. Network Analysis: (Kirch<strong>of</strong>f's Laws, Theven<strong>in</strong>,<br />

Norton's Theorems, Super position)<br />

• D.C. Transients (Charg<strong>in</strong>g and discharg<strong>in</strong>g)<br />

Assessment 90% written exam<strong>in</strong>ation 10% practical<br />

Text books and resources • Electric Circuit Theory & Technology – J.Bird.<br />

- 4 -


Department <strong>of</strong> Industrial Electrical Power Conversion <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

This unit is <strong>of</strong>fered only to Faculty <strong>of</strong> ICT<br />

Unit Name EPC 1003 - Introduction to Electrical Circuit Theory<br />

Credits 6<br />

Lectures/tutorial hours 28 hours lectures, 6 hours tutorials<br />

Laboratory hours 8 hours<br />

Lecturer Dr. C. Spiteri Sta<strong>in</strong>es and Dr. C. Caruana<br />

Prerequisites and exclusions n/a<br />

Leads to n/a<br />

Objectives<br />

Syllabus<br />

Laboratory work<br />

The aim <strong>of</strong> this module is to familiarise the student with basic<br />

electrical components and to provide the basic tools for analys<strong>in</strong>g<br />

l<strong>in</strong>ear circuits, under steady state DC, AC and transient conditions.<br />

This module aims at provid<strong>in</strong>g the fundamentals <strong>in</strong> order to enable<br />

the student to perform analysis <strong>of</strong> electrical and electronic circuits.<br />

Electrical and magnetic properties <strong>of</strong> materials: <strong>in</strong>sulators,<br />

conductors and semiconductors, magnetic and non-magnetic<br />

materials.<br />

Electrical quantities: voltage, current, charge, resistance,<br />

capacitance, <strong>in</strong>ductance, power, frequency, phase, peak, r.m.s<br />

values.<br />

Network analysis: Ohm's law, Kirch<strong>of</strong>f's laws, Mesh Current<br />

Analysis, Nodal Analysis, Theven<strong>in</strong> and Norton's theorems.<br />

Super-position theorem (l<strong>in</strong>ear and non-l<strong>in</strong>ear networks), voltage<br />

and current sources.<br />

D.C. Transients: Charg<strong>in</strong>g and discharg<strong>in</strong>g <strong>of</strong> a capacitor, l<strong>in</strong>ear<br />

and exponential, <strong>in</strong>ductor transients.<br />

A.C. Theory: behaviour <strong>of</strong> resistors, <strong>in</strong>ductors and capacitors with<br />

s<strong>in</strong>usoidal signals, reactance, impedance, phasor diagrams, jnotation,<br />

basic RLC circuits (resonance).<br />

Measurements Lab:<br />

� Basic measur<strong>in</strong>g <strong>in</strong>struments: multimeters, voltmeter,<br />

ammeter, and ohmmeter, power supplies (done <strong>in</strong> conjunction<br />

with Ohm’s Law).<br />

� Use <strong>of</strong> the oscilloscope.<br />

Computer simulation Lab (Pspice):<br />

� D.C. Network Analysis: (Kirch<strong>of</strong>f's Laws, Theven<strong>in</strong>, Norton's<br />

Theorems, Super position), Basics <strong>of</strong> A.C. Circuits<br />

D.C. Transients (Charg<strong>in</strong>g and discharg<strong>in</strong>g)<br />

Assessment 90% written exam<strong>in</strong>ation, 10% practical<br />

Text books and resources • Boylestad, ‘Introductory Circuit Analysis’, Pearson<br />

education.<br />

- 5 -


Department <strong>of</strong> Industrial Electrical Power Conversion <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name EPC1201 - Electrical Circuit Theory II<br />

Credits 5<br />

Lectures/tutorial hours 25 hours lectures, 3 hours tutorials<br />

Laboratory hours 6 hours<br />

Lecturer Dr. M. Apap and Dr. C. Spiteri Sta<strong>in</strong>es<br />

Prerequisites and exclusions EPC1101 - Electrical Circuit Theory I<br />

Leads to n/a<br />

Objectives The aim <strong>of</strong> this course is to familiarise the student further <strong>in</strong><br />

l<strong>in</strong>ear circuit analysis, magnetic circuits and the basics <strong>of</strong><br />

electrical <strong>in</strong>strumentation. It <strong>in</strong>cludes a.c. network theorems,<br />

resonance, magnetic circuits, basic transformer theory and<br />

electrical <strong>in</strong>struments.<br />

Syllabus • Delta/Star Transformation<br />

• AC Network theorems<br />

• AC Resonance, series, parallel, Q-factor<br />

• Hysteresis, eddy current and leakage losses<br />

• Magnetic circuits<br />

• Mutually coupled magnetic circuits, dot notation<br />

• The ideal transformer<br />

• Electric and Magnetic fields<br />

• Inductance and Capacitance <strong>of</strong> Electrical L<strong>in</strong>es<br />

• Electrical Measurements: Electrical Indicat<strong>in</strong>g<br />

Instruments and Electronic Instruments<br />

Laboratory work • A.C. Phasors (<strong>in</strong>clud<strong>in</strong>g pf correction)<br />

• Electrical Measurements<br />

• Magnetic Circuits<br />

Assessment 90% written exam<strong>in</strong>ation, 10% practical<br />

Text books and resources • Boylestad, ‘Introductory Circuit Analysis’, Pearson<br />

education.<br />

• Boctor S.A., Electrical Circuit Analysis - Prentice Hall.<br />

- 6 -


Department <strong>of</strong> Industrial Electrical Power Conversion <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name EPC 1202 - Introduction to Electrical Energy Systems<br />

Credits 5<br />

Lectures/tutorial hours 24 hours lectures, 4 hours tutorials<br />

Laboratory hours 6 hours<br />

Lecturer Dr. Cedric Caruana<br />

Prerequisites and exclusions EPC1101 - Electrical Circuit Theory I<br />

Leads to EPC2102 - Electrical Power I<br />

Objectives To develop an understand<strong>in</strong>g <strong>of</strong> Electrical Power Systems:<br />

Generation, Transmission and Distribution Systems.<br />

Syllabus • Electrical Energy and its Generation: Introduction to<br />

Electric Power systems; Introduction to Maltese Power<br />

System; Electricity Demand; Generat<strong>in</strong>g Plants;<br />

Alternative Energy Generation.<br />

• Three Phase Systems: Advantages <strong>of</strong> 3–phase systems;<br />

Three-wire and four-wire electrical systems with balanced<br />

and unbalanced loads; Electrical Power Measurement <strong>in</strong><br />

3–phase systems.<br />

• Basics <strong>of</strong> Electro-mechanical Conversion: Generation <strong>of</strong><br />

direct current and alternat<strong>in</strong>g current.<br />

• The Synchronous Generator; Construction <strong>of</strong> 3–phase<br />

synchronous alternators; Operation <strong>of</strong> the synchronous<br />

generator on the grid.<br />

• Transmission and Distribution Media: Types <strong>of</strong> Overhead<br />

L<strong>in</strong>es; Short L<strong>in</strong>e Model; Voltage Regulation; Types <strong>of</strong><br />

Underground Cables; Approximate Cable Model; Ferranti<br />

Effect.<br />

• Switchgear and Protection Equipment: Types <strong>of</strong><br />

Switchgear and Protection Equipment.<br />

• Transformers: Pr<strong>in</strong>ciple <strong>of</strong> Operation; Construction;<br />

Losses; Excit<strong>in</strong>g Current; Equivalent Circuit; Phasor<br />

Diagram; 3–Phase Transformer Connections;<br />

Transformers <strong>in</strong> parallel.<br />

Laboratory work • Open and short circuit tests <strong>of</strong> transformer<br />

• Power measurement <strong>in</strong> 3–phase systems.<br />

Assessment 90% written exam<strong>in</strong>ation, 10% practical<br />

Text books and resources •<br />

- 7 -


Department <strong>of</strong> Industrial Electrical Power Conversion <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Level 2 units<br />

- 8 -


Department <strong>of</strong> Industrial Electrical Power Conversion <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name EPC 2101 - Electrical Mach<strong>in</strong>es<br />

Credits 5<br />

Lectures/tutorial hours 25 hours lectures, 3 hours tutorials<br />

Laboratory hours 6 hours<br />

Lecturer Dr. J. Cilia<br />

Prerequisites and exclusions EPC1201 - Electrical Circuit Theory II and<br />

EPC1202 - Introduction to Electrical Energy Systems<br />

Leads to EPC3104 - Electromechanical drives<br />

Objectives<br />

This unit covers <strong>in</strong> depth the three most popular mach<strong>in</strong>es<br />

used nowadays. It deals with the synchronous mach<strong>in</strong>e, DC<br />

mach<strong>in</strong>e and Induction motor. Further, the power transformer<br />

is studied.<br />

Syllabus Three Phase Synchronous Mach<strong>in</strong>e: Equivalent circuit, o/c<br />

and s/c characteristics, operation on <strong>in</strong>f<strong>in</strong>ite busbars,<br />

operat<strong>in</strong>g characteristics, synchronous motor.<br />

Three Phase Induction Motor: Equivalent circuit, power<br />

balance equations, torque and power calculations,<br />

determ<strong>in</strong>ation <strong>of</strong> circuit parameters.<br />

The DC Mach<strong>in</strong>e: Armature reaction and commutation<br />

process, performance characteristics, shunt, series, and<br />

compound motors, speed control, losses and efficiency.<br />

Power transformers: Theory <strong>of</strong> s<strong>in</strong>gle phase and three phase<br />

transformers, equivalent circuits, voltage regulation and<br />

efficiency, parallel operation <strong>of</strong> s<strong>in</strong>gle and three phase<br />

transformers.<br />

Laboratory work • Load test on a 3 phase <strong>in</strong>duction motor.<br />

• The D.C. Shunt/ Compound Mach<strong>in</strong>e resistive control<br />

and Load Characteristics.<br />

• Operartion <strong>of</strong> hysrterisis and eddy current losses <strong>in</strong> a<br />

transformer<br />

Assessment • 90% written exam<strong>in</strong>ation, 10% practical<br />

Text books and resources • H<strong>in</strong>dmarsh John, Electrical Mach<strong>in</strong>es & their<br />

applications<br />

• Say M.G., A.C. Mach<strong>in</strong>es<br />

• Sen P.C., Pr<strong>in</strong>ciples <strong>of</strong> Electrical Mach<strong>in</strong>es & Power<br />

Electronics John Wiley & Sons.<br />

- 9 -


Department <strong>of</strong> Industrial Electrical Power Conversion <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name EPC 2102 - Electrical Power I<br />

Credits 5<br />

Lectures/tutorial hours 26 hours lectures, 4 hours tutorials<br />

Laboratory hours 4 hours<br />

Lecturer Dr. C. Caruana<br />

Prerequisites and exclusions EPC 1202 - Introduction to Electrical Energy Systems<br />

