24.02.2013 Views

Rudarski radovi br 4 2011 - Institut za rudarstvo i metalurgiju Bor

Rudarski radovi br 4 2011 - Institut za rudarstvo i metalurgiju Bor

Rudarski radovi br 4 2011 - Institut za rudarstvo i metalurgiju Bor

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

INSTITUT ZA RUDARSTVO I METALURGIJU BOR<<strong>br</strong> />

KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA<<strong>br</strong> />

RUDARSKI RADOVI je časopis baziran na bogatoj<<strong>br</strong> />

tradiciji stručnog i naučnog rada u oblasti rudarstva,<<strong>br</strong> />

podzemne i površinske eksploatacije, pripreme mineralnih<<strong>br</strong> />

sirovina, geologije, mineralogije, petrologije, geomehanike<<strong>br</strong> />

i pove<strong>za</strong>nih srodnih oblasti. Izlazi dva puta godišnje od<<strong>br</strong> />

2001. godine, a od <strong>2011</strong>. godine četiri puta godišnje.<<strong>br</strong> />

Glavni i odgovorni urednik<<strong>br</strong> />

Akademik dr Milenko Ljubojev, naučni savetnik<<strong>br</strong> />

<strong>Institut</strong> <strong>za</strong> <strong>rudarstvo</strong> i <strong>metalurgiju</strong> <strong>Bor</strong><<strong>br</strong> />

E-mail: milenko.ljubojev@irmbor.co.rs<<strong>br</strong> />

Tel. 030/454-109, 435-164<<strong>br</strong> />

Zamenik glavnog i odgovornog urednika<<strong>br</strong> />

Dr Mirko Ivković, viši naučni saradnik<<strong>br</strong> />

Komitet <strong>za</strong> podzemnu eksploataciju<<strong>br</strong> />

mineralnih sirovina Resavica<<strong>br</strong> />

E-mail: mirko.ivkovic@jppeu.rs<<strong>br</strong> />

Tel. 035/627-566<<strong>br</strong> />

Urednik<<strong>br</strong> />

Vesna Marjanović, dipl.inž.<<strong>br</strong> />

Prevodilac<<strong>br</strong> />

Nevenka Vukašinović, prof.<<strong>br</strong> />

Tehnički urednik<<strong>br</strong> />

Su<strong>za</strong>na Cvetković, teh.<<strong>br</strong> />

Priprema <strong>za</strong> štampu<<strong>br</strong> />

Ljiljana Mesarec, teh.<<strong>br</strong> />

Štamparija: Grafomedtrade <strong>Bor</strong><<strong>br</strong> />

Tiraž: 200 primeraka<<strong>br</strong> />

Internet adresa<<strong>br</strong> />

www.irmbor.co.rs<<strong>br</strong> />

Izdavanje časopisa finansijski podržavaju<<strong>br</strong> />

Ministarstvo <strong>za</strong> prosvetu i nauku Republike Srbije<<strong>br</strong> />

<strong>Institut</strong> <strong>za</strong> <strong>rudarstvo</strong> i <strong>metalurgiju</strong> <strong>Bor</strong><<strong>br</strong> />

Komitet <strong>za</strong> podzemnu eksploataciju mineralnih<<strong>br</strong> />

sirovina Resavica<<strong>br</strong> />

ISSN 1451-0162<<strong>br</strong> />

Indeksiranje časopisa u SCIndeksu i u ISI.<<strong>br</strong> />

Sva prava <strong>za</strong>držana.<<strong>br</strong> />

Izdavač<<strong>br</strong> />

<strong>Institut</strong> <strong>za</strong> <strong>rudarstvo</strong> i <strong>metalurgiju</strong> <strong>Bor</strong><<strong>br</strong> />

19210 <strong>Bor</strong>, Zeleni bulevar 35<<strong>br</strong> />

E-mail: milenko.ljubojev@irmbor.co.rs<<strong>br</strong> />

Tel. 030/454-110<<strong>br</strong> />

Komitet <strong>za</strong> podzemnu eksploataciju<<strong>br</strong> />

mineralnih sirovina Resavica<<strong>br</strong> />

E-mail: mirko.ivkovic@jppeu.rs<<strong>br</strong> />

Tel. 035/627-566<<strong>br</strong> />

Naučno - tehnička saradnja sa<<strong>br</strong> />

Inženjerskom Akademijom Srbije<<strong>br</strong> />

Uređivački odbor<<strong>br</strong> />

Prof. dr Živorad Milićević<<strong>br</strong> />

Tehnički fakultet <strong>Bor</strong><<strong>br</strong> />

Akademik Prof. dr Mladen Stjepanović<<strong>br</strong> />

Inženjerska akademija Srbije<<strong>br</strong> />

Prof. dr Vladimir Bodarenko<<strong>br</strong> />

Nacionalni rudarski univerzitet,<<strong>br</strong> />

Odeljenje <strong>za</strong> podzemno <strong>rudarstvo</strong>, Ukrajina<<strong>br</strong> />

Prof. dr Miroslav Ignjatović<<strong>br</strong> />

<strong>Institut</strong> <strong>za</strong> <strong>rudarstvo</strong> i <strong>metalurgiju</strong> <strong>Bor</strong><<strong>br</strong> />

Prof. dr Milivoj Vulić<<strong>br</strong> />

Univerzitet u Ljubljani, Slovenija<<strong>br</strong> />

Akademik Prof. dr Jerzy Kicki<<strong>br</strong> />

Državni institut <strong>za</strong> mineralne sirovine i energiju,<<strong>br</strong> />

Krakov, Poljska<<strong>br</strong> />

Prof. dr Vencislav Ivanov<<strong>br</strong> />

<strong>Rudarski</strong> fakultet Univerziteta <strong>za</strong> <strong>rudarstvo</strong> i geologiju<<strong>br</strong> />

"St. Ivan Rilski" Sofija Bugarska<<strong>br</strong> />

Prof. dr Tajduš Antoni<<strong>br</strong> />

Stanislavov univerzitet <strong>za</strong> <strong>rudarstvo</strong> i <strong>metalurgiju</strong>,<<strong>br</strong> />

Krakov, Poljska<<strong>br</strong> />

Dr Dragan Komljenović<<strong>br</strong> />

Nuklearna generatorska stanica G2, Hidro-Quebec,<<strong>br</strong> />

Kanada<<strong>br</strong> />

Prof. dr Dušan Gagić<<strong>br</strong> />

Rudarsko geološki fakultet Beograd<<strong>br</strong> />

Prof. dr Nebojša Vidanović<<strong>br</strong> />

Rudarsko geološki fakultet Beograd<<strong>br</strong> />

Prof. dr Neđo Đurić<<strong>br</strong> />

Tehnički institut, Bijeljina, Republika Srpska, BiH<<strong>br</strong> />

Prof. dr Vitomir Milić<<strong>br</strong> />

Tehnički fakultet <strong>Bor</strong><<strong>br</strong> />

Prof. dr Rodoljub Stanojlović<<strong>br</strong> />

Tehnički fakultet <strong>Bor</strong><<strong>br</strong> />

Prof. dr Mevludin Avdić<<strong>br</strong> />

RGGF-Univerzitet u Tuzli, BiH<<strong>br</strong> />

Prof. dr Nenad Vušović<<strong>br</strong> />

Tehnički fakultet <strong>Bor</strong><<strong>br</strong> />

Dr Miroslav R. Ignjatović, viši naučni saradnik<<strong>br</strong> />

Privredna komora Srbije<<strong>br</strong> />

Dr Mile Bugarin, viši naučni saradnik<<strong>br</strong> />

<strong>Institut</strong> <strong>za</strong> <strong>rudarstvo</strong> i <strong>metalurgiju</strong> <strong>Bor</strong><<strong>br</strong> />

Dr Dragan Zlatanović<<strong>br</strong> />

Ministarstvo životne sredine, rudarstva i prostornog<<strong>br</strong> />

planiranja Srbije<<strong>br</strong> />

Dr Miodrag Denić<<strong>br</strong> />

JP <strong>za</strong> podzemnu eksploataciju Resavica<<strong>br</strong> />

Dr Ružica Lekovski, naučni saradnik<<strong>br</strong> />

<strong>Institut</strong> <strong>za</strong> <strong>rudarstvo</strong> i <strong>metalurgiju</strong> <strong>Bor</strong><<strong>br</strong> />

Dr Jovo Miljanović<<strong>br</strong> />

<strong>Rudarski</strong> fakultet Prijedor RS, BiH<<strong>br</strong> />

Dr Zlatko Dragosavljević<<strong>br</strong> />

Ministarstvo životne sredine, rudarstva i prostornog<<strong>br</strong> />

planiranja Srbije<<strong>br</strong> />

Prof. dr Kemal Gutić<<strong>br</strong> />

RGGF-Univerzitet u Tuzli, BiH<<strong>br</strong> />

VODEĆI ČASOPIS NACIONALNOG ZNAČAJA M51 ZA <strong>2011</strong>.


MINING AND METALLURGY INSTITUTE BOR<<strong>br</strong> />

COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS<<strong>br</strong> />

MINING ENGINEERING is a journal based on the<<strong>br</strong> />

rich tradition of expert and scientific work from the<<strong>br</strong> />

field of mining, underground and open-pit mining,<<strong>br</strong> />

mineral processing, geology, mineralogy, petrology,<<strong>br</strong> />

geomechanics, as well as related fields of science.<<strong>br</strong> />

Since 2001, published twice a year, and since <strong>2011</strong><<strong>br</strong> />

four times year.<<strong>br</strong> />

Editor-in-chief<<strong>br</strong> />

Academic Ph.D. Milenko Ljubojev, Principal<<strong>br</strong> />

Reasearch Fellow, Associate member of ESC<<strong>br</strong> />

Mining and Metallurgy <strong>Institut</strong>e <strong>Bor</strong><<strong>br</strong> />

E-mail: milenko.ljubojev@irmbor.co.rs<<strong>br</strong> />

Phone: +38130/454-109, 435-164<<strong>br</strong> />

Co-Editor<<strong>br</strong> />

Ph.D. Mirko Ivković, Senior Research Associate<<strong>br</strong> />

Committee of Underground Exploitation of the<<strong>br</strong> />

Mineral Deposits Resavica<<strong>br</strong> />

E-mail: mirko.ivkovic@jppeu.rs<<strong>br</strong> />

Phone: +38135/627-566<<strong>br</strong> />

Editor<<strong>br</strong> />

Vesna Marjanović, B.Eng.<<strong>br</strong> />

English Translation<<strong>br</strong> />

Nevenka Vukašinović<<strong>br</strong> />

Technical Editor<<strong>br</strong> />

Su<strong>za</strong>na Cvetković<<strong>br</strong> />

Preprinting<<strong>br</strong> />

Ljiljana Mesarec<<strong>br</strong> />

Printed in: Grafomedtrade <strong>Bor</strong><<strong>br</strong> />

Circulation: 200 copies<<strong>br</strong> />

Web site<<strong>br</strong> />

www.irmbor.co.rs<<strong>br</strong> />

MINING ENGINEERING is financially<<strong>br</strong> />

supported by<<strong>br</strong> />

The Ministry of Education and Science of the<<strong>br</strong> />

Republic Serbia<<strong>br</strong> />

Mining and Metallurgy <strong>Institut</strong>e <strong>Bor</strong><<strong>br</strong> />

Committee of Underground Exploitation of the<<strong>br</strong> />

Mineral Deposits Resavica<<strong>br</strong> />

ISSN 1451-0162<<strong>br</strong> />

Journal indexing in SCIndex and ISI.<<strong>br</strong> />

All rights reserved.<<strong>br</strong> />

Published by<<strong>br</strong> />

Mining and Metallurgy <strong>Institut</strong>e <strong>Bor</strong><<strong>br</strong> />

19210 <strong>Bor</strong>, Zeleni bulevar 35<<strong>br</strong> />

E-mail: milenko.ljubojev@irmbor.co.rs<<strong>br</strong> />

Phone: +38130/454-110<<strong>br</strong> />

Committee of Underground Exploitation of the<<strong>br</strong> />

Mineral Deposits Resavica<<strong>br</strong> />

E-mail: mirko.ivkovic@jppeu.rs<<strong>br</strong> />

Phone: +38135/627-566<<strong>br</strong> />

Scientific – Teshnical Cooperation with<<strong>br</strong> />

the Engineering Academy of Serbia<<strong>br</strong> />

Editorial Board<<strong>br</strong> />

Prof.Ph.D. Živorad Milićević<<strong>br</strong> />

Technical Faculty <strong>Bor</strong><<strong>br</strong> />

Academic Prof.Ph.D. Mladen Stjepanović<<strong>br</strong> />

Engineering Academy of Serbia<<strong>br</strong> />

Prof.Ph.D. Vladimir Bodarenko<<strong>br</strong> />

National Mining University, Department of<<strong>br</strong> />

Deposit Mining, Ukraine<<strong>br</strong> />

Prof.Ph.D. Miroslav Ignjatović<<strong>br</strong> />

Mining and Metallurgy <strong>Institut</strong>e <strong>Bor</strong><<strong>br</strong> />

Prof.Ph.D. Milivoj Vulić<<strong>br</strong> />

University of Ljubljana, Slovenia<<strong>br</strong> />

Academic Prof.Ph.D. Jerzy Kicki<<strong>br</strong> />

Gospodarkl Surowcami Mineralnymi i Energia,<<strong>br</strong> />

Krakow, Poland<<strong>br</strong> />

Prof.Ph.D. Vencislav Ivanov<<strong>br</strong> />

Mining Faculty, University of Mining and Geology<<strong>br</strong> />

"St. Ivan Rilski" Sofia Bulgaria<<strong>br</strong> />

Prof.Ph.D. Tajduš Antoni<<strong>br</strong> />

The Stanislaw University of Mining and<<strong>br</strong> />

Metallurgy, Krakow, Poland<<strong>br</strong> />

Ph. D. Dragan Komljenović<<strong>br</strong> />

Nuclear Generating Station G2, Hydro-<<strong>br</strong> />

Quebec, Canada<<strong>br</strong> />

Prof.Ph.D. Dušan Gagić<<strong>br</strong> />

Faculty of Mining and Geology Belgrade<<strong>br</strong> />

Prof.Ph.D. Nebojša Vidanović<<strong>br</strong> />

Faculty of Mining and Geology Belgrade<<strong>br</strong> />

Prof.Ph.D. Neđo Đurić<<strong>br</strong> />

Technical <strong>Institut</strong>e, Bijeljina, Republic Srpska, B&H<<strong>br</strong> />

Prof.Ph.D. Vitomir Milić<<strong>br</strong> />

Technical Faculty <strong>Bor</strong><<strong>br</strong> />

Prof.Ph.D. Rodoljub Stanojlović,<<strong>br</strong> />

Technical Faculty <strong>Bor</strong><<strong>br</strong> />

Prof.Ph.D. Mevludin Avdić<<strong>br</strong> />

MGCF-University of Tuzla, B&H<<strong>br</strong> />

Prof.Ph.D. Nenad Vušović<<strong>br</strong> />

Technical Faculty <strong>Bor</strong><<strong>br</strong> />

Ph.D. Miroslav R. Ignjatović, Senior Research Associate<<strong>br</strong> />

Chamber of Commerce and Industry Serbia<<strong>br</strong> />

Ph.D. Mile Bugarin, Senior Research Associate<<strong>br</strong> />

Mining and Metallurgy <strong>Institut</strong>e <strong>Bor</strong><<strong>br</strong> />

Ph.D. Dragan Zlatanović<<strong>br</strong> />

Ministry of Environment, Physical Planing and<<strong>br</strong> />

Mining of Republic Serbia<<strong>br</strong> />

Ph.D. Miodrag Denić<<strong>br</strong> />

PC for Underground Exploitation Resavica<<strong>br</strong> />

Ph.D. Ružica Lekovski, Research Associate<<strong>br</strong> />

Mining and Metallurgy <strong>Institut</strong>e <strong>Bor</strong><<strong>br</strong> />

Ph.D. Jovo Miljanović<<strong>br</strong> />

Faculty of Mining in Prijedor, RS, B&H<<strong>br</strong> />

Ph.D. Zlatko Dragosavljević<<strong>br</strong> />

Ministry of Environment, Physical Planing and<<strong>br</strong> />

Mining of Republic Serbia<<strong>br</strong> />

Prof.Ph.D. Kemal Gutić<<strong>br</strong> />

MGCF-University of Tuzla, B&H<<strong>br</strong> />

LEADING NATIONAL JOURNAL CATEGORIZATION M51 FOR <strong>2011</strong>.


SADR@AJ<<strong>br</strong> />

CONTENS<<strong>br</strong> />

M. Bugarin, Z. Stevanović, V. Gardić, V. Marinković<<strong>br</strong> />

PREGLED DOSADAŠNJIH GEOLOŠKIH ISTRAŽIVANJA STAROG<<strong>br</strong> />

FLOTACIJSKOG JALOVIŠTA I EU REGULATIVA IZ OBLASTI ZAŠTITE VODA ...................................1<<strong>br</strong> />

REVIEW OF THE GEOLOGICAL RESEARCH OF OLD BOR FLOTATION<<strong>br</strong> />

TAILINGS AND OVERVIEW OF EU LEGISLATION IN THE FIELD OF WATER PROTECTION ...........5<<strong>br</strong> />

S. Krstić, B. Lapadatović, M. Ljubojev<<strong>br</strong> />

KVALITET GLINA U LEŽIŠTU DUŠANOVAC (KOD NEGOTINA).............................................................9<<strong>br</strong> />

CLAY QUALITY IN THE DEPOSIT DUŠANOVAC (NEAR NEGOTIN).....................................................19<<strong>br</strong> />

D. Ignjatović, M. Ljubojev, L. Đurđevac Ignjatović, D. Tašić<<strong>br</strong> />

FIZIČKE I MEHANIČKE OSOBINE ANKER SMEŠE PRIMENJENE NA RUDNOM TELU „T“..............29<<strong>br</strong> />

PHYSICAL AND MECHANICAL PROPERTIES OF<<strong>br</strong> />

ANCHOR MIXTURE APPLIED IN THE ORE BODY “T”..............................................................................33<<strong>br</strong> />

D. Tašić, M. Ljubojev, D. Ignjatović, D. Rakić, L. Đurđevac Ignjatović<<strong>br</strong> />

MOGUĆNOST PRIMENE DROBLJENOG AGREGATA<<strong>br</strong> />

GRANULACIJE 0/31,5 MM SA LOKALITETA "ZAGRAĐE-KOP 5", ZA<<strong>br</strong> />

PRIPREMU PRISTUPNIH PUTEVA DO NOVE TRASE KRIVELJSKOG KOLEKTORA..........................37<<strong>br</strong> />

POSSIBILITY OF USE THE CRUSHED AFFREGATE, GRAIN-SIZE 0/31.5 MN, FROM<<strong>br</strong> />

THE SITE "ZAGRADJE-OPEN PIT5" FOR PREPARATION THE<<strong>br</strong> />

ACCESS ROADS TO THE NEW ROUTE OF THE KRIVELJ COLLECTOR ...............................................43<<strong>br</strong> />

D. Kržanović, M. Mikić, M. Ljubojev<<strong>br</strong> />

ANALIZA UTICAJA RAZVOJA RUDNIKA VELIKI KRIVELJ NA IZGRADNJU<<strong>br</strong> />

NOVIH OBJEKATA ZA DEVIJACIJU KRIVELJSKE REKE.........................................................................49<<strong>br</strong> />

ANALYSIS OF DEVELOPMENT EFFECTS OF THE VELIKI KRIVELJ MINE ON<<strong>br</strong> />

CONSTRUCTION THE NEW FACILITIES FOR DEVIATION THE KRIVELJ RIVER ..............................57<<strong>br</strong> />

M. Ivković, Lj. Figun, I. Živojinović, S. Ivković<<strong>br</strong> />

OPTIMIZACIJA PROIZVODNO – TEHNIČKIH PARAMETARA<<strong>br</strong> />

STUBNE METODE OTKOPAVANJA UGLJENIH SLOJEVA .......................................................................65<<strong>br</strong> />

OPTIMIZATION OF NATURAL – TEHNICAL PARAMETERS FOR<<strong>br</strong> />

THE PILLAR METHOD OF COAL EXCAVATION .......................................................................................73<<strong>br</strong> />

D. Kržanović, R. Rajković, M. Žikić<<strong>br</strong> />

PRIMENA SOFTVERSKIH PAKETA WHITTLE I GEMCOM ZA PRORAČUN<<strong>br</strong> />

BILANSNIH REZERVI RUDE BAKRA U LEŽIŠTU JUŽNI REVIR MAJDANPEK ...................................81<<strong>br</strong> />

APPLICATION THE SOFTWARE PACKAGES WHITTLE AND GEMCOM FOR<<strong>br</strong> />

CALCULATION THE BALANCE RESERVES OF COPPER ORE IN THE<<strong>br</strong> />

SOUTH MINING DISTRICT DEPOSIT MAJDANPEK...................................................................................87<<strong>br</strong> />

B. Čađenović, B. Drobnjaković, D. Milanović, S. Magdalinović<<strong>br</strong> />

NOVO LABORATORIJSKO POSTROJENJE ZA GRANULIRANJE IZMENJENIM<<strong>br</strong> />

TEHNOLOŠKIM POSTUPKOM IZLIVANJA TOPIONIČKE ŠLJAKE .........................................................93<<strong>br</strong> />

NEW LABORATORY PLANT FOR GRANULATION USING THE CHANGED<<strong>br</strong> />

TECHNOLOGICAL PROCESS OF SMELTER SLAG DISCHARGING........................................................99


M. Plasto<<strong>br</strong> />

ANALIZA RIZIKA I HAZARDA EVIDENTIRANIH U RMU KAKANJ.....................................................105<<strong>br</strong> />

ANALYSIS OF RISKS AND HAZARDS REGISTERED IN THE<<strong>br</strong> />

BROWN COAL MINE KAKANJ.....................................................................................................................119<<strong>br</strong> />

R. Nikolić, N. Vušović, I. Svrkota, A. Fedajev<<strong>br</strong> />

EKONOMIJA POSLOVANJA RTB BOR U PERIODU TRANZICIJE .........................................................131<<strong>br</strong> />

BUSINESS ECONOMY OF RTB BOR IN TRANSITION PERIOD .............................................................139<<strong>br</strong> />

V. Dutina, Lj. Marković, M. Kovačević<<strong>br</strong> />

PLANIRANJE VREMENA REALIZACIJE INVESTICIONOG PROJEKTA METODOM ZA<<strong>br</strong> />

POREĐENJE FUZZY BROJEVA ....................................................................................................................147<<strong>br</strong> />

PLANNING THE TIME OF INVESTMENT PROJECT REALIZATION USING THE<<strong>br</strong> />

FUZZY NUMBER COMPARISON METHOD ...............................................................................................157<<strong>br</strong> />

V. Dutina, Lj. Marković, M. Knežević, M. Kovačević<<strong>br</strong> />

IZBOR VARIJANTE TRASE PUTA VIŠEKRITERIJUMSKOM OPTIMIZACIJOM..................................169<<strong>br</strong> />

SELECTION OF THE HIGHWAY ROUTE VARIANT BY<<strong>br</strong> />

MULTICRITERION OPTIMIZATION ............................................................................................................179


INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162<<strong>br</strong> />

KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622<<strong>br</strong> />

UDK: 622.79:340.137:504.43(045)=861<<strong>br</strong> />

Mile Bugarin * , Zoran Stevanović * , Vojka Gardić * , Vladan Marinković *<<strong>br</strong> />

PREGLED DOSADAŠNJIH GEOLOŠKIH ISTRAŽIVANJA STAROG<<strong>br</strong> />

FLOTACIJSKOG JALOVIŠTA I EU REGULATIVA IZ OBLASTI<<strong>br</strong> />

ZAŠTITE VODA **<<strong>br</strong> />

Izvod<<strong>br</strong> />

U radu su prika<strong>za</strong>na dosadašna geološka istraživanja starog flotacijskog jalovišta u cilju<<strong>br</strong> />

sagledavanja uticaja na kvalitet površinskih i podzemnih voda. Takođe, prika<strong>za</strong>n je pregled EU<<strong>br</strong> />

<strong>za</strong>konodavstva iz oblasti <strong>za</strong>štite voda. Cilj rada je bio da se sagleda problematika starog<<strong>br</strong> />

flotacijskog jalovišta i upoređivanje trenutnog stanja sa <strong>za</strong>htevima <strong>za</strong>konodavstva EU iz oblasti<<strong>br</strong> />

<strong>za</strong>štite voda.<<strong>br</strong> />

Ključne reči: flotacijsko jalovište, EU direktive, <strong>za</strong>štita voda<<strong>br</strong> />

UVOD<<strong>br</strong> />

Izvori <strong>za</strong>gađenja površinskih i podzemnih<<strong>br</strong> />

voda u rudarskim oblastima često su<<strong>br</strong> />

stara ili postojeća flotacijska jalovišta.<<strong>br</strong> />

Osnovni proces koji se dešava svakodnevno<<strong>br</strong> />

u jalovištima i koji predstavlja osnovni izvor<<strong>br</strong> />

<strong>za</strong>gađenja vodenih tokova je luženje komponenata<<strong>br</strong> />

iz flotacijske jalovine putem kiša. Na<<strong>br</strong> />

ovaj način nastaju vode koje, ukoliko nisu<<strong>br</strong> />

pod kontrolom, što je u Srbiji najčešći slučaj,<<strong>br</strong> />

prodoru i <strong>za</strong>gađuju podzemne i površinske<<strong>br</strong> />

tokove. Međutim, uticaj flotacijskog jalovišta<<strong>br</strong> />

ne odnosi se samo na vodene tokove.<<strong>br</strong> />

Flotacijska jalovišta takođe imaju negativan<<strong>br</strong> />

uticaj i na <strong>za</strong>gađenje zemljišta. Uticaj jalovi-<<strong>br</strong> />

šta na okolno zemljište može se videti kroz<<strong>br</strong> />

sledeće procese: degradiranje područja gde<<strong>br</strong> />

postoje flotacijske jalovine, distribucijom<<strong>br</strong> />

sitnih frakcija jalovine u obliku prašine i<<strong>br</strong> />

degradacija šire oblasti. Takođe, se iz<<strong>br</strong> />

prethodno navedenih činjenica može uočiti i<<strong>br</strong> />

uticaj flotacijskih jalovišta na <strong>za</strong>gađenje<<strong>br</strong> />

vazduha [1, 2]. U ovom radu dat je pregled<<strong>br</strong> />

savremenih istraživanja o starom borskom<<strong>br</strong> />

flotacijskom jalovištu, sa ciljem utvrđivanja<<strong>br</strong> />

njegovog uticaja na površinske i podzemne<<strong>br</strong> />

vode, kao i sagledavanje naših obave<strong>za</strong><<strong>br</strong> />

prema evropskom <strong>za</strong>konodavstvu u pogledu<<strong>br</strong> />

<strong>za</strong>štite voda.<<strong>br</strong> />

* <strong>Institut</strong> <strong>za</strong> <strong>rudarstvo</strong> i <strong>metalurgiju</strong> <strong>Bor</strong><<strong>br</strong> />

