24.02.2013 Views

Markovian Combination of Decomposable Model Structures: MCMoSt

Markovian Combination of Decomposable Model Structures: MCMoSt

Markovian Combination of Decomposable Model Structures: MCMoSt

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Markovian</strong> <strong>Combination</strong> 1/45<br />

London Math Society Durham Symposium on<br />

Mathematical Aspects <strong>of</strong> Graphical <strong>Model</strong>s.<br />

June 30 - July 10, 2008<br />

<strong>Markovian</strong> <strong>Combination</strong> <strong>of</strong><br />

<strong>Decomposable</strong> <strong>Model</strong> <strong>Structures</strong>:<br />

<strong>MCMoSt</strong><br />

Sung-Ho Kim & Sangjin Lee<br />

Department <strong>of</strong> Mathematical Sciences<br />

Korea Advanced Institute <strong>of</strong> Science and Technology<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 2/45<br />

Contents<br />

1 Introduction<br />

2 Preliminaries<br />

3 Distribution, interaction graph, and <strong>Markovian</strong><br />

subgraph<br />

4 Combined model structures<br />

5 Graph <strong>of</strong> prime separators (GOPS)<br />

6 Algorithm<br />

7 Time complexity<br />

8 Illustration-1<br />

9 Illustration-2<br />

10 Concluding remarks<br />

11 Where to go?<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 3/45<br />

1 Introduction<br />

• Problem and motivation<br />

1. Consider a problem <strong>of</strong> developing a graphical model <strong>of</strong><br />

30 item score variables (X’s) and 20 or more<br />

cognitive/knowledge state variables (U’s).<br />

2. We use the model for diagnosing knowledge states<br />

where knowledge states are predicted via conditional<br />

probabilities.<br />

3. X’s are observable and U’s are not, and assume they<br />

are all binary.<br />

4. Cognitive diagnosis and model structure<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 4/45<br />

• Two common sense issues in large-scale modeling:<br />

1. Sparseness <strong>of</strong> data (Koehler, 1986; Maydeu-Olivares<br />

and Joe, 2005; Kim(in revision))<br />

2. <strong>Model</strong>/time complexity (Chickering, 1996)<br />

- Koehler, K.J., 1986. Goodness-<strong>of</strong>-fit tests for log-linear models in<br />

sparse contingency tables. JASA, 81(394), 483-493.<br />

- Maydeu-Olivares, A., Joe, H., 2005. Limited- and full-information<br />

estimation and goodness-<strong>of</strong> -fit testing in 2 n contingency tables: a<br />

unified framework. JASA, 100(471), 1009-1020.<br />

- Chickering, D. (1996). Learning Bayesian networks is<br />

NP-complete, In: Learning from Data, D. Fisher and H. Lenz (Ed.),<br />

121-130, Springer-Verlag.<br />

- Kim (in revision). Estimate-based goodness-<strong>of</strong>-fit test for large<br />

sparse multinomial distributions.<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 5/45<br />

• Fienberg and Kim (1999) and Kim (2006) considered a<br />

problem <strong>of</strong> combining conditional graphical log-linear<br />

structures and derived a combining rule for them based on<br />

the relation between the log-linear model and its<br />

conditional version.<br />

• A main feature <strong>of</strong> the relation is that conditional<br />

log-linear structures appear as parts <strong>of</strong> their joint model<br />

structure [Theorems 3 and 4, Fienberg and Kim].<br />

- Fienberg and Kim (1999). Combining conditional log-linear<br />

structures, JASA, 445(94), 229-239.<br />

- Kim (2006). Conditional log-linear structures for log-linear<br />

modelling, CSDA, 50(8), 2044-2064.<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 6/45<br />

But not between marginal and joint models!<br />

• Consider two marginal models, [12][23] and [12][24], which<br />

are possible from each <strong>of</strong><br />

[12][24][23], [12][24][34], [12][23][34], [12][234].<br />

• How can we find a joint model structure from a given<br />

set <strong>of</strong> marginal model structures?<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 7/45<br />

2 Preliminaries<br />

• We will consider only undirected graphs.<br />

• For a subset A ⊆ V , we denote by GA = (A, EA) the<br />

subgraph <strong>of</strong> G = (V, E) confined to A where<br />

EA = (E ∩ A × A) ∪<br />

{(u, v) ∈ A × A; u and v are not separated by<br />

A \ {u, v} in G}.<br />

We will call GA the <strong>Markovian</strong> subgraph <strong>of</strong> G confined to<br />