Leads to EPC3102 - Electrical Power II<br />

Objectives To enhance the understand<strong>in</strong>g <strong>of</strong> Electric Power Systems:<br />

Analysis <strong>of</strong> plant, transmission and distribution systems under<br />

balanced and steady–state conditions.<br />

Syllabus • The Per Unit System: Revision <strong>of</strong> 3–phase systems;<br />

Def<strong>in</strong>ition <strong>of</strong> Per Unit System; Representation <strong>of</strong><br />

Component Specifications <strong>in</strong> pu; Chang<strong>in</strong>g between<br />

different bases.<br />

• Power Transfer <strong>in</strong> Power Systems: Load Flow Problem;<br />

Balance <strong>of</strong> Powers; Synchronous Generator <strong>in</strong> Steady<br />

State Operation; Synchronous Generator Excitation<br />

systems; Performance Chart.<br />

• Transmission L<strong>in</strong>es: Overhead L<strong>in</strong>es; Corona Discharge;<br />

Insulator Types; Underground Cables; DC Cables;<br />

Equivalent Circuits.<br />

• Fault Analysis: Types <strong>of</strong> Fault; The Fault MVA Source;<br />

Symmetrical Faults; Limit<strong>in</strong>g the Fault Level.<br />

• Power System Protection: Protection Relays; Overcurrent<br />

Protection; Unit Protection; Distance Protection.<br />

Laboratory work • Transformers <strong>in</strong> Parallel<br />

• Generation and Distribution<br />

Assessment 90% written exam<strong>in</strong>ation, 10% practical<br />

Text books and resources •<br />

- 10 -


Department <strong>of</strong> Industrial Electrical Power Conversion <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name EPC 2103 - Electrical Materials<br />

Credits 5<br />

Lectures/tutorial hours 25 hours lectures, 9 hours laboratories/tutorials<br />

Laboratory hours none<br />

Lecturer TBA<br />

Prerequisites and exclusions none<br />

Leads to None<br />

Objectives To provide a thorough <strong>in</strong>troduction to the study <strong>of</strong> the electrical<br />

properties <strong>of</strong> materials relevant to electrical eng<strong>in</strong>eer<strong>in</strong>g. These<br />

<strong>in</strong>clude electrical contact materials, dielectric materials,<br />

magnetic materials and superconductivity.<br />

Syllabus • Electrical Contact Materials: Contact specifications<br />

(resistance, thermal, lifetime); Contact failures; Material<br />

properties; ac and dc design issues; Electrical, mechanical,<br />

environmental and economic design factors; Industrial case<br />

study.<br />

• Dielectric Materials: Prelim<strong>in</strong>ary def<strong>in</strong>itions; Classical<br />

conduction theory; Dielectric specifications & properties<br />

(dielectric strength, breakdown and losses, permittivity,<br />

thermal conductivity, homogeneous, l<strong>in</strong>ear and isotropic<br />

materials); Material selection criteria, electric-dipoles &<br />

polarization theory (dipole moment, permanent and <strong>in</strong>duced<br />

dipoles); Classification <strong>of</strong> <strong>in</strong>sulat<strong>in</strong>g materials; Insulation <strong>of</strong><br />

electric cables (capacitance, leakage resistance, hysteresis<br />

loss, thermal resistance, electrical stress); Piezoelectricity,<br />

optical fibres, liquid crystals and their application to<br />

electronic displays.<br />

• Superconductivity: Applications; Material properties<br />

(transition temperature, critical magnetic field, critical<br />

current, T-H-I diagram); Classifications - Type I and Type II<br />

superconductors; Meissner Effect; Superconductivity theory<br />

- BCS theory, Cooper pairs, Josephson Junction.<br />

• Magnetic Materials: Basic concepts; Magnetic phenomena<br />

(diamagnetism, paramagnetism, ferromagnetism,<br />

piezomagnetism, magnetostriction, anti-ferromagnetism,<br />

ferrimagnetism); Magnetic losses (hysteresis and eddy<br />

current losses).<br />

Assessment 90% written exam<strong>in</strong>ation, 10% practical<br />

Text books Course notes will be available<br />

Suggested Read<strong>in</strong>g Material Science for Electrical and Electronic Eng<strong>in</strong>eers, I.P.<br />

Jones, Oxford<br />

- 11 -


Department <strong>of</strong> Industrial Electrical Power Conversion <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name EPC2201 - Power Electronics I<br />

Credits 5<br />

Lectures/tutorial hours 25 hours lectures, 3 hours tutorials<br />

Laboratory hours 6 hours<br />

Lecturer Dr. M. Apap and Dr. C. Spiteri Sta<strong>in</strong>es<br />

Prerequisites and exclusions EPC1201 - Electrical Circuit Theory II and<br />

ESE1201 - Analogue Electronics I<br />

Leads to EPC3103 - Power Electronics II<br />

Objectives Through analytical approach, to provide theoretical<br />

background <strong>of</strong> power electronic circuits and devices widely<br />

used <strong>in</strong> <strong>in</strong>dustrial drive systems. To experimentally verify<br />

some <strong>of</strong> the important characteristics <strong>of</strong> power electronic<br />

switches and circuits.<br />

Syllabus • Power semiconductor devices, their switch<strong>in</strong>g and<br />

heat control.<br />

o Mosfets, IGBTs, Thyristors<br />

o Heats<strong>in</strong>k Calculations<br />

• Basic Power electronic circuit topologies<br />

o Introduction to circuit theory applied to power<br />

electronics<br />

• Controlled and Uncontrolled Rectifiers<br />

o S<strong>in</strong>gle Phase and Three Phase uncontrolled<br />

(diode) rectifiers<br />

o S<strong>in</strong>gle Phase and Three Phase uncontrolled<br />

(thyristors) rectifiers<br />

• DC / DC converters<br />

o Buck/Boost<br />

o H-Bridge<br />

o Inductor Design<br />

Laboratory work • Practical Project<br />

Assessment 80% written exam<strong>in</strong>ation, 20% practical<br />

Text books and resources Mohan, Undeland, Rob<strong>in</strong>s, Power Electronics Converters,<br />

Application, and Design<br />

- 12 -


Department <strong>of</strong> Industrial Electrical Power Conversion <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Level 3 units<br />

- 13 -


Department <strong>of</strong> Industrial Electrical Power Conversion <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name EPC 3101 - Electrical Energy Utilisation<br />

Credits 5<br />

Lectures/tutorial hours 28 hours lectures, 3 hours tutorials<br />

Laboratory hours 18 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions EPC2102 - Electrical Power I<br />

Leads to n/a<br />

Objectives<br />

Syllabus<br />

This course covers illum<strong>in</strong>ation design considerations for <strong>in</strong>door<br />

and out-door situations. Electrical <strong>in</strong>stallation <strong>in</strong> domestic,<br />

commercial and <strong>in</strong>dustrial premises. Industrial process heat<strong>in</strong>g.<br />

The course covers the calculations and technologies required for<br />

the design <strong>of</strong> electrical build<strong>in</strong>g services.<br />

Electric Illum<strong>in</strong>ation - Analysis <strong>of</strong> light<strong>in</strong>g problems, units used <strong>in</strong><br />

illum<strong>in</strong>ation calculations and measurements. Choice <strong>of</strong> light<strong>in</strong>g<br />

system: general, localised, local light<strong>in</strong>g, choices <strong>of</strong> light<strong>in</strong>g<br />

sources: <strong>in</strong>candescent filament lamp, fluorescent tube, low and<br />

high pressure discharge lamps e.g. radium, mercury and halogen<br />

type. Light<strong>in</strong>g design calculations: The lumen method and the<br />

Po<strong>in</strong>t-by-Po<strong>in</strong>t method.<br />

Electrical Installations - General requirements for the design <strong>of</strong> an<br />

electrical <strong>in</strong>stallation <strong>in</strong> domestic, commercial and <strong>in</strong>dustrial<br />

premises. Calculations <strong>in</strong> the preparation <strong>of</strong> a light<strong>in</strong>g and power<br />

<strong>in</strong>stallation. Details and layout draw<strong>in</strong>gs, draft<strong>in</strong>g <strong>of</strong> electrical<br />

specifications. IEE wir<strong>in</strong>g regulations and other important<br />

regulations. British and other standard specifications, codes <strong>of</strong><br />

practice and general procedures. Earth<strong>in</strong>g and Electrical Safety -<br />

Test<strong>in</strong>g.<br />

Space Heat<strong>in</strong>g/Air Condition<strong>in</strong>g - Def<strong>in</strong>ition <strong>of</strong> air condition<strong>in</strong>g<br />

terms and requirements for human comforts. General review <strong>of</strong><br />

space heat<strong>in</strong>g methods, specifically those suitable for <strong>in</strong>dustrial and<br />

commercial build<strong>in</strong>gs. Description <strong>of</strong> a typical system <strong>in</strong>clud<strong>in</strong>g<br />

servic<strong>in</strong>g devices, temperature and humidity control. Design <strong>of</strong> a<br />

straight forward heat<strong>in</strong>g system by calculation <strong>of</strong> heat losses.<br />

Plant Economics - Costs and tariffs, plant load factor, diversity<br />

factor, maximum demand, economic choice <strong>of</strong> plant, Power-factor<br />

improvement, local and bulk improvement, relative applications <strong>of</strong><br />

static capacitors and synchronous mach<strong>in</strong>es.<br />

Build<strong>in</strong>g Management Systems for Industrial and commercial<br />

<strong>in</strong>stallations<br />

Introduction to Energy Audits Basics<br />

Laboratory work<br />

Assessment 90% written exam<strong>in</strong>ation, 10% practical<br />

Text books and resources<br />

- 14 -


Department <strong>of</strong> Industrial Electrical Power Conversion <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name EPC 3102 - Electrical Power II<br />

Credits 5<br />

Lectures/tutorial hours 26 hours lectures, 4 hours tutorials<br />

Laboratory hours 4 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions EPC2102 - Electrical Power I<br />

Leads to n/a<br />

Objectives<br />

To further enhance the understand<strong>in</strong>g <strong>of</strong> Electric Power<br />

Systems: Analysis <strong>of</strong> plant, transmission and distribution<br />

Systems under unbalanced and transient conditions.<br />

Syllabus • Symmetrical Components and Unbalanced Faults:<br />

Def<strong>in</strong>ition <strong>of</strong> Symmetrical Components; Derivation <strong>of</strong><br />

Sequence Circuits for Plant Components; Unbalanced<br />

faults.<br />

• Power System Stability: Synchronous Generator Control<br />

Loops; Steady State Stability; Transient Stability<br />

• Current and Voltage Transformers: Construction;<br />

Applications; Equivalent Circuit; Operation; Errors;<br />

Operation under Fault currents; Effect <strong>of</strong> core saturation<br />

on behaviour; Operation with open circuited secondary,<br />

Term<strong>in</strong>ology and specifications. (might change)<br />

• Circuit Breakers: Theory <strong>of</strong> Circuit Break<strong>in</strong>g; Rat<strong>in</strong>gs;<br />