** Ovaj rad je podržan od strane Ministarstva <strong>za</strong> prosvetu i nauku Republike Srbija, a u okviru<<strong>br</strong> />

projekta “Uticaj rudarskog otpada iz RTB-a <strong>Bor</strong> na <strong>za</strong>gađenje vodotokova sa predlogom mera<<strong>br</strong> />

i postupaka <strong>za</strong> smanjenje štetnog dejstva na životnu sredinu“, oblast: Uređenje, <strong>za</strong>štita i<<strong>br</strong> />

korišćenje voda, zemljišta i vazduha (TR – 37001) program tehnološkog razvoja.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 1<<strong>br</strong> />

RUDARSKI RADOVI


ISTORIJAT FORMIRANJA I<<strong>br</strong> />

PRETHODNA GEOLOŠKA<<strong>br</strong> />

ISTRAŽIVANJA FLOTACIJSKOG<<strong>br</strong> />

JALOVIŠTA<<strong>br</strong> />

U neposrednoj blizini RTB <strong>Bor</strong> i<<strong>br</strong> />

njegovih proizvodnih pogona u dolini <strong>Bor</strong>ske<<strong>br</strong> />

reke, već duži niz godina vršeno je<<strong>br</strong> />

odlaganje flotacijske jalovine u vidu mulja,<<strong>br</strong> />

prašine i peska u varijetetima od žutosive<<strong>br</strong> />

do tamnosive i crne boje u <strong>za</strong>visnosti od<<strong>br</strong> />

ulaznih sirovina i upotrebe različitih agenasa<<strong>br</strong> />

u postojećim proizvodnim procesima.<<strong>br</strong> />

Deponovanje flotacijske jalovine vršeno<<strong>br</strong> />

je na klasičan način, formiranjem inicijalne<<strong>br</strong> />

<strong>br</strong>ane na nizvodnom delu reke od krupnijih<<strong>br</strong> />

čestica peska i površinske raskrivke i<<strong>br</strong> />

odlaganjem flotacijske jalovine po čitavoj<<strong>br</strong> />

uzvodnoj dolini <strong>Bor</strong>ske reke.<<strong>br</strong> />

Na osnovu podataka iz prethodnog<<strong>br</strong> />

perioda (tehničke dokumentacije i postojeće<<strong>br</strong> />

literature), deponovanje flotacijske jalovine<<strong>br</strong> />

<strong>za</strong>počeli su Francuzi u severnom delu<<strong>br</strong> />

Druga <strong>br</strong>ana smeštena je nizvodno, a<<strong>br</strong> />

između njih je deponovana flotacijska<<strong>br</strong> />

jalovina, tako da su najgrublje čestice peska<<strong>br</strong> />

Sl. 1. Prikaz starog flotacijskog jalovišta [4]<<strong>br</strong> />

<strong>Bor</strong>skog potoka u neposrednoj blizini<<strong>br</strong> />

postojeće železničke stanice, počev od 1934<<strong>br</strong> />

god. pa sve do 1941 god., kada su Nemci<<strong>br</strong> />

nastavili sa deponovanjem flotacijske<<strong>br</strong> />

jalovine u nižim južnim delovima <strong>Bor</strong>skog<<strong>br</strong> />

potoka. Odmah posle II svetskog rata, po<<strong>br</strong> />

izvršenoj obnovi i rekonstrukciji rudnika,<<strong>br</strong> />

nastavljeno je sa deponovanjem flotacijske<<strong>br</strong> />

jalovine, tako da je danas čitavo korito<<strong>br</strong> />

<strong>Bor</strong>ske reke ispunjeno flotacijskom jalovinom,<<strong>br</strong> />

a teren grubo izravnan, iznivelisan na<<strong>br</strong> />

približnoj koti 356 u središnjem delu Polja І i<<strong>br</strong> />

srednjoj koti 369 u flotacijskom jalovištu<<strong>br</strong> />

Polja ІІ. Naime, južno od flotacijskog Polja І,<<strong>br</strong> />

upravno na <strong>Bor</strong>sku reku, približno između<<strong>br</strong> />

objekata flotacije i nešto severnije od<<strong>br</strong> />

Klanice (slika 1), oformljena je <strong>br</strong>ana od<<strong>br</strong> />

flotacijskog peska.<<strong>br</strong> />

odvajane i taložene na obalama <strong>Bor</strong>ske reke i<<strong>br</strong> />

<strong>br</strong>anama, dok se u središnji deo taložila finija<<strong>br</strong> />

flotacijska jalovina. Deponovanje jalovine<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 2<<strong>br</strong> />

RUDARSKI RADOVI


vršeno je sve do 1987. god. a konačne visine<<strong>br</strong> />

<strong>br</strong>ana su sledeće [3]:<<strong>br</strong> />

- uzvodna <strong>br</strong>ana kod objekata flotacije,<<strong>br</strong> />

<strong>za</strong>vršena je na koti 372,<<strong>br</strong> />

- nizvodna <strong>br</strong>ana <strong>za</strong>vršena je na koti<<strong>br</strong> />

373 sa srednjom kotom jalovišta 369.<<strong>br</strong> />

Prosečna dubina jalovišta iznosi oko<<strong>br</strong> />

30 m.<<strong>br</strong> />

Masa jalovine u jalovištu po poljima<<strong>br</strong> />

iznosi:<<strong>br</strong> />

- Polje I 3 922,146 t<<strong>br</strong> />

- Polje II 22,846,122 t<<strong>br</strong> />

Ukupno 26,768,268 t<<strong>br</strong> />

Na osnovu izvršenih geoloških bušenja<<strong>br</strong> />

iz 1963 i 1987 god., srednji sadržaj bakra, u<<strong>br</strong> />

staroj flotacijskoj jalovini, iznosi oko 0,3 %,<<strong>br</strong> />

dok se <strong>za</strong> zlato i sre<strong>br</strong>o pretpostavljeni<<strong>br</strong> />

srednji sadržaji kreću oko 0,3 do 0,6 g/t <strong>za</strong><<strong>br</strong> />

zlato i 2,5 g/t <strong>za</strong> sre<strong>br</strong>o. Srednji sadržaj<<strong>br</strong> />

sumpora u jalovištu iznosi oko 10,5 %.<<strong>br</strong> />

Hemijko ispitivanje uzoraka starog<<strong>br</strong> />

flotacijskog jalovišta urađeno je u<<strong>br</strong> />

Laboratoriji <strong>za</strong> HTK <strong>Institut</strong>a <strong>za</strong> <strong>rudarstvo</strong><<strong>br</strong> />

i <strong>metalurgiju</strong> u <strong>Bor</strong>u. Rezultati hemijskog<<strong>br</strong> />

ispitivanja prika<strong>za</strong>ni su u tabeli1.<<strong>br</strong> />

Tabela 1. Rezultati hemijske analize<<strong>br</strong> />

uzoraka starog flotacijskog<<strong>br</strong> />

jalovišta<<strong>br</strong> />

Komponenta<<strong>br</strong> />

Koncentracija<<strong>br</strong> />

%<<strong>br</strong> />

Cutot<<strong>br</strong> />

0.20<<strong>br</strong> />

Cuox<<strong>br</strong> />

0.0975<<strong>br</strong> />

Fe 8.69<<strong>br</strong> />

Zn 0.003<<strong>br</strong> />

As 0.014<<strong>br</strong> />

S 10.58<<strong>br</strong> />

Au 0.35<<strong>br</strong> />

Ag 3.0<<strong>br</strong> />

SiO2<<strong>br</strong> />

53.34<<strong>br</strong> />

Al2O3<<strong>br</strong> />

8.52<<strong>br</strong> />

Iz prika<strong>za</strong>nih podataka se vidi da stara<<strong>br</strong> />

flotacijska jalovina, po sadržaju korisnih<<strong>br</strong> />

komponenti, može predstavljati potencijalnu<<strong>br</strong> />

sekundarnu sirovinu <strong>za</strong> dobijanje,<<strong>br</strong> />

prvenstveno bakra, a eventualno i zlata [4].<<strong>br</strong> />

Takođe, jako je bitno napomenuti da je<<strong>br</strong> />

uočen visoki sadržaj bakra u obliku<<strong>br</strong> />

oksida, sumpora i komponenti koje mogu<<strong>br</strong> />

imati negativni uticaj na životnu sredinu<<strong>br</strong> />

(As, Zn i drugi.). Visoki sadržaj bakra u<<strong>br</strong> />

obliku oksida u jalovini (skoro 50% u<<strong>br</strong> />

odnosu na ukupni sadržaj bakra) je<<strong>br</strong> />

činjenica koja nam ukazuje na mogućnost<<strong>br</strong> />

povećanja rastvaranja komponenti iz<<strong>br</strong> />

jalovišta, pogotovu ako se u obzir uzmu i<<strong>br</strong> />

efekti padanja kiselih kiša (sa pH<<strong>br</strong> />

vrednošću ispod 4). Rastvaranje oksidnog<<strong>br</strong> />

bakar direktno utiče na formiranje voda sa<<strong>br</strong> />

sadržajem bakarnog jona u koncentraciji i<<strong>br</strong> />

do deset puta većoj od <strong>za</strong>konom<<strong>br</strong> />

propisanih. Odvod vode iz jalovišta nije<<strong>br</strong> />

kontrolisan proces. Vode idu direktno u<<strong>br</strong> />

<strong>Bor</strong>sku reku i nastavljaju dalje u Timok i<<strong>br</strong> />

Dunav. Na ovaj način <strong>za</strong>gađuju vodu u<<strong>br</strong> />

rekama i plodno zemljište u priobalnim<<strong>br</strong> />

dolinama kroz koje reke protiču.<<strong>br</strong> />

PREGLED ZAKONODAVSTVA EU<<strong>br</strong> />

IZ OBLASTI ZAŠTITE VODA<<strong>br</strong> />

Zakonodavstvo Evropske unije (EU)<<strong>br</strong> />

ima nekoliko oblika pravnih instrumenata i<<strong>br</strong> />

svaki od njih se odnose na različite<<strong>br</strong> />

institucije i imaju različitu pravnu snagu.<<strong>br</strong> />

Sva važeća dokumenta EU mogu se<<strong>br</strong> />

podelite u sledeće grupe: <strong>za</strong>koni,<<strong>br</strong> />

direktive, odluke, preporuke i mišljenja.<<strong>br</strong> />

Da bi ispunili svoje obaveze po<<strong>br</strong> />

<strong>za</strong>konima EU, a koji se odnose na <strong>za</strong>štitu<<strong>br</strong> />

voda koje su pod direktnim uticajem<<strong>br</strong> />

flotacijskih jalovišta, neophodno je da se<<strong>br</strong> />

upoznamo sa uslovima u sledećim<<strong>br</strong> />

direktivama EU.<<strong>br</strong> />

Directive 76/464/EEC – “framework<<strong>br</strong> />

Directive” odnosi se na ispuštanje opasnih<<strong>br</strong> />

materija - otpadnih efluenata i otpadne<<strong>br</strong> />

vode iz rudarskih i metalurških procesa<<strong>br</strong> />

koji sadrži teške metale i njihova<<strong>br</strong> />

jedinjenja, kao i druge opasne supstance<<strong>br</strong> />

po ljudsko zdravlje i životnu sredinu [5].<<strong>br</strong> />

Tri najvažnije specifične takozvane<<strong>br</strong> />

ćerke direktive - 83/513/EEC (1)– koja<<strong>br</strong> />

se odnosi na granične vrednosti i ciljeve<<strong>br</strong> />

kvaliteta <strong>za</strong> ispuštanje kadmijuma;<<strong>br</strong> />

Directive 84/156 / EEZ (2)- koja se<<strong>br</strong> />

odnosi na granične vrednosti i ciljeve<<strong>br</strong> />

kvaliteta <strong>za</strong> ispuštanje žive po sektorima;<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 3<<strong>br</strong> />

RUDARSKI RADOVI


Directive 86/280/EEC (3)- koja se<<strong>br</strong> />

odnosi na granične vrednosti i ciljeve<<strong>br</strong> />

kvaliteta <strong>za</strong> ispuštanje određenih opasnih<<strong>br</strong> />

supstanci, uključenih u Listu I Aneksa<<strong>br</strong> />

Direktive 76/464/EEC (88/347/EEC) [6-8].<<strong>br</strong> />

Okvirna direktiva o vodama: instrument<<strong>br</strong> />

<strong>za</strong> do<strong>br</strong>o upravljanje vodama u EU -<<strong>br</strong> />

Direktiva 2000/60/EC (WFD)- Direktiva<<strong>br</strong> />

uvodi ključne elemenate <strong>za</strong> posti<strong>za</strong>nje efikasnog<<strong>br</strong> />

upravljanja vodama na nivou Evropske<<strong>br</strong> />

unije, koherentan i efikasan pravni i institucionalni<<strong>br</strong> />

okvir, politika određivanja cene vode,<<strong>br</strong> />

učešće javnosti i integrisanog upravljanja<<strong>br</strong> />

vodnim resursima. Ključni cilj WFD direktive<<strong>br</strong> />

je da se poboljša ekološki status površinskih<<strong>br</strong> />

i podzemnih vodnih tela. Ekološki ciljevi<<strong>br</strong> />

WFD direktive <strong>za</strong> reke takođe se primenjuju<<strong>br</strong> />

<strong>za</strong> ispuštanje otpadnih voda iz postrojenja <strong>za</strong><<strong>br</strong> />

prečišćavanje otopadnih voda. [9, 10].<<strong>br</strong> />

ZAKLJUČAK<<strong>br</strong> />

Flotacijska jalovišta predstavljaju jedan<<strong>br</strong> />

od izvora <strong>za</strong>gađenja površinskih i podzemnih<<strong>br</strong> />

voda, što predstavlja značajan ekološki problem<<strong>br</strong> />

u Srbiji. Problem je nastao kao posledica<<strong>br</strong> />

slabe ekološke politike i njene primene.<<strong>br</strong> />

Iz iznetih podataka može se videti da<<strong>br</strong> />

staro flotacijsko jalovište ima visok<<strong>br</strong> />

sadržaj pojedinih korisnih komponenti i<<strong>br</strong> />

zbog te činjenice može da predstavlja<<strong>br</strong> />

potencijalnu sekundarna sirovina <strong>za</strong><<strong>br</strong> />

dobijanje, pre svega bakra, a možda i<<strong>br</strong> />

zlata, što bi umanjilo negativan uticaj<<strong>br</strong> />

jalovine na životnu sredinu.<<strong>br</strong> />

Takođe, sprovođenje mera <strong>za</strong>štite od<<strong>br</strong> />

<strong>za</strong>gađenja predstavljaju javni interes i<<strong>br</strong> />

potrebne su u cilju <strong>za</strong>štite zdravlja ljudi,<<strong>br</strong> />

kulturnih i materijalnih dobara.<<strong>br</strong> />

Za punu implementaciju usvojenog<<strong>br</strong> />

nacionalnog <strong>za</strong>konodavstva, potrebni su i svi<<strong>br</strong> />

pod<strong>za</strong>konski akti. Neophodno je uskladiti<<strong>br</strong> />

nacionalno <strong>za</strong>konodavstvo sa <strong>za</strong>konodavstvom<<strong>br</strong> />

Evropske unije, čime se obezbeđuje<<strong>br</strong> />

visok nivo kvaliteta životne sredine.<<strong>br</strong> />

LITERATURA<<strong>br</strong> />

[1] J. Lilić, V. Filipović, M. Grujić,<<strong>br</strong> />

M. Žikić, S. Stojadinović, Zaštita<<strong>br</strong> />

materijala 2, 49 (2008), str. 52-62.<<strong>br</strong> />

[2] M. Bugarin, V. Marinković, V. Gardić,<<strong>br</strong> />

G. Slavković, Istorijat istraživanja i<<strong>br</strong> />

geološka građa borskih ležišta bakra,<<strong>br</strong> />

<strong>Rudarski</strong> Radovi 1 (<strong>2011</strong>), str. 1-6.<<strong>br</strong> />

[3] M. Stojanović, Izveštaj o izvedenim<<strong>br</strong> />

geološkim <strong>radovi</strong>ma na flotacijskom<<strong>br</strong> />

jalovištu u <strong>Bor</strong>u, Interprojekt Beograd<<strong>br</strong> />

(1988).<<strong>br</strong> />

[4] M. Antonijevic, M. Dimitrijevic, Z.<<strong>br</strong> />

Stevanovic, S. Serbula, G. Bogdanovic,<<strong>br</strong> />

Investigation of the possibility of<<strong>br</strong> />

copper recovery from the flotation<<strong>br</strong> />

tailings by acid leaching, Journal of<<strong>br</strong> />

Ha<strong>za</strong>rdous Materials, 158 (2008),<<strong>br</strong> />

p. 23-34.<<strong>br</strong> />

[5] Council Directive of 4 May 1976 on<<strong>br</strong> />

pollution caused by certain dangerous<<strong>br</strong> />

substances discharged into the aquatic<<strong>br</strong> />

environment of the Community, Official<<strong>br</strong> />

Journal OJ L 129, 18.5.1976, p. 23.<<strong>br</strong> />

[6] Council Directive of 26 Septembar 1983<<strong>br</strong> />

on limit values and quality objectives for<<strong>br</strong> />

cadmium discharges, Official Journal OJ<<strong>br</strong> />

L 291, 24.10.1983, p. 1.<<strong>br</strong> />

[7] Council Directive of 8 March 1984 on<<strong>br</strong> />

limit values and quality objectives for<<strong>br</strong> />

mercury discharges by sectors other<<strong>br</strong> />

than the chlor-alkali electrolysis<<strong>br</strong> />

industry 1984, Official Journal OJ L 74,<<strong>br</strong> />

17.3.1984, p. 49.<<strong>br</strong> />

[8] Council Directive 86/280/EEC of 12 June<<strong>br</strong> />

1986 on limit values and quality objectives<<strong>br</strong> />

for discharges of certain dangerous<<strong>br</strong> />

substances included in List I of the<<strong>br</strong> />

Annex to Directive 76/464/EEC, Official<<strong>br</strong> />

Journal OJ L 181, 12.6.1986, p. 16.<<strong>br</strong> />

[9] A. Barreira, Water Governance at the<<strong>br</strong> />

European Union, Journal of<<strong>br</strong> />

Contemporary Water Research &<<strong>br</strong> />

Education Issue 135 (2006), p. 80-85.<<strong>br</strong> />

[10] Directive 2000/60/EC of the European<<strong>br</strong> />

Parliament and of the Council of 23<<strong>br</strong> />

October 2000: Establishing a Framework<<strong>br</strong> />

for Community Action in the<<strong>br</strong> />

Field of Water Policy, Official Journal<<strong>br</strong> />

of the European Communities 22 (12).<<strong>br</strong> />

http://eurlex.europa.eu/LexUriServ/Lex<<strong>br</strong> />

UriServ<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 4<<strong>br</strong> />

RUDARSKI RADOVI


MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162<<strong>br</strong> />

COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622<<strong>br</strong> />

UDK: 622.79:340.137:504.33(045)=20<<strong>br</strong> />

Mile Bugarin * , Zoran Stevanović * , Vojka Gardić * , Vladan Marinković *<<strong>br</strong> />

REVIEW OF THE GEOLOGICAL RESEARCH OF OLD BOR<<strong>br</strong> />

FLOTATION TAILINGS AND OVERVIEW OF EU LEGISLATION IN<<strong>br</strong> />

THE FIELD OF WATER PROTECTION **<<strong>br</strong> />

Abstract<<strong>br</strong> />

The paper shows previous studies of geological investigations the Old Flotation tailing dump in<<strong>br</strong> />

order to assess its impact on the quality of surface and ground water. Also, an overview of the EU<<strong>br</strong> />

legislation in the field of water protection is shown. The aim of this paper is to consider the problem<<strong>br</strong> />

of the Old Flotation tailing dump and comparison the current condition with requirements of<<strong>br</strong> />

the EU legislation in the field of water protection.<<strong>br</strong> />

Key words: flotation tailings, EU directive, water protection<<strong>br</strong> />

INTRODUCTION<<strong>br</strong> />

Sources of surface and ground water pollution<<strong>br</strong> />

in the mining regions are often the old<<strong>br</strong> />

and existing flotation tailing dumps, due to<<strong>br</strong> />

leaching the flotation material through the<<strong>br</strong> />

rain, penetration of contaminated water and<<strong>br</strong> />

its drainage into the streams. The influence<<strong>br</strong> />

of flotation tailings on the soil pollution is<<strong>br</strong> />

observed in the following ways: degraded<<strong>br</strong> />

areas of the flotation tailing dumps, distribution<<strong>br</strong> />

of small fraction of tailings in the form<<strong>br</strong> />

of dust and degradation of wider areas. Also,<<strong>br</strong> />

the air pollution is generated by the same<<strong>br</strong> />

way [1, 2]. This paper presents an overview<<strong>br</strong> />

of contemporary research on the Old <strong>Bor</strong><<strong>br</strong> />

Flotation tailing dump with the aim of<<strong>br</strong> />

determining its effect on surface and<<strong>br</strong> />

groundwater, as well as recognition of our<<strong>br</strong> />

obligations under the European Legislation<<strong>br</strong> />

in terms of water protection.<<strong>br</strong> />

HISTORY OF FORMATION AND<<strong>br</strong> />

PREVIOUS GEOLOGICAL INVES-<<strong>br</strong> />

TIGATIONS OF THE FLOTATION<<strong>br</strong> />

TAILING DUMP<<strong>br</strong> />

In the immediate vicinity of RTB <strong>Bor</strong><<strong>br</strong> />

and its production facilities in the <strong>Bor</strong><<strong>br</strong> />

River valley, the flotation tailings are disposed<<strong>br</strong> />

for many years in the form of slime,<<strong>br</strong> />

dust and sand in the varieties of yellowgray<<strong>br</strong> />

to dark gray and black depending on<<strong>br</strong> />

* Mining and Metallurgy <strong>Institut</strong>e <strong>Bor</strong><<strong>br</strong> />

** This work was supported by the Ministry of Education and Science of the Republic of Serbia, and<<strong>br</strong> />

within the project „The Impact of Mining Wastes from RTB <strong>Bor</strong> on the Pollution of Surrounding<<strong>br</strong> />

Water Systems with the Proposal of Measures and Procedures for Reduction Harmful Effects on<<strong>br</strong> />

the Environment“, a program of technological development (TR - 37001).<<strong>br</strong> />

No 4, <strong>2011</strong>. 5<<strong>br</strong> />

MINING ENGINEERING


aw materials and use the various agents<<strong>br</strong> />

in the existing production processes.<<strong>br</strong> />

Disposal of flotation was performed by<<strong>br</strong> />

classical way, so that the downstream part of<<strong>br</strong> />

the river formed the initial barrier of coarse<<strong>br</strong> />

sand particles and surface mining overburden<<strong>br</strong> />

and disposal of flotation tailings throughout<<strong>br</strong> />

the upstream valley of the <strong>Bor</strong> River.<<strong>br</strong> />

Based on data from the previous period<<strong>br</strong> />

(technical documentation and existing literature),<<strong>br</strong> />

disposal of tailings began by<<strong>br</strong> />

French in the north part of the <strong>Bor</strong> Stream<<strong>br</strong> />

in the near vicinity of railway station, from<<strong>br</strong> />

1934 until 1941, when the Germans continued<<strong>br</strong> />

with disposal of tailings in the<<strong>br</strong> />

lower southern parts of the <strong>Bor</strong> Stream.<<strong>br</strong> />

Immediately after the World War II, after<<strong>br</strong> />

reconstruction of the mine, disposal of<<strong>br</strong> />

tailings continued with a deposit of tailing,<<strong>br</strong> />

so that today the entire bed of the <strong>Bor</strong><<strong>br</strong> />

River is filled with the flotation tailings,<<strong>br</strong> />

and the terrain was roughly flattened, at<<strong>br</strong> />

approximate level of 356 m in the central<<strong>br</strong> />

part of the Field I and middle level of 369<<strong>br</strong> />

m in the flotation tailing Field II. Specifically,<<strong>br</strong> />

in the south of the flotation Field I,<<strong>br</strong> />

perpendicular to the <strong>Bor</strong> River, approximately<<strong>br</strong> />

between the flotation facilities and<<strong>br</strong> />

just north of Slaughterhouse (Figure 1), a<<strong>br</strong> />

dam was formed of flotation sand.<<strong>br</strong> />

Fig. 1. View of the old <strong>Bor</strong> Flotation Tailing Dump [4]<<strong>br</strong> />