A.<br />

2<br />

2<br />

1<br />

4 5<br />

3<br />

(a) (b)<br />

1<br />

3<br />

4<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 8/45<br />

• If G = (V, E), G ′ = (V, E ′ ), and E ′ ⊆ E, then we say that G ′<br />

is an edge-subgraph <strong>of</strong> G and write G ′ ⊆ e G.<br />

• According to the definition <strong>of</strong> a decomposable graph, we<br />

can find a sequence <strong>of</strong> cliques C1, · · · , Ck <strong>of</strong> a decomposable<br />

graph G which satisfies the following condition [see<br />

Proposition 2.17 <strong>of</strong> Lauritzen (1996)]: with C (j) = ∪ j<br />

i=1 Ci<br />

and Sj = Cj ∩ C (j−1),<br />

for all i > 1, there is a j < i such that Si ⊆ Cj.<br />

• We denote the collection <strong>of</strong> these Sj’s by χ(G).<br />

- Lauritzen (1996). Graphical <strong>Model</strong>s. Oxford: Oxford University<br />

Press.<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 9/45<br />

• The cliques are elementary graphical components and<br />

the Sj is obtained as intersection <strong>of</strong> neighboring cliques.<br />

We will call the Sj’s prime separators <strong>of</strong> the decomposable<br />

graph G.<br />

• Prime graphs are defined as the maximal subgraphs<br />

without a complete separator in Cox and Wermuth(1999).<br />

• The prime separators in a decomposable graph may be<br />

extended to separators <strong>of</strong> prime graphs in any undirected<br />

graph.<br />

- Cox, D.R. and Wermuth, N. (1999). Likelihood factorizations for<br />

mixed discrete and continuous variables, SJS, 26, 209-220.<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 10/45<br />

• We will denote by M(G) the collection <strong>of</strong> the<br />

distributions that are globally Markov with respect to G,<br />

i.e., if, for three disjoint subsets A, B, C <strong>of</strong> V , XA and XB<br />

are conditionally independent given XC, then A and B are<br />

separated by C in G.<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 11/45<br />

3 Distribution and interaction graphs<br />

• For a distribution P, let G(P) be the interaction graph <strong>of</strong><br />

P.<br />

Theorem 1. (Corollary 3.4 in Kim (2004)) For a distribution<br />

P <strong>of</strong> XV and A ⊆ V ,<br />

PA ∈ M(G(P)A).<br />

• For a collection V <strong>of</strong> subsets <strong>of</strong> V , let<br />

˜L(GA, A ∈ V) = {P; PA ∈ M(GA), A ∈ V}.<br />

Theorem 2. (Theorem 3.6 in Kim(2004)) For a collection V <strong>of</strong><br />

subsets <strong>of</strong> V with an undirected graph G,<br />

M(G) ⊆ ˜ L(GA, A ∈ V).<br />

- Kim (2004). Combining decomposable model structures, RR 04-15,<br />

Division <strong>of</strong> Applied Mathematics, KAIST.<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 12/45<br />

4 Combined model structures<br />

• Let G = (V, E) be decomposable and let V1, V2, · · · , Vm be<br />

subsets <strong>of</strong> V . For simplicity, we write Gi = GVi.<br />

Definition 3. Suppose there are m <strong>Markovian</strong> subgraphs,<br />

G1, · · · , Gm. Then we say that graph H <strong>of</strong> a set <strong>of</strong> variables<br />

V is a combined model structure (CMS) corresponding to<br />

G1, · · · , Gm, if the following conditions hold:<br />

(i) ∪ m i=1 Vi = V.<br />

(ii) HVi = Gi, for i = 1, · · · , m. That is, Gi are <strong>Markovian</strong><br />

subgraphs <strong>of</strong> H.<br />

We will call H a maximal CMS corresponding to G1, · · · , Gm<br />

if adding any edge to H invalidates condition (ii) for at<br />

least one i = 1, · · · , m.<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 13/45<br />