Effect <strong>of</strong> Network Parameters on CB Operation; Practical<br />

Circuit Breakers.<br />

• Power System Voltage Surges: Over-voltages experienced<br />

by the power system; Over-voltage tests; Protection<br />

aga<strong>in</strong>st over-voltages; Insulation Coord<strong>in</strong>ation;<br />

Propagation <strong>of</strong> surges; Bewley Lattice Diagram.<br />

Laboratory work • Transient stability <strong>of</strong> synchronous generator.<br />

• Power System Simulation (proposed)<br />

Assessment<br />

Text books and resources •<br />

90% written exam<strong>in</strong>ation, 10% practical<br />

- 15 -


Department <strong>of</strong> Industrial Electrical Power Conversion <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name EPC 3103 - Power Electronics II<br />

Credits 5<br />

Lectures/tutorial hours 25 hours lectures, 3 hours tutorials<br />

Laboratory hours 6 hours<br />

Lecturer Dr. M. Apap and Dr. C. Spiteri Sta<strong>in</strong>es<br />

Prerequisites and exclusions EPC2201 - Power Electronics I<br />

Leads to<br />

Objectives To learn about modern <strong>in</strong>dustrial power electronics converters<br />

and their control. An <strong>in</strong>troduction to Power Quality Factors<br />

and standards and the effect <strong>of</strong> Non-L<strong>in</strong>ear Power electronic<br />

loads on electrical distribution harmonics.<br />

Syllabus Inverters<br />

Laboratory work • Practical Project<br />

• S<strong>in</strong>gle phase and three phase<br />

• Half bridge and full bridge<br />

• S<strong>in</strong>usoidal PWM voltage output<br />

• Switch<strong>in</strong>g harmonics<br />

• PWM generation logic<br />

Resonant Converters<br />

• Basic Resonant Circuits<br />

• DC to AC Resonant Circuits<br />

• DC to DC Resonant Circuits<br />

• Switch Resonant Circuits (ZCS,ZVS,ZVS-CV)<br />

• Resonant dc l<strong>in</strong>k Inverters with ZVS<br />

Power Quality and EMC<br />

• Power Quality Factors and Harmonics<br />

• Regulations<br />

Assessment 80% written exam<strong>in</strong>ation, 20% practical<br />

Text books and resources Mohan, Undeland, Rob<strong>in</strong>s, Power Electronics Converters,<br />

Application, and Design.<br />

- 16 -


Department <strong>of</strong> Industrial Electrical Power Conversion <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name EPC 3104 - Electromechanical Drives<br />

Credits 5<br />

Lectures/tutorial hours 19 hours lectures, 3 hours tutorials<br />

Laboratory hours 16 hours<br />

Lecturer Dr. J. Cilia<br />

Prerequisites and exclusions EPC2101 - Electrical Mach<strong>in</strong>es<br />

Leads to<br />

Objectives<br />

To consolidate the theoretical knowledge <strong>of</strong> electrical<br />

mach<strong>in</strong>es, the development <strong>of</strong> system approach <strong>in</strong> application<br />

<strong>of</strong> electrical mach<strong>in</strong>es <strong>in</strong> <strong>in</strong>dustrial electric drive systems.<br />

Syllabus Electric drive system and characteristics:<br />

Concept and classification <strong>of</strong> Electric drive systems (EDS).<br />

Differences <strong>in</strong> mechanical characteristics <strong>of</strong> electric motors.<br />

<strong>Mechanical</strong> characteristics <strong>of</strong> loads and load diagrams.<br />

Steady-state and steady-state stability <strong>of</strong> EDS. Dynamics<br />

and dynamic stability <strong>of</strong> EDS. <strong>Mechanical</strong> transient <strong>in</strong> EDS.<br />

Laboratory work • Project work<br />

Assessment<br />

Four-quadrant operation <strong>of</strong> DC mach<strong>in</strong>es:<br />

Theoretical background <strong>of</strong> four-quadrant operation <strong>of</strong><br />

separately excited dc mach<strong>in</strong>e (SEDCM). Start<strong>in</strong>g, stopp<strong>in</strong>g,<br />

revers<strong>in</strong>g, brak<strong>in</strong>g and design <strong>of</strong> speed control for SEDCM.<br />

S<strong>in</strong>gle-phase mach<strong>in</strong>es and their operational characteristics:<br />

Induction, Universal, Repulsion Motors<br />

Selection and rat<strong>in</strong>g <strong>of</strong> electric motors:<br />

Work<strong>in</strong>g and environmental conditions. Torque<br />

consideration. Thermal considerations. Thermal transients<br />

under cont<strong>in</strong>uous duty, <strong>in</strong>termittent duty and short-time<br />

duty. Overload and rat<strong>in</strong>g <strong>of</strong> electric motors under variable<br />

loads.<br />

80% written exam<strong>in</strong>ation, 20% practical<br />

Text books and resources • H<strong>in</strong>dmarsh J., Electrical Mach<strong>in</strong>es and their Applications.<br />

• Bose B.K., Power Electronics and Drives, Prentice-Hall.<br />

- 17 -


Department <strong>of</strong> Electronic Systems <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Study-units <strong>of</strong>fered by the<br />

Department <strong>of</strong> Electronic Systems<br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Faculty <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

University <strong>of</strong> Malta<br />

-1-


Department <strong>of</strong> Electronic Systems <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Level 1 units<br />

-2-


Department <strong>of</strong> Electronic Systems <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name ESE1101 – Fundamentals <strong>of</strong> Electronics<br />

Credits 10<br />

Lectures/tutorial hours 40 hours lectures, 8 hours tutorials<br />

Laboratory hours 30 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions None<br />

Leads to ESE1201 – Electrical Circuit Theory II and ESE1202 -<br />

Digital Electronics I<br />

Objectives This module <strong>in</strong>troduces semiconductor devices, modell<strong>in</strong>g<br />

concepts and semiconductor circuits to enable students to design<br />

and analyse basic electronic circuits. The module also provides<br />

familiarisation with laboratory equipment and practices.<br />

Syllabus • Semiconductors:<br />

physical and electrical properties. Manufactur<strong>in</strong>g<br />

processes.<br />

• The p-n junction:<br />

physical and electrical properties.<br />

• Diodes:<br />

types, families, physical construction, electrical and<br />

physical properties and characteristics, manufactur<strong>in</strong>g<br />

processes and device performance. Device modell<strong>in</strong>g.<br />

Diode performance <strong>in</strong> the circuit.<br />

• Rectification:<br />

half wave, full wave, addition <strong>of</strong> smooth<strong>in</strong>g. Circuit<br />

theory and performance.<br />

• Transistor families:<br />

The BJT, JFET and MOSFET. Selection and operat<strong>in</strong>g<br />

po<strong>in</strong>t. Bias<strong>in</strong>g circuits and applications, <strong>in</strong>clud<strong>in</strong>g the<br />

amplifer and the switch. Circuit DC transfer<br />

characteristics. Transistor switch circuits with analysis <strong>of</strong><br />

performance.<br />

• Introduction to computer aided design and analysis tools<br />

for electronic circuits:<br />

Transistor and diode circuit analysis and simulation.<br />

• Introduction to electronic bench test and measurement<br />

equipment:<br />

Familiarisation with bench <strong>in</strong>struments and use <strong>in</strong> the<br />

laboratory. Laboratory safety considerations.<br />

Laboratory work • Design, simulation, physical contruction and analyis <strong>of</strong><br />

various electronic circuits.<br />

Assessment 75% written exam<strong>in</strong>ation, 25% practical assessment<br />

Text books and resources Floyd, T. , Electronic Devices. Prentice Hall.<br />

-3-


Department <strong>of</strong> Electronic Systems <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name ESE1201 – Analogue Electronics I<br />

Credits 5<br />

Lectures/tutorial hours 20 hours lectures, 4 hours tutorials<br />

Laboratory hours 16 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions ESE1101 – Fundamentals <strong>of</strong> Electrnics<br />

Leads to ESE2101 – Analogue Electronics II<br />

Objectives This module <strong>in</strong>troduces small signal ac analysis <strong>of</strong> circuits,<br />

focus<strong>in</strong>g on the design and analysis <strong>of</strong> transistor amplifers and<br />

covers the design <strong>of</strong> power amplifiers.<br />

Syllabus • AC small signal device modell<strong>in</strong>g:<br />

AC small signal modell<strong>in</strong>g <strong>of</strong> BJT, JFET and MOSFET<br />

defices. Device performance modell<strong>in</strong>g.<br />

• Design and AC small signal analysis <strong>of</strong> transistor<br />

amplifiers:<br />

BJT, JFET and MOSFET s<strong>in</strong>gle and cascaded<br />

configurations. Circuit performance analysis for each<br />

configuration.<br />

• Power amplifiers:<br />

Different configurations and classes. Design,<br />

performance analysis and comparison. Distortion. Power<br />

handl<strong>in</strong>g and heat s<strong>in</strong>k selection.<br />

• Introduction to pr<strong>in</strong>ted-circuit-board design and<br />

manufacture:<br />

PCB construction and manufacture fundamentals. PCB<br />

design tools.<br />

Laboratory work • Design, simulation, physical contruction and analyis <strong>of</strong><br />

various electronic circuits.<br />

• Design and physical construction <strong>of</strong> pcb-based circuits.<br />

Assessment 75% written exam<strong>in</strong>ation, 25% practical assessment<br />

Text books and resources Floyd, T. , Electronic Devices. Prentice Hall.<br />

-4-


Department <strong>of</strong> Electronic Systems <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name ESE1202 – Digital Electronics I<br />

Credits 6<br />

Lectures/tutorial hours 24 hours lectures, 4 hours tutorials<br />

Laboratory hours 20 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions ESE1101 – Fundamentals <strong>of</strong> Electronics<br />

Leads to ESE2102 – Digital Electronics II<br />

Objectives This module <strong>in</strong>troduces digital electronics and covers<br />

comb<strong>in</strong>ational and sequential logic.<br />

Syllabus • Logic functions and algebra:<br />

Digital logic. Logic function design, analysis and<br />

m<strong>in</strong>imisation techniques. Number representations.<br />

• Logic Families:<br />

BJT and MOS technologies. Gate and logic function<br />

implementation <strong>in</strong> BJT and MOS technologies.<br />

Characteristics and performance comparisons.<br />

• Latches and flip-flops:<br />

Different types and characteristics. Multivibrators and<br />

multivibrator circuits.<br />

• Synchronous sequential circuits:<br />

Sequential logic function and circuit design and analysis.<br />

Moore and Mealey models. Implementation and<br />

evaluation us<strong>in</strong>g standard logic families. Performance<br />

considerations.<br />

• Asynchronous sequential circuits:<br />

Fundamentals <strong>of</strong> asynchronous digital circuit design.<br />

Comparison <strong>of</strong> performance between synchronous and<br />

asynchronous circuit implementation.<br />

Laboratory work • Design, simulation, physical contruction and analyis <strong>of</strong><br />

various digital electronic circuits.<br />

Assessment 75% written exam<strong>in</strong>ation, 25% practical assessment<br />

