24.02.2013 Views

Optimality

Optimality

Optimality

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Optimal sampling strategies 285<br />

Since δi > 0∀i, for the concavity of δi it suffices to show that<br />

�<br />

�<br />

1−βzi<br />

(7.22)<br />

κi+2 − κi+1 ≤ 0.<br />

1−βzi+2<br />

Now<br />

(7.23)<br />

1−αzi<br />

1−αzi+2<br />

− 1−βzi<br />

1−βzi+2<br />

= (α−β)(zi+2− zi)<br />

(1−αzi+2)(1−βzi+2)<br />

≥ 0.<br />

Then (7.20) and (7.23) combined with the fact that κi≥ 0,∀i proves (7.22). �<br />

Proof of Theorem 3.1. We split the theorem into three claims.<br />

Claim (1): L ∗ :=∪kL (k) (x ∗ k )∈Lγ(n).<br />

From (3.10), (3.11), and (3.13) we obtain<br />

(7.24)<br />

µγ(n) + Pγ− 1<br />

var(Vγ)<br />

E(Vγ|Lγk)<br />

L∈Λγ(n)<br />

k=1<br />

−1<br />

= max<br />

Pγ �<br />

≤ max<br />

Pγ �<br />

X∈∆n(Nγ1,...,NγPγ )<br />

µγ,γk(xk).<br />

k=1<br />

Clearly L ∗ ∈ Λγ(n). We then have from (3.10) and (3.11) that<br />

(7.25)<br />

µγ(n) + Pγ− 1<br />

var(Vγ) ≥ E(Vγ|L ∗ ) −1 + Pγ− 1<br />

var(Vγ) =<br />

=<br />

Pγ �<br />

k=1<br />

Thus from (7.25) and (7.26) we have<br />

(7.26) µγ(n) =E(Vγ|L ∗ ) −1 = max<br />

which proves Claim (1).<br />

Pγ �<br />

k=1<br />

µγ,γk(x ∗ k) = max<br />

X∈∆n(Nγ1,...,NγPγ )<br />

k=1<br />

E(Vγ|L ∗ γk) −1<br />

Pγ �<br />

X∈∆n(Nγ1,...,NγPγ )<br />

µγ,γk(xk).<br />

k=1<br />

Pγ �<br />

µγ,γk(xk)− Pγ− 1<br />

var(Vγ) ,<br />

Claim (2): If L∈Lγk(n) then L∈Lγ,γk(n) and vice versa.<br />

Denote an arbitrary leaf node of the tree of γk as E. Then Vγ, Vγk, and E are<br />

related through<br />

(7.27) Vγk = ϱγkVγ + Wγk,<br />

and<br />

(7.28) E = ηVγk + F<br />

where η and ϱγk are scalars and Wγk, F and Vγ are independent random variables.<br />

We note that by definition var(Vγ) > 0∀γ (see Definition 2.5). From Lemma 7.1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!