• Let CG(A) denote the collection <strong>of</strong> the cliques which<br />

include nodes <strong>of</strong> A in the graph G.<br />

Lemma 4. Let G ′ = (V ′ , E ′ ) be a <strong>Markovian</strong> subgraph <strong>of</strong> G<br />

and suppose that, for three disjoint subsets A, B, C <strong>of</strong> V ′ ,<br />

〈A|B|C〉G ′. Then<br />

(i) 〈A|B|C〉G;<br />

(ii) For W ∈ CG(A) and W ′ ∈ CG(C), 〈W |B|W ′ 〉G.<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 14/45<br />

Theorem 5. (Kim, 2006) Let there be <strong>Markovian</strong> subgraphs<br />

Gi, i = 1, 2, · · · , m, <strong>of</strong> a decomposable graph G. Then<br />

(i) ∪ m i=1χ(Gi) ⊆ χ(G);<br />

(ii) for any maximal CMS H,<br />

∪ m i=1χ(Gi) = χ(H).<br />

Theorem 6 (Unique existence). (Kim, 2006) Suppose there are<br />

m <strong>Markovian</strong> subgraphs G1, · · · , Gm <strong>of</strong> a decomposable<br />

graph G. Then there exists a unique maximal CMS H ∗ <strong>of</strong><br />

the m <strong>Markovian</strong> subgraphs such that G ⊆ e H ∗ .<br />

- Kim. (2006). Properties <strong>of</strong> <strong>Markovian</strong> subgraphs <strong>of</strong> a<br />

decomposable graph, LNAI 4293, 15-26.<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 15/45<br />

Theorem 7 (Invariance <strong>of</strong> PS). Let G be a decomposable<br />

graph and G1 and G2 be <strong>Markovian</strong> subgraphs <strong>of</strong> G.<br />

Suppose that a set C ∈ χ(G1) and that C ⊆ V2. Then C is<br />

not intersected in G2 by any other subset <strong>of</strong> V2.<br />

• We will call a node PS-node if it is a component <strong>of</strong> a<br />

PS; otherwise, a non-PS-node.<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 16/45<br />

5 Graph <strong>of</strong> prime separators (GOPS)<br />

Definition 8. Let A = ∪ a∈χ(G)a. Then the graph <strong>of</strong> the<br />

prime separators (GOPS for short) <strong>of</strong> G is obtained from<br />

GA by replacing every PS and all the edges between every<br />

pair <strong>of</strong> neighboring PSs in GA with a node and an edge,<br />

respectively.<br />

1<br />

2<br />

12<br />

4<br />

3<br />

11<br />

8<br />

7<br />

5<br />

6<br />

3, 4<br />

3, 5<br />

4, 8 {11,12}<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 17/45<br />

6 Algorithm<br />

[Separateness condition] Let M be a set <strong>of</strong> <strong>Markovian</strong><br />

subgraphs <strong>of</strong> G and H a maximal CMS <strong>of</strong> M. If two<br />

nodes are in a graph in M and they are not adjacent in<br />

the graph, then neither are they in H. Otherwise,<br />

adjacency <strong>of</strong> the nodes in H is determined by checking<br />

separateness <strong>of</strong> the nodes in M.<br />

Suppose that M consists <strong>of</strong> m <strong>Markovian</strong> subgraphs,<br />

G1, · · · , Gm, <strong>of</strong> G and we denote by a i a PS <strong>of</strong> Gi. We can<br />

then combine the models <strong>of</strong> M as follows.<br />

Step 1. We arrange the subgraphs into Gi1 , · · · , Gim such<br />

that |Vij ∩ Vij+1| ≥ |Vij+1 ∩ Vij+2| for j = 1, 2, · · · , m − 2. For<br />

convenience, let ij = j, j = 1, 2, · · · , m. We define<br />

η1 = {G1}.<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 18/45<br />

Step 2a. We first put an edge between every pair <strong>of</strong> PSs,<br />

a 1 and a 2 , if<br />

a 1 ∩ a 2 �= ∅, (1)<br />

in such a way that the separateness condition is<br />

satisfied with regard to M. We denote the resulting<br />

GOPS by H.<br />

Step 2b. Once the node-sharing PSs are all considered in<br />

Step 2a, we need to consider all the PSs a 1 and a 2 such<br />

that<br />

a 1 ∩ � ∪ a∈χ(G2)a � = ∅ and a 2 ∩ � ∪ a∈χ(G1)a � = ∅ (2)<br />

and put edges between a i , i = 1, 2, and every PS in G3−i<br />

that is acceptable under the separateness condition, in<br />

addition to the GOPS which is obtained in Step 2a.<br />

For example, for each a 1 satisfying (2), we add edges to<br />

H between the a 1 and every possible PS in G2 under<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 19/45<br />