The second dam is situated downstream,<<strong>br</strong> />

and the flotation tailings was deposited<<strong>br</strong> />

between the dams, such as the<<strong>br</strong> />

coarsest particles of sand were separated<<strong>br</strong> />

and deposited on the banks of the <strong>Bor</strong><<strong>br</strong> />

River, until the middle part was filled with<<strong>br</strong> />

finer flotation tailings. Disposal of tailings<<strong>br</strong> />

was done until 1987, and the final heights<<strong>br</strong> />

of dams are the following [3]:<<strong>br</strong> />

- upstream dam near the flotation facilities,<<strong>br</strong> />

was completed at level 372 m,<<strong>br</strong> />

- downstream dam was completed at<<strong>br</strong> />

level 373 m with an average elevation<<strong>br</strong> />

of tailing dump of 369 m.<<strong>br</strong> />

Average depth of tailing dump is about<<strong>br</strong> />

30 m.<<strong>br</strong> />

Mass of tailings in a tailing dump per<<strong>br</strong> />

fields is:<<strong>br</strong> />

- Field I 3,922,146 t<<strong>br</strong> />

- Field II 22,846,122 t<<strong>br</strong> />

Total 26,768,268 t<<strong>br</strong> />

No 4, <strong>2011</strong>. 6<<strong>br</strong> />

MINING ENGINEERING


Based on realized geological drillings in<<strong>br</strong> />

1963 and 1987, medium copper content in<<strong>br</strong> />

the old flotation tailings is about 0.3%,<<strong>br</strong> />

while the supposed medium contents for<<strong>br</strong> />

gold and silver are about 0.3 to 0.6 g/t for<<strong>br</strong> />

gold and 2.5 g/t for silver. Mean content of<<strong>br</strong> />

sulphur in tailing dump is about 10.50%.<<strong>br</strong> />

Chemical testing the samples of the<<strong>br</strong> />

old flotation tailing dump was carried out<<strong>br</strong> />

in the Laboratory for chemical – technical<<strong>br</strong> />

control of the Mining and Metallurgy <strong>Institut</strong>e<<strong>br</strong> />

in <strong>Bor</strong>. The results of chemical analyzing<<strong>br</strong> />

are shown in Table 1.<<strong>br</strong> />

Table 1. The chemical composition of<<strong>br</strong> />

samples of old flotation tail<<strong>br</strong> />

Component Content %<<strong>br</strong> />

Cutot 0.20<<strong>br</strong> />

Cuox 0.0975<<strong>br</strong> />

Fe 8.69<<strong>br</strong> />

Zn 0.003<<strong>br</strong> />

As 0.014<<strong>br</strong> />

S 10.58<<strong>br</strong> />

Au 0.35<<strong>br</strong> />

Ag 3.0<<strong>br</strong> />

SiO2 53.34<<strong>br</strong> />

Al2O3 8.52<<strong>br</strong> />

The presented data showed that the old<<strong>br</strong> />

flotation tailings, according to content of<<strong>br</strong> />

useful components, may pose a potential<<strong>br</strong> />

secondary raw material for obtaining,<<strong>br</strong> />

primarily copper and possibly gold [4].<<strong>br</strong> />

Also, it is important to note that high<<strong>br</strong> />

content of copper oxide, sulphur and other<<strong>br</strong> />

environmentally very harmful elements<<strong>br</strong> />

(As, Zn, etc.) was observed. High copper<<strong>br</strong> />

content in the form of oxide (almost 50%<<strong>br</strong> />

of total copper content) in tailings also suggested<<strong>br</strong> />

the increased possibility of solubility<<strong>br</strong> />

the tailings due to the effects of acid rain<<strong>br</strong> />

(with pH value below 4). Dissolution of<<strong>br</strong> />

oxide copper has direct effect on formation<<strong>br</strong> />

the water with high content of copper ion<<strong>br</strong> />

in concentration up to ten times higher<<strong>br</strong> />

than legally prescribed. Water drainage<<strong>br</strong> />

from tailing dump is uncontrolled process.<<strong>br</strong> />

The water goes directly into the <strong>Bor</strong> River<<strong>br</strong> />

and continues further into Timok and Danube,<<strong>br</strong> />

thus polluting water in the rivers and<<strong>br</strong> />

fertile coastal land in the valleys through<<strong>br</strong> />

which the rivers flow.<<strong>br</strong> />

REVIEW OF THE EU<<strong>br</strong> />

LEGISLATION IN THE AREA OF<<strong>br</strong> />

WATER PROTECTION<<strong>br</strong> />

Legislation of the European Union<<strong>br</strong> />

(EU) has several forms of legal instruments<<strong>br</strong> />

and each of them relating to the different<<strong>br</strong> />

institutions and has different legal force.<<strong>br</strong> />

All legal documents related to the EU could<<strong>br</strong> />

be divided into the following groups: regulations,<<strong>br</strong> />

directives, decisions, recommendations<<strong>br</strong> />

and opinions.<<strong>br</strong> />

To fulfil the obligations under the EU<<strong>br</strong> />

law, and concerning the protection of water<<strong>br</strong> />

around flotation tailing dump, it is necessary<<strong>br</strong> />

to become familiar with the requirements in<<strong>br</strong> />

the following EU directives.<<strong>br</strong> />

Directive 76/464/EEC – “framework<<strong>br</strong> />

Directive” on discharge of dangerous substances<<strong>br</strong> />

- the waste effluents and wastewater<<strong>br</strong> />

from mining and metallurgical processes<<strong>br</strong> />

containing heavy metals and their<<strong>br</strong> />

compounds, as well as other dangerous<<strong>br</strong> />

substances for the human health and the<<strong>br</strong> />

environment are subject to the general<<strong>br</strong> />

provisions and principles of Directive<<strong>br</strong> />

76/464/EEC [5].<<strong>br</strong> />

The Three Most Important Specific<<strong>br</strong> />

Daughter Directives of our field of consideration<<strong>br</strong> />

are as follows - 83/513/EEC Cadmium<<strong>br</strong> />

Daughter Directive to DSD - on<<strong>br</strong> />

limit values and quality objectives for cadmium<<strong>br</strong> />

discharges (Daughter to 2006/11/EC),<<strong>br</strong> />

84/156/EEC Mercury Daughter Directive<<strong>br</strong> />

to DSD - on limit values and quality objectives<<strong>br</strong> />

for mercury discharges by sectors other<<strong>br</strong> />

than the chlor-alkali electrolysis industry,<<strong>br</strong> />

86/280/EEC List I Daughter Directive to<<strong>br</strong> />

DSD - on limit values and quality objectives<<strong>br</strong> />

for discharges of certain dangerous subances<<strong>br</strong> />

included in List I of the Annex to Directive<<strong>br</strong> />

76/464/EEC (88/347/EEC) [6-8].<<strong>br</strong> />

The Water Framework Directive: An<<strong>br</strong> />

Instrument for Good Water Governance<<strong>br</strong> />

No 4, <strong>2011</strong>. 7<<strong>br</strong> />

MINING ENGINEERING


in the EU - Directive 2000/60/EC (WFD) -<<strong>br</strong> />

This Directive introduces key elements to<<strong>br</strong> />

achieve effective water governance at the<<strong>br</strong> />

European Union level, a coherent and effective<<strong>br</strong> />

legal and institutional framework, water-pricing<<strong>br</strong> />

policies, public participation and<<strong>br</strong> />

an integrated water resources management<<strong>br</strong> />

system. The WFD’s key objective is to improve<<strong>br</strong> />

the ecological status of surface and<<strong>br</strong> />

groundwater bodies. The WFD’s ecological<<strong>br</strong> />

objectives for rivers are also applied for water<<strong>br</strong> />

discharge from the wastewater treatment<<strong>br</strong> />

plants [9, 10].<<strong>br</strong> />

CONCLUSION<<strong>br</strong> />

Flotation tailings are the source of surface<<strong>br</strong> />

and ground water pollution, which<<strong>br</strong> />

represents a significant ecological problem<<strong>br</strong> />

in Serbia, and was created as a result of<<strong>br</strong> />

weak an ecological policy and its implementation.<<strong>br</strong> />

From the presented data can be seen<<strong>br</strong> />

that the old flotation tailings has high content<<strong>br</strong> />

of some useful components, and because<<strong>br</strong> />

of that fact may pose a potential<<strong>br</strong> />

secondary raw material for obtaining,<<strong>br</strong> />

primarily copper and possibly gold, which<<strong>br</strong> />

would solve the problem of impact of tailings<<strong>br</strong> />

on the environment.<<strong>br</strong> />

Also, the needs and public interest are to<<strong>br</strong> />

implement protection measures against pollution,<<strong>br</strong> />

to protect human health, cultural and<<strong>br</strong> />

material goods, for the full implementation<<strong>br</strong> />

of adopted national legislation making it is<<strong>br</strong> />

necessary and all by-laws. It is necessary to<<strong>br</strong> />

harmonize national legislation with EU legislation,<<strong>br</strong> />

thus ensuring a high level of environmental<<strong>br</strong> />

quality.<<strong>br</strong> />

REFERENCES<<strong>br</strong> />

[1] J. Lilić, V. Filipović, M. Grujić, M.<<strong>br</strong> />

Žikić, S. Stojadinović, Zaštita materijala<<strong>br</strong> />

2, 49 (2008), pp. 52-62 (in Serbian);<<strong>br</strong> />

[2] M. Bugarin, V. Marinković, V. Gardić,<<strong>br</strong> />

G. Slavković, History of Investigations<<strong>br</strong> />

and Geological Structure of the <strong>Bor</strong><<strong>br</strong> />

Copper Deposits, Mining Engineering 1<<strong>br</strong> />

(<strong>2011</strong>), pp. 1-6;<<strong>br</strong> />

[3] M. Stojanović, Report on Realized<<strong>br</strong> />

Geological Works on the Flotation<<strong>br</strong> />

Tailing Dump in <strong>Bor</strong>, Interprojekt<<strong>br</strong> />

Belgrade (1988), (in Serbian);<<strong>br</strong> />

[4] M. Antonijevic, M. Dimitrijevic, Z.<<strong>br</strong> />

Stevanovic, S. Serbula, G. Bogdanovic,<<strong>br</strong> />

Investigation on Possibility the Copper<<strong>br</strong> />

Recovery from the Flotation Tailings by<<strong>br</strong> />

Acid Leaching, Journal of Ha<strong>za</strong>rdous<<strong>br</strong> />

Materials, 158 (2008), pp. 23-34;<<strong>br</strong> />

[5] Council Directive of 4 May 1976 on<<strong>br</strong> />

Pollution Caused by Certain Dangerous<<strong>br</strong> />

Substances Discharged into the Aquatic<<strong>br</strong> />

Environment of the Community,<<strong>br</strong> />

Official Journal OJ L 129, 18.5.1976,<<strong>br</strong> />

pp. 23;<<strong>br</strong> />

[6] Council Directive of 26 September 1983<<strong>br</strong> />

on Limit Values and Quality Objectives<<strong>br</strong> />

for Cadmium Discharges, Official<<strong>br</strong> />

Journal OJ L 291, 24.10.1983, pp. 1;<<strong>br</strong> />

[7] Council Directive of 8 March 1984 on<<strong>br</strong> />

Limit Values and Quality Objectives for<<strong>br</strong> />

Mercury Discharges by Sectors Other<<strong>br</strong> />

than the Chlorine-alkali Electrolysis<<strong>br</strong> />

Industry1984, Official Journal OJ L 74,<<strong>br</strong> />

17.3.1984, pp. 49;<<strong>br</strong> />

[8] Council Directive 86/280/EEC of 12<<strong>br</strong> />

June 1986 on Limit Values and Quality<<strong>br</strong> />

Objectives for Discharges of Certain<<strong>br</strong> />

Dangerous Substances Included in List<<strong>br</strong> />

I of the Annex to Directive<<strong>br</strong> />

76/464/EEC, Official Journal OJ L 181,<<strong>br</strong> />

12.6.1986, pp. 16;<<strong>br</strong> />

[9] Ana Barreira, Water Governance at the<<strong>br</strong> />

European Union, Journal of Contemporary<<strong>br</strong> />

Water Research & Education<<strong>br</strong> />

Issue 135 (2006), pp. 80-85;<<strong>br</strong> />

[10] Directive 2000/60/EC of the European<<strong>br</strong> />

Parliament and of the Council of 23<<strong>br</strong> />

October 2000: Establishing a Framework<<strong>br</strong> />

for Community Action in the Field of<<strong>br</strong> />

Water Policy, Official Journal of the<<strong>br</strong> />

European Communities 22 (12).<<strong>br</strong> />

http://eurlex.europa.eu/LexUriServ/Lex<<strong>br</strong> />

UriServ.<<strong>br</strong> />

No 4, <strong>2011</strong>. 8<<strong>br</strong> />

MINING ENGINEERING


INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162<<strong>br</strong> />

KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622<<strong>br</strong> />

UDK: 621.361(045)=861<<strong>br</strong> />

Slađana Krstić * , Boban Lapadatović * , Milenko Ljubojev *<<strong>br</strong> />

KVALITET GLINA U LEŽIŠTU DUŠANOVAC (KOD NEGOTINA) **<<strong>br</strong> />

Izvod<<strong>br</strong> />

Ležište glina [3,5] Dušanovac, nalazi se u severoistočnom delu Republike Srbije, u ataru sela<<strong>br</strong> />

Dušanovac, oko 9 km severo<strong>za</strong>padno od Negotina. Osnovni cilj dvogodišnjeg geološkog istraživanja<<strong>br</strong> />

bio je da se pojave glina na području „Dušanovac” kod Negotina istraživanjem dovedu<<strong>br</strong> />

do faze okonturivanja ležišta, kojim će se dobiti svi podaci <strong>za</strong> overu rezervi glina kao mineralne<<strong>br</strong> />

sirovine. Geološkim istraživanjima vršenim u periodu 2008/10 godine [3,5], definisane su geološke<<strong>br</strong> />

karakteristike ležišta, kvalitet glina [4,3,6,7], ocena potencijalnosti istražnog prostora [3], kao i<<strong>br</strong> />

proračun geoloških rezervi ležišta mineralne sirovine [3].<<strong>br</strong> />

U navedenom periodu urađena su 4 istražna raskopa i izbušeno je 12 istražnih geoloških bušotina.<<strong>br</strong> />

Geološkim plitkim vertikalnim bušotinama izbušeno je ukupno 717,00 metara [3].<<strong>br</strong> />

Ovaj rad prikazuje kvalitet glina u ležištu Dušanovac, rezultati tehnoloških ispitivanja i mogućnosti<<strong>br</strong> />

pripreme ove sirovine a što je značajno <strong>za</strong> samu mogućnost primene. Prema boji gline u<<strong>br</strong> />

ležištu Dušanovac su podeljene na četiri tipa: <strong>br</strong>aon glina [3,4,6,7]; žuta glina (javlja u celom<<strong>br</strong> />

ležištu, leži ispod <strong>br</strong>aon gline, prosečne debljine je oko 13,0 m., masna je, jako plastična i slabo<<strong>br</strong> />

peskovita); <strong>br</strong>aon-siva glina i siva glina.<<strong>br</strong> />

Primena ovih glina [3,5] (žuta glina) pri rekultivaciji Flotacijskog jalovišta Veliki Krivelj [8]<<strong>br</strong> />

(a i drugih jalovišta nastalih radom RTB-a) doprinela bi konačnom rešenju eliminiacije ekološke<<strong>br</strong> />

katastrofe ovog jalovišta.<<strong>br</strong> />

Ključne reči: kvalitet glina, mogućnost primene, ležište, mineralna sirovina.<<strong>br</strong> />

UVOD<<strong>br</strong> />

Ležište glina Dušanovac, nalazi se na oko<<strong>br</strong> />

9 km od Negotina [3,5], u ataru sela<<strong>br</strong> />

Dušanovac (slika 1). U morfološkom pogledu<<strong>br</strong> />

područje pripada niziji, koja je smeštena između<<strong>br</strong> />

Dupljanske reke (leve pritoke Jaseničke<<strong>br</strong> />

reke) i Dunava. Ležište se nalazi na nadmorskoj<<strong>br</strong> />

visini oko 90 metara (dok je grad Negotin<<strong>br</strong> />

na nadmorskoj visini od oko 45 m). Vodeni<<strong>br</strong> />

tokovi pripadaju slivu Dunava (u neposrednoj<<strong>br</strong> />

blizini ležišta, nalazi se hidroelektrana<<strong>br</strong> />

* <strong>Institut</strong> <strong>za</strong> <strong>rudarstvo</strong> i <strong>metalurgiju</strong> <strong>Bor</strong><<strong>br</strong> />

** Rad je proi<strong>za</strong>šao iz projekta <strong>br</strong>oj 33021 „Istraživanje i praćenje promena naponsko deformacionog<<strong>br</strong> />

stanja u stenskom masivu „in situ“ oko podzemnih prostorija sa izradom tunela sa posebnim osvrtom<<strong>br</strong> />

na tunel Kriveljske reke i Jame <strong>Bor</strong>“, koji je finansiran sredstvima Ministarstva <strong>za</strong> prosvetu i nauku<<strong>br</strong> />

Republike Srbije<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 9<<strong>br</strong> />

RUDARSKI RADOVI


Đerdap), odnosno Crnomorskom slivu.<<strong>br</strong> />

Hidrografska mreža je gusta i do<strong>br</strong>o razvijena.<<strong>br</strong> />

Ležište glina Dušanovac prostorno se nalazi<<strong>br</strong> />

u sedimentima donjeg pliocena (peskovi,<<strong>br</strong> />

gline i peščari). Istražni prostor Dušanovac je<<strong>br</strong> />

detaljno istraživan 2008/2010 godine, istražnim<<strong>br</strong> />

raskopima i plitkim istražnim geolo-<<strong>br</strong> />

škim bušotinama. Ovim <strong>radovi</strong>ma istražen je<<strong>br</strong> />

istražni prostor, okontureno je ležište, sagledan<<strong>br</strong> />

je kvalitet glina kao mineralne sirovine<<strong>br</strong> />

(što direktno ukazuje na mogućnost primene)<<strong>br</strong> />

i o<strong>br</strong>ačunate su ukupne rezerve u ležištu glina.<<strong>br</strong> />

Ukupne rezerve glina u ovom ležištu iznose<<strong>br</strong> />

69.041.871 tona (rezerve A+B kategorije).<<strong>br</strong> />

Sl. 1. Pregledna karta udaljenosti ležišta glina “Dušanovac“ kod<<strong>br</strong> />

Negotina od drugih gradova u Srbiji<<strong>br</strong> />

ISTORIJAT GEOLOŠKIH IS-<<strong>br</strong> />

TRAŽIVANJA ŠIRE OKOLINE<<strong>br</strong> />

LEŽIŠTA GLINA DUŠANOVAC<<strong>br</strong> />

Značajnije podatke o geološkoj građi i<<strong>br</strong> />

tektonskim odnosina šire okoline istražnog<<strong>br</strong> />

prostora [5] Dušanovac (sada već okonturenog<<strong>br</strong> />

ležišta), nalazimo u <strong>radovi</strong>ma<<strong>br</strong> />

Toule F., Zlatarskog G., Žujovića J. (1889,<<strong>br</strong> />

1893), Radovanovića S. i Pavlovića P.<<strong>br</strong> />

(1891), koji daju prve detaljne podatke o<<strong>br</strong> />

neogenu i kvartaru Krajine, i koji predstavljaju<<strong>br</strong> />

osnovu <strong>za</strong> dalja proučavanja neogena<<strong>br</strong> />

i kvartara ove oblasti.<<strong>br</strong> />

Proučavanjem kvartarnih tvorevina u<<strong>br</strong> />

dunavskom Ključu i Negotinskoj Krajini<<strong>br</strong> />

bavio se Cvijić J. (1903, 1908, 1921), detaljnim<<strong>br</strong> />

geološkim istraživanjima stratigrafskih<<strong>br</strong> />

i tektonskih odnosa Mirgoci G.<<strong>br</strong> />

(1905), Radovanović S. (1907, 1916) i<<strong>br</strong> />

Bončev St. (1923). Detaljne podatke o<<strong>br</strong> />

stratigrafskoj i tektonskoj problematici<<strong>br</strong> />

pretercijalnih formacija ove oblasti dao je<<strong>br</strong> />

Petrović K. (1928, 1937), koji kaže da<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 10<<strong>br</strong> />

RUDARSKI RADOVI


istočno od đerdapske navlake leži nova<<strong>br</strong> />

strukturna jedinica, mokranjska navlaka,<<strong>br</strong> />

čije se čelo nalazi na liniji Crnomasnica-<<strong>br</strong> />

Mokranje.<<strong>br</strong> />

Poseban doprinos proučavanju geološke<<strong>br</strong> />

građe ovih prostora dao je Petković V.<<strong>br</strong> />

(1930 i dalje), koji je izneo postavke koje<<strong>br</strong> />

su aktuelne i danas. U okviru svojih studija<<strong>br</strong> />

neogenih naslaga veliku pažnju poklanjao<<strong>br</strong> />

je Stevanović P., koji je na osnovu fosilnog<<strong>br</strong> />

materijala prvi (1940) odredio hronostratigrafsko<<strong>br</strong> />

mesto najmlađih sedimenata, smatrajući<<strong>br</strong> />

da su šljunkovi Brze Palanke levantijske<<strong>br</strong> />

starosti. U više svojih radova, od<<strong>br</strong> />

1950. godine, Stevanović P. raspravlja o:<<strong>br</strong> />

tortonu, sarmatu, meotu i pontu, sa stanovišta<<strong>br</strong> />

biostratigrafije, paleogeografije, facija<<strong>br</strong> />

i tektonike.<<strong>br</strong> />

Geološka istraživanja na istražnom prostoru<<strong>br</strong> />

Dušanovac, vršena su primenom geoloških<<strong>br</strong> />

metoda [5], u okviru izrade Osnovne<<strong>br</strong> />

geološke karte (OKG), a prika<strong>za</strong>na Tumačem<<strong>br</strong> />

OKG <strong>za</strong> list Negotin 1:100.000.<<strong>br</strong> />

Nemetalične mineralne sirovine sa ovog<<strong>br</strong> />

područja, koriste se kao tehnički građevinski<<strong>br</strong> />

kamen i opekarska glina, iako detaljna geološka<<strong>br</strong> />

istraživanja na ovom prostoru nisu<<strong>br</strong> />

vršena. Prema literaturnim podacima, vršena<<strong>br</strong> />

su poludetaljna geofizička istraživanja (primenom<<strong>br</strong> />

gravimetrijskih metoda), tokom<<strong>br</strong> />

1969. godine (Zavod <strong>za</strong> geološka i<<strong>br</strong> />

geofizička istraživanja Beograd). Podatke o<<strong>br</strong> />

obimu i gustini ovih istraživanja nemamo.<<strong>br</strong> />

GEOLOŠKE KARAKTERISTIKE<<strong>br</strong> />

ŠIRE OKOLINE LEŽIŠTA GLINA<<strong>br</strong> />

DUŠANOVAC<<strong>br</strong> />

Teren šire okoline ležišta glina<<strong>br</strong> />

Dušanovac, nalazi se na listu Negotin<<strong>br</strong> />

OGK [5], razmere 1:100.000 (slika 2).<<strong>br</strong> />

Najstariji sedimenti u ovoj oblasti su titonvalendijski<<strong>br</strong> />

krečnjaci kod Mokranja i Rajca,<<strong>br</strong> />

koji leže preko senona. Predstavljaju<<strong>br</strong> />

alohtone tvorevine, donete sa <strong>za</strong>pada na<<strong>br</strong> />

čelu mokranjske navlake. Senonski sedimenti<<strong>br</strong> />

razvijeni su u flišnoj faciji. Senonske<<strong>br</strong> />

sedimente čine peščari, glinci i konglomerati.<<strong>br</strong> />

Podina im nije utvrđena, dok<<strong>br</strong> />

povlatu čine miocenski slojevi. U superpozicionom<<strong>br</strong> />

pogledu razlikuju se tri dela:<<strong>br</strong> />

►donji, sa smenom peščara i glinaca, i<<strong>br</strong> />

slabo izraženim tragovima laminacije;<<strong>br</strong> />

►srednji, u kome je <strong>za</strong>pažena alternacija<<strong>br</strong> />

peščara, konglomerata i glinaca;<<strong>br</strong> />

i<<strong>br</strong> />

►gornji, sa sekvencama peščar-glinac,<<strong>br</strong> />

veoma bogat laminacijom i drugim<<strong>br</strong> />

teksturnim oblicima. Senonski flišni<<strong>br</strong> />

basen imao je najverovatnije pravac<<strong>br</strong> />

sever-jug, dok je paleotransport materijala<<strong>br</strong> />

dolazio sa jugoistoka, iz<<strong>br</strong> />

oblasti mezijske platforme. Sedimenti<<strong>br</strong> />

generalno padaju u pravcu<<strong>br</strong> />

<strong>za</strong>pad-jugo<strong>za</strong>pad.<<strong>br</strong> />

Neogene naslage [5] imaju veliko<<strong>br</strong> />

rasprostranjenje. Na osnovu bogatih fosilnih<<strong>br</strong> />

ostataka mekušaca i mikrofaune, neogeni<<strong>br</strong> />

kompleks je rasčlanjen na torton, sarmat,<<strong>br</strong> />

meot i pont. Najstariji kvartarni sedimenti<<strong>br</strong> />

predstavljeni su jezerskim šljunkovima<<strong>br</strong> />

i peskovima, sa Elephas medridionalis.<<strong>br</strong> />

Leže u obliku izolovanih erozionih<<strong>br</strong> />

krpa, diskordantno preko sarmata i senona.<<strong>br</strong> />

Ove tvorevine predstavljaju produkte jedne<<strong>br</strong> />

jezerske faze, <strong>za</strong> vreme donjeg pleistocena.<<strong>br</strong> />

Mlađe kvartarne tvorevine predstavljene su<<strong>br</strong> />

rečno-jezerskim sedimentima.<<strong>br</strong> />

Dunav je u starije sedimente usekao<<strong>br</strong> />

četiri terase, koje su izgrađene od šljunkova,<<strong>br</strong> />

suglina i supeskova. Terasni šljunkovi<<strong>br</strong> />

izgrađuju donje delove profila, dok<<strong>br</strong> />

sugline i supeskovi, ponekad lesolikog<<strong>br</strong> />

habitusa leže iznad šljunkova. Ovakav<<strong>br</strong> />

granulometrijski odnos ukazuje na stvaranje<<strong>br</strong> />

facija u uslovima različitih dinamičkih<<strong>br</strong> />

fa<strong>za</strong> Dunava, kod svakog pojedinačnog<<strong>br</strong> />

ciklusa.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 11<<strong>br</strong> />

RUDARSKI RADOVI


Sl. 2. Geološka građa šire okoline istražnog prostora, list Negotin<<strong>br</strong> />

(sa karakterističnim profilima)<<strong>br</strong> />

Aluvijalni nanosi [5] su takođe heterogenog<<strong>br</strong> />

sastava. Facije korita predstavljene<<strong>br</strong> />

su šljunkovima i peskovima, koji izgrađuju<<strong>br</strong> />

sve profile aluvijalnih ravnica. Facije povodnja<<strong>br</strong> />

su ređe, i predstavljene su šljunkovitim<<strong>br</strong> />

suglinama, koje leže preko facije<<strong>br</strong> />

korita. Rasprostranjeni su i živi peskovi,<<strong>br</strong> />

koji leže preko tzv. gradske terase. Proluvijalni<<strong>br</strong> />

genetski tip stvara se povremenim<<strong>br</strong> />

tokovima Studene reke i potoka Plandište.<<strong>br</strong> />

To su mali plavinski konusi, izgrađeni<<strong>br</strong> />

od šljunkova, koji preovlađuju u korenim<<strong>br</strong> />

delovima, dok gline i peskovi redovno leže<<strong>br</strong> />

u njihovim perifernim delovima. Ima i<<strong>br</strong> />

nešto deluvijalnog materijala, predstavljenog<<strong>br</strong> />

šljunkovitim suglinama, kojih ima više<<strong>br</strong> />

u zoni spiranja, dok suglinovitog i supeskovitog<<strong>br</strong> />

materijala ima znatno više u<<strong>br</strong> />

perifernim delovima zone akumulacije.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 12<<strong>br</strong> />

RUDARSKI RADOVI


GEOLOŠKE KARAKTERISTIKE<<strong>br</strong> />

LEŽIŠTA GLINA DUŠANOVAC<<strong>br</strong> />

Geološku građu ležišta [3,5] čine peskovi,<<strong>br</strong> />

gline i peščari ponta (Pl1), kao i znatno<<strong>br</strong> />

manje <strong>za</strong>stupljen proluvijum holocena<<strong>br</strong> />

(prQ2) izgrađen od: šljunkova, peskova i<<strong>br</strong> />

suglina.<<strong>br</strong> />

Najstariji kvartarni sedimenti [5] predstavljeni<<strong>br</strong> />

su rečno-jezerskim šljunkovima,<<strong>br</strong> />

peskovima i suglinama. Po svojim karakteristikama<<strong>br</strong> />

odgovaraju aluvijalnim<<strong>br</strong> />

šljunkovima i peskovima. Šljunkovi su<<strong>br</strong> />

srednje do krupnozrni, heterogenog<<strong>br</strong> />

sastava, različite <strong>za</strong>obljenosti i slabe sortiranosti,<<strong>br</strong> />

i javljaju se najčešće u vidu sočiva<<strong>br</strong> />

uloženih u peskove. U sastav šljunkova<<strong>br</strong> />

ulaze, peščari, krečnjaci, mikrokonglomerati,<<strong>br</strong> />

kvarc, rožnaci, gnajs-graniti i dr.<<strong>br</strong> />

Preko šljunkova leže žuti peskovi,<<strong>br</strong> />

peskovite sugline i supeskovi lesolikog<<strong>br</strong> />

habitusa. U njima je <strong>za</strong>pažena horizontalna<<strong>br</strong> />

slojevitost, tragovi prorastanja barskom<<strong>br</strong> />

vegetacijom, pa je logično da ovi deponati<<strong>br</strong> />

predstavljaju produkt vodene sredine.<<strong>br</strong> />

Sedimenti donjeg pliocena [5] (ponta)<<strong>br</strong> />

su debljine oko 300 m (slika 3.). Podinu<<strong>br</strong> />

ove serije čine peskovi i peskovite gline<<strong>br</strong> />

iznad kojih kontinualno leži tanji sloj laporaca<<strong>br</strong> />

predpostavljene debljine oko 20 –<<strong>br</strong> />

30 m. Iznad laporaca je taložen sloj peskovitih<<strong>br</strong> />

glina sa postepenim prelazom ka<<strong>br</strong> />

opekarskim glinama koje leže na samoj<<strong>br</strong> />

površini terena, a predpostavljene su<<strong>br</strong> />

debljine od oko 80 m.<<strong>br</strong> />

Sl. 3. Otvorena etaža sa koje se povremeno eksploatiše glina<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 13<<strong>br</strong> />