Text books and resources Floyd, T. , Digital Fundamentals. Prentice Hall.<br />

-5-


Department <strong>of</strong> Electronic Systems <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

This unit is <strong>of</strong>fered to the <strong>Mechanical</strong> and Industrial <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Streams<br />

Unit Name ESE1231 – Fundamentals <strong>of</strong> Electronics<br />

Credits 5<br />

Lectures/tutorial hours 22 hours lectures, 6 hours tutorials<br />

Laboratory hours<br />

6 hours<br />

Lecturer<br />

TBA<br />

Prerequisites and exclusions<br />

Leads to<br />

Prerequisites: Mathematics and Physics at A level standard<br />

Objectives This module <strong>in</strong>troduces mechanical eng<strong>in</strong>eers to the<br />

fundamentals <strong>of</strong> electronics to enable them later <strong>in</strong> their<br />

careers to analyse and design simple circuits and to select the<br />

most appropriate equipment for particular applications.<br />

Syllabus • Semiconductor devices and circuits<br />

Diodes, thyristors, transistors and opto-couplers. Diodes<br />

<strong>in</strong> circuit. The transistor as a switch. Typical switch<strong>in</strong>g<br />

circuits. Transistor amplifiers. Power amplifers –<br />

classes, topology and use.<br />

Semiconductor device and heat s<strong>in</strong>k selection criteria.<br />

Laboratory work Various<br />

• Op-amp circuits<br />

The operational amplifier. Basic op-amp build<strong>in</strong>g blocks<br />

– the summer, <strong>in</strong>tegrator and differentiator. Op-amp<br />

performance characteristics and device selection.<br />

• Filters<br />

Filter types – low pass, high pass, band pass. Passive<br />

(RC and LC) realisation. Use <strong>of</strong> filters.<br />

• Digital Electronics<br />

Comb<strong>in</strong>ational logic, Boolean expressions and truth<br />

tables, M<strong>in</strong>imisation us<strong>in</strong>g Karnaugh maps. Flip-flops<br />

and latches. The 74 series family - gates, flip-flops,<br />

adders, counters and timers. A/D and D/A converters –<br />

technologies and performance comparisons.<br />

• Power supplies<br />

Fixed low voltage power supply, half wave & full wave<br />

rectification, smooth<strong>in</strong>g capacitor. 78xx and 79xx voltage<br />

regulators. DC/DC converters.<br />

Assessment 80% written exam<strong>in</strong>ation 20% practical assessment<br />

Text books and resources<br />

-6-


Department <strong>of</strong> Electronic Systems <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

This unit is <strong>of</strong>fered to the Faculty <strong>of</strong> ICT<br />

Unit Name ESE1281 – Electronics<br />

Credits 5<br />

Lectures hours 28 hours lectures<br />

Laboratory/tutorial hours 14 hours<br />

Lecturer Marc Anthony Azzopardi<br />

Prerequisites and exclusions PCE1005 – Electric Circuit Theory<br />

Leads to CCE2011 – Microcontrollers<br />

Objectives The objective <strong>of</strong> this module is to <strong>in</strong>troduce basic concepts <strong>in</strong><br />

electronics. In conjunction with a subsequent module <strong>in</strong><br />

Microcontrollers (CCE2011) this will provide the basel<strong>in</strong>e<br />

skills and an exposure to the concepts which will enable the<br />

analysis and design <strong>of</strong> simple <strong>in</strong>terfac<strong>in</strong>g circuits to<br />

microprocessors and other digital systems.<br />

Syllabus • The Bipolar Junction Transistor (BJT) – junctions,<br />

operation mode- the BJT as a switch<br />

• MOS and CMOS – operation mode as a switch.<br />

• The op-amp as an ideal amplifier – use for amplification,<br />

level shift<strong>in</strong>g, buffer<strong>in</strong>g, and filter<strong>in</strong>g. Use for add<strong>in</strong>g,<br />

subtract<strong>in</strong>g, multiply<strong>in</strong>g and divid<strong>in</strong>g.<br />

• Simple ideas on frequency response and cut <strong>of</strong>f.<br />

• A/D and D/A converters, types and operation, issues <strong>of</strong><br />

stability, sensitivity, accuracy<br />

• Sample and hold circuits<br />

• Power Supplies – zener diode, simple ideas <strong>of</strong> l<strong>in</strong>ear<br />

power supply regulation; Comparison with switched<br />

mode power supplies and efficiency<br />

• The 555 device as a timer, and multi-vibrator<br />

Laboratory work 4 Lab Sessions<br />

- Diodes and Rectification<br />

- Op-Amp Circuits<br />

- Operation <strong>of</strong> A/D Converters<br />

- 555 Timer Astables<br />

Assessment 80% written exam<strong>in</strong>ation, 20% practical assessment<br />

Text books and resources Electronic Devices 8/E (Conventional Current) Thomas Floyd<br />

ISBN-13: 978 0132 4297 33<br />

-7-


Department <strong>of</strong> Electronic Systems <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

This unit is <strong>of</strong>fered to the Faculty <strong>of</strong> ICT<br />

Unit Name ESE1282 – Electronics<br />

Credits 6<br />

Lectures hours 28 hours lectures<br />

Laboratory/tutorial hours 20 hours<br />

Lecturer Marc Anthony Azzopardi<br />

Prerequisites and exclusions PCE1005 – Electric Circuit Theory<br />

Leads to CCE2011 – Microcontrollers<br />

Objectives The objective <strong>of</strong> this module is to <strong>in</strong>troduce basic concepts <strong>in</strong><br />

electronics. In conjunction with a subsequent module <strong>in</strong><br />

Microcontrollers (CCE2011) this will provide the basel<strong>in</strong>e<br />

skills and an exposure to the concepts which will enable the<br />

analysis and design <strong>of</strong> simple <strong>in</strong>terfac<strong>in</strong>g circuits to<br />

microprocessors and other digital systems.<br />

Syllabus • The Bipolar Junction Transistor (BJT) – junctions,<br />

operation mode- the BJT as a switch<br />

• MOS and CMOS – operation mode as a switch.<br />

• The op-amp as an ideal amplifier – use for amplification,<br />

level shift<strong>in</strong>g, buffer<strong>in</strong>g, and filter<strong>in</strong>g. Use for add<strong>in</strong>g,<br />

subtract<strong>in</strong>g, multiply<strong>in</strong>g and divid<strong>in</strong>g.<br />

• Simple ideas on frequency response and cut <strong>of</strong>f.<br />

• A/D and D/A converters, types and operation, issues <strong>of</strong><br />

stability, sensitivity, accuracy<br />

• Sample and hold circuits<br />

• Power Supplies – zener diode, simple ideas <strong>of</strong> l<strong>in</strong>ear<br />

power supply regulation; Comparison with switched<br />

mode power supplies and efficiency<br />

• The 555 device as a timer, and multi-vibrator<br />

• Electronic Circuit Simulation<br />

Laboratory work 5 Lab Sessions:<br />

- Diodes and Rectification<br />

- Op-Amp Circuits<br />

- Operation <strong>of</strong> A/D Converters<br />

- 555 Timer Astables<br />

- Electronic Simulation<br />

Assessment 80% written exam<strong>in</strong>ation,<br />

20% practical assessment<br />

Text books and resources Electronic Devices 8/E (Conventional Current) Thomas Floyd<br />

ISBN-13: 978 0132 4297 33<br />

-8-


Department <strong>of</strong> Electronic Systems <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Level 2 units<br />

-9-


Department <strong>of</strong> Electronic Systems <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name ESE2101 – Analogue Electronics II<br />

Credits 5<br />

Lectures/tutorial hours 20 hours lectures, 4 hours tutorials<br />

Laboratory hours 16 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions ESE1202 – Digital Electronics I<br />

Leads to ESE2201 – Analogue Electronics III<br />

Objectives This module <strong>in</strong>troduces the concepts <strong>of</strong> frequency response<br />

and feedback concepts <strong>in</strong> electronic circuit design. The opamp<br />

is also <strong>in</strong>troduced.<br />

Syllabus • Frequency response:<br />

Frequency response <strong>of</strong> the BJT, FET and MOSFET<br />

devices. Frequency response <strong>of</strong> transistor amplifier<br />

circuits – s<strong>in</strong>gle and cascaded configurations.<br />

Performance analysis and design.<br />

• Feedback:<br />

Feedback <strong>in</strong> transistor circuits. Use <strong>of</strong> classical control<br />

theory for the analysis <strong>of</strong> the different types <strong>of</strong> amplifier.<br />

Performance and the effects <strong>of</strong> non-ideal characterisitcs.<br />

• The transistor differential amplifier:<br />

Amplifier topology, transfer function and performance<br />

considerations.<br />

• The operational amplifier:<br />

The op-amp concept. Implementation technologies,<br />

design, construction and manufacture. Ideal and practical<br />

op-amp characteristics.<br />

• Op-amp circuits:<br />

The op-amp <strong>in</strong> circuit with negative feedback. Adder,<br />

subtractor, <strong>in</strong>tegrator and differentiator circuits. Positive<br />

feedback and the Schmitt trigger.<br />

Laboratory work • Design, simulation, physical contruction and analyis <strong>of</strong><br />

various transistor amplifer and op-amp circuits.<br />

Assessment 75% written exam<strong>in</strong>ation, 25% practical assessment<br />

Text books and resources Floyd, T. , Electronic Devices. Prentice Hall.<br />

Horrowitz, P. And Hill, W., The Art <strong>of</strong> Electronics.<br />

Cambridge University Press.<br />

-10-


Department <strong>of</strong> Electronic Systems <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name ESE2102 – Digital Electronics II<br />

Credits 5<br />

Lectures/tutorial hours 20 hours lectures, 4 hours tutorials<br />

Laboratory hours 16 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions ESE1202 – Digital Electronics I<br />

Leads to --<br />

Objectives This module builds on ESE1202 to address the broader<br />

aspects <strong>of</strong> digital electronics .<br />

Syllabus • MSI and LSI digital circuits and their use:<br />

Counters, timers, registers, shift registers, half and full<br />

adders, multivibrators, etc.<br />

• Design <strong>of</strong> digital oscillators:<br />

Various topologies us<strong>in</strong>g standard <strong>in</strong>tegrated circuits.<br />

Crystal oscillators.<br />

• Memories:<br />

Technologies, types and <strong>in</strong>terfac<strong>in</strong>g considerations.<br />