the separateness condition, and similarly for each <strong>of</strong> a 2<br />

that satisfy (2). We denote the result <strong>of</strong> the<br />

combination by η2.<br />

Step 3. Let ηi be the GOPS obtained from the preceding<br />

step. Note that ηi can be a set <strong>of</strong> GOPS’s. For each<br />

GOPS H in ηi, we combine H with Gi+1 as in Step 2,<br />

where we replace G1 and G2 with H and Gi+1,<br />

respectively. We repeat this combination with Gi+1 for<br />

all the graphs H in ηi, which results in the set, ηi+1, <strong>of</strong><br />

newly combined graphs.<br />

Step 4. If i + 1 = m, then stop the process. Otherwise,<br />

repeat Step 3.<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 20/45<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

11<br />

Figure 1: A model <strong>of</strong> 13 variables.<br />

7<br />

12<br />

8<br />

10<br />

9<br />

13<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 21/45<br />

1<br />

6<br />

2<br />

3<br />

11<br />

4<br />

12<br />

G<br />

5<br />

10<br />

6<br />

1<br />

9<br />

2<br />

3<br />

7<br />

G 3<br />

G 1<br />

4<br />

5<br />

6<br />

Figure 2: Marginals <strong>of</strong> the model in Figure 1.<br />

11<br />

7<br />

12<br />

G 2<br />

G 4<br />

8<br />

10<br />

6<br />

9<br />

4<br />

13<br />

7<br />

6<br />

7<br />

12<br />

10<br />

8<br />

10<br />

13<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 22/45<br />

Unite<br />

4<br />

7<br />

4 G2 G4<br />

6<br />

10<br />

6<br />

7<br />

8<br />

10<br />

12 13<br />

8<br />

Check separateness<br />

4<br />

6<br />

7<br />

6<br />

8<br />

10<br />

12 13<br />

7<br />

12<br />

10<br />

13<br />

Select & delete<br />

4<br />

X<br />

X<br />

6<br />

7<br />

X<br />

8<br />

10<br />

12 13<br />

Figure 3: Combining G2 and G4 <strong>of</strong> the model in Figure 1.<br />

Dept. <strong>of</strong> Math. Sciences, KAIST<br />

X


<strong>Markovian</strong> <strong>Combination</strong> 23/45<br />

6<br />

7<br />

11<br />

Unite<br />

6<br />

11<br />

12<br />

10<br />

12<br />

9<br />

10<br />

9<br />

13<br />

G 3<br />

6<br />

7<br />

11<br />

G 4<br />

12<br />

6<br />

10<br />

Chech separateness<br />

9<br />

7<br />

13<br />

12<br />

10<br />

X2<br />

6<br />

7<br />

11<br />

13<br />

X1<br />

X<br />

Select & delete<br />

Figure 4: Combining G3 and G4 <strong>of</strong> the model <strong>of</strong> 13 variables.<br />

Dept. <strong>of</strong> Math. Sciences, KAIST<br />

12<br />

10<br />

9<br />

X<br />

13


<strong>Markovian</strong> <strong>Combination</strong> 24/45<br />

30<br />

31<br />

32<br />

28<br />

29<br />

34<br />

35<br />

33<br />

36<br />

30<br />

32<br />

38<br />

37<br />

35<br />

31<br />

37<br />

36<br />

38<br />

39<br />

40<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 25/45<br />

1. Unite<br />

29, 34<br />

28, 30, 29<br />

29, 34<br />

34, 36 37, 38<br />

30, 32<br />

28, 30, 29<br />

36, 38<br />

34, 36 37, 38<br />

3. Check separateness<br />

29, 34<br />

28, 30, 29<br />

30, 32<br />

31<br />

31<br />

30, 32<br />

36, 38<br />

34, 36 37, 38<br />

30, 32<br />

31<br />

36, 38<br />

37, 38<br />

31<br />

2. Connect<br />

29, 34<br />

28, 30, 29<br />

30, 32<br />

36, 38<br />

34, 36 37, 38<br />

4. Select & delete<br />

29, 34<br />

28, 30, 29<br />

30, 32<br />

X<br />

36, 38<br />

34, 36 37, 38<br />

Figure 5: Combining xGOPS5 and xGOPS6 <strong>of</strong> the model <strong>of</strong><br />