RUDARSKI RADOVI


Sedimenti kvartara [5] su predstavljeni:<<strong>br</strong> />

proluvijalnim šljunkovima,<<strong>br</strong> />

peskovima i suglinama, na mestima gde su<<strong>br</strong> />

se javljali tokovi bujičarskog karaktera,<<strong>br</strong> />

kao i deluvijalnim suglinama i supeskovima.<<strong>br</strong> />

Kod deluvijalnih tvorevina, bliže<<strong>br</strong> />

zoni spiranja preovlađuju supeskovi sa<<strong>br</strong> />

šljunkovitim detritusom, dok se dalje, u<<strong>br</strong> />

zoni akumulacije, materijal usitnjuje i<<strong>br</strong> />

postaje znatno glinovitiji.<<strong>br</strong> />

METODE GEOLOŠKOG<<strong>br</strong> />

ISTRAŽIVANJA LEŽIŠTA GLINA<<strong>br</strong> />

DUŠANOVAC<<strong>br</strong> />

Geološka istraživanja istražnog prostora<<strong>br</strong> />

[5], na lokalitetu Dušanovac, kod<<strong>br</strong> />

Negotina, vršena su u period 2008/10<<strong>br</strong> />

godine. Izvršeno je:<<strong>br</strong> />

►Rekognosciranje terena i reambu<<strong>br</strong> />

lacija geološke karte;<<strong>br</strong> />

►Definisane su geološke karakteristike<<strong>br</strong> />

(strukturni sklop, uslovi <strong>za</strong>leganja,<<strong>br</strong> />

kontura i oblik) ležišta,<<strong>br</strong> />

►Kvalitet glina (mogućnosti pripreme<<strong>br</strong> />

i primene glina).<<strong>br</strong> />

►Izvršena je ocena potencijalnosti<<strong>br</strong> />

istražnog prostora, kao i proračun<<strong>br</strong> />

geoloških rezervi ležišta gline kao<<strong>br</strong> />

mineralne sirovine.<<strong>br</strong> />

Od istražnih radova urađena su 4 raskopa<<strong>br</strong> />

i i izbušeno je 12 plitkih vertikalnih<<strong>br</strong> />

istražno geoloških bušotina. Geološkim<<strong>br</strong> />

plitkim vertikalnim bušotinama izbušeno je<<strong>br</strong> />

ukupno 717,00 metara. U jugoistočnom<<strong>br</strong> />

delu istražnog prostora izbušeno je 5 istražnih<<strong>br</strong> />

bušotina, po mreži 400×200 m, a 2<<strong>br</strong> />

istražne bušotine u severnom obodnom delu<<strong>br</strong> />

istražnog prostora. Izbušeno je 7 bušotina<<strong>br</strong> />

(407,5 m bušenja) u 2008/2009. godini i 7<<strong>br</strong> />

bušotina (309,5m) 2009/2010. godini.<<strong>br</strong> />

Sve istražne radove [3,5] pratilo je kontinuirano<<strong>br</strong> />

kartiranje i oprobavanje (materijala<<strong>br</strong> />

iz raskopa i jezgra bušotina). Isti material<<strong>br</strong> />

(probe) kontinuirano je laboratorijslki<<strong>br</strong> />

ispitivan. Prilikom proračuna rudnih rezervi<<strong>br</strong> />

[3], kao glavna korisna komponenta tretirana<<strong>br</strong> />

je Al2O3, a kao prateće štetne komponente<<strong>br</strong> />

Fe2O3, SiO2, CaO i TiO2.<<strong>br</strong> />

REZULTATI GEOLOŠKOG<<strong>br</strong> />

ISTRAŽIVANJA LEŽIŠTA GLINA<<strong>br</strong> />

DUŠANOVAC<<strong>br</strong> />

Rekognosciranjem terena i reambulacijom<<strong>br</strong> />

geološke karte [3] (deo lista Negotin<<strong>br</strong> />

1 razmere 1:25 000), potvrđeno je da<<strong>br</strong> />

su prisutne uglavnom neogene tvorevine i<<strong>br</strong> />

u manjoj meri kvartarne tvorevine. Pont<<strong>br</strong> />

(Pl1) je predstavljen peskovima, glinama i<<strong>br</strong> />

peščarima. Ovi sedimenti pripadaju polu<strong>br</strong>akičnim<<strong>br</strong> />

(„kaspi<strong>br</strong>akičnim“) facijama.<<strong>br</strong> />

Smatra se da slojevi ponta leže konkordantno<<strong>br</strong> />

preko meota, sa postepenim facijalnim<<strong>br</strong> />

prelazom. Naslage ponta imaju<<strong>br</strong> />

znatno razviće oko sela Dušanovac. Vidljiva<<strong>br</strong> />

debljina Pontijskih naslaga iznosi oko<<strong>br</strong> />

150 m, dok je ukupna debljina, idući<<strong>br</strong> />

prema istoku svakako veća.<<strong>br</strong> />

Teren na kome je vršeno geološko istraživanje<<strong>br</strong> />

raskopima i istražnim bušotinama<<strong>br</strong> />

predstavlja blago <strong>za</strong>talasanu rečnu dolinu<<strong>br</strong> />

(slika 4). Prostorno, ležište se nalazi u sedimentima<<strong>br</strong> />

donjeg pliocena (pont). Ležište ima<<strong>br</strong> />

oblik izduženog sočiva, sa pružanjem<<strong>br</strong> />

severo<strong>za</strong>pad-jugoistok [3]. Po pružanju se<<strong>br</strong> />

može pratiti više od 2,5 km, dok je prosečne<<strong>br</strong> />

širine oko 320 m. Istražnim <strong>radovi</strong>ma<<strong>br</strong> />

obuhvaćen je severni i <strong>za</strong>padni deo ležišta,<<strong>br</strong> />

površine od oko 0,4 km 2 .<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 14<<strong>br</strong> />

RUDARSKI RADOVI


Sl. 4. Teren u domenu ležišta glina Dušanovac (levo) i pogled sa ležišta na<<strong>br</strong> />

hidroelektranu Đerdap 2 (desno)<<strong>br</strong> />

Istraživanje ležišta glina [3,5] raskopima<<strong>br</strong> />

(ukupno 4 raskopa dimenzija<<strong>br</strong> />

2×2,5×1 m) i istražnim geološkim bušotinama.<<strong>br</strong> />

Po vertikalnom profilu u svim raskopima<<strong>br</strong> />

je od površine terena pa do dubine<<strong>br</strong> />

od 0,6-0,7 m uočena crnica, a ispod toga<<strong>br</strong> />

žuto smeđa peskovita glina sa pojavom<<strong>br</strong> />

karbonata. Iz svakog raskopa uzeta je po<<strong>br</strong> />

jedna proba <strong>za</strong> hemijska ispitivanja.<<strong>br</strong> />

Intervali oprobavanja [3] jezgra iz istražnih<<strong>br</strong> />

bušotina bili su 1 ili 2 m. Ukupno<<strong>br</strong> />

je uzeto 370 pojedinačnih proba, od kojih<<strong>br</strong> />

je formirana 41 kompozitna proba. Kompozitne<<strong>br</strong> />

probe formirane su posebno <strong>za</strong><<strong>br</strong> />

žutu klasu glina, posebno <strong>za</strong> sivu klasu<<strong>br</strong> />

kvaliteta glina.<<strong>br</strong> />

Proučavanjem stubova bušotina[3] uočeno<<strong>br</strong> />

je da makroskopski, prema boji gline<<strong>br</strong> />

ležište možemo raščlaniti na četiri sloja:<<strong>br</strong> />

►Braon glina leži neposredno ispod<<strong>br</strong> />

humusnog pokrivača koji je prosečne<<strong>br</strong> />

debljine oko 0,7 m. Glina je slabo do<<strong>br</strong> />

jače peskovita, prosečna debljina<<strong>br</strong> />

ovog sloja iznosi oko 1,5 m.<<strong>br</strong> />

►Žuta glina leži ispod <strong>br</strong>aon gline,<<strong>br</strong> />

prosečne debljine je oko 13,0 m. Ova<<strong>br</strong> />

glina je masna, jako plastična i slabo<<strong>br</strong> />

peskovita, opažene su mestimične<<strong>br</strong> />

pojave FeO kao i prevlake MnO. Sloj<<strong>br</strong> />

žute gline se javlja u celom ležištu;<<strong>br</strong> />

►Braon-siva glina je prostorno<<strong>br</strong> />

pozicionirana ispod žute, a iznad sive<<strong>br</strong> />

gline. Sloj <strong>br</strong>aon-sive gline predstavlja<<strong>br</strong> />

zonu mešanja žute i sive gline<<strong>br</strong> />

jako je peskovita, a prosečna debljina<<strong>br</strong> />

ovog sloja je oko 6,0 m.<<strong>br</strong> />

►Siva glina je prosečne debljine od<<strong>br</strong> />

oko 35,5 m nalazi se ispod <strong>br</strong>aonsive<<strong>br</strong> />

gline. Jako je peskovita, ne retko<<strong>br</strong> />

se u okviru ovog sloja uočavaju tanki<<strong>br</strong> />

proslojci jače <strong>za</strong>glinjenog peska. U<<strong>br</strong> />

ovom sloju se takođe javljaju i<<strong>br</strong> />

fosilni ostatci predstavljeni ljušturicama<<strong>br</strong> />

školjaka. Sloj sive gline sa porastom<<strong>br</strong> />

dubine postepeno prelazi u<<strong>br</strong> />

jako <strong>za</strong>glinjeni pesak. Sve bušotine<<strong>br</strong> />

su nabušile sloj sive gline.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 15<<strong>br</strong> />

RUDARSKI RADOVI


Od laboratorijskih ispitivanja na uzetim<<strong>br</strong> />

probama vršena su fizičko-mehanička ispitivanja<<strong>br</strong> />

[4], ispitivanje granulometrijskog<<strong>br</strong> />

sastava [6,7], laboratorijska tehnološka<<strong>br</strong> />

ispitivanja i hemijska ispitivanja.<<strong>br</strong> />

Tehnološka ispitivanja u poluindustrijskom i<<strong>br</strong> />

industrijskom obimu, nisu vršena.<<strong>br</strong> />

KVALITET GLINA U LEŽIŠTU<<strong>br</strong> />

DUŠANOVAC<<strong>br</strong> />

Pod kvalitetom mineralne sirovine podrazumeva<<strong>br</strong> />

se sadržaj korisnih komponenti i<<strong>br</strong> />

mogućnost upotrebe mineralne sirovine [5].<<strong>br</strong> />

Pouzdanost određivanja kvaliteta sirovine u<<strong>br</strong> />

ležištu <strong>za</strong>visi od metoda oprobavanja, mase<<strong>br</strong> />

proba, skraćivanja proba na licu mesta,<<strong>br</strong> />

pripreme i o<strong>br</strong>ade u laboratoriji, kao i od<<strong>br</strong> />

tačnosti metoda analize.<<strong>br</strong> />

Sadržaj korisnih i štetnih komponenti<<strong>br</strong> />

[3], u ležištu glina Dušanovac, određeni su<<strong>br</strong> />

hemijskim anali<strong>za</strong>ma pojedinačnih proba<<strong>br</strong> />

uzetih iz bušotina, izbušenih sa površine<<strong>br</strong> />

terena. Pojedinačne probe analizirane su<<strong>br</strong> />

na Al2O3, TiO2, SiO2, Fe2O3, CaO, gubitak<<strong>br</strong> />

žarenjem (GŽ) i H2O ¯ (tabela 1). Kompozitna<<strong>br</strong> />

proba dobijena je sjedinjavanjem<<strong>br</strong> />

materijala deset ili pet u<strong>za</strong>stopnih, pojedinačnih<<strong>br</strong> />

proba (desetometarski interval).<<strong>br</strong> />

Kompoziti proba analizirani su na: SiO2,<<strong>br</strong> />

Al2O3, Fe2O3, CaO, MgO, S ukupni, SO3,<<strong>br</strong> />

TiO2, K2O, Na2O, Cr2O3, gubitak žarenjem,<<strong>br</strong> />

MnO, FeO, CO3, Mn, Fe, Cu i pH.<<strong>br</strong> />

Tabela 5.2: Hemijski (srednji) sadržaji glina u ležištu Dušanovac iz pojedinačnih proba<<strong>br</strong> />

po klasama kvaliteta, proračunati programskim paketom MINEX 5.2.1.<<strong>br</strong> />

Klasa Srednji sadržaj (%)<<strong>br</strong> />

Al2O3 TiO2 SiO2 Fe2O3 CaO G.ž. H2O ¯<<strong>br</strong> />

GB (žuto <strong>br</strong>aon glina) 16,7 0,85 57,2 6,28 2,7 9,99 18,9<<strong>br</strong> />

GI (žuta glina) 16,5 0,86 57,5 6,01 4,16 9,59 20,5<<strong>br</strong> />

GII (siva glina) 16,7 0,87 56,5 5,94 3,64 9,51 20,4<<strong>br</strong> />

Celo ležište 16,6 0,87 56,8 5,97 3,78 9,54 20,4<<strong>br</strong> />

Fizičko-mehanička ispitivanja [4] vršena<<strong>br</strong> />

su na uzorcima gline, peskovite gline i jako<<strong>br</strong> />

<strong>za</strong>glinjenog peska. Ispitivanja fizičkomehaničkih<<strong>br</strong> />

karakteristika uzoraka glina<<strong>br</strong> />

uzetih oprobavanjem jezgra istražnih bušotina<<strong>br</strong> />

vršena su po važećim standardima <strong>za</strong><<strong>br</strong> />

svaku vrstu ispitivanja <strong>za</strong> potrebe rudarstva<<strong>br</strong> />

ili prema preporukama međunarodnog<<strong>br</strong> />

društva <strong>za</strong> mehaniku stena (ISRM).<<strong>br</strong> />

Od fizičkih osobina na uzorcima glina<<strong>br</strong> />

[4], određeni su sledeći parametri: vlažnost -<<strong>br</strong> />

W [%], specifična težina ili <strong>za</strong>preminska<<strong>br</strong> />

težina čvrstih čestica - γs [kN/m 3 ], <strong>za</strong>preminska<<strong>br</strong> />

težina - γz [kN/m 3 ], poroznost - n [%],<<strong>br</strong> />

<strong>br</strong>zina prostiranja longitudinalnih talasa - VL<<strong>br</strong> />

[m/s], konden<strong>za</strong>cija glina i granice plastičnosti.<<strong>br</strong> />

Određeni su mehanički parametri [4]:<<strong>br</strong> />

parametri otpornosti pri direktnom smicanju,<<strong>br</strong> />

i jednoosna čvrstoća na pritisak. Dakle,<<strong>br</strong> />

radnu sredinu [4], u kojoj će se odvijati eksploatacija,<<strong>br</strong> />

čine gline, slabopeskovite gline,<<strong>br</strong> />

jače peskovite gline i jako <strong>za</strong>glinjeni peskovi.<<strong>br</strong> />

Pretpostavljeni ugao etažne kosine i<<strong>br</strong> />

<strong>za</strong>vršni ugao kosine kopa se usvajaju na<<strong>br</strong> />

osnovu sledećih fizičko – mehaničkih karakteristika<<strong>br</strong> />

radne sredine: <strong>za</strong>preminska težina<<strong>br</strong> />

glina d = 19,71 kN/m 3 (1,971 t/m 3 ); kohezija<<strong>br</strong> />

glina C = 0,380 MPa; ugao unutrašnjeg<<strong>br</strong> />

držanja glina, ϕ = 15,33°. Na osnovu fizičko<<strong>br</strong> />

– mehaničkih osobina glina [4] ležišta<<strong>br</strong> />

Dušanovac kod Negotina, <strong>za</strong>ključuje se da<<strong>br</strong> />

su inženjersko–geološke karakteristike relativno<<strong>br</strong> />

povoljne i da neće biti većih problema<<strong>br</strong> />

u fazi eksploatacije.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 16<<strong>br</strong> />

RUDARSKI RADOVI


Ispitivanje granulometrijskog sastava<<strong>br</strong> />

glina iz ležišta Dušanovac kod Negotina,<<strong>br</strong> />

vršeno je na dva načina: Ispitivanjem<<strong>br</strong> />

granulometrijskog sastava svake pojedinačne<<strong>br</strong> />

probe [6,7] iz svih bušotina i ispitivanjem<<strong>br</strong> />

granulometrijskog sastava kompozitnih uzoraka<<strong>br</strong> />

[6,7]. Kompozitni uzorci su formirani<<strong>br</strong> />

prema klasama kvaliteta, <strong>za</strong> svaku pojedinačnu<<strong>br</strong> />

bušotinu. Karakteristično je da krupne<<strong>br</strong> />

klase (-0,212+0,106 mm) učestvuju sa oko<<strong>br</strong> />

1%. Veći deo čini klasa -0,020+0,000 mm<<strong>br</strong> />

sa učešćem od 61-75%.<<strong>br</strong> />

Tehnološka ispitivanja glina [3] iz<<strong>br</strong> />

ležišta Dušanovac u cilju iznalaženja<<strong>br</strong> />

pravca kojim treba usmeriti dalja laboratorijska<<strong>br</strong> />

istraživanja i ispitivanja, izvršena je<<strong>br</strong> />

kraća serija eksperimenata izdvajanja fine<<strong>br</strong> />

frakcije metodom sedimentacije i<<strong>br</strong> />

dekantacije. Imajući u vidu <strong>za</strong>stupljenost<<strong>br</strong> />

minerala gline u veoma finim frakcijama,<<strong>br</strong> />

ispod 20 mikrona, u eksperimentima se<<strong>br</strong> />

težilo ka iznalaženju mogućnosti <strong>za</strong> povećanje<<strong>br</strong> />

udela (masenih učešća) istih, odnosno<<strong>br</strong> />

povećanja sadržaja Al2O3, a time i dobijanja<<strong>br</strong> />

visokog kvaliteta prirodne gline, koja<<strong>br</strong> />

kao takva može naći široku primenu u<<strong>br</strong> />

svim granama industrije.<<strong>br</strong> />

ZAKLJUČNA RAZMATRANJA O<<strong>br</strong> />

PRIMENI GLINA U LEŽIŠTU<<strong>br</strong> />

DUŠANOVAC<<strong>br</strong> />

Gline se najviše koriste [3] u industriji<<strong>br</strong> />

vatrostalnog materijala, opekarskoj industriji,<<strong>br</strong> />

industriji porcelana i fine keramike,<<strong>br</strong> />

keramičkoj industriji, industriji papira, hemijskoj,<<strong>br</strong> />

farmaceutskoj industriji, <strong>za</strong> isplaku i<<strong>br</strong> />

pri sanaciji degradiranih površina (rekultivaciji<<strong>br</strong> />

zemljišta). Na osnovu industrijske primene<<strong>br</strong> />

glina, definisani su i <strong>za</strong>htevi <strong>za</strong> kvalitetom,<<strong>br</strong> />

a odnose se na mineralni sastav, sadržaj<<strong>br</strong> />

Al2O3, TiO2, i SiO2, sadržaj nečistoća,<<strong>br</strong> />

pH vrednost, hemijsku stabilnost, bu<strong>br</strong>enje,<<strong>br</strong> />

vatrootpornost, krupnoću čestica, belinu.<<strong>br</strong> />

Ležište glina Dušanovac pripada<<strong>br</strong> />

sedimentnim ležištima [1,2], nastalim od<<strong>br</strong> />

materijala razlaganja i izluživanja stena,<<strong>br</strong> />

koji je kasnije mehanički prenet i<<strong>br</strong> />

pretaložen. U cilju obezbeđenja domaće<<strong>br</strong> />

sirovine [5] (što je sigurno najracionalniji<<strong>br</strong> />

pristup obezbeđenja potreba postojećih<<strong>br</strong> />

industrijskih kapaciteta), laboratorijski su<<strong>br</strong> />

ispitane gline ležišta Dušanovac. Ležište<<strong>br</strong> />

se nalazi u sedimentima donjeg pliocena<<strong>br</strong> />

(pont), ima oblik izduženog sočiva, sa<<strong>br</strong> />

pružanjem severo<strong>za</strong>pad-jugoistok. Po<<strong>br</strong> />

pružanju, prati se više od 2,5 km, dok je<<strong>br</strong> />

prosečne širine oko 320 m. Istražnim <strong>radovi</strong>ma<<strong>br</strong> />

obuhvaćen je severni i <strong>za</strong>padni<<strong>br</strong> />

deo ležišta, površine od oko 0,4 km 2 .<<strong>br</strong> />

Geološkim istraživanjem ležišta Dušanovac,<<strong>br</strong> />

gline su podeljene na četiri tipa:<<strong>br</strong> />

►<strong>br</strong>aon glina (prosečne debljine osi<<strong>br</strong> />

oko 1,5 m);<<strong>br</strong> />

►žuta glina (prosečne debljine je oko<<strong>br</strong> />

13,0 m);<<strong>br</strong> />

► <strong>br</strong>aon-siva glina (prosečna debljina<<strong>br</strong> />

oko 6,0 m). Predstavlja zonu mešanja<<strong>br</strong> />

žute i sive gline; i<<strong>br</strong> />

►siva glina. (prosečne debljine od oko<<strong>br</strong> />

35,5 m).<<strong>br</strong> />

Ukupne rezerve glina u ovom ležištu<<strong>br</strong> />

iznose 69.041.871 tona [3] (rezerve A+B<<strong>br</strong> />

kategorije).<<strong>br</strong> />

Primena žutih glina [3] pri rekultivaciji<<strong>br</strong> />

Flotacijskog jalovišta Veliki Krivelj [8] (a i<<strong>br</strong> />

drugih jalovišta nastalih radom RTB-a)<<strong>br</strong> />

doprinela bi konačnom rešenju eliminiacije<<strong>br</strong> />

ekološke katastrofe ovog jalovišta.<<strong>br</strong> />

LITERATURA<<strong>br</strong> />

[1] Ilić M, 1999: Istraživanje ležišta<<strong>br</strong> />

nemetala – građevinskih materijala –<<strong>br</strong> />

Rudarsko-geološki fakultet, Beograd;<<strong>br</strong> />

[2] Janković S., Vakanjac B., 1969: Ležista<<strong>br</strong> />

nemetaličnih mineralnih sirovina,<<strong>br</strong> />

Beograd;<<strong>br</strong> />

[3] Lapadatović B. i dr., <strong>2011</strong>: Elaborat o<<strong>br</strong> />

geološkim istraživanjima glina na<<strong>br</strong> />

području “Dušanovac” kod Negotina, u<<strong>br</strong> />

periodu 2008-2010. godine, IRM <strong>Bor</strong>;<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 17<<strong>br</strong> />

RUDARSKI RADOVI


[4] Ljubojev M. i dr., 2009: Elaborat o<<strong>br</strong> />

fizičko-mehaničkim i deformacionim<<strong>br</strong> />

ispitivanjima materijala sa lokaliteta<<strong>br</strong> />

“Dušanovac” kod Negotina, IRM <strong>Bor</strong>;<<strong>br</strong> />

[5] Maksimović M. i dr., 2008: Projekat<<strong>br</strong> />

geoloških istraživanja pojave ciglarskoopekarskih<<strong>br</strong> />

glina na području<<strong>br</strong> />

“Dušanovac” kod Negotina, u periodu<<strong>br</strong> />

2008-2010. godine, IRM <strong>Bor</strong>;<<strong>br</strong> />

[6] Urošević D., 2009: Izveštaj o ispitivanjima<<strong>br</strong> />

granulometrijskog sastava glina<<strong>br</strong> />

ležišta “Dušanovac”, IRM <strong>Bor</strong>;<<strong>br</strong> />

[7] Urošević D., <strong>2011</strong>: Izveštaj o ispitivanjima<<strong>br</strong> />

granulometrijskog sastava glina<<strong>br</strong> />

ležišta “Dušanovac”, IRM <strong>Bor</strong>;<<strong>br</strong> />

[8] Projekat 33021 Ministarstvo prosvete i<<strong>br</strong> />

nauke R. Srbije (2010-2014 rukovodilac<<strong>br</strong> />

Ljubojev Milenko).<<strong>br</strong> />

[9] D. Sokolović, D. Erdeljan, P. Popović,<<strong>br</strong> />

„Uslovi i način uzimanja uzoraka <strong>za</strong><<strong>br</strong> />

tehnološku probu u toku detaljnih<<strong>br</strong> />

geoloških istražnih radova“, <strong>Rudarski</strong><<strong>br</strong> />

<strong>radovi</strong>, <strong>br</strong>. 1/2010, str. 1-7.<<strong>br</strong> />

[10] D. Rakić, L. Čaki, S. Ćorić, M. Ljubojev,<<strong>br</strong> />

„Rezidualni parametari čvrstoće smicanja<<strong>br</strong> />

visokoplastičnih glina i alevrita PK<<strong>br</strong> />

“Tamnava – Zapadno polje”, <strong>Rudarski</strong><<strong>br</strong> />

<strong>radovi</strong>, <strong>br</strong>. 1/<strong>2011</strong>, str. 29-39.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 18<<strong>br</strong> />

RUDARSKI RADOVI


MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162<<strong>br</strong> />

COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622<<strong>br</strong> />

UDK:621.361(045)=20<<strong>br</strong> />

Slađana Krstić * , Boban Lapadatović * , Milenko Ljubojev *<<strong>br</strong> />

CLAY QUALITY IN THE DEPOSIT DUŠANOVAC (NEAR NEGOTIN) **<<strong>br</strong> />

Abstract<<strong>br</strong> />

The clay deposit [3,5] Dušanovac is located in the northeastern part of Serbia, in the area of<<strong>br</strong> />

the village Dušanovac, about 9 km northwest of Negotin. The main goal of two-year geological<<strong>br</strong> />

investigation was lead the formation of clay in the area of "Dušanovac" near Negotin to a phase of<<strong>br</strong> />

deposit contouring, which will get all data for verification the reserves as clay minerals. Geological<<strong>br</strong> />

investigations, carried out during 2008/10 [3,5] have defined the geological characteristics of<<strong>br</strong> />

the deposit, quality of clay [4,3,6,7], evaluation the potentiality of prospecting area [3] as well as<<strong>br</strong> />

calculation the geological reserves of mineral resource deposit [3].<<strong>br</strong> />