• Logic arrays:<br />

PALs, GALs, PLDs, CPLDs, PLAs and FPGAs. Device<br />

selection. Comb<strong>in</strong>ational and sequential circuit design<br />

us<strong>in</strong>g logic arrays. Tim<strong>in</strong>g considerations. Setup and<br />

hold times. Tim<strong>in</strong>g diagrams. CPLD design and design<br />

tools us<strong>in</strong>g schematic entry.<br />

Laboratory work • Design, simulation, physical contruction and analyis <strong>of</strong><br />

various digital circuits. Programm<strong>in</strong>g and use <strong>of</strong> CPLDs.<br />

Assessment 75% written exam<strong>in</strong>ation, 25% practical assessment<br />

Text books and resources Floyd, T. , Digital Fundamentals. Prentice Hall.<br />

-11-


Department <strong>of</strong> Electronic Systems <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name ESE2201 – Analogue Electronics III<br />

Credits 5<br />

Lectures/tutorial hours 20 hours lectures, 4 hours tutorials<br />

Laboratory hours 16 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions ESE2101 – Analogue Electronics II<br />

Leads to ESE3101 – Electronic Instrumentation and Measurement<br />

Objectives This module covers the design <strong>of</strong> s<strong>in</strong>usoidal oscillators and<br />

active filters and addresses the frequency response <strong>of</strong> op-amp<br />

and op-amp circuits.<br />

Syllabus • Resonance and S<strong>in</strong>usoidal oscillation:<br />

Resonance and resonant tanks us<strong>in</strong>g passive components.<br />

Feedback and stability us<strong>in</strong>g control theory. Oscillation.<br />

The Barkhaussen criterion. Use <strong>of</strong> negative resistance.<br />

• S<strong>in</strong>usoidal oscillators:<br />

Different topologies. Modell<strong>in</strong>g the crystal. Crystal and<br />

crystal oscillator circuit design and performance.<br />

• Active filters:<br />

Design and analysis <strong>of</strong> active filter circuits. Different<br />

topologies. Performance and stability considerations and<br />

comparison.<br />

• Op-amp frequency response:<br />

Op-amp frequency response and modell<strong>in</strong>g. Performance<br />

limitation considerations and compensation. Op-amp<br />

circuit stability.<br />

• Current feedback op-amps:<br />

Performance and comparison with voltage feedback opamps.<br />

Current feedback circuits – <strong>in</strong>vert<strong>in</strong>g and non<strong>in</strong>vert<strong>in</strong>g<br />

amplifiers. Stability.<br />

Laboratory work • Design, simulation, physical contruction and analyis <strong>of</strong><br />

oscillators, filters and op-amp circuits.<br />

Assessment 75% written exam<strong>in</strong>ation, 25% practical assessment.<br />

Text books and resources Floyd, T. , Electronic Devices. Prentice Hall.<br />

Horrowitz, P. And Hill, W., The Art <strong>of</strong> Electronics.<br />

Cambridge University Press.<br />

-12-


Department <strong>of</strong> Electronic Systems <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name ESE2202 – Digital Processors and Interfac<strong>in</strong>g I<br />

Credits 5<br />

Lectures/tutorial hours 14 hours lectures, 6 hours tutorials<br />

Laboratory hours 22 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions ESE1201 – Analogue Electronics I and<br />

CCE 2012 – Introduction to Computer Architecture<br />

Leads to ESE3102 – Digital Processors and Interfac<strong>in</strong>g II and<br />

ESE3103 – Advanced Digital Design<br />

Objectives This module <strong>in</strong>troduces the digital processor and <strong>in</strong>terfac<strong>in</strong>g<br />

concepts by focuss<strong>in</strong>g on simple <strong>in</strong>terfac<strong>in</strong>g applications<br />

us<strong>in</strong>g a standard microcontroller.<br />

Syllabus • Microcontroller familiarisation:<br />

Internal architecture, functionality and performance.<br />

Initialisation and <strong>in</strong>troduction to device programm<strong>in</strong>g.<br />

• Hardware <strong>in</strong>terfac<strong>in</strong>g and design <strong>of</strong> microcontroller<br />

circuits:<br />

Interfac<strong>in</strong>g to digital circuits – counters, timers, buffers,<br />

LCD and LED displays, etc. Simple motor control.<br />

• S<strong>of</strong>tware development for applications:<br />

Programm<strong>in</strong>g <strong>of</strong> applications developed <strong>in</strong> this module.<br />

Laboratory work • Design, simulation, physical contruction and analyis <strong>of</strong> a<br />

processor application.<br />

Assessment 50% written exam<strong>in</strong>ation, 50% practical assessment<br />

Text books and resources TBA<br />

-13-


Department <strong>of</strong> Electronic Systems <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name ESE2203 – Electromagnetic Theory<br />

Credits 5<br />

Lectures/tutorial hours 28 hours lectures, 4 hours tutorials<br />

Laboratory hours 6 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions none<br />

Leads to ESE3104 - RF Electronics and ESE3105 – Radio<br />

Electronic Systems<br />

Objectives This module <strong>in</strong>troduces electromagnetic theory and covers<br />

basic antennas and waveguides.<br />

Syllabus • Electrostatics:<br />

Coulomb’s law, superposition, flux, Gauss’s law,<br />

potential, electric field equipotentials, electric dipole,<br />

conductors <strong>in</strong> electric fields, capacitance, dielectrics,<br />

energy <strong>in</strong> electric fields.<br />

• Magnetostatics:<br />

Magnitic field, Lorenz force, flux, force on a conductor <strong>in</strong><br />

a magnetic field.<br />

• Magnetic fields:<br />

Biot-Savart law and its application to a dipole and a long,<br />

straight wire. Ampere’s law.<br />

• Time-vary<strong>in</strong>g fields:<br />

Faraday’s and Lentz’s laws, self and mutual <strong>in</strong>ductance,<br />

energy <strong>in</strong> magnetic fields, Maxwell’s displacement<br />

current, Maxwell’s electromagnetic field equations.<br />

• Antennae:<br />

The isotrope, herzian dipole, quater wave dipole,<br />

monopole, loop antenna, YAGI and phased array. Dish<br />

antennae.<br />

• Waveguides:<br />

Rectangular waveguides. Transmission modes.<br />

Laboratory work • Demonstration <strong>of</strong> the properties <strong>of</strong> different antennae.<br />

• Simulation and visualisation <strong>of</strong> antennae radiation<br />

patterns us<strong>in</strong>g Matlab.<br />

Assessment 100% written exam<strong>in</strong>ation<br />

Text books and resources Grant, I.S. and Philips, W.R., Electromagnetism, John Wiley<br />

and Sons.<br />

-14-


Department <strong>of</strong> Electronic Systems <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Level 3 units<br />

-15-


Department <strong>of</strong> Electronic Systems <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name ESE3101 – Electronic Instrumentation and Measurement<br />

Credits 5<br />

Lectures/tutorial hours 20 hours lectures, 4 hours tutorials<br />

Laboratory hours 16 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions ESE2201 – Analogue Electronics III<br />

Leads to --<br />

Objectives This module <strong>in</strong>troduces the fundamentals <strong>of</strong> electronic<br />

<strong>in</strong>strumentation and measurement, cover<strong>in</strong>g sensors,<br />

<strong>in</strong>strumentation build<strong>in</strong>g blocks and l<strong>in</strong>ear regulators. The<br />

module also <strong>in</strong>troduces Labview.<br />

Syllabus • Sensors and transducers:<br />

Sens<strong>in</strong>g properties and characteristics <strong>of</strong> various types <strong>of</strong><br />

sensors – pressure, temperature, humidity, displacement,<br />

l<strong>in</strong>ear and angular velocity, acceleration, force magnetic<br />

field, etc.<br />

• The <strong>in</strong>strumentation amplifier:<br />

Different topologies – transfer functions and performance<br />

comparisons.<br />

• Signal condition<strong>in</strong>g:<br />

Application <strong>of</strong> op-amp build<strong>in</strong>g blocks for the synthesis <strong>of</strong><br />

measurement circuitry.<br />

• L<strong>in</strong>ear regulators:<br />

Shunt and series types. Different topologies. Circuit<br />

performance and comparison.<br />

• Introduction to Labview.<br />

Laboratory work • Design and evaluation <strong>of</strong> electronic measurement circuits.<br />

Labview classes.<br />

Assessment 75% written exam<strong>in</strong>ation, 25% practical assessment.<br />

Text books and resources Horrowitz, P. And Hill, W., The Art <strong>of</strong> Electronics.<br />

Cambridge University Press.<br />

Northon, H., Handbook <strong>of</strong> Transducers, Prentice Hall.<br />

-16-


Department <strong>of</strong> Electronic Systems <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name ESE3102 – Digital Processors and Interfac<strong>in</strong>g II<br />

Credits 5<br />

Lectures/tutorial hours 14 hours lectures, 4 hours tutorials<br />

Laboratory hours 24 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions ESE2202 – Digital Processors and Interfac<strong>in</strong>g I<br />

Leads to --<br />

Objectives This module builds on ESE2103 to cover ADC and DAC<br />

technologies and <strong>in</strong>terfac<strong>in</strong>g with digital processors.<br />

Syllabus • Analogue-to-digital converters:<br />

Types and technologies. ADC performance,<br />

characteristics and comparison.<br />

• Digital-to-analogue converters:<br />

Types and technologies. DAC performance,<br />

characteristics and comparison.<br />

• Peripheral <strong>in</strong>terfac<strong>in</strong>g:<br />

Interfac<strong>in</strong>g ADCs and DACs to digital processors and<br />

application.<br />

• Advanced processor applications:<br />

Interrupt handl<strong>in</strong>g, real-time applications, etc.<br />

Programm<strong>in</strong>g <strong>in</strong> C.<br />

Laboratory work • Construction and programm<strong>in</strong>g <strong>of</strong> a digital processor<br />

board with peripheral application.<br />

Assessment 50% written exam<strong>in</strong>ation, 50% practical assessment<br />

Text books and resources TBA.<br />

-17-


Department <strong>of</strong> Electronic Systems <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name ESE3103 – Advanced Digital Design<br />

Credits 10<br />

Lectures/tutorial hours 28 hours lectures, 8 hours tutorials<br />

Laboratory hours 48 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions ESE2202 – Digital Processors and Interfac<strong>in</strong>g I<br />

Leads to --<br />

Objectives This module builds on ESE2103 to teach students how to use<br />

FPGAs <strong>in</strong> digital electronic system design.<br />

Syllabus • Introduction to FPGAs:<br />

Classification <strong>of</strong> PLDs. FPGA manufactur<strong>in</strong>g<br />

technologies. FPGA Architecture – rout<strong>in</strong>g and cell<br />

architectures. Dedicated blocks – description and use.<br />

I/O technologies – description and use.<br />

• FPGA selection:<br />

Performance considerations – power and clock speed<br />

constra<strong>in</strong>ts.<br />

• FPGA application design:<br />

Introduction to CAD tools for FPGA design flow,<br />

schematic entry, floor plann<strong>in</strong>g and tim<strong>in</strong>g.<br />