40 variables.<br />

X<br />

X<br />

31<br />

X<br />

X<br />

31<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 26/45<br />

7 Time complexity <strong>of</strong> the procedure<br />

• For two graphs, G1 and G2, let |Vi| = ni with i = 1, 2,<br />

|V1 ∩ V2| = n12 and ñi = ni − n12.<br />

• It is well known that the time complexity <strong>of</strong> the<br />

depth-first search method (Tarjan, 1972) for a graph<br />

G = (V, E) is <strong>of</strong> order O(|V | + |E|).<br />

• So the time complexity for the combination is <strong>of</strong> order<br />

ñ 2 1O(ñ2 + ˜e2) + ñ 2 2O(ñ1 + ˜e1), where ˜ei is the number <strong>of</strong><br />

edges in the induced subgraph <strong>of</strong> Gi on Vi \ V3−i.<br />

- Tarjan, R. E. (1972). Depth-first search and linear graph<br />

algorithms. SIAM J. Comput. 1(2), 146-160.<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 27/45<br />

8 Illustration-1<br />

6<br />

1<br />

7<br />

2<br />

3<br />

4<br />

5<br />

17<br />

11<br />

8<br />

14<br />

12<br />

16<br />

9<br />

23<br />

10<br />

18<br />

13<br />

15<br />

25<br />

21<br />

19<br />

28<br />

31<br />

26 27 39<br />

Figure 6: A model <strong>of</strong> 40 binary variables<br />

20<br />

22<br />

24<br />

34<br />

29<br />

30<br />

37<br />

36<br />

38<br />

35<br />

32<br />

33<br />

40<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 28/45<br />

Figure 7: A matrix <strong>of</strong> regressor-response relationships for<br />

the 40 variables as obtained from a tree regression analysis.<br />

The 1’s in column j are the indicators <strong>of</strong> the regressor<br />

variables for the response variable Xj. The six blocks correspond<br />

to the six subsets <strong>of</strong> variables listed in Table 1.<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 29/45<br />

Table 1: The indexes <strong>of</strong> the variables in the 6 subsets,<br />

V1, · · · , V6.<br />

V1 = {1, 2, 3, 4, 5, 6, 7, 8, 11, 12}<br />

V2 = {8, 9, 10, 11, 12, 14, 15, 16, 17, 18}<br />

V3 = {10, 13, 14, 15, 19, 20, 21, 22, 23, 24}<br />

V4 = {13, 20, 21, 22, 25, 26, 27, 28, 29, 34}<br />

V5 = {28, 29, 30, 31, 32, 34, 35, 36, 37, 38}<br />

V6 = {30, 31, 32, 33, 35, 36, 37, 38, 39, 40}<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 30/45<br />

Table 2: Goodness-<strong>of</strong>-fit levels <strong>of</strong> the six marginal models<br />

Marginal model d.f. Pearson χ 2 p-value<br />

1 567 547.50 0.714<br />

2 645 667.41 0.263<br />

3 601 589.07 0.628<br />

4 649 679.25 0.199<br />

5 617 591.89 0.760<br />

6 604 621.53 0.302<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 31/45<br />

1<br />

2<br />

12<br />

4<br />

3<br />

8<br />

7<br />

5<br />

6<br />

G1<br />

11<br />

18<br />

G2<br />

23<br />

10<br />

21<br />

15<br />

13<br />

20<br />

22 G3<br />

24<br />

27<br />

G4<br />

G5<br />

30<br />

14<br />

31<br />

32<br />

28<br />

29<br />

34<br />

35<br />

36<br />

19<br />

38<br />

37<br />

Figure 8: Marginal models <strong>of</strong> the model in Figure 6 for<br />

the 6 subsets <strong>of</strong> variables which are listed in Table 1. Gi is<br />

the decomposable log-linear model for subset Vi. PSs are<br />

represented by thick lines. See Figure 9 for the PSs <strong>of</strong> the<br />