During this period, 4 prospecting trenches were done and 12 prospecting drill holes were<<strong>br</strong> />

drilles. Shallow geological vertical drill holes drilled the total of 717.00 meters [3].<<strong>br</strong> />

This work has resulted from the Project 33021, which is funded by the Ministry of Education<<strong>br</strong> />

and Science of the Republic of Serbia (the quality of the clay deposit Dušanovac, the results of<<strong>br</strong> />

technological tests and the possibility of preparing these materials and what is important for the<<strong>br</strong> />

very possibility of application are shown). According to the color of clay in the deposit<<strong>br</strong> />

Dušanovac, the clay is divided into four types: <strong>br</strong>own clay [3,4,6,7]; yellow clay (it appears in all<<strong>br</strong> />

deposit, lying below the <strong>br</strong>own clay, average thickness is about 13.0 m, it is greasy, very plastic<<strong>br</strong> />

and slightly sandy), <strong>br</strong>own-gray clay and gray clay.<<strong>br</strong> />

The use of these clays [3,5] (yellow clay) in the recultivation the flotation tailing dump Veliki<<strong>br</strong> />

Krivelj [8] (and other tailing dumps, formed by operation of RTB) would contribute to the final<<strong>br</strong> />

solution of environmental disaster of this tailing dump.<<strong>br</strong> />

Key words: clay quality, possibility of use, deposit, mineral raw material<<strong>br</strong> />

INTRODUCTION<<strong>br</strong> />

The clay deposit Dušanovac is situated<<strong>br</strong> />

about 9 km from Negotin [3,5], in the area of<<strong>br</strong> />

the village Dušanovac (Figure 1). In the<<strong>br</strong> />

morphological sense, the area belongs to a<<strong>br</strong> />

depression which lies between the Dupljanska<<strong>br</strong> />

River (left tributary of the Jasenička<<strong>br</strong> />

River) and Danube. Deposit is located at<<strong>br</strong> />

altitude of about 90 m (while the town Negotin<<strong>br</strong> />

is at altitude of about 45 m). Water<<strong>br</strong> />

flows belong to the Danube River Basin (the<<strong>br</strong> />

Iron Gate Hydropower is situated near deposit),<<strong>br</strong> />

i.e the Black Sea basin. Hydrographic<<strong>br</strong> />

network is dense and well developed.<<strong>br</strong> />

* Mining and Metallurgy <strong>Institut</strong>e <strong>Bor</strong><<strong>br</strong> />

** This paper is produced from the project no. 33021 “Researching and monitoring changes in<<strong>br</strong> />

stress-deformation condition of rock massif “in-situ” around undergraund facilities with development<<strong>br</strong> />

of model with special emphasis on Krivelj river tunnel and <strong>Bor</strong> pit”, which is funded by<<strong>br</strong> />

means of the Ministry of Education and Science of the Republic of Serbia<<strong>br</strong> />

No 4,<strong>2011</strong>. 19<<strong>br</strong> />

MINING ENGINEERING


The clay deposit Dušanovac is spatially<<strong>br</strong> />

located in the lower Pliocene sediments<<strong>br</strong> />

(sands, clays and sandstones). The exploration<<strong>br</strong> />

area Dušanovac was explored in detail<<strong>br</strong> />

in 2008/2010 by the exploratory trenches<<strong>br</strong> />

shallow geological exploration drill holes.<<strong>br</strong> />

Those works investigated the exploration<<strong>br</strong> />

area, countoured the deposit, the clay quality<<strong>br</strong> />

as the mineral resource was tested<<strong>br</strong> />

(which directly points out the possibility of<<strong>br</strong> />

use) and total reserves were calculated in<<strong>br</strong> />

the clay deposit. Total reserves of clay in<<strong>br</strong> />

this deposit amount to 69,041,871 tons (reserves<<strong>br</strong> />

of A + B category).<<strong>br</strong> />

Fig. 1. General map of distances the clay<<strong>br</strong> />

deposit Dušanovac near Negotin from<<strong>br</strong> />

other towns in Serbia<<strong>br</strong> />

HISTORY OF GEOLOGICAL IN-<<strong>br</strong> />

VESTIGATIONS OF WIDER<<strong>br</strong> />

SURROUNDINGS THE CLAY<<strong>br</strong> />

DEPOSIT DUŠANOVAC<<strong>br</strong> />

More important information about the<<strong>br</strong> />

geological structure and tectonic relations<<strong>br</strong> />

of <strong>br</strong>oader investigation area [5] Dušanovac<<strong>br</strong> />

(now contoured deposit), are found in the<<strong>br</strong> />

works of Toule F., Zlatarski G., J. Žujović<<strong>br</strong> />

(1889, 1893), Radovano vić S. and Pavlović<<strong>br</strong> />

P. (1891), which provide the first<<strong>br</strong> />

detailed data on the Neogene and Quaternary<<strong>br</strong> />

of Krajina, and which are the basis<<strong>br</strong> />

for further study of Neogene and Quaternary<<strong>br</strong> />

of this area.<<strong>br</strong> />

Study the Quaternary formations in the<<strong>br</strong> />

Danube Ključ and Negotin Krajina was<<strong>br</strong> />

done by Cvijić J. (1903, 1908, 1921); detailed<<strong>br</strong> />

geological research, stratigraphic<<strong>br</strong> />

and tectonic relations was done by Mirgoci<<strong>br</strong> />

G. (1905), Radovanović S. (1907, 1916)<<strong>br</strong> />

and Bončev St. (1923). Detailed information<<strong>br</strong> />

on the stratigraphic and tectonic problems<<strong>br</strong> />

of pre-tertiary formations of this area<<strong>br</strong> />

were given by Petrović K. (1928, 1937),<<strong>br</strong> />

who stated that on the east of the Iron Gate<<strong>br</strong> />

cover is a new structural unit, the Mokranjska<<strong>br</strong> />

cover, whose head is on the line-<<strong>br</strong> />

Crnomasnica - Mokranje.<<strong>br</strong> />

A special contribution to the study of<<strong>br</strong> />

geological structure of this region was<<strong>br</strong> />

given by V. Petković (1930 and further),<<strong>br</strong> />

who presented the settings that are current<<strong>br</strong> />

today. Within his studies of Neogene<<strong>br</strong> />

sediments, P. Stevanović paid much attention,<<strong>br</strong> />

who, based on fossil material, first<<strong>br</strong> />

(1940) determined the chronostratigraphic<<strong>br</strong> />

place of the youngest sediments, considering<<strong>br</strong> />

that the gravel of Br<strong>za</strong> Palanka are of<<strong>br</strong> />

levantian age. In several of his works,<<strong>br</strong> />

since 1950, Stevanović P. discussesd on:<<strong>br</strong> />

Thornton, Sarmatian, Meotian and Pontian<<strong>br</strong> />

and, from the point of biostratigraphy,<<strong>br</strong> />

paleogeography, facies and tectonics.<<strong>br</strong> />

Geological explorations on the exploration<<strong>br</strong> />

area Dušanovac, were carried out using<<strong>br</strong> />

the geological methods [5], within the<<strong>br</strong> />

preparation of basic geological map (BMG)<<strong>br</strong> />

and present by the BMG interpreter for the<<strong>br</strong> />

leaf Negotin 1:100.000. Non-metallic mineral<<strong>br</strong> />

resources of this area, are used as a<<strong>br</strong> />

technical construction stone and <strong>br</strong>ick clay,<<strong>br</strong> />

although detailed geological explorations in<<strong>br</strong> />

this area were not carrie out. According to<<strong>br</strong> />

No 4,<strong>2011</strong>. 20<<strong>br</strong> />

MINING ENGINEERING


literature data, semi-detailed poludetaljna<<strong>br</strong> />

geophysical investigations were carries out<<strong>br</strong> />

(using the gravimetric method), during<<strong>br</strong> />

1969 (Department for Geological and<<strong>br</strong> />

Geophysical Studies, Belgrade). There are<<strong>br</strong> />

no data on the extent and density of these<<strong>br</strong> />

investigations.<<strong>br</strong> />

GEOLOGICAL CHARACTERISTICS<<strong>br</strong> />

OF WIDER SURROUNDINGS OF<<strong>br</strong> />

THE CLAY DEPOSIT DUŠANOVAC<<strong>br</strong> />

Terrain of wider surroundings of the<<strong>br</strong> />

clay deposit Dušanovac, is situated on the<<strong>br</strong> />

leaf Negotin BMG [5], scale 1:100,000<<strong>br</strong> />

(Figure 2). The oldest sediments in this<<strong>br</strong> />

area are the Tithonian – Valanginian limestones<<strong>br</strong> />

near Mokranje and Rajac, which lie<<strong>br</strong> />

across the Senonian. They represent the<<strong>br</strong> />

allochthonous formations, taken from the<<strong>br</strong> />

west on the Mokranje cover. The Senonian<<strong>br</strong> />

sediments are developed in the flysch facies.<<strong>br</strong> />

He Senonian sediments are sandstones,<<strong>br</strong> />

shales and conglomerates. Their<<strong>br</strong> />

floor has not been established, until the<<strong>br</strong> />

Miocene strata are roof. In superposition<<strong>br</strong> />

terms, there are three parts:<<strong>br</strong> />

►lower, with replacement of sandstones<<strong>br</strong> />

and shales, and poorly<<strong>br</strong> />

marked traces of lamination;<<strong>br</strong> />

►intermediate, with observed alternation<<strong>br</strong> />

in sandstone, conglomerates<<strong>br</strong> />

and shales; and<<strong>br</strong> />

►upper, with sequences sandstoneshales,<<strong>br</strong> />

very rich with lamination<<strong>br</strong> />

and other texture forms. The Senonian<<strong>br</strong> />

flysch basin was probably the<<strong>br</strong> />

north-south direction, while the paleotransport<<strong>br</strong> />

of material came from<<strong>br</strong> />

the southeast, in the field of Moesian<<strong>br</strong> />

platform. The sediments generally<<strong>br</strong> />

fall in the west-southwest direction.<<strong>br</strong> />

The Neogene sediments [5] have a<<strong>br</strong> />

great extent. Based on rich fossil of molluscs<<strong>br</strong> />

and microfauna, the Neogene complex<<strong>br</strong> />

is divided into Thornton, Sarmatian,<<strong>br</strong> />

and Meothian and Pontian. The oldest<<strong>br</strong> />

Quaternary sediments are represented by<<strong>br</strong> />

lake gravels and sands with Elephas<<strong>br</strong> />

medridionalis. They lie in the form of isolated<<strong>br</strong> />

erosion patches, unconformably over<<strong>br</strong> />

the Sarmatian and Senonian. These creations<<strong>br</strong> />

are the products of a lake phase, during<<strong>br</strong> />

the Lower Pleistocene. Younger Quaternary<<strong>br</strong> />

formations are represented by the<<strong>br</strong> />

river- lake sediments.<<strong>br</strong> />

The Danube cut into older sediments<<strong>br</strong> />

four cterraces, which are made of gravel,<<strong>br</strong> />

loam and sand dust. Terrace gravels build<<strong>br</strong> />

up lower parts of profile, while loam and<<strong>br</strong> />

sand dusts, sometimes loess habit lie<<strong>br</strong> />

above the gravel. Such grain-size ratio<<strong>br</strong> />

points the creation of facies in the conditions<<strong>br</strong> />

of various dynamic phases of the<<strong>br</strong> />

Danube, with each individual cycle.<<strong>br</strong> />

No 4,<strong>2011</strong>. 21<<strong>br</strong> />

MINING ENGINEERING


Fig. 2. Geological structure of wider surroundings, the Negotin leaf<<strong>br</strong> />

(with characteristic profiles)<<strong>br</strong> />

Alluvial deposits [5] are also of heterogeneous<<strong>br</strong> />

composition. The bed facies<<strong>br</strong> />

are represented by gravels and sands,<<strong>br</strong> />

making up all the profiles of alluvial<<strong>br</strong> />

plains. The water bed facies are rare, and<<strong>br</strong> />

presented gravel loams, lying across the<<strong>br</strong> />

bed of facies. Live sands are also widespread,<<strong>br</strong> />

lying over the so-called urban terrace.<<strong>br</strong> />

Proluvial genetic type is created by<<strong>br</strong> />

periodical flows of the Studena River and<<strong>br</strong> />

Plandište stream. These are small flooding<<strong>br</strong> />

cones, made of gravel, which are prevalent<<strong>br</strong> />

in the parts of roots, while the clays<<strong>br</strong> />

and sands lie regularly in their peripheral<<strong>br</strong> />

parts. There are some deluvial material,<<strong>br</strong> />

presented by gravel loams, which are<<strong>br</strong> />

more in the zone of leaching, while loam<<strong>br</strong> />

and sand dust materials is much more in<<strong>br</strong> />

the peripheral parts of the accumulation<<strong>br</strong> />

zone.<<strong>br</strong> />

No 4,<strong>2011</strong>. 22<<strong>br</strong> />

MINING ENGINEERING


GEOLOGICAL CHARACTERISTICS<<strong>br</strong> />

OF THE CLAY DEPOSIT<<strong>br</strong> />

DUŠANOVAC<<strong>br</strong> />

The geological structure of deposit<<strong>br</strong> />

[3,5] consists of sand, clay and pontian<<strong>br</strong> />

sandstone (Pl1) and significantly less frequent<<strong>br</strong> />

proluvium Holocene (prQ2) made<<strong>br</strong> />

of: gravel, sand and loam.<<strong>br</strong> />

The oldest Quaternary sediments [5] are<<strong>br</strong> />

presented by river-lake gravels, sands and<<strong>br</strong> />

loams. According to their characteristics,<<strong>br</strong> />

they correspond to alluvial gravels and<<strong>br</strong> />

sands. Gravels are medium to coarsegrained,<<strong>br</strong> />

the heterogeneous composition of<<strong>br</strong> />

different curvature and weak sortness, and<<strong>br</strong> />

most often occur in the form of lenses embedded<<strong>br</strong> />

in the sand. The composition of<<strong>br</strong> />

gravel consists of sandstone, limestone, micro<<strong>br</strong> />

conglomerates, quartz, cherts, gneiss-<<strong>br</strong> />

granite and others. Yellow sands, sand<<strong>br</strong> />

loams and loams of loess habiti lie over<<strong>br</strong> />

gravels. The horizontal bedding is observed<<strong>br</strong> />

in them as well as the traces of marsh vegetation<<strong>br</strong> />

growns, so it is logical that these are<<strong>br</strong> />

the product of aquatic environment<<strong>br</strong> />

Lower Pliocene sediments [5]<<strong>br</strong> />

(Pontian) are about 300 m thick (Figure<<strong>br</strong> />

3). This series consists of shelf sands and<<strong>br</strong> />

sandy clay, above which a thin marl layer<<strong>br</strong> />

lies with supposed thickness of about 20 -<<strong>br</strong> />

30 m. Above the marl is deposited the<<strong>br</strong> />

layer of sandy clay, with a gradual transition<<strong>br</strong> />

to a <strong>br</strong>ick clay lying on the surface of<<strong>br</strong> />

the ground, and of the supposed thickness<<strong>br</strong> />

of about 80 m.<<strong>br</strong> />

Fig. 3. Open bench from which the clay is occasionally exploited<<strong>br</strong> />

No 4,<strong>2011</strong>. 23<<strong>br</strong> />

MINING ENGINEERING


Quaternary sediments[5] are presented<<strong>br</strong> />

by: proluvial gravels, sands and loams, in<<strong>br</strong> />

places where the streams of torrent character<<strong>br</strong> />

appeared as well as in diluvial loams<<strong>br</strong> />

and sand dusts. In deluvial formations,<<strong>br</strong> />

closer to the zone of leaching, the sand<<strong>br</strong> />

dusts are dominant with gravel detritus,<<strong>br</strong> />

while further, in the accumulation zone, the<<strong>br</strong> />

material becomes much finer and clayey.<<strong>br</strong> />

METHODS OF GEOLOGICAL<<strong>br</strong> />

EXPLORATION THE CLAY DE-<<strong>br</strong> />

POSIT DUŠANOVAC<<strong>br</strong> />

Geological explorations the investigation<<strong>br</strong> />

area [5] on the site Dušanovac near<<strong>br</strong> />

Negotin, were carried out in the period<<strong>br</strong> />

2008/10. The following was carried out:<<strong>br</strong> />

►Field survey and reambulation of<<strong>br</strong> />

geological map;<<strong>br</strong> />

► Geological characteristics (structural<<strong>br</strong> />

set, lying conditions, contour and<<strong>br</strong> />

shape) of deposit were defined;<<strong>br</strong> />

► Clay quality (possibilities of preparation<<strong>br</strong> />

and use of clay);<<strong>br</strong> />

► Assessment of potentiality the exploratory<<strong>br</strong> />

area was made as well as<<strong>br</strong> />

calculation of geological reserves<<strong>br</strong> />

of clay deposit as mineral resource.<<strong>br</strong> />

The following exploratory works were<<strong>br</strong> />

done: 4 trenches and 12 shallow vertical<<strong>br</strong> />

prospecting drill holes were done. Shallow<<strong>br</strong> />

geological drill holes drilled total of<<strong>br</strong> />

717.00 meters. In the southeastern part of<<strong>br</strong> />

the exploratory area, 5 prospecting drill<<strong>br</strong> />

holes were drilles in the network 400x200<<strong>br</strong> />

m, and 2 prospecting drill holes in the<<strong>br</strong> />

northern peripheral part of the exploratory<<strong>br</strong> />

area. Seven drill holes were drilled (407.5<<strong>br</strong> />

m drilling) in 2008/2009 and 7 drill holes<<strong>br</strong> />

(309.5 m) in 2009/2010.<<strong>br</strong> />

All exploratory works[3,5] were followed<<strong>br</strong> />

by continuous mapping and sampling<<strong>br</strong> />

(material from trenches and core<<strong>br</strong> />

drilling). The same material (sample) was<<strong>br</strong> />

continuously laboratory tested. When the<<strong>br</strong> />

ore reserves [3] were calculated, Al2O3<<strong>br</strong> />

was treated as the main useful component,<<strong>br</strong> />

and Fe2O3, SiO2, CaO and TiO2 as the<<strong>br</strong> />

accompanying harmful components.<<strong>br</strong> />

RESULTS OF GEOLOGICAL<<strong>br</strong> />

EXPLORATION THE CLAY DE-<<strong>br</strong> />

POSIT DUŠANOVAC<<strong>br</strong> />

Field survey and geological map reambulation<<strong>br</strong> />

[3] (part of the list Negotin, a scale<<strong>br</strong> />

of 1:25 000), confirmed that mainly the<<strong>br</strong> />

Neogene formations, less Quaternary formations,<<strong>br</strong> />

are present. Pont (Pl1) is represented<<strong>br</strong> />

by sands, clays and sandstones.<<strong>br</strong> />

These sediments belong semi-<strong>br</strong>ackish<<strong>br</strong> />

("caspi<strong>br</strong>ackish") facies. It is believed that<<strong>br</strong> />

the Pontian layers lie over concordantly<<strong>br</strong> />

over meota, with a gradual facial transition.<<strong>br</strong> />

Pontian deposits have significantly development<<strong>br</strong> />

around the village Dušanovac.<<strong>br</strong> />

Visible thickness of layers is about 150 m,<<strong>br</strong> />

while the total thickness, going to the East,<<strong>br</strong> />

is certainly higher.<<strong>br</strong> />

The terrain on which the geological<<strong>br</strong> />

prospecting was carried out by trenches<<strong>br</strong> />

and prospecting dreill holes is a hilly river<<strong>br</strong> />

valley (Figure 4). Spatially, the deposit is<<strong>br</strong> />

located in the sediments of the Lower<<strong>br</strong> />

Pliocene (Pontian). Deposit has a shape of<<strong>br</strong> />

elongated lenses, in the north-south [3]<<strong>br</strong> />

direction. By direction, it can be traced<<strong>br</strong> />

over 2.5 km, while the average width is<<strong>br</strong> />

about 320 m. Exploratory works covered<<strong>br</strong> />

the northern and western part of deposit,<<strong>br</strong> />

an area of about 0.4 km 2 .<<strong>br</strong> />

No 4,<strong>2011</strong>. 24<<strong>br</strong> />

MINING ENGINEERING


Fig. 4. Field in the domain of clay deposit Dušanovac (left) and the view from the<<strong>br</strong> />

Hydroelectric Plant Iron Gate 2 (right)<<strong>br</strong> />

The clay deposit [3,5] was explored by<<strong>br</strong> />

trenches (totally 4 trenche, dimensions<<strong>br</strong> />

2×2.5×1 m) and geological prospecting<<strong>br</strong> />

drill holes. According to the vertical profile<<strong>br</strong> />

of all trenches, the ground surface to<<strong>br</strong> />

the depth of soil from 0.6 to 0.7 m was<<strong>br</strong> />

observed, and below that the yellow<<strong>br</strong> />

<strong>br</strong>own sandy clay with the appearance of<<strong>br</strong> />

carbonate. One sample was taken frfrom<<strong>br</strong> />

each trench for chemical testing.<<strong>br</strong> />

Sampling intervals [3] of cores from<<strong>br</strong> />

prospecting drill holes were 1 or 2 m. Total<<strong>br</strong> />

of 370 individual samples were taken,<<strong>br</strong> />

out of which 41 composite samples were<<strong>br</strong> />

formed. Composite samples were specially<<strong>br</strong> />

formed for the yellow clay class,<<strong>br</strong> />

specially for the gray class of clay quality.<<strong>br</strong> />

Studying the pillars of drill holes [3], it<<strong>br</strong> />

was observed that macroscopically,according<<strong>br</strong> />

to the color of clay<<strong>br</strong> />

deposit, four layers can be <strong>br</strong>oken<<strong>br</strong> />

down:<<strong>br</strong> />

► Brown clay lies immediately below<<strong>br</strong> />

the humus cover, which has the average<<strong>br</strong> />

thickness of about 0.7 m.<<strong>br</strong> />

Clay is poor to more sandy, the average<<strong>br</strong> />

thickness of this layer is<<strong>br</strong> />

about 1.5 m;<<strong>br</strong> />

► Yellow clay lies below <strong>br</strong>own clay,<<strong>br</strong> />

average thickness of about 13.0 m.<<strong>br</strong> />

This clay is greasy, very plastic and<<strong>br</strong> />

slightly sandy with occasional occurrence<<strong>br</strong> />

of FeO and MnO coating.<<strong>br</strong> />

A layer of yellow clay occurs<<strong>br</strong> />

throughout the deposit;<<strong>br</strong> />

► Brown-gray clay is spatially positioned<<strong>br</strong> />

below the yellow and above the<<strong>br</strong> />

gray clay above. A layer of <strong>br</strong>owngray<<strong>br</strong> />

clay represents a zone of mixing<<strong>br</strong> />

of yellow and gray clay and it is<<strong>br</strong> />

very sandy, and the average thickness<<strong>br</strong> />

of this layer is about 6.0 m.<<strong>br</strong> />

► Gray clay is the average thickness<<strong>br</strong> />

of about 35.5 m and it is located<<strong>br</strong> />

below the <strong>br</strong>own-gray clay. It is<<strong>br</strong> />

very sandy, and thin interlayers of<<strong>br</strong> />

a strong clay sand are very rarely<<strong>br</strong> />

observed in this thin layer. The fossil<<strong>br</strong> />

remains of shells also occur in<<strong>br</strong> />

this layer. A layer of gray clay with<<strong>br</strong> />

increasing of a depth gradually becomes<<strong>br</strong> />

very clay sand. A layer of<<strong>br</strong> />

gray clay was drilled by all drill<<strong>br</strong> />

holes.<<strong>br</strong> />

Physical-mechanical testing [4], grainsize<<strong>br</strong> />

distribution testing [6,7], laboratory<<strong>br</strong> />

technology and chemical testing were carried<<strong>br</strong> />

out from laboratory testing on taken<<strong>br</strong> />

samples. Technological tests in semi-industrial<<strong>br</strong> />

and industrial scale, were not done.<<strong>br</strong> />

No 4,<strong>2011</strong>. 25<<strong>br</strong> />

MINING ENGINEERING


CLAY QUALITY IN THE DEPOSIT<<strong>br</strong> />

DUŠANOVAC<<strong>br</strong> />

Quality of mineral deposits involves<<strong>br</strong> />

the content of useful components and possibility<<strong>br</strong> />

of use the mineral resources [5] .<<strong>br</strong> />

Reliability of determining the quality of<<strong>br</strong> />

raw material in deposit depends on sampling<<strong>br</strong> />

method, sample weight, sample reduction<<strong>br</strong> />

on-site, preparation and processing<<strong>br</strong> />

in the laboratory, as well as the accuracy<<strong>br</strong> />

of methods of analysis.<<strong>br</strong> />

Content of useful and harmful components<<strong>br</strong> />

[3], in the clay deposit Dušanovac,<<strong>br</strong> />

were determined by chemical analyses of<<strong>br</strong> />

individual samples taken from the drill<<strong>br</strong> />

holes, drilled from the field surface. Individual<<strong>br</strong> />

samples were analyzed on Al2O3,<<strong>br</strong> />

TiO2, SiO2, Fe2O3, CaO, loss on calcination<<strong>br</strong> />

(LC) and H2O¯ (Table 1). Composite<<strong>br</strong> />

sample was obtained by material merging<<strong>br</strong> />

of ten or five consecutive, individual samples<<strong>br</strong> />

(ten meter interval). Composites of<<strong>br</strong> />

samples were analyzed on: SiO2, Al2O3,<<strong>br</strong> />

Fe2O3, CaO, MgO, S total, SO3, TiO2,<<strong>br</strong> />

K2O, Na2O, Cr2O3, loss on calcination,<<strong>br</strong> />

MnO, FeO, CO3, Mn, Fe, Cu and pH.<<strong>br</strong> />

Table 5.2. Chemical (average) contents of clay in the deposit Dušanovac from<<strong>br</strong> />

individual samples per quality classes, calculated using the<<strong>br</strong> />

program package MINEX 5.2.1.<<strong>br</strong> />

Class<<strong>br</strong> />

Al2O3<<strong>br</strong> />

Average content (%)<<strong>br</strong> />

TiO2 SiO2 Fe2O3 CaO G.ž. H2O ¯<<strong>br</strong> />

GB (yellow <strong>br</strong>own clay) 16.7 0.85 57.2 6.28 2.7 9.99 18.9<<strong>br</strong> />