Interfac<strong>in</strong>g FPGAs with external devices. Design and<br />

construction <strong>of</strong> an application.<br />

Laboratory work • Construction and programm<strong>in</strong>g <strong>of</strong> an FPGA board with<br />

peripheral application.<br />

Assessment 50% written exam<strong>in</strong>ation, 50% practical assessment<br />

Text books and resources TBA.<br />

-18-


Department <strong>of</strong> Electronic Systems <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name ESE3104 – RF Electronics<br />

Credits 10<br />

Lectures/tutorial hours 40 hours lectures, 8 hours tutorials<br />

Laboratory hours 30 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions ESE2203 – Electromagnetic Theory<br />

Leads to --<br />

Objectives This module <strong>in</strong>troduces the fundamentals <strong>of</strong> RF electronics,<br />

cover<strong>in</strong>g devices, basic build<strong>in</strong>g blocks and microstrip circuit<br />

design.<br />

Syllabus • RF circuit theory:<br />

Transmission l<strong>in</strong>e theory and the smith chart. Power<br />

transfer and impedance match<strong>in</strong>g.<br />

• RF and microwave devices:<br />

Diodes and transistors. Physical and electrical<br />

charactersitics and performance. Manufactur<strong>in</strong>g<br />

processes. Device modell<strong>in</strong>g, <strong>in</strong>clud<strong>in</strong>g use <strong>of</strong> S<br />

parameters. Noise modell<strong>in</strong>g.<br />

• RF basic build<strong>in</strong>g blocks:<br />

Low noise amplifers, power amplifiers, fliters and<br />

oscillators. Performance requirements and<br />

implementation.<br />

• Microstrip circuit design:<br />

Theory <strong>of</strong> the microstrip circuit. Implementation <strong>of</strong> L and<br />

C components. Microstrip implementation <strong>of</strong> amplifiers,<br />

filters and oscillators.<br />

Laboratory work • Use <strong>of</strong> RF devices. Construction and performance<br />

analysis <strong>of</strong> RF build<strong>in</strong>g blocks.<br />

Assessment 75% written exam<strong>in</strong>ation, 25% practical assessment<br />

Text books and resources Ludwig, R. And Bretchko, P., RF Circuit Design. Pearson<br />

Education.<br />

-19-


Department <strong>of</strong> Electronic Systems <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name ESE3105 – Radio Electronic Systems<br />

Credits 5<br />

Lectures/tutorial hours 24 hours lectures, 4 hours tutorials<br />

Laboratory hours 12 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions ESE2203 – Electromagnetic Theory<br />

Leads to --<br />

Objectives This module <strong>in</strong>troduces the fundamentals <strong>of</strong> radio electronic<br />

systems.<br />

Syllabus • The Phase locked loop:<br />

The PLL concept, design and performance considerations.<br />

PLL circuits.<br />

• The Synthesiser:<br />

The basic concept <strong>of</strong> frequency synthesis.<br />

Implementation us<strong>in</strong>g the PLL.<br />

• Transmitters and receivers:<br />

AM, FM and PM transmitters and receivers.<br />

Architectures, topologies and performance considerations.<br />

Performance comparison.<br />

Laboratory work • Construction and performance analysis <strong>of</strong> transmitters and<br />

receivers.<br />

Assessment 75% written exam<strong>in</strong>ation, 25% practical assessment<br />

Text books and resources TBA.<br />

-20-


Department <strong>of</strong> Systems and Control <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Study-units <strong>of</strong>fered by the<br />

Department <strong>of</strong> Systems and Control<br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Faculty <strong>of</strong> <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

University <strong>of</strong> Malta<br />

- 1 -


Department <strong>of</strong> Systems and Control <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Level 1 units<br />

- 2 -


Department <strong>of</strong> Systems and Control <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name SCE1101 - Cont<strong>in</strong>uous-time Dynamic Systems and Signals I<br />

Credits 5<br />

Lectures/tutorial hours 20 hours lectures, 8 hours tutorials<br />

Laboratory hours 6 hours<br />

Lecturer Ms. A. Bartolo<br />

Prerequisites and exclusions<br />

Leads to SCE1202 - Cont<strong>in</strong>uous-time Dynamic Systems and Signals II<br />

Objectives To develop the ability for represent<strong>in</strong>g, model<strong>in</strong>g and<br />

analyz<strong>in</strong>g cont<strong>in</strong>uous-time systems and signals us<strong>in</strong>g l<strong>in</strong>ear<br />

systems theory. To <strong>in</strong>troduce the practical use <strong>of</strong> MATLAB<br />

for signal analysis and simulation <strong>of</strong> dynamic systems.<br />

Syllabus • Introduction to signals and dynamic systems:<br />

Def<strong>in</strong>itions, classification, signal representation,<br />

fundamental signal functions, system models <strong>in</strong> time<br />

doma<strong>in</strong>, zero-<strong>in</strong>put and zero-state system response,<br />

impulse response, convolution.<br />

• The Laplace Transform:<br />

Def<strong>in</strong>ition and motivation, properties, <strong>in</strong>verse Laplace<br />

Transform, use for solv<strong>in</strong>g differential equations.<br />

• Transfer function representation <strong>of</strong> l<strong>in</strong>ear systems:<br />

Def<strong>in</strong>ition <strong>of</strong> transfer function, relation with impulse<br />

response, block diagrams, system order, poles and zeros.<br />

• Transfer function models <strong>of</strong> dynamic systems:<br />

Deriv<strong>in</strong>g system models - electrical, mechanical,<br />

electromechanical, thermal and fluid – and obta<strong>in</strong><strong>in</strong>g the<br />

time doma<strong>in</strong> response <strong>in</strong> transient and steady-state.<br />

Laboratory work • System model<strong>in</strong>g and time-doma<strong>in</strong> responses.<br />

Assessment 90% written exam<strong>in</strong>ation, 10% practical<br />

Text books and resources Edward W. Kamen, Bonnie S. Heck, “Fundamentals <strong>of</strong><br />

Signals and Systems Us<strong>in</strong>g the Web and Matlab”, 3 rd Edition,<br />

2006.<br />

- 3 -


Department <strong>of</strong> Systems and Control <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name SCE1202 - Cont<strong>in</strong>uous-time Dynamic Systems & Signals II<br />

Credits 5<br />

Lectures/tutorial hours 20 hours lectures, 8 hours tutorials<br />

Laboratory hours 6 hours<br />

Lecturer Ms. T. Cassar<br />

Prerequisites and exclusions Prerequisites: SCE1101 - Cont<strong>in</strong>uous-time Dynamic Systems<br />

and Signals I<br />

Leads to SCE2111 – Automatic Control Systems I and<br />

SCE2102 – Discrete-time Dynamic Systems and Signals I<br />

Objectives To develop further the ability for represent<strong>in</strong>g, model<strong>in</strong>g and<br />

analyz<strong>in</strong>g cont<strong>in</strong>uous-time systems and signals us<strong>in</strong>g l<strong>in</strong>ear<br />

systems theory <strong>in</strong> the time and frequency doma<strong>in</strong>s. To<br />

<strong>in</strong>troduce the practical use <strong>of</strong> MATLAB for signal analysis<br />

and simulation <strong>of</strong> dynamic systems.<br />

Syllabus • Analysis <strong>of</strong> dynamic systems <strong>in</strong> the time doma<strong>in</strong>:<br />

Time doma<strong>in</strong> analysis, transient and steady-state response,<br />

significance <strong>of</strong> poles and zeros on transient response,<br />

stability concept, 1 st and 2 nd order system responses,<br />

damp<strong>in</strong>g ratio, over/under/critical damp<strong>in</strong>g.<br />

• Frequency doma<strong>in</strong> analysis <strong>of</strong> signals:<br />

Def<strong>in</strong>itions, the Fourier Series representation <strong>of</strong> periodic<br />

signals and its properties, the Fourier Transform and its<br />

properties.<br />

• Analysis <strong>of</strong> systems <strong>in</strong> the frequency doma<strong>in</strong>:<br />

The frequency response <strong>of</strong> a system, the Frequency<br />

Response Function, graphical representation <strong>of</strong> frequency<br />

response us<strong>in</strong>g polar and Bode diagrams, asymptotic<br />

approximation <strong>of</strong> Bode diagrams.<br />

Laboratory work • Fourier analysis <strong>of</strong> signals.<br />

• System frequency response.<br />

Assessment 90% written exam<strong>in</strong>ation, 10% practical<br />

Text books and resources Edward W. Kamen, Bonnie S. Heck, “Fundamentals <strong>of</strong><br />

Signals and Systems Us<strong>in</strong>g the Web and Matlab”, 3 rd Edition,<br />

2006.<br />

- 4 -


Department <strong>of</strong> Systems and Control <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Level 2 units<br />

- 5 -


Department <strong>of</strong> Systems and Control <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name SCE2102 - Discrete-time Dynamic Systems and Signals I<br />

Credits 5<br />

Lectures/tutorial hours 20 hours lectures, 8 hours tutorials<br />

Laboratory hours 6 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions Prerequisites: SCE1202 - Cont<strong>in</strong>uous-time Dynamic Systems<br />

and Signals II<br />

Leads to SCE3105 - Discrete-time Dynamic Systems and Signals II<br />

and SCE3113 – Digital Control Systems<br />

Objectives To develop the ability for represent<strong>in</strong>g, model<strong>in</strong>g and<br />

analyz<strong>in</strong>g discrete-time systems and signals us<strong>in</strong>g l<strong>in</strong>ear<br />

systems theory.<br />

Syllabus • Introduction to discrete-time signals and systems:<br />

Def<strong>in</strong>itions; concept <strong>of</strong> sampl<strong>in</strong>g, quantization and<br />

cod<strong>in</strong>g; elementary discrete-time signals; discrete-time<br />

signal and system representations; concept <strong>of</strong> digital<br />

filter<strong>in</strong>g.<br />

• Sampl<strong>in</strong>g:<br />

Signal sampl<strong>in</strong>g and reconstruction; alias<strong>in</strong>g, Nyquist<br />

Theorem; zero-order hold sampl<strong>in</strong>g.<br />

• Frequency Doma<strong>in</strong> Analysis <strong>of</strong> discrete-time signals:<br />

Discrete-time Fourier Transform <strong>of</strong> signals and its<br />

properties; spectral content <strong>of</strong> discrete-time signals;<br />

Digital Fourier Transform and overview <strong>of</strong> its<br />

implementation efficiency.<br />

• The z-Transform:<br />

Def<strong>in</strong>ition, motivation and properties; relation to Digital<br />

Fourier Transform; Region <strong>of</strong> Convergence; <strong>in</strong>verse z-<br />

Transforms; z-transform analysis <strong>of</strong> l<strong>in</strong>ear-time <strong>in</strong>variant<br />

systems.<br />

• Transfer function representation <strong>of</strong> l<strong>in</strong>ear systems:<br />