6 marginal models.<br />

12<br />

8<br />

29<br />

28<br />

33<br />

16<br />

30<br />

32<br />

9<br />

10<br />

34<br />

13<br />

20<br />

35<br />

31<br />

21<br />

14<br />

11<br />

22<br />

36<br />

15<br />

37<br />

26<br />

38<br />

39<br />

17<br />

25<br />

40<br />

G6<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 32/45<br />

3, 4<br />

3, 5<br />

4, 8 {11,12}<br />

8, 10 {11,12}<br />

15, 16<br />

14, 16<br />

21, 22<br />

13, 14<br />

10, 21<br />

GOPS1 GOPS2 GOPS3<br />

20, 29<br />

20, 28<br />

13, 20<br />

29,34<br />

21, 22<br />

28, 30, 29<br />

37,38<br />

29, 34<br />

30,32<br />

34, 36<br />

GOPS4 GOPS5 GOPS6<br />

31<br />

15<br />

36, 38<br />

37, 38<br />

10, 13<br />

10, 19<br />

30, 32 31<br />

Figure 9: The GOPS’s <strong>of</strong> the six marginal models in Figure<br />

8.<br />

Dept. <strong>of</strong> Math. Sciences, KAIST<br />

20


<strong>Markovian</strong> <strong>Combination</strong> 33/45<br />

17<br />

18<br />

1<br />

2 6<br />

11<br />

12<br />

14,16<br />

3, 4 3, 5<br />

2<br />

15,16<br />

23<br />

24<br />

1 1<br />

4, 8<br />

9<br />

2<br />

1<br />

13,14<br />

10,19<br />

8, 10<br />

3<br />

3<br />

10,13<br />

10,21 21,22<br />

3<br />

7<br />

2<br />

3<br />

4<br />

13,20<br />

39 40<br />

35<br />

20, 29<br />

20, 28<br />

4<br />

4<br />

4<br />

25 26<br />

27<br />

37, 38<br />

29, 34<br />

5<br />

6<br />

34, 36<br />

31<br />

5<br />

36, 38<br />

28,30 , 29<br />

5<br />

6<br />

30,32 6<br />

Figure 10: An independence graph <strong>of</strong> PSs and non-PS variables.<br />

The PSs are in ovals and the dots are for the non-PS<br />

variables, and the small numbers at the bottom-right <strong>of</strong> the<br />