GI (yellow clay) 16.5 0.86 57.5 6.01 4.16 9.59 20.5<<strong>br</strong> />

GII (gray clay) 16.7 0.87 56.5 5.94 3.64 9.51 20.4<<strong>br</strong> />

Whole deposit 16.6 0.87 56.8 5.97 3.78 9.54 20.4<<strong>br</strong> />

Physical-mechanical testing [4] were<<strong>br</strong> />

carried out on samples of clay, sandy clay<<strong>br</strong> />

and strongly clay sand. Testing of physicalmechanical<<strong>br</strong> />

characteristics of clay samples,<<strong>br</strong> />

taken by core sampling of prospecting drill<<strong>br</strong> />

holes, were carried out according to the<<strong>br</strong> />

current Standards for each type of testing<<strong>br</strong> />

for the needs of mining or as recommended<<strong>br</strong> />

by the International Society for Rock Mechanics<<strong>br</strong> />

(ISRM).<<strong>br</strong> />

The following parameters were carried<<strong>br</strong> />

out from physical properties of the clay<<strong>br</strong> />

samples [4]: humidity - W [%], specific<<strong>br</strong> />

gravity or bulk density of solids - γs<<strong>br</strong> />

[kN/m 3 ], bulk density - γz [kN/m 3 ], porosity<<strong>br</strong> />

- n [%], rate of propagation of longitudinal<<strong>br</strong> />

waves - VL [m/s], clay condensation and<<strong>br</strong> />

plasticity limits. Mechanical parameters<<strong>br</strong> />

were determined [4]: resistance parameters<<strong>br</strong> />

in direct shear, and uniaxial compressive<<strong>br</strong> />

strength. Thus, the working environment<<strong>br</strong> />

[4], in which exploitation will take place,<<strong>br</strong> />

make clay, slightly sandy clay, strong<<strong>br</strong> />

sandy clay and more heavily clay sands.<<strong>br</strong> />

Assumed angle of bench slope and final<<strong>br</strong> />

slope angle of open pit are adopted based<<strong>br</strong> />

on the following physical - mechanical<<strong>br</strong> />

characteristics of working environment:<<strong>br</strong> />

bulk density of clay d = 19.71 kN/m 3<<strong>br</strong> />

(1.971 t/m 3 ); clay cohesion C = 0.380 MPa,<<strong>br</strong> />

angle of internal support of clay, ϕ =<<strong>br</strong> />

15.33°. Based on the physical - mechanical<<strong>br</strong> />

properties of clay [4] of the deposit<<strong>br</strong> />

Dušanovac near Negotin, it is concluded<<strong>br</strong> />

that the engineering-geological characteristics<<strong>br</strong> />

are relatively favorable and that there<<strong>br</strong> />

will not be major problems in the exploitation<<strong>br</strong> />

phase.<<strong>br</strong> />

No 4,<strong>2011</strong>. 26<<strong>br</strong> />

MINING ENGINEERING


Testing of grain-size distribution from<<strong>br</strong> />

the clay deposit Dušanovac near Negotin,<<strong>br</strong> />

was done by two ways: studying the grainsize<<strong>br</strong> />

distribution of each individual sample<<strong>br</strong> />

[6,7] from all drfill holes and testing the<<strong>br</strong> />

grain-size distribution of composite samples<<strong>br</strong> />

[6,7]. Composite samples were<<strong>br</strong> />

formed according to the class quality for<<strong>br</strong> />

each individual drill hole. Characteristically,<<strong>br</strong> />

the coarser classes (-0.212 +0.106<<strong>br</strong> />

mm) account with about 1%. Most of<<strong>br</strong> />

them is the class -0.020 +0.000 mm with a<<strong>br</strong> />

participation of 61-75%.<<strong>br</strong> />

For technological tests of clay [3] from<<strong>br</strong> />

the deposit Dušanovac for the aim of<<strong>br</strong> />

finding out a direction which should be<<strong>br</strong> />

focused to further laboratory investigations<<strong>br</strong> />

and testing, a short series of experiments<<strong>br</strong> />

was carried out for separation the fine<<strong>br</strong> />

fraction using the method of sedimentation<<strong>br</strong> />

and decantation. Having in mind the<<strong>br</strong> />

presence of clay minerals in very fine<<strong>br</strong> />

fractions, less than 20 microns, it was<<strong>br</strong> />

oursued in the experiments to find out the<<strong>br</strong> />

opportunities for increasing a proportion<<strong>br</strong> />

(mass participation) of the same or<<strong>br</strong> />

increasing Al2O3 content, thereby obtaining<<strong>br</strong> />

high quality natural clay, which as such can<<strong>br</strong> />

found a wide use in all <strong>br</strong>anches of<<strong>br</strong> />

industry.<<strong>br</strong> />

FINAL DISCUSSIONS ON CLAY USE<<strong>br</strong> />

IN THE DEPOSIT DUŠANOVAC<<strong>br</strong> />

Clays are mostly used [3] in the refractory<<strong>br</strong> />

material industry, <strong>br</strong>ick industry, porcelain<<strong>br</strong> />

and stoneware, ceramics industry,<<strong>br</strong> />

paper industry, chemical industry, pharmaceutical<<strong>br</strong> />

industry, for rinding and rehabilitation<<strong>br</strong> />

of degraded areas (land recultivation).<<strong>br</strong> />

Based on the industrial application<<strong>br</strong> />

of clay, the requirements for quality<<strong>br</strong> />

are defined and they are related to the<<strong>br</strong> />

mineral composition, content of Al2O3,<<strong>br</strong> />

TiO2, and SiO2, content of impurities, pH<<strong>br</strong> />

value, chemical stability, swelling, fire resistance,<<strong>br</strong> />

coarse-grain particles, whiteness.<<strong>br</strong> />

The clay deposit Dušanovac belongs to<<strong>br</strong> />

the sedimentary deposits [1,2], formed of<<strong>br</strong> />

decomposition material and leaching of<<strong>br</strong> />

rocks, which was later transferred and redeposited.<<strong>br</strong> />

In order to ensure the domestic<<strong>br</strong> />

raw materials [5] (which is certainly the<<strong>br</strong> />

most rational approach to supply the needs<<strong>br</strong> />

of existing industrial facilities), the clay<<strong>br</strong> />

from deposit Dušanovac was laboratory<<strong>br</strong> />

tested. Depositis in the sediments of the<<strong>br</strong> />

Lower Pliocene (Pontian), it has elongated<<strong>br</strong> />

shape of the lens, in the north-east direction.<<strong>br</strong> />

Along direction, it can be followed<<strong>br</strong> />

more than 2.5 km, while its average width<<strong>br</strong> />

is about 320 m. Exploratory works have<<strong>br</strong> />

covered the northern and western part of<<strong>br</strong> />

the deposit, an area of about 0.4 km 2 .<<strong>br</strong> />

By geological exploration the deposit<<strong>br</strong> />

Dušanovac, the clay is divided into four<<strong>br</strong> />

types:<<strong>br</strong> />

► <strong>br</strong>own clay (average thickness of<<strong>br</strong> />

about 1.5 m);<<strong>br</strong> />

► yellow clay (average thickness of<<strong>br</strong> />

about 13.0 m);<<strong>br</strong> />

► <strong>br</strong>own-gray clay (average thickness<<strong>br</strong> />

of about 6.0 m). It represents a zone<<strong>br</strong> />

of mixing the yellow and gray clay;<<strong>br</strong> />

and<<strong>br</strong> />

► gray clay (average thickness of<<strong>br</strong> />

about 35.5 m).<<strong>br</strong> />

Total reserves of clay in this deposit<<strong>br</strong> />

amount 69,041,871 tons [3] (reserves of<<strong>br</strong> />

A+B category).<<strong>br</strong> />

The use of yellow clay [3] in recultivation<<strong>br</strong> />

of the flotation tailing dump Veliki<<strong>br</strong> />

Krivelj [8] (and other tailing dump, formed<<strong>br</strong> />

by operation of RTB) would contribute to<<strong>br</strong> />

the final solution of elimination the environmental<<strong>br</strong> />

disaster of this tailing dump.<<strong>br</strong> />

No 4,<strong>2011</strong>. 27<<strong>br</strong> />

MINING ENGINEERING


REFERENCES<<strong>br</strong> />

[1] Ilić M., 1999: Investigation the Nonmetal<<strong>br</strong> />

Deposit – Construction<<strong>br</strong> />

Material – Faculty of Mining and<<strong>br</strong> />

Geology, Belgrade (in Serbian)<<strong>br</strong> />

[2] Janković S., Vakanjac B., 1969:<<strong>br</strong> />

Deposits of Non-metallic Minerals,<<strong>br</strong> />

Belgrade (in Serbian)<<strong>br</strong> />

[3] Lapadatović B. et el., <strong>2011</strong>: Project<<strong>br</strong> />

Report on Geological Explorations of<<strong>br</strong> />

Clay in the Area “Dušanovac” near<<strong>br</strong> />

Negotin, in the period 2008-2010,<<strong>br</strong> />

MMI <strong>Bor</strong> (in Serbian)<<strong>br</strong> />

[4] Ljubojev M. et el., 2009: Project<<strong>br</strong> />

Report on Physical – Mechanical and<<strong>br</strong> />

Deformation Testing of Material from<<strong>br</strong> />

the Locality “Dušanovac” near<<strong>br</strong> />

Negotin, MMI <strong>Bor</strong> (in Serbian)<<strong>br</strong> />

[5] Maksimović M. et el., 2008: Project<<strong>br</strong> />

of Geological Investigations the<<strong>br</strong> />

Appearance of Brick-clay in the Area<<strong>br</strong> />

“Dušanovac” near Negotin, in the<<strong>br</strong> />

period 2008-2010, MMI <strong>Bor</strong> (in<<strong>br</strong> />

Serbian)<<strong>br</strong> />

[6] Urošević D., 2009: Report on testing<<strong>br</strong> />

the Grain-size Distribution of Clay of<<strong>br</strong> />

the Deposit “Dušanovac”, MMI <strong>Bor</strong><<strong>br</strong> />

(in Serbian)<<strong>br</strong> />

[7] Urošević D., <strong>2011</strong>: Report on testing<<strong>br</strong> />

the Grain-size Distribution of Clay of<<strong>br</strong> />

the Deposit “Dušanovac”, MMI <strong>Bor</strong><<strong>br</strong> />

(in Serbian)<<strong>br</strong> />

[8] Project 33021 of the Ministry of<<strong>br</strong> />

Education and Science of the<<strong>br</strong> />

Republic of Serbian (2010-2014,<<strong>br</strong> />

Project Manager Ljubojev Milenko),<<strong>br</strong> />

(in Serbian)<<strong>br</strong> />

[9] D. Sokolović, D. Erdeljan, P.<<strong>br</strong> />

Popović, Terms and method of<<strong>br</strong> />

sampling for technological sample in<<strong>br</strong> />

detailed geological prospecting<<strong>br</strong> />

works, Mining Engineering No.<<strong>br</strong> />

1/2010, pp. 7-13.<<strong>br</strong> />

[10] D. Rakić, L. Čaki, S. Ćorić, M.<<strong>br</strong> />

Ljubojev, Residual parameters of<<strong>br</strong> />

shear strength the high plasticity clay<<strong>br</strong> />

and silt from the open-pit mine<<strong>br</strong> />

“Tamnava – West Field“, Mining<<strong>br</strong> />

Engineering No. 1/<strong>2011</strong>, pp. 39-49.<<strong>br</strong> />

No 4,<strong>2011</strong>. 28<<strong>br</strong> />

MINING ENGINEERING


INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162<<strong>br</strong> />

KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622<<strong>br</strong> />

UDK: 622.272:666.972(045)=861<<strong>br</strong> />

Izvod<<strong>br</strong> />

Dragan Ignjatović * , Milenko Ljubojev * , Lidija Đurđevac Ignjatović * , Dušan Tašić *<<strong>br</strong> />

FIZIČKE I MEHANIČKE OSOBINE ANKER SMEŠE<<strong>br</strong> />

PRIMENJENE NA RUDNOM TELU „T“ **<<strong>br</strong> />

Jedan od materijala koji je korišćen <strong>za</strong> obezbeđenje stabilnosti tokom eksploatacije rudnog tela<<strong>br</strong> />

„T“ je i ankerna smeša. Bilo je neophodno proveriti fizičke i mehaničke osobine ankerne smeše<<strong>br</strong> />

zbog njenog učešća u stabilnost stenske mase. Rezultati ovih ispitivanja su prika<strong>za</strong>ni u ovom radu.<<strong>br</strong> />

Ključne reči: ankerna smeša, rudno telo “T”, fizičke i mehaničke osobine.<<strong>br</strong> />

UVOD<<strong>br</strong> />

Beton je heterogena, višefazni material<<strong>br</strong> />

dobijen povezivanjem različitih vrsta<<strong>br</strong> />

agregata sa cementnom pastom. Agregat<<strong>br</strong> />

predstavlja linearnu elastičnu komponentu,<<strong>br</strong> />

a cementna pasta je visoko elastična komponenta.<<strong>br</strong> />

Mešanejm betonskih komponenti u<<strong>br</strong> />

kontrolisanim uslovima ima <strong>za</strong> cilj da se<<strong>br</strong> />

dobije potpunija homogeni<strong>za</strong>cija smeše sa<<strong>br</strong> />

pravilno pove<strong>za</strong>nim agregatom i cementnom<<strong>br</strong> />

pastom.<<strong>br</strong> />

Po <strong>za</strong>htevu firme Polimerinžekt D.O.O.<<strong>br</strong> />

iz Bugarske, koja je izvodila radove na<<strong>br</strong> />

osiguranju stabilnosti stenske mase tokom<<strong>br</strong> />

eksploatacije rudnog tela “T” u borskoj<<strong>br</strong> />

jami, uzorci ankerne smeše su ispitivani na<<strong>br</strong> />

pritisnu čvrstoću.<<strong>br</strong> />

Uzorke je dostavio Polimerinžekt.<<strong>br</strong> />

REZULTATI ISPITIVANJA<<strong>br</strong> />

Uzorci ankerne smeše su dopremljeni u<<strong>br</strong> />

laboratoriju <strong>za</strong> geomehaniku. Dimenzije<<strong>br</strong> />

uzoraka su 7,3 cm u prečniku i 7,5 cm<<strong>br</strong> />

(visina), slika 1.<<strong>br</strong> />

Na slici 2 je predstavljen izgled<<strong>br</strong> />

uzoraka nakon ispitivanja.<<strong>br</strong> />

* <strong>Institut</strong> <strong>za</strong> <strong>rudarstvo</strong> i <strong>metalurgiju</strong> <strong>Bor</strong><<strong>br</strong> />

** Rad je proi<strong>za</strong>šao iz projekta <strong>br</strong>oj 33021 „Istraživanje i praćenje promena naponsko deformacionog<<strong>br</strong> />

stanja u stenskom masivu „in situ“ oko podzemnih prostorija sa izradom tunela sa posebnim osvrtom<<strong>br</strong> />

na tunel Kriveljske reke i Jame <strong>Bor</strong>“, koji je finansiran sredstvima Ministarstva <strong>za</strong> prosvetu i nauku<<strong>br</strong> />

Republike Srbije<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 29<<strong>br</strong> />

RUDARSKI RADOVI


Sl. 1. Uzorci ankerne smeše pre testiranja<<strong>br</strong> />

Sl. 2. Uzorci nakon testiranja<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 30<<strong>br</strong> />

RUDARSKI RADOVI


Ova ankerna smeša će biti korišćena u<<strong>br</strong> />

rudnom telu „T“. Korišćen je beton PC<<strong>br</strong> />

42.5N i gotova injekciona smeša <strong>za</strong> ankere<<strong>br</strong> />

ROFIX 995.<<strong>br</strong> />

Test pritisne čvrstoće je izvršen na<<strong>br</strong> />

Tabela 1. Rezultati ispitivanja<<strong>br</strong> />

Oznaka<<strong>br</strong> />

uzorka<<strong>br</strong> />

Dimenzije<<strong>br</strong> />

uzorka<<strong>br</strong> />

d x h [cm]<<strong>br</strong> />

Sila loma<<strong>br</strong> />

P [kN]<<strong>br</strong> />

betonu nakon 7 dana sazrevanja, kako je<<strong>br</strong> />

<strong>za</strong>htevano od strane Polimerinžekt-a.<<strong>br</strong> />

Ispitivanja su sprovedena prema standardu<<strong>br</strong> />

SRPS U.M2.008: 1994. Rezultati su<<strong>br</strong> />

prika<strong>za</strong>ni u tabeli 1.<<strong>br</strong> />

Jednoosna<<strong>br</strong> />

čvrstoća na<<strong>br</strong> />

pritisak<<strong>br</strong> />

σp [MPa]<<strong>br</strong> />

Zapreminska<<strong>br</strong> />

masa<<strong>br</strong> />

[kg/m 3 ]<<strong>br</strong> />

Brzina<<strong>br</strong> />

prostiranja<<strong>br</strong> />

longitudinalnih<<strong>br</strong> />

talasa<<strong>br</strong> />

VL [m/s]<<strong>br</strong> />

1. 151,0 36,09 1940,0 3440,0<<strong>br</strong> />

2. 7,3x7,5 147,0 35,14 1913,0 3424,0<<strong>br</strong> />

3.<<strong>br</strong> />

131,0 31,32 1936,0 3318,0<<strong>br</strong> />

Srednja vrednost: 143,0 34,18 1929,67 3394,0<<strong>br</strong> />

ZAKLJUČAK<<strong>br</strong> />

Sveža betonska masa pokazuje<<strong>br</strong> />

određene karakteristike koje utiču na<<strong>br</strong> />

druge faze procesa proizvodnje. Često se<<strong>br</strong> />

postavljaju dva pitanja:<<strong>br</strong> />

1. Koje osobine betona su važne sa<<strong>br</strong> />

gledišta racionalnog korišćenja tehnološke<<strong>br</strong> />

opreme?<<strong>br</strong> />

2. Koja od ovih osobina je najvažnija<<strong>br</strong> />

<strong>za</strong> obezbeđenje kvaliteta očvrsle mase?<<strong>br</strong> />

Može se reći da su najvažnije osobine<<strong>br</strong> />

betona:<<strong>br</strong> />

- homogenost,<<strong>br</strong> />

- o<strong>br</strong>adivost,<<strong>br</strong> />

- segregacija,<<strong>br</strong> />

- vreme vezivanja,<<strong>br</strong> />

- temperatura,<<strong>br</strong> />

- pritisna čvrstoća.<<strong>br</strong> />

Prema dobijenim rezultatima može se<<strong>br</strong> />

reći da testirana ankerna smeša<<strong>br</strong> />

<strong>za</strong>dovoljava kriterijume <strong>za</strong> koje je<<strong>br</strong> />

namenjena u rudnom telu „T“.<<strong>br</strong> />

LITERATURA<<strong>br</strong> />

[1] Izveštaj o mehaničkim svojstvima<<strong>br</strong> />

injekcione mase, ankerne smeše i mlaz<<strong>br</strong> />

betona koji će se koristiti u rudnom telu<<strong>br</strong> />

„T“ – nivo 95 borske jame, <strong>Bor</strong>, fe<strong>br</strong>uar<<strong>br</strong> />

<strong>2011</strong>.<<strong>br</strong> />

[2] M. Ljubojev, R. Popović, M. Bugarin,<<strong>br</strong> />

Deformacioni pritisak, otpornost<<strong>br</strong> />

podgrade i karakteristike stenskog<<strong>br</strong> />

masiva sa trase tunela Kriveljske reke,<<strong>br</strong> />

<strong>Rudarski</strong> <strong>radovi</strong> 2/2008, 123-128, <strong>Bor</strong>,<<strong>br</strong> />

2008.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 31<<strong>br</strong> />

RUDARSKI RADOVI


[3] M. Ljubojev, R. Popović – Osnove<<strong>br</strong> />

geomehanike, RTB <strong>Bor</strong>, <strong>Institut</strong> <strong>za</strong><<strong>br</strong> />

bakar <strong>Bor</strong>, 2006<<strong>br</strong> />

[4] R. Popović, M. Ljubojev – Principi<<strong>br</strong> />

rešavanja geomehaničkih problema,<<strong>br</strong> />

RTB <strong>Bor</strong>, <strong>Institut</strong> <strong>za</strong> bakar <strong>Bor</strong>, 2007<<strong>br</strong> />

[5] D. Ignjatović, M. Ljubojev, L.<<strong>br</strong> />

Đurđevac Ignjatović, V. Ljubojev –<<strong>br</strong> />

Fizičke i mehaničke karakteristike mlaz<<strong>br</strong> />

betona primenjenog u rudnom telu „T“,<<strong>br</strong> />

43 rd International October Conference<<strong>br</strong> />

on Mining and Metallurgy, 116-119,<<strong>br</strong> />

Kladovo, <strong>2011</strong><<strong>br</strong> />

Broj 4,<strong>2011</strong>. 32<<strong>br</strong> />

RUDARSKI RADOVI


MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162<<strong>br</strong> />

COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622<<strong>br</strong> />

UDK: 622.272:666.972 (045)=20<<strong>br</strong> />

Abstract<<strong>br</strong> />

Dragan Ignjatović*, Milenko Ljubojev * , Lidija Đurđevac Ignjatović * , Dušan Tašić *<<strong>br</strong> />

PHYSICAL AND MECHANICAL PROPERTIES OF<<strong>br</strong> />

ANCHOR MIXTURE APPLIED IN THE ORE BODY “T” **<<strong>br</strong> />

One of the materials, used for ensuring the stability in exploitation the ore body “T“ is the anchor<<strong>br</strong> />

mixture. It was necessary to check the physical and mechanical properties of anchor mixture<<strong>br</strong> />

because of its participation in the rock mass stability. The results of these tests are present in this<<strong>br</strong> />

paper.<<strong>br</strong> />

Key words: anchor mixture, ore body “T”, physical and mechanical properties<<strong>br</strong> />

INTRODUCTION<<strong>br</strong> />

Concrete is a heterogeneous, multiphase<<strong>br</strong> />

material, obtained by binding various<<strong>br</strong> />

types of aggregates with the cement<<strong>br</strong> />

paste. Aggregate present a linear elastic<<strong>br</strong> />

component and the cement paste is high<<strong>br</strong> />

elastic component.<<strong>br</strong> />

Mixing of concrete components in the<<strong>br</strong> />

controlled conditions is aimed to obtain<<strong>br</strong> />

more complete homogeni<strong>za</strong>tion of mixture<<strong>br</strong> />

with properly bound aggregate and cement<<strong>br</strong> />

paste.<<strong>br</strong> />

On the request of the company<<strong>br</strong> />

Polimerinžekt Ltd. from Bulgaria, which<<strong>br</strong> />

carried out the works on ensuring the rock<<strong>br</strong> />

mass stability in exploitation the “T” ore<<strong>br</strong> />

body in the <strong>Bor</strong> pit mine, the samples of<<strong>br</strong> />

anchor mixture were tested on a compressive<<strong>br</strong> />

strength.<<strong>br</strong> />

Samples were delivered by Polimerinžekt<<strong>br</strong> />

Ltd.<<strong>br</strong> />

TESTS RESULTS<<strong>br</strong> />

Anchor mixture samples were delivered<<strong>br</strong> />

to the Laboratory for Geomechanics.<<strong>br</strong> />

Dimensions of the samples were 7.3 cm<<strong>br</strong> />

(diameter) and 7.5 cm (height), Figure 1.<<strong>br</strong> />

Figure 2 presents the appearance of<<strong>br</strong> />

samples after testing.<<strong>br</strong> />

* Mining and Metallurgy <strong>Institut</strong>e <strong>Bor</strong><<strong>br</strong> />

** This paper is produced from the project no. 33021 “Researching and monitoring changes in<<strong>br</strong> />

stress-deformation condition of rock massif “in-situ” around undergraund facilities with development<<strong>br</strong> />

of model with special emphasis on Krivelj river tunnel and <strong>Bor</strong> pit”, which is funded by<<strong>br</strong> />

means of the Ministry of Education and Science of the Republic of Serbia<<strong>br</strong> />

No 4, <strong>2011</strong>. 33<<strong>br</strong> />

MINING ENGINEERING


Fig. 1. Anchor mixture samples before testing<<strong>br</strong> />

Fig. 2. Samples after testing<<strong>br</strong> />

No 4, <strong>2011</strong>. 34<<strong>br</strong> />

MINING ENGINEERING


This anchor mixture will be used in the<<strong>br</strong> />

“T“ore body. The applied concrete was<<strong>br</strong> />

PC 42.5N and complete prepared injection<<strong>br</strong> />

mixture for anchors, ROFIX 995.<<strong>br</strong> />

Compressive strength test was carried<<strong>br</strong> />

out on a concrete after 7 days of maturing,<<strong>br</strong> />

as it was requested by Polimerinžekt Ltd.<<strong>br</strong> />

Testing was carried out according to the<<strong>br</strong> />

Standard SRPS U.M2.008: 1994. The results<<strong>br</strong> />

are shown in Table 1.<<strong>br</strong> />

Table 1 Test results<<strong>br</strong> />

Sample designation<<strong>br</strong> />

Sample dimensions<<strong>br</strong> />

d x h [mm]<<strong>br</strong> />

Failure<<strong>br</strong> />

force<<strong>br</strong> />

P [kN]<<strong>br</strong> />

Uniaxial<<strong>br</strong> />

compressive<<strong>br</strong> />

strength<<strong>br</strong> />

σp [MPa]<<strong>br</strong> />

Bulk<<strong>br</strong> />

density<<strong>br</strong> />

[kg/m 3 ]<<strong>br</strong> />

Rate of longitudinal<<strong>br</strong> />

waves<<strong>br</strong> />

VL [m/s]<<strong>br</strong> />

1. 151.0 36.09 1940.0 3440,0<<strong>br</strong> />

2. 7.3x7.5 147.0 35.14 1913.0 3424,0<<strong>br</strong> />

3.<<strong>br</strong> />

131.0 31.32 1936.0 3318,0<<strong>br</strong> />

Mean values: 143.0 34.18 1929.67 3394.0<<strong>br</strong> />

CONCLUSION<<strong>br</strong> />

Fresh concrete mass shows the certain<<strong>br</strong> />

characteristics which affect the other<<strong>br</strong> />

phases of production process. Two questions<<strong>br</strong> />

are often asked:<<strong>br</strong> />

1. Which properties of concrete are<<strong>br</strong> />

important from the standpoint of rational<<strong>br</strong> />

use the technological equipment?<<strong>br</strong> />

2. Which of these characteristics is the<<strong>br</strong> />

most important for quality assurance of<<strong>br</strong> />

harden mass?<<strong>br</strong> />

It could be said that the most important<<strong>br</strong> />

characteristics of concrete are:<<strong>br</strong> />

- homogeneity<<strong>br</strong> />

- workability,<<strong>br</strong> />

- segregation,<<strong>br</strong> />

- binding time,<<strong>br</strong> />

- temperature,<<strong>br</strong> />

- compressive strength.<<strong>br</strong> />

According to the obtained results, it<<strong>br</strong> />

could be said that tested anchor mixture<<strong>br</strong> />

satisfies the criteria for use in the “T“ ore<<strong>br</strong> />

body.<<strong>br</strong> />

REFERENCES<<strong>br</strong> />

[1] Report on Mechanical Properties of<<strong>br</strong> />

Injection Mass, Anchor Mixture and<<strong>br</strong> />

Concrete Flow that will be Used in the<<strong>br</strong> />

”T“ Ore Body – Level 95 of the <strong>Bor</strong> Pit,<<strong>br</strong> />

<strong>Bor</strong>, Fe<strong>br</strong>uary <strong>2011</strong> (in Serbian)<<strong>br</strong> />