Def<strong>in</strong>ition <strong>of</strong> transfer function, relation with impulse<br />

response, block diagrams, system order, poles and zeros.<br />

Laboratory work • Signal sampl<strong>in</strong>g and reconstruction<br />

• Spectral analysis <strong>of</strong> discrete-time signals<br />

Assessment 90% written exam<strong>in</strong>ation, 10% practical<br />

Text books and resources • Edward W. Kamen, Bonnie S Heck, “Fundamentals <strong>of</strong><br />

Signals and Systems Us<strong>in</strong>g the Web and Matlab”, 3 rd<br />

Edition, 2006.<br />

- 6 -


Department <strong>of</strong> Systems and Control <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name SCE2111 – Automatic Control Systems I<br />

Credits 5<br />

Lectures/tutorial hours 22 hours lectures, 6 hours tutorials<br />

Laboratory hours 6 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions Prerequisites: SCE1202 - Cont<strong>in</strong>uous-time Dynamic Systems<br />

and Signals II.<br />

Exclusions: SCE2210 - Introduction to Control Systems<br />

Leads to SCE2213 – Automatic Control Systems II<br />

Objectives This unit <strong>in</strong>troduces the basic concepts <strong>of</strong> automatic control<br />

systems cover<strong>in</strong>g theory <strong>of</strong> modell<strong>in</strong>g and analysis <strong>of</strong> l<strong>in</strong>ear<br />

time-<strong>in</strong>variant feedback control systems.<br />

Syllabus • Introduction to Control Systems <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Examples <strong>of</strong> practical automatic control systems.<br />

Concepts <strong>of</strong> open loop and closed loop control, negative<br />

feedback, stability, response, accuracy.<br />

• Closed Loop System Modell<strong>in</strong>g<br />

Open and closed loop transfer functions, the closed loop<br />

characteristic equation, unity feedback equivalent<br />

models, block diagram algebra, Signal-flow graphs.<br />

• L<strong>in</strong>ear Control System Characteristics <strong>in</strong> Time<br />

Doma<strong>in</strong><br />

The servomechanism as a practical control system:<br />

Speed control, position control, derivative feedback.<br />

Closed-loop system performance: Transient response<br />

specifications. Steady state response: system types,<br />

steady state errors, error constants. Basic <strong>in</strong>troduction to<br />

concepts <strong>of</strong> PD and PI control for improv<strong>in</strong>g transient<br />

and steady state performance. Sensitivity functions and<br />

disturbance rejection.<br />

• State Variable Models <strong>of</strong> Dynamic Systems<br />

State variables, state space models and derivation <strong>of</strong> state<br />

space equations, solution <strong>of</strong> state space equations, the<br />

state transition matrix, significance <strong>of</strong> state matrix<br />

eigenvalues.<br />

Laboratory work • System Modell<strong>in</strong>g us<strong>in</strong>g Matlab<br />

• D.C. Servomechanisms<br />

Assessment 90% written exam<strong>in</strong>ation, 10% practical<br />

Text books and resources Ogata K., Modern Control <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong>, Prentice Hall.<br />

- 7 -


Department <strong>of</strong> Systems and Control <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

This unit is <strong>of</strong>fered only to the <strong>Mechanical</strong> and Industrial <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> Streams:<br />

Unit Name<br />

SCE2210 - Introduction to Control Systems<br />

Credits 5<br />

Lectures/tutorial hours 22 hours lectures, 6 hours tutorials<br />

Laboratory hours 6 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions None<br />

Leads to SCE2213 – Automatic Control Systems II<br />

Objectives This unit <strong>in</strong>troduces the basic concepts <strong>of</strong> automatic control<br />

systems cover<strong>in</strong>g theory on modell<strong>in</strong>g and analysis <strong>of</strong> l<strong>in</strong>ear<br />

time-<strong>in</strong>variant feedback control systems.<br />

Syllabus • Introduction to Control Systems <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Open and closed loop systems, examples <strong>of</strong> practical<br />

automatic control systems, concept <strong>of</strong> system order,<br />

stability, response and accuracy.<br />

• The Laplace Transform<br />

The Laplace Transform, the <strong>in</strong>verse Laplace Transform,<br />

properties <strong>of</strong> the Laplace Transform, use for solv<strong>in</strong>g<br />

differential equations.<br />

• L<strong>in</strong>ear Systems Modell<strong>in</strong>g<br />

The transfer function approach to modell<strong>in</strong>g: poles and<br />

zeroes, relation between time and s-doma<strong>in</strong>, block diagram<br />

representation <strong>of</strong> systems, open and closed-loop<br />

relationships, unity feedback systems.<br />

Modell<strong>in</strong>g <strong>of</strong> l<strong>in</strong>ear system elements: electrical, mechanical,<br />

electro-mechanical, thermal, fluid, electro-mechanical<br />

analogy.<br />

The state variable approach to model<strong>in</strong>g: state space models<br />

and derivation <strong>of</strong> state space equations.<br />

• L<strong>in</strong>ear Control Systems Analysis<br />

Time doma<strong>in</strong> response <strong>of</strong> 1st and 2nd order systems:<br />

System response dependence on poles, damp<strong>in</strong>g,<br />

natural/damped frequency <strong>of</strong> oscillations, response to a step<br />

<strong>in</strong>put.<br />

The servomechanism as a practical control system:<br />

Position control, speed control, derivative feedback and<br />

<strong>in</strong>troduction to concepts <strong>of</strong> <strong>in</strong>tegral and PID control.<br />

Closed-loop system performance: System types, steady<br />

state errors, error constants, time doma<strong>in</strong> specifications.<br />

Laboratory work • System Modell<strong>in</strong>g us<strong>in</strong>g Matlab<br />

• D.C. Servomechanisms<br />

Assessment 90% written exam<strong>in</strong>ation, 10% practical<br />

Text books and resources Ogata K., Modern Control <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong>, Prentice Hall.<br />

- 8 -


Department <strong>of</strong> Systems and Control <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name SCE2213 – Automatic Control Systems II<br />

Credits 5<br />

Lectures/tutorial hours 22 hours lectures, 6 hours tutorials<br />

Laboratory hours 9 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions Prerequisites: SCE2111 – Automatic Control Systems I or<br />

SCE2210 - Introduction to Control Systems<br />

Leads to SCE3111 - Control System Design or SCE3110 - Feedback<br />

Control Systems.<br />

SCE3112 - Control Systems Technology and Automation<br />

and SCE3113 – Digital Control Systems<br />

Objectives This unit presents a further treatment <strong>of</strong> l<strong>in</strong>ear time-<strong>in</strong>variant<br />

feedback control systems, with particular emphasis on<br />

stability analysis us<strong>in</strong>g the root-locus and frequency response<br />

methodologies. Destabiliz<strong>in</strong>g effects <strong>of</strong> time delays are also<br />

considered and computer-aided control system design tools<br />

are <strong>in</strong>troduced.<br />

Syllabus • Stability <strong>of</strong> Closed Loop Systems<br />

Def<strong>in</strong>ition <strong>of</strong> stability, the characteristic equation and l<strong>in</strong>k<br />

between CLTF poles and stability. The Routh stability<br />

criterion, Root-locus techniques.<br />

• Frequency Doma<strong>in</strong> Analysis <strong>of</strong> Stability<br />

The Nyquist Stability Criterion, the Nyquist Plot, Phase<br />

and Ga<strong>in</strong> Marg<strong>in</strong>s, degree <strong>of</strong> stablity<br />

• L<strong>in</strong>ear Control System Characteristics <strong>in</strong> the<br />

Frequency Doma<strong>in</strong><br />

Relation between closed loop and open loop frequency<br />

response with time doma<strong>in</strong>, Nichols Plots, System<br />

identification from Bode Plots, Effects <strong>of</strong> time delays.<br />

• Computer-aided Control System Design and Simulation<br />

Computer simulation <strong>of</strong> dynamic systems, computer-aided<br />

control system design (CACSD), use <strong>of</strong> MATLAB and<br />

SIMULINK for CACSD.<br />

Laboratory work • Stability Analysis us<strong>in</strong>g Matlab (I)<br />

• Stability Analysis us<strong>in</strong>g Matlab (II)<br />

• System Identification Us<strong>in</strong>g Bode Plots<br />

Assessment 90% written exam<strong>in</strong>ation, 10% practical<br />

Text books and resources Ogata K., Modern Control <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong>, Prentice Hall.<br />

- 9 -


Department <strong>of</strong> Systems and Control <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Level 3 units<br />

- 10 -


Department <strong>of</strong> Systems and Control <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name SCE3105 - Discrete-time Dynamic Systems and Signals II<br />

Credits 5<br />

Lectures/tutorial hours 20 hours lectures, 8 hours tutorials<br />

Laboratory hours 6 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions Prerequisites: SCE2102 - Discrete-time Dynamic Systems<br />

and Signals I<br />

Leads to<br />

Objectives To develop further the ability for represent<strong>in</strong>g, model<strong>in</strong>g and<br />

analyz<strong>in</strong>g discrete-time systems and signals us<strong>in</strong>g l<strong>in</strong>ear<br />

systems theory <strong>in</strong> the time and frequency doma<strong>in</strong>s.<br />

Syllabus • Discrete-time system representation:<br />

Discrete convolution; difference equations and discretetime<br />

Fourier Transform transfer functions; system block<br />

structures; properties <strong>of</strong> discrete-time systems, system<br />

representations and relationship between representations.<br />

• Frequency doma<strong>in</strong> analysis and design <strong>of</strong> discrete-time<br />

systems:<br />

Classification <strong>of</strong> frequency response functions; causality;<br />

FIR filter design; IIR filter design.<br />

• Power spectral estimation:<br />

Issues <strong>in</strong> estimat<strong>in</strong>g spectra from f<strong>in</strong>ite-duration<br />

observations.<br />

Laboratory work • Discrete-time system modell<strong>in</strong>g<br />

• Digital filter design<br />

Assessment 90% written exam<strong>in</strong>ation, 10% practical<br />

Text books and resources • Edward W. Kamen, Bonnie S Heck, “Fundamentals <strong>of</strong><br />

Signals and Systems Us<strong>in</strong>g the Web and Matlab”, 3 rd<br />

Edition, 2006.<br />

- 11 -


Department <strong>of</strong> Systems and Control <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name SCE3106 - Computational Intelligence I<br />

Credits 5<br />

Lectures/tutorial hours 20 hours lectures, 8 hours tutorials<br />

Laboratory hours 6 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions None<br />

Leads to<br />

Objectives To <strong>in</strong>troduce the concepts and relevant algorithms for<br />

<strong>in</strong>telligent systems and develop the ability to select<br />

appropriate methods and computational techniques.<br />

Syllabus • Scope and methods for computational <strong>in</strong>telligence:<br />

