24.02.2013 Views

Optimality

Optimality

Optimality

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Semiparametric transformation models 151<br />

n −1 � n<br />

i=1 1(Xi ≥ t) and Further, let �·� be the supremum norm in the set<br />

ℓ ∞ ([0, τ]×Θ), and let�·�∞ be the supremum norm ℓ ∞ ([0, τ]). We assume that<br />

the point τ satisfies Condition 2.0(iii).<br />

Define<br />

Rn(t, θ) =<br />

Rpn(t, θ) =<br />

Rpn(t, θ) =<br />

R9n(t, θ) =<br />

R10n(t, θ) =<br />

Rpn(t, θ) =<br />

Bpn(t, θ) =<br />

� t<br />

0<br />

� t<br />

0<br />

� t<br />

0<br />

N.(du)<br />

S(Γθ(u−), θ, u) −<br />

� t<br />

EN(du)<br />

0 s(Γθ(u−), θ, u) ,<br />

h(Γθ(u−), θ, u)[N.− EN](du), p = 5,6,<br />

Hn(Γθ(u−), θ, u)N(du)<br />

� t<br />

− h(Γθ(u−), θ, u)EN(du), p = 7, 8,<br />

� 0 �<br />

EN(du)| Pθ(u, w)R5n(dw, θ)|,<br />

[0,t)<br />

� t<br />

0<br />

� t<br />

0<br />

� t<br />

0<br />

(u,t]<br />

√ nRn(u−, θ)R5n(du, θ),<br />

Hn(Γnθ(u−), θ, u)N.(du)<br />

−<br />

� t<br />

0<br />

h(Γθ(u−), θ, u)EN(du), p = 11,12,<br />

Fpn(u, θ)Rn(du, θ), p = 1, 2,<br />

wherePθ(u, w) is given by (2.3). In addition, Hn = K ′ n for p = 7 or p = 11,<br />

Hn = ˙ Kn for p = 8 or p = 12, h = k ′ for p = 5, 7 or p = 11, and h = ˙ k for p = 6, 8<br />

or 12. Here k ′ =−[s ′ /s 2 ], ˙ k =−[˙s/s 2 ], K ′ n =−[S ′ /S 2 ], ˙ Kn =−[ ˙ S/S 2 ]. Further,<br />

set F1n(u, θ) = [ ˙ S− ēS](Γθ(u), θ, u) and F2n(u, θ) = [S ′ − eS ′ ](Γθ(u), θ, u).<br />

Lemma 5.1. Suppose that Conditions 2.0 and 2.1 are satisfied.<br />

(i) √ nRn(t, θ) converges weakly in ℓ ∞ ([0, τ]×Θ) to a mean zero Gaussian process<br />

R whose covariance function is given below.<br />

(ii)�Rpn�→0 a.s., for p = 5, . . . ,12.<br />

(iii) √ n�Bpn�→0 a.s. for p = 1, 2.<br />

(iv) The processes Vn(Γθ(t−), θ, t) and Vn(Γθ(t), θ, t), where Vn = S/s−1 satisfy<br />

�Vn� = O(bn) a.s. In addition,�Vn�→0a.s. for Vn = [S ′ − s ′ ]/s,[S ′′ −<br />

s ′′ ]/s,[ ˙ S− ˙s]/s,[ ¨ S−¨s]/s and [ ˙ S ′ − ˙s ′ ]/s.<br />

Proof. The Volterra identity (2.2), which defines Γθ as a parameter dependent on<br />

P, is used in the foregoing to compute the asymptotic covariance function of the<br />

process R1n. In Section 6 we show that the solution to the identity (2.2) is unique<br />

and, for some positive constants d0, d1, d2, we have<br />

(5.1)<br />

Γθ(t)≤d0AP(t), |Γθ(t)−Γθ ′(t)|≤|θ− θ′ |d1 exp[d2AP(t)],<br />

|Γθ(t)−Γθ(t ′ )| ≤ d0|AP(t)−AP(t ′ )|<br />

≤<br />

d0<br />

EPY (τ) P(X∈ (t∧t′ , t∨t ′ ], δ = 1),<br />

with similar inequalities holding for the left continuous version of Γθ = Γθ,P. Here<br />

AP(t) is the cumulative hazard function corresponding to observations (X, δ).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!