[2] M. Ljubojev, R. Popović, M. Bugarin,<<strong>br</strong> />

Deformation Pressure, Support Rigidity<<strong>br</strong> />

and Rock Massif Characteristics of a<<strong>br</strong> />

Route the Krivelj River Tunnel, Mining<<strong>br</strong> />

Engineering 2/2008, 123-128, <strong>Bor</strong>,<<strong>br</strong> />

2008 (in Serbian)<<strong>br</strong> />

No 4, <strong>2011</strong>. 35<<strong>br</strong> />

MINING ENGINEERING


[3] M. Ljubojev, R. Popović –<<strong>br</strong> />

Geomechanical Basis, RTB <strong>Bor</strong>,<<strong>br</strong> />

Copper <strong>Institut</strong>e <strong>Bor</strong>, 2006 (in Serbian)<<strong>br</strong> />

[4] R. Popović, M. Ljubojev – Principles of<<strong>br</strong> />

Solving the Geomechanical Problems,<<strong>br</strong> />

RTB <strong>Bor</strong>, Copper <strong>Institut</strong>e <strong>Bor</strong>, 2007<<strong>br</strong> />

(in Serbian)<<strong>br</strong> />

[5] D. Ignjatović, M. Ljubojev, L.<<strong>br</strong> />

Đurđevac Ignjatović, V. Ljubojev –<<strong>br</strong> />

Physical and Mechanical<<strong>br</strong> />

Characteristics of Concrete Flow,<<strong>br</strong> />

Applied in the Ore Body “T“, 43rd<<strong>br</strong> />

International October Conference on<<strong>br</strong> />

Mining and Metallurgy, 116-119,<<strong>br</strong> />

Kladovo, <strong>2011</strong><<strong>br</strong> />

No 4, <strong>2011</strong>. 36<<strong>br</strong> />

MINING ENGINEERING


INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162<<strong>br</strong> />

KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622<<strong>br</strong> />

UDK: 624.052:622.356:622.271:622.5(045)=861<<strong>br</strong> />

Dušan Tašić * , Milenko Ljubojev * , Dragan Ignjatović * , Dragoslav Rakić ** ,<<strong>br</strong> />

Lidija Đurđevac Ignjatović *<<strong>br</strong> />

MOGUĆNOST PRIMENE DROBLJENOG AGREGATA<<strong>br</strong> />

GRANULACIJE 0/31,5 MM SA LOKALITETA "ZAGRAĐE-KOP 5",<<strong>br</strong> />

ZA PRIPREMU PRISTUPNIH PUTEVA DO NOVE TRASE<<strong>br</strong> />

KRIVELJSKOG KOLEKTORA ***<<strong>br</strong> />

Izvod<<strong>br</strong> />

U ovom radu prika<strong>za</strong>ni su rezultati laboratorijskih ispitivanja kamenog agregata dobijenog iz<<strong>br</strong> />

kopa Zagrađe-5 kao mogući materijal <strong>za</strong> izradu nasipa i tamponskih slojeva od neve<strong>za</strong>nog<<strong>br</strong> />

kamenog materijala. Ispitivanja su rađena na uzorcima drobljenog kamena, kao i osnovnog<<strong>br</strong> />

kamena od koga je agregat dobijen. Rezultati ispitivanih karakteristika materijala u potpunosti<<strong>br</strong> />

<strong>za</strong>dovoljavaju <strong>za</strong>hteve odgovarajućih propisanih standarda.<<strong>br</strong> />

Ključne reči: Zagrađe-kop 5, kameni agregat, osnovni kamen<<strong>br</strong> />

UVOD<<strong>br</strong> />

Drobljeni agregat u granulaciji 0/31,5<<strong>br</strong> />

mm se koristi <strong>za</strong> izradu donjih nosećih<<strong>br</strong> />

(tamponskih) slojeva od neve<strong>za</strong>nog kamenog<<strong>br</strong> />

materijala i izradu nosećih slojeva<<strong>br</strong> />

kolovoznih konstrukcija od bitumeniziranog<<strong>br</strong> />

materijala. Izbor agregata treba da<<strong>br</strong> />

<strong>za</strong>dovolji tehničko, ekonomsko kao i pitanje<<strong>br</strong> />

dostupnosti agregata na određenom podnevlju<<strong>br</strong> />

(mestu gde se izvodi konstrukcija).<<strong>br</strong> />

Imajući to u vidu, može se <strong>za</strong>ključiti da<<strong>br</strong> />

je optimalno rešenje <strong>za</strong> izradu pristupnih<<strong>br</strong> />

puteva i sao<strong>br</strong>aćajnica do nove trase<<strong>br</strong> />

Kriveljskog kolektora agregat dobijen<<strong>br</strong> />

drobljenjem krečnjaka sa lokaliteta Zagradje<<strong>br</strong> />

kop-5 kod <strong>Bor</strong>a.<<strong>br</strong> />

U ovom radu biće prika<strong>za</strong>ni rezultati<<strong>br</strong> />

ispitivanja sa osvrtom na mogućnost<<strong>br</strong> />

primene ovog agregata u navedene svrhe.<<strong>br</strong> />

* <strong>Institut</strong> <strong>za</strong> <strong>rudarstvo</strong> i <strong>metalurgiju</strong> <strong>Bor</strong><<strong>br</strong> />

** Rudarsko geološki fakultet Beograd<<strong>br</strong> />

*** Ovaj rad je proistekao iz Projekata <strong>br</strong>oj TR 33021 „Istraživanje i praćenje promena naponsko<<strong>br</strong> />

deformacionog stanja u stenskom masivu „in situ“ oko podzemnih prostorija sa izradom tunela sa<<strong>br</strong> />

posebnim osvrtom na tunel Kriveljske reke i Jame <strong>Bor</strong>“ i TR 36014 “Geotehnički aspekti<<strong>br</strong> />

istraživanja i razvoja savremenih tehnologija građenja i sanacija deponija komunalnog<<strong>br</strong> />

otpada“ koji finansira Ministarstvo <strong>za</strong> prosvetu i nauku Republike Srbije<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 37<<strong>br</strong> />

RUDARSKI RADOVI


REZULTATI LABORATORIJSKIH<<strong>br</strong> />

ISPITIVANJA<<strong>br</strong> />

Uzorak drobljenog kamena (krečnjaka)<<strong>br</strong> />

granulacije 0/31,5 mm (slika 1.), kao i<<strong>br</strong> />

osnovnog kamena od koga je napravljen<<strong>br</strong> />

agregat (slika 2.), na kojima su izvršena<<strong>br</strong> />

laboratorijska ispitivanja, oda<strong>br</strong>an je od<<strong>br</strong> />

strane stručnih lica iz <strong>Institut</strong>a <strong>za</strong> <strong>rudarstvo</strong><<strong>br</strong> />

i <strong>metalurgiju</strong> <strong>Bor</strong>.<<strong>br</strong> />

Sl. 1. Pripremljeni agregat <strong>za</strong> ispitivanje Sl. 2. Pripremljeni uzorci <strong>za</strong> ispitivanje od<<strong>br</strong> />

osnovnog kamena<<strong>br</strong> />

Mineraloško-petrološka anali<strong>za</strong> (SRPS<<strong>br</strong> />

B.B8.004)<<strong>br</strong> />

Minerološko-petrografska anali<strong>za</strong>,<<strong>br</strong> />

makroskopska i mikroskopska su poka<strong>za</strong>le<<strong>br</strong> />

sledeće:<<strong>br</strong> />

Makroskopski opis:<<strong>br</strong> />

Uzeti uzorci su masivne teksture,<<strong>br</strong> />

sitnozrne strukture, beložućkaste boje.<<strong>br</strong> />

Veoma sitne žilice ispunjene su čistim<<strong>br</strong> />

kalcitom.<<strong>br</strong> />

Mikroskopski opis:<<strong>br</strong> />

Stena je mikrokristalaste do kriptokristalaste<<strong>br</strong> />

strukture. Izgrađena je od kalcita,<<strong>br</strong> />

koji se javlja u vidu nepravilnih sitnozrnih<<strong>br</strong> />

do krupnozrnih kristala. Matriks je<<strong>br</strong> />

mestimično ispresecan finim žilicama koje<<strong>br</strong> />

su ispunjene mikrokristalastim kalcitom.<<strong>br</strong> />

Rezultati laboratorijskih ispitivanja<<strong>br</strong> />

osnovnog kamena, kao i agregata<<strong>br</strong> />

prika<strong>za</strong>ni su tabelama 1. i 2.<<strong>br</strong> />

Tabela 1. Rezultati ispitivanja osnovnog kamena<<strong>br</strong> />

ISPITIVANJE<<strong>br</strong> />

U SKLADU<<strong>br</strong> />

SA<<strong>br</strong> />

REZULTAT<<strong>br</strong> />

U prirodnom stanju 76,79 MPa<<strong>br</strong> />

Jednoosna čvrstoća na<<strong>br</strong> />

pritisak<<strong>br</strong> />

U vodom <strong>za</strong>sićenom<<strong>br</strong> />

stanju<<strong>br</strong> />

SRPS<<strong>br</strong> />

B.B8.012<<strong>br</strong> />

70,99 MPa<<strong>br</strong> />

Pad pritisne čvrstoće<<strong>br</strong> />

7,55 %<<strong>br</strong> />

Postojanost na mrazu (Na2SO4) SRPS<<strong>br</strong> />

B.B8.010<<strong>br</strong> />

postojan<<strong>br</strong> />

Otpornost na habanje po Beme-u<<strong>br</strong> />

SRPS<<strong>br</strong> />

B.B8.015<<strong>br</strong> />

22,64<<strong>br</strong> />

cm 3 /50cm 2<<strong>br</strong> />

Otpornost na habanje po Beme-u izraženo gubitkom<<strong>br</strong> />

mase<<strong>br</strong> />

SRPS B.B8.015 8,20 %<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 38<<strong>br</strong> />

RUDARSKI RADOVI


Tabela 2. Rezultati ispitivanja kamenog agregata<<strong>br</strong> />

KARAKTERISTIKA ISPITIVANJE U SKLADU SA ISPITANO REZULTAT<<strong>br</strong> />

Fizička svojstva<<strong>br</strong> />

Mehanička svojstva<<strong>br</strong> />

agregata<<strong>br</strong> />

Konstruktivne<<strong>br</strong> />

karakteristike<<strong>br</strong> />

Karakteristike<<strong>br</strong> />

postojanosti<<strong>br</strong> />

Zapreminska masa u<<strong>br</strong> />

rastresitom stanju<<strong>br</strong> />

Zapreminska masa u<<strong>br</strong> />

zbijenom stanju<<strong>br</strong> />

Upijanje vode SRPS ISO 6783<<strong>br</strong> />

Ispitivanje<<strong>br</strong> />

otpornosti protiv<<strong>br</strong> />

drobljenja i habanja<<strong>br</strong> />

– Los Angeles<<strong>br</strong> />

Optimalan sadržaj<<strong>br</strong> />

vode<<strong>br</strong> />

Maksimalna<<strong>br</strong> />

<strong>za</strong>preminska masa<<strong>br</strong> />

Kalifornijski indeks<<strong>br</strong> />

nosivosti- CBR<<strong>br</strong> />

Postojanost agregata<<strong>br</strong> />

na dejstvo mra<strong>za</strong><<strong>br</strong> />

SRPS ISO 6782 celokupan uzorak<<strong>br</strong> />

zrna veća od 4<<strong>br</strong> />

mm<<strong>br</strong> />

1,708 g/cm 3<<strong>br</strong> />

1,841 g/cm 3<<strong>br</strong> />

1,02 %<<strong>br</strong> />

SRPS B.B8.045 gradacija B 24,3 %<<strong>br</strong> />

SRPS U.B1.038<<strong>br</strong> />

SRPS U.B1.042<<strong>br</strong> />

celokupan uzorak<<strong>br</strong> />

5,93 %<<strong>br</strong> />

2,282 g/cm 3<<strong>br</strong> />

98,0 %<<strong>br</strong> />

SRPS B.B8.044 celokupan uzorak 1,08 %<<strong>br</strong> />

Karakteristike zrna<<strong>br</strong> />

Sadržaj slabih zrna<<strong>br</strong> />

Sadržaj zrna<<strong>br</strong> />

nepovoljnog oblika<<strong>br</strong> />

SRPS B.B8.037<<strong>br</strong> />

SRPS B.B8.048<<strong>br</strong> />

zrna veća od 4<<strong>br</strong> />

mm<<strong>br</strong> />

nema<<strong>br</strong> />

3,2 %<<strong>br</strong> />

Granulometrijski<<strong>br</strong> />

sastav<<strong>br</strong> />

SRPS B.B8.029 povoljan<<strong>br</strong> />

Karakteristike<<strong>br</strong> />

granulometrijskog<<strong>br</strong> />

sastava<<strong>br</strong> />

Sadržaj čestica<<strong>br</strong> />

manjih od 0,09 mm<<strong>br</strong> />

Sadržaj čestica<<strong>br</strong> />

manjih od 0,06 mm<<strong>br</strong> />

SRPS B.B8.036<<strong>br</strong> />

celokupan uzorak<<strong>br</strong> />

1,90 %<<strong>br</strong> />

0,75 %<<strong>br</strong> />

Sadržaj čestica<<strong>br</strong> />

manjih od 0,02 mm<<strong>br</strong> />

nema<<strong>br</strong> />

Sadržaj štetnih sasto-<<strong>br</strong> />

Sadržaj grudvi gline SRPS B.B8.038<<strong>br</strong> />

jaka Sadržaj organskih<<strong>br</strong> />

materija<<strong>br</strong> />

SRPS B.B8.039<<strong>br</strong> />

Opasnost od štetnog<<strong>br</strong> />

dejstva mra<strong>za</strong><<strong>br</strong> />

ANALIZA REZULTATA<<strong>br</strong> />

ISPITIVANJA<<strong>br</strong> />

Prema sadržaju<<strong>br</strong> />

čestica manjih od<<strong>br</strong> />

0,02 mm<<strong>br</strong> />

Detaljnim laboratorijskim ispitivanjem<<strong>br</strong> />

drobljenog agregata granulacije 0/31,5<<strong>br</strong> />

mm, kao i ispitivanjem krečnjaka iz kojeg<<strong>br</strong> />

je dobijen ispitivani agregat, utvrđeno je<<strong>br</strong> />

sledeće:<<strong>br</strong> />

celokupan uzorak nema<<strong>br</strong> />

SRPS U.E9.020 celokupan uzorak nema<<strong>br</strong> />

A. KAMEN<<strong>br</strong> />

Mineraloško-petrografskom analizom<<strong>br</strong> />

utvrđeno je da kamen od kojeg je proizveden<<strong>br</strong> />

agregat 0/31,5 mm po vrsti stena<<strong>br</strong> />

mikrokristalasti do kristalasti krečnjak, koji<<strong>br</strong> />

je sa aspekta inženjerske petrografije<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 39<<strong>br</strong> />

RUDARSKI RADOVI


povoljan kao tehnički građevinski kamen.<<strong>br</strong> />

Fizičkomehanička svojstva ispitivanog<<strong>br</strong> />

kamena <strong>za</strong>dovoljavaju navedene tehničke<<strong>br</strong> />

uslove. Pojedinačne vrednosti jednoosne<<strong>br</strong> />

čvrstoće na pritisak idu i preko 80 MPa, a<<strong>br</strong> />

srednja vrednost je 76,79 MPa. Kamen<<strong>br</strong> />

ima malo upijanje vode, 0,11


Sl. 4. Određivanje odnosa vlažnosti i suve <strong>za</strong>preminske mase tla<<strong>br</strong> />

Određivanje kalifornijskog indeksa nosivosti<<strong>br</strong> />

(slika 5.), izvedenog nakon Prokto-<<strong>br</strong> />

Sadržaj štetnih sastojaka<<strong>br</strong> />

Ispitivani agregat ne sadrži štetne<<strong>br</strong> />

sastojke – grudve gline ni organske<<strong>br</strong> />

materije.<<strong>br</strong> />

Sl. 5. Određivanje kalifornijskog indeksa nosivosti<<strong>br</strong> />

orovog testa, poka<strong>za</strong>o je da CBR (95%<<strong>br</strong> />

γdmax) iznosi 98 % (propisani min. je 80 %).<<strong>br</strong> />

Postojanost agregata prema dejstvu mra<strong>za</strong><<strong>br</strong> />

Prema metodologiji kristali<strong>za</strong>cijom<<strong>br</strong> />

Na2SO4, ispitivani agregat je postojan na<<strong>br</strong> />

mrazu.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 41<<strong>br</strong> />

RUDARSKI RADOVI


ZAKLJUČAK<<strong>br</strong> />

Ova ispitivanja su poka<strong>za</strong>la da<<strong>br</strong> />

drobljeni kameni agregat sa lokaliteta<<strong>br</strong> />

Zagrađe kop-5 <strong>za</strong>dovoljava sve uslove<<strong>br</strong> />

propisane standardom i može se uspešno<<strong>br</strong> />

koristiti <strong>za</strong> izradu nasipa i tamponskih<<strong>br</strong> />

slojeva sao<strong>br</strong>aćajnica. Parametri kontrole<<strong>br</strong> />

kvaliteta utvrđeni u agregatu mogu biti<<strong>br</strong> />

narušeni, kako samim procesom<<strong>br</strong> />

eksploatacije, tako i zbog mogućih<<strong>br</strong> />

promena koje nastaju u samom nalazištu,<<strong>br</strong> />

pa je potrebno vršiti njihovo redovno<<strong>br</strong> />

praćenje i peroidično proveravanje.<<strong>br</strong> />

LITERATURA<<strong>br</strong> />

[1] Izveštaj o tehničkim svojstvima<<strong>br</strong> />

drobljenog agregata granulacije 0/31,5<<strong>br</strong> />

mm sa lokaliteta "Zagrađe-kop 5",<<strong>br</strong> />

RTB-<strong>Bor</strong> grupa, sa ocenom mogućnosti<<strong>br</strong> />

upotrebe <strong>za</strong> izradu nasipa i tampona<<strong>br</strong> />

temelja objekata prema SRPS<<strong>br</strong> />

standardima, <strong>Bor</strong>, Decembar <strong>2011</strong>. god.<<strong>br</strong> />

[2] M. Ljubojev, D. Ignjatović, V.<<strong>br</strong> />

Ljubojev, L. Đurđevac Ignjatović, D.<<strong>br</strong> />

Rakić, Deformabilnost i nosivost<<strong>br</strong> />

nasutog materijala u neposrednoj blizini<<strong>br</strong> />

otvora okna na p. k. "Zagrađe" - kop -2,<<strong>br</strong> />

<strong>Rudarski</strong> <strong>radovi</strong>, 2/2010, str. 107-114<<strong>br</strong> />

[3] M. Ljubojev, R. Popović, Osnove<<strong>br</strong> />

geomehanike, RTB <strong>Bor</strong>, <strong>Institut</strong> <strong>za</strong><<strong>br</strong> />

bakar <strong>Bor</strong>, 2006.<<strong>br</strong> />

[4] Izveštaj o deformabilnosti i nosivosti<<strong>br</strong> />

nasutog materijala u neposrednoj blizini<<strong>br</strong> />

okna na PK Zagrađe kop-2, <strong>Bor</strong>,<<strong>br</strong> />

Oktobar 2008.<<strong>br</strong> />

[5] R. Popović, M. Ljubojev, Principi<<strong>br</strong> />

rešavanja problema u geomehanici,<<strong>br</strong> />

RTB <strong>Bor</strong>, <strong>Institut</strong> <strong>za</strong> bakar <strong>Bor</strong>, Indok<<strong>br</strong> />

centar, 2007.<<strong>br</strong> />

[6] M. Ljubojev, R. Popović, D. Rakić,<<strong>br</strong> />

Razvoj dinamičkih pojava u stenskoj<<strong>br</strong> />

masi, <strong>Rudarski</strong> <strong>radovi</strong>, 2/<strong>2011</strong>, str. 101-<<strong>br</strong> />

108<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 42<<strong>br</strong> />

RUDARSKI RADOVI


MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162<<strong>br</strong> />

COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622<<strong>br</strong> />

UDK: 624.052:622.356:622.271:622.5(045)=20<<strong>br</strong> />

Dušan Tašić*, Milenko Ljubojev * , Dragan Ignjatović * , Dragoslav Rakić**,<<strong>br</strong> />

Lidija Đurđevac Ignjatović *<<strong>br</strong> />

POSSIBILITY OF USE THE CRUSHED AFFREGATE,<<strong>br</strong> />

GRAIN-SIZE 0/31.5 MN, FROM THE SITE "ZAGRADJE-OPEN PIT5"<<strong>br</strong> />

FOR PREPARATION THE ACCESS ROADS TO THE<<strong>br</strong> />

NEW ROUTE OF THE KRIVELJ COLLECTOR ***<<strong>br</strong> />

Abstract<<strong>br</strong> />

This paper presents the results of laboratory tests the stone aggregate, obtained from the open<<strong>br</strong> />

pit Zagradje-5 as a possible material for embankment and buffer layers of unbound stone material.<<strong>br</strong> />

Tests were conducted on samples of crushed stone as wel as the stone base from which the aggregate<<strong>br</strong> />

was obtained. The results of tested material characteristics fully meet the requirements of<<strong>br</strong> />

relevant prescribed standards.<<strong>br</strong> />

Key words: Zagradje-open pit 5, stone aggregate, stone base<<strong>br</strong> />

INTRODUCTION<<strong>br</strong> />

Crushed aggregate in granulation 0/31.5<<strong>br</strong> />

mm is used to make the lower supporting<<strong>br</strong> />

(buffer) layers of unbound stone material<<strong>br</strong> />

and production of load-bearing layers of<<strong>br</strong> />

road construction of bituminous material.<<strong>br</strong> />

Selection of aggregate should meet the technical,<<strong>br</strong> />

economic as well as the question of<<strong>br</strong> />

aggregate availability in the certain region<<strong>br</strong> />

(where construction is performed).<<strong>br</strong> />

Having that in mind, it can be concluded<<strong>br</strong> />

conclude that the optimum solution for construction<<strong>br</strong> />

the access roads and roads to the<<strong>br</strong> />

new route of Krivelj collector,the obtained<<strong>br</strong> />

aggregate by crushing of limestone from the<<strong>br</strong> />

site Zagradje Open Pit-5 near <strong>Bor</strong>.<<strong>br</strong> />

This paper presents the test results with<<strong>br</strong> />

regard to the applicability of this aggregate<<strong>br</strong> />

for the stated purposes.<<strong>br</strong> />

* Mining and Metallurgy <strong>Institut</strong>e <strong>Bor</strong><<strong>br</strong> />

** Faculty of Mining and Geology Belgrade<<strong>br</strong> />

*** This paper is produced from the project no. 33021 “Researching and monitoring changes in<<strong>br</strong> />

stress-deformation condition of rock massif “in-situ” around undergraund facilities with development<<strong>br</strong> />

of model with special emphasis on Krivelj river tunnel and <strong>Bor</strong> pit”, and TR 36014,<<strong>br</strong> />

“Geotechnical aspects of research and development of modern technologies for construction and<<strong>br</strong> />

rehabilitation of landfill for municipal solid waste“ funded by means of the Ministry of Education<<strong>br</strong> />

and Science of the Republic of Serbia<<strong>br</strong> />

No 4, <strong>2011</strong>. 43<<strong>br</strong> />

MINING ENGINEERING


RESULTS OF LABORATORY TESTS<<strong>br</strong> />

A sample of crushed stone (limestone),<<strong>br</strong> />

grain size 0/31,5 mm (Figure 1), and the<<strong>br</strong> />

stone base of which the aggregate is made<<strong>br</strong> />

(Figure 2), where laboratory tests were carried<<strong>br</strong> />

out, was selected by the experts from<<strong>br</strong> />

the Mining and Metallurgy <strong>Institut</strong>e <strong>Bor</strong>.<<strong>br</strong> />