ovals are the submodel labels <strong>of</strong> which the ovals are PSs.<br />

33<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 34/45<br />

6<br />

1<br />

7<br />

2<br />

3<br />

5<br />

4<br />

11<br />

8<br />

17<br />

12<br />

16<br />

14<br />

9<br />

10<br />

18<br />

23<br />

15<br />

21<br />

13<br />

25 26 27<br />

Figure 11: The combined model structure which is obtained<br />

from the independence graph in Figure 10. The thick edges<br />

are additional to the true model in Figure 6.<br />

28<br />

22<br />

20<br />

31<br />

19<br />

24<br />

30<br />

34<br />

37<br />

39<br />

29<br />

32<br />

38<br />

36<br />

40<br />

35<br />

33<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 35/45<br />

1<br />

2<br />

12<br />

4<br />

3<br />

8<br />

7<br />

5<br />

6<br />

11<br />

18<br />

G1 G2<br />

12<br />

8<br />

16<br />

9<br />

10<br />

14<br />

11<br />

15<br />

17<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 36/45<br />

9 Illustration-2<br />

6<br />

41<br />

1<br />

46<br />

3<br />

17<br />

42<br />

2<br />

43<br />

47<br />

5<br />

4<br />

11<br />

7<br />

44<br />

45<br />

8<br />

12<br />

9<br />

14<br />

16<br />

52<br />

48<br />

57<br />

18<br />

58<br />

23<br />

51<br />

10<br />

49<br />

63<br />

56<br />

55<br />

15<br />

21<br />

13<br />

54<br />

67<br />

61<br />

25<br />

19<br />

31<br />

22<br />

20<br />

66<br />

50<br />

62<br />

26<br />

Figure 12: A model <strong>of</strong> 100 variables<br />

27<br />

24<br />

30<br />

65<br />

53<br />

29<br />

28<br />

59<br />

34<br />

33<br />

64<br />

71<br />

37<br />

35<br />

36<br />

86<br />

72<br />

32<br />

68<br />

38<br />

39<br />

60<br />

40<br />

73<br />

81<br />

70<br />

69<br />

85<br />

91<br />

75<br />

84<br />

82<br />

87<br />

74<br />

92<br />

76<br />

83<br />

89<br />

80<br />

88<br />

77<br />

94<br />

90<br />

78<br />

96<br />

79<br />

100<br />

93<br />

97<br />

99<br />

Dept. <strong>of</strong> Math. Sciences, KAIST<br />

95<br />

98


<strong>Markovian</strong> <strong>Combination</strong> 37/45<br />

7<br />

10<br />

6<br />

1<br />

13<br />

3<br />

17<br />

2<br />

19<br />

14<br />

16<br />

31<br />

5<br />

4<br />

G 1<br />

18<br />

G 4<br />

20<br />

11<br />

51<br />

30<br />

8<br />

15<br />

12<br />

9<br />

G 7<br />

29<br />

28<br />

33<br />

4<br />

35<br />

11<br />

32<br />

42<br />

8<br />

12<br />

9<br />

16<br />

29<br />

14<br />

34<br />

7<br />

44<br />

Figure 13: The first nine marginal models, G1, · · · , G9, <strong>of</strong> the<br />

