24.02.2013 Views

Luz E. de-Bashan, Adán Trejo, Yoav Bashan and Juan-Pablo ...

Luz E. de-Bashan, Adán Trejo, Yoav Bashan and Juan-Pablo ...

Luz E. de-Bashan, Adán Trejo, Yoav Bashan and Juan-Pablo ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Luz</strong> E. <strong>de</strong>-<strong>Bashan</strong>, <strong>Adán</strong> <strong>Trejo</strong>, j<br />

<strong>Yoav</strong> <strong>Bashan</strong> <strong>and</strong> <strong>Juan</strong>-<strong>Pablo</strong> Hernán<strong>de</strong>z<br />

EEnvironmental i t l Mi Microbiology bi l G Group,<br />

CIBNOR, México<br />

<strong>and</strong><br />

The <strong>Bashan</strong> Foundation (USA)


Soil recovery subgroup (2011)<br />

<strong>Juan</strong>-<strong>Pablo</strong><br />

Manuel Moreno<br />

Adan <strong>Trejo</strong><br />

Blanca<br />

Lopez<br />

<strong>Luz</strong> <strong>de</strong>-<strong>Bashan</strong><br />

��<strong>Luz</strong> <strong>Luz</strong> <strong>de</strong> <strong>de</strong>‐<strong>Bashan</strong> <strong>Bashan</strong><br />

��Ad ��Adan Ad Adan T <strong>Trejo</strong> j<br />

��Blanca Blanca Lopez<br />

��<strong>Juan</strong> <strong>Juan</strong>‐<strong>Pablo</strong> <strong>Pablo</strong><br />

Hernan<strong>de</strong>z<br />

��Manuel Manuel Moreno<br />

��<strong>Yoav</strong> <strong>Yoav</strong> <strong>Bashan</strong><br />

All published articles are<br />

available as PDFs in:<br />

htt http://www.bashanfoundation.org<br />

// b h f d ti


Wastewater recovery<br />

Primary treatment<br />

Eliminates suspen<strong>de</strong>d<br />

solid particles<br />

Microbiological treatment,<br />

Secondary S SSecondary d treatment t t t f further h elimination l of f<br />

solids <strong>and</strong> organic matter<br />

Production of an excess of<br />

nitrogen g <strong>and</strong> phosphorus p p<br />

in the wastewater


• Avoid secondary<br />

pollution ll ti<br />

• Efficient use of solar<br />

energy – Solar<br />

Biotechnology<br />

• Increase in pH, p<br />

bactericidal action<br />

• Concentration of<br />

xenobiotics or heavy<br />

metals<br />

Chlorella in suspension


O Our proposal: l Immobilization ii i of f the<br />

green microalga Chlorella with the PGPB<br />

Azospirillum<br />

Why this association?<br />

- Chlorella is consi<strong>de</strong>r an<br />

unicellular plant<br />

- Azospirillum p is a<br />

unespecific PGPB<br />

- It is possible that<br />

Azospirillum would affect<br />

Chlorella, in the way it<br />

does with higher plants


A Automated tomated fast fast production prod ction of<br />

of<br />

large large-sized sized polymer beads (2–4 (2 4 mm)<br />

http://bashanfoundation.org/<strong>de</strong>vice.html


Bi Bioreactors: t 700 ml l – 2 lit liters – 50 L<br />

(at the laboratory stage)


Elimination of ammonium from domestic<br />

wastewater by C. vulgaris immobilized with<br />

A. A A. brasilense<br />

<strong>de</strong>-<strong>Bashan</strong> et al. (2004) Water Research 38: 466-474


GS<br />

Enhanced<br />

pigments<br />

production<br />

& photosynthesis<br />

GDH<br />

OUR PROPOSED MODEL<br />

microalgae<br />

PORUS BEAD BEAD<br />

AAzospirillum i ill<br />

OXYGEN EMISSION<br />

Incorporation of<br />

nitrogen <strong>and</strong><br />

phosphorus<br />

as cell components<br />

Surrounding<br />

growth medium<br />

<strong>de</strong>-<strong>Bashan</strong> <strong>and</strong> <strong>Bashan</strong>, 2008. Applied <strong>and</strong> Environmental Microbiology 74: 6797-6802


A Association i ti of f Chl Chlorella ll <strong>and</strong><br />

d<br />

Azospirillum immobilized insi<strong>de</strong><br />

the alginate beads<br />

Cavity<br />

Lebsky et al. 2001 Canadian Journal of Microbiology 47: 1-8<br />

<strong>de</strong>-<strong>Bashan</strong> et al. 2011. Journal of Phycology, in press


