24.02.2013 Views

Optimality

Optimality

Optimality

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

152 D. M. Dabrowska<br />

To show part (i), we use the quadratic expansion, similar to the expansion of the<br />

ordinary Aalen–Nelson estimator in [19]. We have Rn = �4 j=1 Rjn,<br />

� t �<br />

R1n(t, θ) = 1<br />

n<br />

= 1<br />

n<br />

R2n(t, θ) = −1<br />

n 2<br />

R3n(t, θ) = −1<br />

n 2<br />

R4n(t, θ) =<br />

� t<br />

0<br />

n�<br />

i=1<br />

n�<br />

i=1<br />

�<br />

0<br />

Ni(du) Si<br />

−<br />

s(Γθ(u−), θ, u) s2 (Γθ(u−),<br />

�<br />

θ, u)EN(du)<br />

R (i)<br />

1n (t, θ),<br />

� t<br />

i�=j<br />

0<br />

� t<br />

n�<br />

i=1<br />

0<br />

� S− s<br />

s<br />

� Si− s<br />

s 2<br />

� Si− s<br />

� 2<br />

s 2<br />

�<br />

(Γθ(u−), θ, u)[Nj− ENj](du),<br />

�<br />

(Γθ(u−), θ, u)[Ni− ENi](du),<br />

N.(du)<br />

(Γθ(u−), θ, u)<br />

S(Γθ(u−), θ, u) ,<br />

where Si(Γθ(u−), θ, u) = Yi(u)α(Γθ(u−), θ, Zi).<br />

The term R3n has expectation of order O(n−1 ). Using Conditions 2.1, it is easy<br />

to verify that R2n and n[R3n− ER3n] form canonical U-processes of degree 2<br />

and 1 over Euclidean classes of functions with square integrable envelopes. We<br />

have�R2n� = O(b2 n) and n�R3n− ER3n� = O(bn) almost surely, by the law of<br />

iterated logarithm for canonical U processes [1]. The term R4n can be bounded by<br />

�R4n�≤�[S/s]−1� 2m −1<br />

1 An(τ). But for a point τ satisfying Condition 2.0(iii), we<br />

have An(τ) = A(τ)+O(bn) a.s. Therefore part (iv) below implies that √ n�R4n�→0<br />

a.s.<br />

The term R1n decomposes into the sum R1n = R1n;1− R1n;2, where<br />

� t<br />

R1n;1(t, θ) = 1<br />

n<br />

R1n;2(t, θ) =<br />

n�<br />

i=1<br />

� t<br />

0<br />

0<br />

Ni(du)−Yi(u)A(du)<br />

,<br />

s(Γθ(u−), θ, u)<br />

G(u, θ)Cθ(du)<br />

and G(t, θ) = [S(Γθ(u−), θ, u)−s(Γθ(u−), θ, u)Y.(u)/EY (u)]. The Volterra identity<br />

(2.2) implies<br />

ncov(R1n;1(t, θ), R1n;1(t ′ , θ ′ )) =<br />

ncov(R1n;1(t, θ), R1n;2(t ′ , θ ′ ))<br />

=<br />

� t � ′<br />

u∧t<br />

0 0<br />

� t � ′<br />

u∧t<br />

−<br />

0<br />

0<br />

ncov(R1n;2(t, θ), R1n;2(t ′ , θ ′ ))<br />

=<br />

� t � ′<br />

t ∧u<br />

0 0<br />

� ′<br />

t � t∧v<br />

+<br />

−<br />

0 0<br />

� ′<br />

t∧t<br />

0<br />

� t∧t ′<br />

0<br />

[1−A(∆u)]Γθ(du)<br />

s(Γθ ′(u−), θ′ , u) ,<br />

E[α(Γθ ′(v−), Z, θ′ |X = u, δ = 1]Cθ ′(dv)Γθ(du)<br />

Eα(Γθ ′(v−), Z, θ′ |X≥ u]]Cθ ′(dv)Γθ(du),<br />

f(u, v, θ, θ ′ )Cθ(du)Cθ ′(dv)<br />

f(v, u, θ ′ , θ)Cθ(du)Cθ ′(dv)<br />

f(u, u, θ, θ ′ )Cθ ′(∆u)Cθ(du),

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!