model in Figure 12.<br />

G 5<br />

10<br />

15<br />

G 2<br />

35<br />

36<br />

86<br />

G 8<br />

52<br />

13<br />

18<br />

40<br />

85<br />

19<br />

51<br />

81<br />

20<br />

41<br />

46<br />

23<br />

10<br />

29<br />

42<br />

43<br />

47<br />

34<br />

21<br />

44<br />

35<br />

19<br />

G 3<br />

45<br />

G 6<br />

37<br />

G 9<br />

25<br />

36<br />

22<br />

48<br />

38<br />

26<br />

52<br />

39<br />

27<br />

24<br />

49<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 38/45<br />

74<br />

86<br />

76<br />

57<br />

58<br />

80<br />

77<br />

81<br />

85<br />

94<br />

G 13<br />

56<br />

55<br />

G 16<br />

78<br />

54<br />

84<br />

82<br />

87<br />

G 10<br />

96<br />

79<br />

93<br />

97<br />

83<br />

95<br />

63<br />

88<br />

68<br />

60<br />

67<br />

70<br />

61<br />

91<br />

69<br />

84<br />

66<br />

50<br />

75<br />

G 17<br />

92<br />

74<br />

G 14<br />

62<br />

83<br />

76<br />

65<br />

Figure 14: The second nine marginal models, G10, · · · , G18,<br />

<strong>of</strong> the model in Figure 12.<br />

59<br />

89<br />

88<br />

G 11<br />

80<br />

64<br />

77<br />

94<br />

90<br />

78<br />

100<br />

93<br />

79<br />

99<br />

63<br />

50<br />

56<br />

55<br />

54<br />

53<br />

61<br />

59<br />

94<br />

G 18<br />

90<br />

50<br />

96<br />

100<br />

93<br />

G 12<br />

71<br />

G 15<br />

62<br />

53<br />

72<br />

99<br />

59<br />

68<br />

95<br />

64<br />

60<br />

98<br />

73<br />

70<br />

69<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 39/45<br />

6<br />

41<br />

1<br />

46<br />

3<br />

17<br />

42<br />

2<br />

43<br />

47<br />

5<br />

4<br />

11<br />

7<br />

44<br />

45<br />

8<br />

12<br />

9<br />

14<br />

16<br />

52<br />

48<br />

57<br />

18<br />

58<br />

23<br />

51<br />

10<br />

49<br />

63<br />

56<br />

55<br />

15<br />

21<br />

13<br />

54<br />

67<br />

61<br />

25<br />

20<br />

31<br />

22<br />

19<br />

66<br />

50<br />

62<br />

26<br />

Figure 15: The combined result <strong>of</strong> the 18 marginal models<br />

in Figures 13 and 14. The thick edges are additional to the<br />

true model in Figure 12.<br />

27<br />

24<br />

30<br />

65<br />

53<br />

34<br />

28<br />

59<br />

33<br />

29<br />

64<br />

71<br />

37<br />

35<br />

36<br />

86<br />

72<br />

32<br />

68<br />

38<br />

39<br />

60<br />

40<br />

73<br />

81<br />

70<br />

69<br />

85<br />

91<br />

75<br />

84<br />

82<br />

87<br />

74<br />

92<br />

76<br />

83<br />

89<br />

80<br />

88<br />

77<br />

94<br />

90<br />

78<br />

96<br />

79<br />

100<br />

93<br />

97<br />

99<br />

Dept. <strong>of</strong> Math. Sciences, KAIST<br />

95<br />

98


<strong>Markovian</strong> <strong>Combination</strong> 40/45<br />

4<br />

11<br />

16<br />

8<br />

12<br />

9<br />

16<br />

11<br />

14<br />

4, 9<br />

8, 10<br />

13, 14<br />

15<br />

G 2<br />

4, 12<br />

GOPS 2<br />

10<br />

15<br />

19<br />

13<br />

10, 13<br />

19<br />

20<br />

Figure 16: Two marginal models which include nodes 10<br />

and 19.<br />

20<br />

23<br />

23<br />

10<br />

25<br />

10, 21<br />

21<br />

25<br />

19<br />

G 3<br />

26<br />

21, 22<br />

22<br />

GOPS 3<br />

26<br />

27<br />

27<br />

24<br />

10, 19, 22<br />

24<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 41/45<br />

10 Concluding Remarks<br />

1. The main idea <strong>of</strong> <strong>MCMoSt</strong> is similar to<br />

constraint-based learning[CBL] (Meek 1995; Spirtes,<br />

Glymour & Scheines, 2000; Neapolitan, 2004) where<br />

we construct a Bayesian network based on a list <strong>of</strong><br />

constraints which are given in terms <strong>of</strong> conditional<br />

independence among a given set <strong>of</strong> random variables.<br />

- Meek, C. (1995). Causal influence and causal explanation with<br />

background knowledge, UAI 11, 403-410.<br />

- Neapolitan, R.E. (2004). Learning Bayesian Networks, Pearson<br />

Prentice Hall, Upper Saddle River, NJ.<br />

- Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation,<br />

Prediction, and Search, 2nd ed.<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 42/45<br />

But a noteworthy difference between the two is that,<br />

while the statements <strong>of</strong> conditional independencies, as<br />

for the CBL, are an extraction from the probability<br />

model <strong>of</strong> the whole set <strong>of</strong> the variables involved, the<br />

statements for <strong>MCMoSt</strong> are from the marginal<br />

probability models <strong>of</strong> the subsets <strong>of</strong> variables.<br />

2. In selecting subsets <strong>of</strong> random variables, it is important<br />

to have the random variables associated more highly<br />

within subsets than between subsets. This way <strong>of</strong><br />

subset-selection would end up with subsets <strong>of</strong> random<br />

variables where random variables that are neighbors in<br />

the graph <strong>of</strong> the model structure <strong>of</strong> the whole data set<br />

are more likely to appear in the same marginal model.<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 43/45<br />

3. Although the model combination is carried out under<br />

the decomposability assumption, we can deal with the<br />

marginal models <strong>of</strong> a graphical model, which are not<br />

decomposable, by transforming their model structures<br />

into decomposable (i.e., triangulated) graphs.<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 44/45<br />

11 Where to go?<br />

• Combining model structures other than UG’s.<br />

• <strong>Model</strong>s with no observed data.<br />

• Consistency <strong>of</strong> models (Dawid and Lauritzen, 1993)<br />

• Robustness <strong>of</strong> prediction/classification (Kim, 2005;<br />

Fienberg and Kim, 2007)<br />

- Dawid and Lauritzen (1993). Hyper Markov laws in the statistical<br />

analysis <strong>of</strong> decomposable graphical models. The Annals <strong>of</strong> Statistics,<br />

21, 3, 1272-1317.<br />

- Kim (2005). Stochastic ordering and robustness in classification<br />

from a Bayesian network, Decision Support Systems, 39 (3), 253-266.<br />

- Fienberg and Kim (2007). Positive association among three binary<br />

variables and cross-product ratios, Biometrika 94(4), 999-1005.<br />

Dept. <strong>of</strong> Math. Sciences, KAIST


<strong>Markovian</strong> <strong>Combination</strong> 45/45<br />

Thank You!<br />

Dept. <strong>of</strong> Math. Sciences, KAIST

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!