Concept <strong>of</strong> <strong>in</strong>telligence; overview <strong>of</strong> <strong>in</strong>telligent systems<br />

and typical application doma<strong>in</strong>s; overview <strong>of</strong> generic<br />

methods for computational <strong>in</strong>telligence.<br />

• Statistical Pattern Recognition:<br />

Feature extraction and feature selection: source and<br />

importance <strong>of</strong> discrim<strong>in</strong>ant features; overview <strong>of</strong> methods<br />

for feature extraction: pr<strong>in</strong>cipal components analysis;<br />

curse <strong>of</strong> dimensionality and methods <strong>of</strong> feature selection:<br />

sub-optimal sequential methods, dendrogram; parametric<br />

and non-parametric classifiers.<br />

• Artificial Neural Networks:<br />

Neural architecture; model <strong>of</strong> a neuron; geometrical<br />

<strong>in</strong>terpretations; neuron learn<strong>in</strong>g; multi-layer perceptrons,<br />

supervised tra<strong>in</strong><strong>in</strong>g algorithms, design<strong>in</strong>g multi-layer<br />

perceptrons; self-organis<strong>in</strong>g maps; radial basis function<br />

networks; performance issues.<br />

• Evolutionary Computation:<br />

Problem representation; design <strong>of</strong> fitness function; <strong>in</strong>itial<br />

population; evolutionary selection and reproduction<br />

methods; genetic algorithms: crossover, mutation.<br />

• Fuzzy Systems:<br />

Fuzzy sets; fuzzy logic; rough sets; fuzzy system<br />

implementation; overview <strong>of</strong> application to fuzzy pattern<br />

recognition and to fuzzy controllers.<br />

Laboratory work<br />

Assessment 90% written exam<strong>in</strong>ation, 10% practical<br />

Text books and resources • A. Engelbrecht, Computational Intelligence: An<br />

Introduction, Wiley&Sons, 2007.<br />

• R. C. Eberhart, Y. Shi, Computational Intellgence:<br />

Concepts to Implementations, Morgan Kaufmann, 2007.<br />

- 12 -


Department <strong>of</strong> Systems and Control <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

This unit is <strong>of</strong>fered only to the Electronic Systems and Electrical streams<br />

Unit Name SCE3110 - Feedback Control Systems<br />

Credits 5<br />

Lectures/tutorial hours 22 hours lectures, 6 hours tutorials<br />

Laboratory hours 6 hours<br />

Prerequisites and exclusions Prerequisites: SCE2213 – Automatic Control Systems II.<br />

Exclusions: SCE3111 - Control System Design and SCE3113<br />

– Digital Control Systems<br />

Leads to<br />

Objectives This unit <strong>in</strong>troduces the basic approaches for design<strong>in</strong>g l<strong>in</strong>ear<br />

feedback control systems <strong>in</strong> cont<strong>in</strong>uous and discrete-time<br />

doma<strong>in</strong>s.<br />

Syllabus • Cont<strong>in</strong>uous-time Control Systems:<br />

Laboratory work<br />

Introduction to System Compensation: Need for<br />

dynamic compensation, passive compensation<br />

networks: lag, lead and lag-lead circuits.<br />

Root-locus compensation design: Transient<br />

characteristics from root-locus diagrams. 2nd order<br />

dom<strong>in</strong>ant systems. Lag and lead compensator design<br />

based on time doma<strong>in</strong> specs.<br />

• Digital Control Systems:<br />

Introduction: Discrete-time systems, the Sampl<strong>in</strong>g<br />

Theorem, alias<strong>in</strong>g, <strong>in</strong>terpolation and signal<br />

reconstruction.<br />

Analysis <strong>of</strong> discrete-time systems: The z-transform,<br />

model<strong>in</strong>g <strong>of</strong> discrete-time systems, discrete-time<br />

transfer functions, difference equations, stability,<br />

transient response.<br />

Digital controller design by emulation: Selection <strong>of</strong><br />

sampl<strong>in</strong>g rate, design by emulation.<br />

• Series compensation.<br />

• Dynamics <strong>of</strong> discrete-time systems.<br />

Assessment 90% written exam<strong>in</strong>ation, 10% practical.<br />

Text books and resources • Ogata. K., Modern Control <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong>.<br />

• Frankl<strong>in</strong> G.F. et al., Digital Control <strong>of</strong> Dynamic Systems.<br />

- 13 -


Department <strong>of</strong> Systems and Control <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name SCE3111 - Control Systems Design<br />

Credits 5<br />

Lectures/tutorial hours 22 hours lectures, 6 hours tutorials<br />

Laboratory hours 6 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions Prerequisites: SCE2213 – Automatic Control Systems II.<br />

Exclusions: SCE3110 - Feedback Control Systems.<br />

Leads to<br />

Objectives This unit covers the classical tools for design<strong>in</strong>g l<strong>in</strong>ear<br />

feedback control systems by dynamic compensation networks<br />

and PID controllers us<strong>in</strong>g frequency response and root-locus<br />

methodologies.<br />

Syllabus • L<strong>in</strong>ear Control System Design<br />

Introduction to System Compensation: Need for dynamic<br />

compensation, passive compensation networks: lag, lead<br />

and lag-lead circuits.<br />

Frequency doma<strong>in</strong> compensation design: Transient<br />

characteristics from open and closed loop frequency<br />

response plots. Lag and lead compensator design based<br />

on open and closed loop frequency response<br />

specifications.<br />

Root-locus compensation design: Transient<br />

characteristics from root-locus diagrams. 2nd order<br />

dom<strong>in</strong>ant systems. Lag and lead compensator design<br />

based on time doma<strong>in</strong> specs.<br />

PID compensation design: The PID controller. Ziegler-<br />

Nichols tun<strong>in</strong>g methods, root-locus tun<strong>in</strong>g methods.<br />

Laboratory work • Dynamics <strong>of</strong> closed-loop systems<br />

• Series compensation<br />

Assessment 90% written exam<strong>in</strong>ation, 10% practical.<br />

Text books and resources Ogata. K., Modern Control <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong>.<br />

- 14 -


Department <strong>of</strong> Systems and Control <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name SCE3112 - Control Systems Technology and Automation<br />

Credits 5<br />

Lectures/tutorial hours 22 hours lectures, 6 hours tutorials<br />

Laboratory hours 9 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions Prerequisites: SCE2213 – Automatic Control Systems II<br />

Leads to<br />

Objectives This unit covers control system components and<br />

implementation techniques that are used <strong>in</strong> the practice <strong>of</strong><br />

modern automation and control eng<strong>in</strong>eer<strong>in</strong>g. These <strong>in</strong>clude<br />

<strong>in</strong>dustrial automation technology, sensors and actuators.<br />

Syllabus • Introduction:<br />

Regulatory, sequence and supervisory control.<br />

Laboratory work<br />

• Regulatory (process) Control:<br />

On-<strong>of</strong>f control, PID control, auto-tun<strong>in</strong>g PID control.<br />

• Sequence (logic) Control:<br />

Sequential logic control: relay logic, safety issues,<br />

hard-wired logic control.<br />

Programmable Logic Control (PLC): features,<br />

programm<strong>in</strong>g languages, the IEC61131-3<br />

programm<strong>in</strong>g standard, ladder programm<strong>in</strong>g,<br />

Sequential Function Chart. Fieldbus technologies,<br />

SCADA, HMI.<br />

• Automation components:<br />

Relays, valves, sensors, pneumatic/hydraulic<br />

cyl<strong>in</strong>ders, actuators, electric motors, <strong>in</strong>dustrial<br />

component <strong>in</strong>terface standards.<br />

• Introduction to Robotics:<br />

Use <strong>of</strong> robots, geometrical arrangements, drive<br />

systems, components, k<strong>in</strong>ematics, dynamics, control.<br />

• Use <strong>of</strong> PLCs for sequence control <strong>of</strong> physical<br />

systems.<br />

Assessment 90% written exam<strong>in</strong>ation, 10% practical<br />

Text books and resources Parr E.A., Programmable Controllers: An eng<strong>in</strong>eers guide.<br />

Bateson R. M., Introduction to Control System Technology.<br />

- 15 -


Department <strong>of</strong> Systems and Control <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name SCE3113 - Digital Control Systems<br />

Credits 5<br />

Lectures/tutorial hours 22 hours lectures, 6 hours tutorials<br />

Laboratory hours 6 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions Prerequisites: SCE2213 – Automatic Control Systems II and<br />

SCE2102 – Discrete-time Dynamic Systems and Signals I.<br />

Exclusions: SCE3110 - Feedback Control Systems.<br />

Leads to<br />

Objectives This unit covers analysis and design techniques for<br />

controll<strong>in</strong>g dynamic systems by digital computer technology.<br />

Syllabus<br />

• Introduction to digital control systems:<br />

Computer control, digital control technology, practical<br />

examples.<br />

• Model<strong>in</strong>g and analysis <strong>of</strong> discrete-time systems:<br />

Discrete-time transfer functions, zero-order hold, block<br />

diagram algebra, closed loop transfer functions <strong>in</strong> the zdoma<strong>in</strong>,<br />

state variable models, stability, transient<br />

response.<br />

• Digital controller design:<br />

Selection <strong>of</strong> sampl<strong>in</strong>g rate, deadbeat control, digital poleplacement<br />

design techniques, root-locus design, digital<br />

PID algorithm, design by emulation.<br />

Laboratory work • Dynamics <strong>of</strong> discrete-time systems.<br />

• Digital control system design.<br />

Assessment 90% written exam<strong>in</strong>ation, 10% practical<br />

Text books and resources Frankl<strong>in</strong> G.F. et al., Digital Control <strong>of</strong> Dynamic Systems.<br />

- 16 -


Department <strong>of</strong> Systems and Control <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Unit Name SCE3114 - Systems <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong><br />

Credits 5<br />

Lectures/tutorial hours 22 hours lectures, 6 hours tutorials<br />

Laboratory hours 6 hours<br />

Lecturer TBA<br />

Prerequisites and exclusions None<br />

Leads to<br />

Objectives To develop concepts, tools and skills required for the<br />

eng<strong>in</strong>eer<strong>in</strong>g <strong>of</strong> systems under constra<strong>in</strong>ts <strong>of</strong> complexity,<br />

efficiency, reliability, safety and effectiveness.<br />

Syllabus • Motivation and systems methodologies.<br />

• Systems eng<strong>in</strong>eer<strong>in</strong>g processes and life cycles.<br />

• Systems modell<strong>in</strong>g.<br />

• Systems eng<strong>in</strong>eer<strong>in</strong>g management.<br />

• Quality assurance and management.<br />

• Test<strong>in</strong>g and validation.<br />

• Cost and operational analysis.<br />

• Legislation and quality standards.<br />

Laboratory work • Case studies <strong>of</strong> Systems <strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong> methodologies<br />

Assessment 90% written exam<strong>in</strong>ation, 10% practical<br />

Text books and resources • A.P. Sage, J.E. Armstrong, Introduction to Systems<br />

<strong>Eng<strong>in</strong>eer<strong>in</strong>g</strong>, Wiley.<br />

- 17 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!