What can be done with the leftover beads,<br />

once once the the treatment treatment is over?:<br />

�� Use as a source for<br />

production of biodiesel<br />

<strong>and</strong> dbi bioethanol. th l<br />

�� Use as microbial<br />

inoculant to recover<br />

d <strong>de</strong>gra<strong>de</strong>d d d soils<br />

il


Pristine Sonoran <strong>de</strong>sert in Baja California<br />

South, Mexico


After clear clear‐cutting cutting for marginal agriculture or over over‐<br />

grazing<br />

<strong>Bashan</strong> et al. 2000. Natural Areas Journal 20: 197 197‐200 200


Sampling p gpplot<br />

Soil un<strong>de</strong>r mezquite<br />

Barren soil


perce entage<br />

25<br />

20<br />

5<br />

Organic matter, water <strong>and</strong> nutrients in<br />

15<br />

Barren<br />

10 soil<br />

0<br />

Richer soil<br />

un<strong>de</strong>r d the th<br />

mesquite<br />

Soil<br />

characteristics<br />

ero<strong>de</strong>d <strong>de</strong>sert soils<br />

water<br />

Clay<br />

mg/kg g soil<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Barren<br />

soil<br />

Richer soil<br />

un<strong>de</strong>r the<br />

mesquite it<br />

Soil characteristics<br />

Low total carbon vs. carbon in richer soil un<strong>de</strong>r the mezquite<br />

(<strong>de</strong> 300 a 1200 mg/kg mg/kg soil) soil).<br />

<strong>Bashan</strong> et al. (2000). Applied Soil Ecology 14: 165 165-176 176<br />

N<br />

P


Dry beads, after the wastewater treatment<br />

Immediately after<br />

Azospirillum<br />

Chlorella<br />

One One year year after<br />

Alginate bead<br />

Azospirillum<br />

<strong>Trejo</strong> et al. 2011. Environmental <strong>and</strong> Experimental Botany (in press)


S Survival i l of f A Azospirillum i ill after f d drying i the h<br />

beads<br />

<strong>Trejo</strong> et al. 20101. Environmental <strong>and</strong> Experimental Botany (in press)<br />

= ∼ 10 6<br />

ufc/g


Experimental i l<br />

<strong>de</strong>sign


Organic Organic matter matter during during the the cycles cycles of of sowing<br />

sowing<br />

g / Kg soiil<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

Debris<br />

Plant alone<br />

Ero<strong>de</strong>d soil<br />

1<br />

0<br />

First cycle Second Third<br />

cycle cycle<br />

<strong>Trejo</strong> et al. 2011. Environmental <strong>and</strong> Experimental Botany (in press)


Organic Organic carbon during the the cycles cycles of of sowing<br />

g / Kg soiil<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Debris<br />

Plant alone<br />

Ero<strong>de</strong>d soil<br />

0<br />

First cycle Second<br />

cycle<br />

Third cycle<br />

<strong>Trejo</strong> et al. 2011. Environmental <strong>and</strong> Experimental Botany (in press)


Accumulation of microbial carbon during<br />

mgg<br />

/ Kg soill<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

08 0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Debris<br />

th the cycles l of f sowing i<br />

Azospirillum<br />

Mi Microalgae l<br />

Plant alone<br />

Bead alone<br />

Untreated soil<br />

Third<br />

cycle<br />

No effect


Colonization of the root tip of sorghum by Azospirillum Azospirillum, ,<br />

after inoculation inoculation‐ inoculation inoculation‐ Fluorescent Fluorescent in situ situ Hybridization<br />

Hybridization<br />

Other bacteria<br />

Root tip<br />

<strong>Trejo</strong> et al. 2011. Environmental <strong>and</strong> Experimental Botany (in press)


Colonization of radical hairs of sorghum by<br />

Azospirillum<br />

Root<br />

<strong>Trejo</strong> et al. 2011. Environmental <strong>and</strong> Experimental Botany (in press)


Effect of<br />

of<br />

inoculation<br />

in sorghum<br />

roots<br />

cm<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

First Second Third<br />

cycle cycle cycle<br />

Debris<br />

Azospirillum<br />

EEro<strong>de</strong>d d d soil il


Effect of<br />

i inoculation l i<br />

cm<br />

25<br />

on on sorghum<br />

0<br />

shoot<br />

mg (dry weiight)<br />

20<br />

15<br />

Debris<br />

10 AAzospirillum i ill<br />

Ero<strong>de</strong>d soil<br />

5<br />

0<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

First<br />

cycle<br />

Second<br />

cycle<br />

Third<br />

cycle<br />

First cycle Second cycle Third cycle


CConclusion l i<br />

�The leftover <strong>de</strong>bris from wastewater<br />

ttreatment, t t can bbeeffectively ff ti l usedd as<br />

inoculant to amend poor p <strong>de</strong>sert soil, ,<br />

<strong>and</strong> to increase growth of plants.


All p published blished papers are a available ailable as PDFs at: at<br />

http://www.bashanfoundation.org

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!