Fig. 1. Prepared aggregate for testing Fig. 2. Prepared samples for testing of<<strong>br</strong> />

a stone base<<strong>br</strong> />

Mineralogical-petrologic analysis<<strong>br</strong> />

(SRPS B.B8.004)<<strong>br</strong> />

Mineralogical-petrographic analysis,<<strong>br</strong> />

macroscopic and microscopic analyses<<strong>br</strong> />

showed the following:<<strong>br</strong> />

Macroscopic description:<<strong>br</strong> />

Taken samples are of massive texture,<<strong>br</strong> />

fine-grained structure, and yellowish<<strong>br</strong> />

white color. Very small veins are filled<<strong>br</strong> />

with pure calcite.<<strong>br</strong> />

Microscopic description:<<strong>br</strong> />

Rock is of micro crystal to crypto<<strong>br</strong> />

crystal structure. It was built of calcite,<<strong>br</strong> />

which appears in the form of irregular<<strong>br</strong> />

fine-grained to coarse-grained crystals.<<strong>br</strong> />

Matrix is locally intersected by fine veins,<<strong>br</strong> />

filled with micro crystals of calcite.<<strong>br</strong> />

The results of laboratory tests of basic<<strong>br</strong> />

stone and aggregates are shown in Tables<<strong>br</strong> />

1 and 2.<<strong>br</strong> />

Table 1. Test results of basic stone<<strong>br</strong> />

TEST<<strong>br</strong> />

IN ACCORDANCE<<strong>br</strong> />

WITH<<strong>br</strong> />

RESULT<<strong>br</strong> />

In natural condition 76.79 MPa<<strong>br</strong> />

Uniaxial compressive<<strong>br</strong> />

strength<<strong>br</strong> />

In water saturated<<strong>br</strong> />

condition<<strong>br</strong> />

Compressive strength<<strong>br</strong> />

drop<<strong>br</strong> />

SRPS B.B8.012<<strong>br</strong> />

70.99 MPa<<strong>br</strong> />

7.55 %<<strong>br</strong> />

Resistance to frost (Na2SO4) SRPS B.B8.010 stable<<strong>br</strong> />

Wear resistance per Beme SRPS B.B8.015<<strong>br</strong> />

22.64<<strong>br</strong> />

cm 3 /50cm 2<<strong>br</strong> />

Wear resistance per Beme expressed by weight<<strong>br</strong> />

loss<<strong>br</strong> />

SRPS B.B8.015 8.20 %<<strong>br</strong> />

No 4, <strong>2011</strong>. 44<<strong>br</strong> />

MINING ENGINEERING


Table 2. Test results of stone aggregate<<strong>br</strong> />

CHARACTERISTIC TESTING<<strong>br</strong> />

Physical properties<<strong>br</strong> />

Mechanical properties<<strong>br</strong> />

of aggregate<<strong>br</strong> />

Structural<<strong>br</strong> />

characteristics<<strong>br</strong> />

Stability characteristics<<strong>br</strong> />

IN ACCOR-<<strong>br</strong> />

DANCE WITH<<strong>br</strong> />

Bulk density in<<strong>br</strong> />

dispersed state<<strong>br</strong> />

Bulk density in<<strong>br</strong> />

compacted state<<strong>br</strong> />

Water absorption SRPS ISO 6783<<strong>br</strong> />

Resistance testing<<strong>br</strong> />

against crushing and<<strong>br</strong> />

a<strong>br</strong>asion – Los<<strong>br</strong> />

Angeles<<strong>br</strong> />

Optimum water<<strong>br</strong> />

content<<strong>br</strong> />

Maximum bulk<<strong>br</strong> />

density<<strong>br</strong> />

Californian bearing<<strong>br</strong> />

index- CBR<<strong>br</strong> />

Aggregate resistance<<strong>br</strong> />

to frost effects<<strong>br</strong> />

Content of weak<<strong>br</strong> />

grains<<strong>br</strong> />

Grain characteristics<<strong>br</strong> />

Content of unfavorable<<strong>br</strong> />

grain shape<<strong>br</strong> />

Grain-size distribution<<strong>br</strong> />

Particle content less<<strong>br</strong> />

Grain-size distribution than 0.09 mm<<strong>br</strong> />

characteristics Particle content less<<strong>br</strong> />

than 0.06 mm<<strong>br</strong> />

Particle content less<<strong>br</strong> />

than 0.02 mm<<strong>br</strong> />

Content of clay<<strong>br</strong> />

Contents of harmful<<strong>br</strong> />

lumps<<strong>br</strong> />

ingredients Content of organic<<strong>br</strong> />

matters<<strong>br</strong> />

Risk of frost adverse<<strong>br</strong> />

effects<<strong>br</strong> />

According to particle<<strong>br</strong> />

content less than<<strong>br</strong> />

002 mm<<strong>br</strong> />

ANALYSIS OF TEST RESULTS<<strong>br</strong> />

Detailed laboratory testing of crushed<<strong>br</strong> />

aggregate of grain size 0/31.5 mm, as well<<strong>br</strong> />

as limestone testing from which the tested<<strong>br</strong> />

aggregate was obtained, the following was<<strong>br</strong> />

determined:<<strong>br</strong> />

SRPS ISO 6782 overall sample<<strong>br</strong> />

TESTED RESULT<<strong>br</strong> />

grains larger than<<strong>br</strong> />

4 mm<<strong>br</strong> />

1.708 g/cm 3<<strong>br</strong> />

1.841 g/cm 3<<strong>br</strong> />

1.02 %<<strong>br</strong> />

SRPS B.B8.045 gradation B 24.3 %<<strong>br</strong> />

SRPS U.B1.038<<strong>br</strong> />

SRPS U.B1.042<<strong>br</strong> />

overall sample<<strong>br</strong> />

5.93 %<<strong>br</strong> />

2.282 g/cm 3<<strong>br</strong> />

98.0 %<<strong>br</strong> />

SRPS B.B8.044 overall sample 1.08 %<<strong>br</strong> />

SRPS B.B8.037<<strong>br</strong> />

grains larger than<<strong>br</strong> />

no<<strong>br</strong> />

SRPS B.B8.048<<strong>br</strong> />

4 mm<<strong>br</strong> />

3.2 %<<strong>br</strong> />

SRPS B.B8.029 favorable<<strong>br</strong> />

SRPS B.B8.036<<strong>br</strong> />

SRPS B.B8.038<<strong>br</strong> />

SRPS B.B8.039<<strong>br</strong> />

overall sample<<strong>br</strong> />

1.90 %<<strong>br</strong> />

0.75 %<<strong>br</strong> />

No 4, <strong>2011</strong>. 45<<strong>br</strong> />

MINING ENGINEERING<<strong>br</strong> />

no<<strong>br</strong> />

overall sample no<<strong>br</strong> />

SRPS U.E9.020 overall sample no<<strong>br</strong> />

A. STONE<<strong>br</strong> />

Mineralogical-petrographic analysis has<<strong>br</strong> />

confirmed, that the stone of which the<<strong>br</strong> />

aggregate 0/31.5 mm was produced by the<<strong>br</strong> />

type of rock, is crystalline to microcrystalline<<strong>br</strong> />

limestone, which is a favorable


from the aspect of engineering petrography<<strong>br</strong> />

as a technical construction stone.<<strong>br</strong> />

Physical-mechanical properties of<<strong>br</strong> />

tested stone meet these technical<<strong>br</strong> />

requirements. Individual values of uniaxial<<strong>br</strong> />

compressive strength are over 80 MPa, and<<strong>br</strong> />

the mean value is 76.79 MPa. The stone<<strong>br</strong> />

has low water absorption, 0.11


Structural characteristics<<strong>br</strong> />

Determining the relationship between<<strong>br</strong> />

humidity and dry bulk density of soil using<<strong>br</strong> />

the Proctor test, the optimum water content<<strong>br</strong> />

Wopt. is 5.93% at which maximum bulk<<strong>br</strong> />

density γdmax = 2.282 g/cm 3 (Figure 4).<<strong>br</strong> />

Fig. 4. Determining the relationship between moisture content and dry bulk density of soil<<strong>br</strong> />

Determination of the Californian loading<<strong>br</strong> />

index (Figure 5), derived after the<<strong>br</strong> />

Proktor test, showed that the CBR (95%<<strong>br</strong> />

γdmax) is 98% (prescribed min. is 80%).<<strong>br</strong> />

Fig. 5. Determination of the Californian loading index<<strong>br</strong> />

No 4, <strong>2011</strong>. 47<<strong>br</strong> />

MINING ENGINEERING


Content of harmful ingredients<<strong>br</strong> />

The tested aggregate contains no<<strong>br</strong> />

harmful ingredients - lumps of clay or<<strong>br</strong> />

organic matters.<<strong>br</strong> />

Aggregate resistance to the frost effects<<strong>br</strong> />

According to the methodology of<<strong>br</strong> />

Na2SO4crystalli<strong>za</strong>tion, the tested aggregate<<strong>br</strong> />

is resistant to frost.<<strong>br</strong> />

CONCLUSION<<strong>br</strong> />

These studies have shown that the<<strong>br</strong> />

crushed stone aggregate from the site Zagradje<<strong>br</strong> />

Open Pit-5 meets all prescribed requirements<<strong>br</strong> />

of the standard and can be successfully<<strong>br</strong> />

used for construction of embankments<<strong>br</strong> />

and road pad layers. Determined quality<<strong>br</strong> />

control parameters in aggregate may be<<strong>br</strong> />

affected both by the actual process of exploitation<<strong>br</strong> />

and due to possible changes that occur<<strong>br</strong> />

in the site, so it is needed to perform their<<strong>br</strong> />

regular monitoring and periodical checking.<<strong>br</strong> />

REFERENCES<<strong>br</strong> />

[1] J. Report on Technical Properties the<<strong>br</strong> />

Crushed Aggregate of Grain Size 0/31,5<<strong>br</strong> />

mm from the Site "Zagradje-Open Pit<<strong>br</strong> />

5", RTB <strong>Bor</strong> Group, with the<<strong>br</strong> />

Evaluation of Possible Use for<<strong>br</strong> />

Embankment Construction and Pad<<strong>br</strong> />

Foundation of Facilities According to<<strong>br</strong> />

the SRPS Standards, <strong>Bor</strong>, December<<strong>br</strong> />

<strong>2011</strong>t (in Serbian)<<strong>br</strong> />

[2] M. Ljubojev, D. Ignjatovic, V.<<strong>br</strong> />

Ljubojev, L. Djurđevac Ignjatovic, D.<<strong>br</strong> />

Rakic, Deformability and Loading<<strong>br</strong> />

Capacity of Buried Material in the<<strong>br</strong> />

Vicinity of the Shaft at the Open Pit<<strong>br</strong> />

"Zagradje" – Open Pit 2, Mining<<strong>br</strong> />

Engineering, 2/2010, pp. 107-114<<strong>br</strong> />

[3] M. Ljubojev, R. Popovic, Fundamentals<<strong>br</strong> />

of Geomechanics, RTB <strong>Bor</strong>, Copper<<strong>br</strong> />

<strong>Institut</strong>e <strong>Bor</strong>, 2006 (in Serbian)<<strong>br</strong> />

[4] Report on Deformability and Loading<<strong>br</strong> />

Capacity of Buried Material in the<<strong>br</strong> />

Vicinity of the Shaft at the Open Pit<<strong>br</strong> />

Zagradje 2, <strong>Bor</strong>, October 2008 (in<<strong>br</strong> />

Serbian)<<strong>br</strong> />

[5] R. Popovic, M. Ljubojev, Principles of<<strong>br</strong> />

Problem solving in Geomechanici, RTB<<strong>br</strong> />

<strong>Bor</strong> Copper <strong>Institut</strong>e <strong>Bor</strong>, Indok Center,<<strong>br</strong> />

2007 (in Serbian)<<strong>br</strong> />

[6] M. Ljubojev, R. Popovic, D. Rakic,<<strong>br</strong> />

Development of Dynamic Phenomena<<strong>br</strong> />

in the Rock Mass, Mining Engineering<<strong>br</strong> />

2/<strong>2011</strong>, pp. 101-108<<strong>br</strong> />

No 4, <strong>2011</strong>. 48<<strong>br</strong> />

MINING ENGINEERING


INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162<<strong>br</strong> />

KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622<<strong>br</strong> />

UDK:622.26:622.271(045)=861<<strong>br</strong> />

Daniel Kržanović ∗ , Miomir Mikić * , Milenko Ljubojev *<<strong>br</strong> />

ANALIZA UTICAJA RAZVOJA RUDNIKA VELIKI KRIVELJ NA<<strong>br</strong> />

IZGRADNJU NOVIH OBJEKATA ZA DEVIJACIJU<<strong>br</strong> />

KRIVELJSKE REKE **<<strong>br</strong> />

Izvod<<strong>br</strong> />

U ovom radu dat je pregled razvoja rudnika Veliki Krivelj, koji se nalazi u sastavu Rudarsko<<strong>br</strong> />

topioničarskog basena <strong>Bor</strong>, u narednom četrdesetogodišnjem periodu i izvršena anali<strong>za</strong> uticaja<<strong>br</strong> />

tog razvoja na izgradnju objekata <strong>za</strong> izmeštanje Kriveljske reke.<<strong>br</strong> />

Na osnovu sprovedene analize utvrđeno je koji se novi objekti moraju izgraditi kako bi eksploatacija<<strong>br</strong> />

rude na rudniku Veliki Krivelj mogla da se odvija nesmetano i u skladu sa usvojenim<<strong>br</strong> />

dugoročnim planovima od strane menadžmenta Kompanije.<<strong>br</strong> />

Ključne reči: rudnik Veliki Krivelj, razvoj, objekti <strong>za</strong> devijaciju Kriveljske reke<<strong>br</strong> />

1. UVOD<<strong>br</strong> />

Velike promene u svetskoj proizvodnji<<strong>br</strong> />

bakra nastale, pre svega, usled konstantnog<<strong>br</strong> />

povećanja cene bakra od 2004.<<strong>br</strong> />

godine, koja je u <strong>2011</strong>. godini dostigla i<<strong>br</strong> />

prosečnu vrednost od 9 500 $, pozitivno su<<strong>br</strong> />

uticale i na proizvodnju bakra u kompaniji<<strong>br</strong> />

RTB <strong>Bor</strong>.<<strong>br</strong> />

Na osnovu sprovedenih anali<strong>za</strong> potencijalnosti<<strong>br</strong> />

ležišta u <strong>Bor</strong>u i Majdanpeku menadžment<<strong>br</strong> />

RTB-a <strong>Bor</strong> usvojio je strategiju<<strong>br</strong> />

daljeg razvoja rudničke proizvodnje, koji<<strong>br</strong> />

će se bazirati na masovnoj eksploataciji<<strong>br</strong> />

rude bakra na površinskim kopovima Veliki<<strong>br</strong> />

Krivelj i Cerovo, koji posluju u okviru<<strong>br</strong> />

DOO Rudnici bakra <strong>Bor</strong> (RBB) i kopova<<strong>br</strong> />

Južni i Severni revir, koji se nalaze u<<strong>br</strong> />

sklopu Rudnika bakra Majdanpek (RBM).<<strong>br</strong> />

U sastavu Rudnika bakra Veliki Krivelj<<strong>br</strong> />

nalaze se dve tehnološke celine: površinski<<strong>br</strong> />

kop i flotacija.<<strong>br</strong> />

Površinski kop Veliki Krivelj nalazi se<<strong>br</strong> />

na udaljenosti oko 4 km severoistočno od<<strong>br</strong> />

∗ <strong>Institut</strong> <strong>za</strong> <strong>rudarstvo</strong> i <strong>metalurgiju</strong> <strong>Bor</strong><<strong>br</strong> />

** Rad je proi<strong>za</strong>šao iz projekta <strong>br</strong>oj 33021 „Istraživanje i praćenje promena naponsko<<strong>br</strong> />

deformacionog stanja u stenskom masivu „in situ“ oko podzemnih prostorija sa izradom<<strong>br</strong> />

tunela sa posebnim osvrtom na tunel Kriveljske reke i Jame <strong>Bor</strong>“, koji je finansiran sredstvima<<strong>br</strong> />

Ministarstva <strong>za</strong> prosvetu i nauku Republike Srbije<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 49<<strong>br</strong> />

RUDARSKI RADOVI


<strong>Bor</strong>a. Pronađeno je 1969. godine, a dobilo<<strong>br</strong> />

je naziv po istoimenom selu koje se nalazi<<strong>br</strong> />

u neposrenoj blizini ležišta.<<strong>br</strong> />

Radovi na otkopavanju otkrivke <strong>za</strong>počeli<<strong>br</strong> />

su 1979. godine, a prve količine rude<<strong>br</strong> />

otkopane su 1982. godine. Danas proizvodnja<<strong>br</strong> />

koncentrata bakra iz rude sa površinskog<<strong>br</strong> />

kopa Veliki Krivelj čini oko 75% od ukupne<<strong>br</strong> />

proizvodnje RBB-a, dok je učešće rude sa<<strong>br</strong> />

površinskog kopa oko 90% ukupno otkopane<<strong>br</strong> />

rude, sa trendom daljeg povećanja.<<strong>br</strong> />

U neposrednoj blizini površinskog<<strong>br</strong> />

kopa izgrađena su drobilična postrojenja,<<strong>br</strong> />

flotacija i drugi prateći objekti neophodni<<strong>br</strong> />

<strong>za</strong> eksploataciju i preradu, odnosno obogaćivanje<<strong>br</strong> />

rude flotacijskim postupkom. Dobijeni<<strong>br</strong> />

koncentrat bakra se prevozi i prerađuje<<strong>br</strong> />

u Topionici u <strong>Bor</strong>u.<<strong>br</strong> />

Rudnik bakra Veliki Krivelj od početka<<strong>br</strong> />

eksploatacije rude <strong>za</strong> deponovanje<<strong>br</strong> />

flotacijske jalovine koristi prostor dobijen<<strong>br</strong> />

pregrađivanjem doline Kriveljske reke.<<strong>br</strong> />

Da bi se realizovalo novo proširenje<<strong>br</strong> />

flotacijskog jalovišta neophodno je<<strong>br</strong> />

prethodno izgraditi nove objekte <strong>za</strong><<strong>br</strong> />

devijaciju Kriveljske reke, koji se nalaze u<<strong>br</strong> />

zoni flotacijskog jalovišta. Na ovaj način<<strong>br</strong> />

obezbedio bi se prostor <strong>za</strong> trajno<<strong>br</strong> />

deponovanje flotacijske jalovine.<<strong>br</strong> />

2. KONCEPT RAZVOJA RUDNIKA<<strong>br</strong> />

BAKRA VELIKI KRIVELJ<<strong>br</strong> />

Na osnovu overenih rezervi rude bakra,<<strong>br</strong> />

usvojenog godišnjeg kapaciteta<<strong>br</strong> />

otkopavanja rude od 10,6 miliona tona i<<strong>br</strong> />

predviđene cene bakra na svetskom tržištu<<strong>br</strong> />

metala od 6 000 $ po toni katode<<strong>br</strong> />

definisana je konačna optimalna kontura<<strong>br</strong> />

površinskog kopa do k-100 u okviru koje<<strong>br</strong> />

će se odvijati buduća eksploatacija do<<strong>br</strong> />

2050. godine, slike 1 i 2.<<strong>br</strong> />

Koncepcijski razvoj kopa u narednom<<strong>br</strong> />

periodu eksploatacije opredeljen je na osnovu<<strong>br</strong> />

sledećih uslova:<<strong>br</strong> />

� maksimalnom iskorišćenju ležišta<<strong>br</strong> />

� održanju kontinuiteta u otkopavanju<<strong>br</strong> />

rude, sa pripadajućim količinama<<strong>br</strong> />

otkrivke<<strong>br</strong> />

� mogućnosti otkopavanja partija rude<<strong>br</strong> />

sa različitim sadržajima bakra i<<strong>br</strong> />

pravljenje određenog odgovarajućeg<<strong>br</strong> />

kompozita<<strong>br</strong> />

� stvaranje mogućnosti <strong>za</strong> nesmetan<<strong>br</strong> />

rad više jedinica primenjene osnovne<<strong>br</strong> />

opreme, odnosno njihov rad na<<strong>br</strong> />

različitim lokacijama na kopu<<strong>br</strong> />

� obezbeđenje potrebne sigurnosti,<<strong>br</strong> />

kako pri izvođenju rudarskih radova,<<strong>br</strong> />

tako i nakon <strong>za</strong>vršetka otkopavanja<<strong>br</strong> />

na površinskom kopu.<<strong>br</strong> />

Osnovni eksploatacioni konačne optimalne<<strong>br</strong> />

konture površinskog kopa Veliki<<strong>br</strong> />

Krivelj su:<<strong>br</strong> />

� ukupna količina iskopina, t<<strong>br</strong> />

......................................912 773 628<<strong>br</strong> />

� količina otkrivke, t<<strong>br</strong> />

......................................503 115 419<<strong>br</strong> />

� količina rude, t<<strong>br</strong> />

......................................409 658 209<<strong>br</strong> />

� granični sadržaj bakra u rudi, % Cu<<strong>br</strong> />

......................................0,150<<strong>br</strong> />

� prosečan sadržaj bakra u rudi, % Cu<<strong>br</strong> />

......................................0,324<<strong>br</strong> />

� koeficijent otkrivke, t/t<<strong>br</strong> />

.......................................1,228<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 50<<strong>br</strong> />

RUDARSKI RADOVI


305<<strong>br</strong> />

-100<<strong>br</strong> />

Sl. 1. Izgled <strong>za</strong>vršne konture pk Veliki Krivelj do kote k-100 m (2D prikaz)<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 51<<strong>br</strong> />

RUDARSKI RADOVI<<strong>br</strong> />

-55


Sl. 2. Izgled <strong>za</strong>vršne konture pk Veliki Krivelj do kote k-100 m (3D prikaz)<<strong>br</strong> />

Ruda bakra sa površinskog kopa Veliki<<strong>br</strong> />

Krivelj prerađuje se u pogonu flotacija<<strong>br</strong> />

Veliki Krivelj, čiji je sadašnji kapacitet<<strong>br</strong> />

8,5 miliona tona rude.<<strong>br</strong> />

Povećanje kapaciteta pogona flotacije<<strong>br</strong> />

na 10,6 miliona tona godišnje podrazumeva<<strong>br</strong> />

sledeće procese:<<strong>br</strong> />

- sekundarno i tercijalno drobljenje sa<<strong>br</strong> />

prosejavanjem do krupnoće od 100<<strong>br</strong> />

% - 16 mm,<<strong>br</strong> />

- dvostepeno mlevenje u mlinovima sa<<strong>br</strong> />

šipkama i kuglama sa jedostepenim<<strong>br</strong> />

klasiranjem u hidrociklonima do krupnoće<<strong>br</strong> />

od 55 do 60 % klase –0,074 mm,<<strong>br</strong> />

- osnovno flotiranje rude sa domeljavanjem<<strong>br</strong> />

osnovnog i kontrolnog koncentrata<<strong>br</strong> />

do krupnoće 85 % - 0,074 mm i trostepeno<<strong>br</strong> />

prečišćavanje,<<strong>br</strong> />

- dvodnjavanje definitivnog koncentrata<<strong>br</strong> />

bakra u procesu zgušnjavanja i filtriranja<<strong>br</strong> />

do sadržaja vlage od 10 % i<<strong>br</strong> />

- deponovanje jalovine.<<strong>br</strong> />

Povećanje kapaciteta otkopavanja i<<strong>br</strong> />

prerade rude sa sadašnjih 8,5 miliona tona<<strong>br</strong> />

na 10,6 miliona tona na godišnjem nivou<<strong>br</strong> />

neminovno <strong>za</strong>hteva i obezbeđenje prostora<<strong>br</strong> />

<strong>za</strong> odlaganje flotacijske jalovine. U sadašnjem<<strong>br</strong> />

trenutku na flotacijskom jalovištu<<strong>br</strong> />

Veliki Krivelj može se deponovati još oko<<strong>br</strong> />

48,5 miliona m 3 jalovine, a vremenski je<<strong>br</strong> />

ograničeno do početka 2015. godine.<<strong>br</strong> />

S obzirom da prostor doline Kriveljske<<strong>br</strong> />

reke predstavlja, <strong>za</strong> sada, jedinu realnu,<<strong>br</strong> />

dugoročnu lokaciju <strong>za</strong> deponovanje<<strong>br</strong> />

flotacijske jalovine iz flotacije Veliki Krivelj<<strong>br</strong> />

nameće se potreba da se maksimalno<<strong>br</strong> />

iskoriste prostorne mogućnosti koje pruža<<strong>br</strong> />

dolina Kriveljske reke.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 52<<strong>br</strong> />

RUDARSKI RADOVI


Nakon <strong>za</strong>punjavanja preostalog prostora<<strong>br</strong> />

flotacijskog jalovišta Veliki Krivelj tehnološki<<strong>br</strong> />

je moguće uzvodno proširenje jalovišta<<strong>br</strong> />

Veliki Krivelj u pravcu površinskog kopa<<strong>br</strong> />

Veliki Krivelj i transportnog sistema <strong>za</strong> jalovinu<<strong>br</strong> />

izgradnjom nove <strong>br</strong>ane 4. Nova <strong>br</strong>ana<<strong>br</strong> />

će formirati i novo akumulaciono Polje 3<<strong>br</strong> />

uzvodno od postojeće <strong>br</strong>ane 1, slika 4.<<strong>br</strong> />

Sl. 3. Prikaz sadašnjeg izgleda flotacijskog jalovišta Veliki Krivelj sa postojećim<<strong>br</strong> />

objektima <strong>za</strong> devijaciju Kriveljske reke u 3D formatu<<strong>br</strong> />

3. TEHNIČKI OPIS NOVIH<<strong>br</strong> />

OBJEKATA ZA DEVIJACIJU<<strong>br</strong> />

KRIVELJSKE REKE<<strong>br</strong> />

Da bi realizovali planovi potencijalnog<<strong>br</strong> />

razvoja rudnika Veliki Krivelj, kojima se<<strong>br</strong> />

obuhvata naredni period do 2050. godine,<<strong>br</strong> />

potrebno je ispuniti niz preduslova, a među<<strong>br</strong> />

njima je svakako i izgradnja objekata <strong>za</strong><<strong>br</strong> />

izmeštanje Kriveljske reke u zoni flotacijskog<<strong>br</strong> />

jalovišta Veliki Krivelj.<<strong>br</strong> />

Za dalju eksploataciju na ovom rudniku<<strong>br</strong> />

predviđena je izgradnja sledećih<<strong>br</strong> />

kapitalnih objekata:<<strong>br</strong> />

- tunela <strong>za</strong> devijaciju Kriveljske reke u<<strong>br</strong> />

zoni Polja 2<<strong>br</strong> />

- tunela <strong>za</strong> devijaciju Kriveljske reke u<<strong>br</strong> />

zoni Polja 3<<strong>br</strong> />

- veze (tunel - kolektor) između sadašnjeg<<strong>br</strong> />

tunela <strong>za</strong> <strong>Bor</strong>sku reku i novog<<strong>br</strong> />

tunela <strong>za</strong> Kriveljsku reku<<strong>br</strong> />

- kolektora <strong>za</strong> uvođenje Saraka potoka<<strong>br</strong> />

u novi tunel Kriveljske reke.<<strong>br</strong> />

Takođe neophodno je izgraditi i sledeće<<strong>br</strong> />

hidrotehničke objekte:<<strong>br</strong> />

- drenažni sistem <strong>za</strong> <strong>br</strong>anu 4<<strong>br</strong> />

- pumpnu stanicu drenažne vode <strong>za</strong><<strong>br</strong> />

<strong>br</strong>anu 4<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 53<<strong>br</strong> />

RUDARSKI RADOVI


- sistem <strong>za</strong> dovod pulpe i gravitacijsko<<strong>br</strong> />

napajanje hidrociklona na <strong>br</strong>ani 4.<<strong>br</strong> />

Pored izgradnje navedenih objekata<<strong>br</strong> />

neophodno je instalisati nove cevovode <strong>za</strong><<strong>br</strong> />

vraćanje povratne vode iz jezera Polja 3<<strong>br</strong> />

do rezervoara Kriveljske flotacije ili <strong>za</strong><<strong>br</strong> />

uključivanje u postojeći sistem povratne<<strong>br</strong> />

vode i izvršiti izmeštanje cevovoda vode<<strong>br</strong> />

<strong>za</strong> piće Surdup – <strong>Bor</strong>.<<strong>br</strong> />

Za izmeštanje toka Kriveljske reke u<<strong>br</strong> />

zoni Polja 2 predviđeno je da se izgradi<<strong>br</strong> />

tunel unutrašnjeg prečnika D = 3,0 m i<<strong>br</strong> />

duzine L = 2 450 m. Tunel se gradi u<<strong>br</strong> />

<strong>br</strong>dskoj masi desne obale, slika 4. Najteža<<strong>br</strong> />

deonica <strong>za</strong> izvođenje, dužine oko 300 m,<<strong>br</strong> />

nalazi se na delu tunela koji treba da se<<strong>br</strong> />

izvede ispod temelja <strong>br</strong>ane 2 na oko 10 m<<strong>br</strong> />

ispod nivoa stene u koritu reke. Ova deonica<<strong>br</strong> />

će se, po potrebi, izvoditi sa prethodnom<<strong>br</strong> />

konsolidacijom terena u zoni oko<<strong>br</strong> />

predviđenog iskopa.<<strong>br</strong> />

Izrada tunela u stenskoj masi ispod<<strong>br</strong> />

dolinskih strana, a na kotama koje se<<strong>br</strong> />

nalaze u nivou korita Kriveljske reke (andeziti,<<strong>br</strong> />

konglomerati i peščari, peščari i<<strong>br</strong> />

laporci) nije do sada predstavljala značajnije<<strong>br</strong> />

tehničke probleme, pa stoga ne bi<<strong>br</strong> />

trebalo očekivati posebne teškoće ni u<<strong>br</strong> />

izradi tunela kojim ce se izvršiti trajna<<strong>br</strong> />

devijacija Kriveljske reke na preostalom<<strong>br</strong> />

delu ove deonice. Posle izgradnje tunela<<strong>br</strong> />

na ovoj deonici, kolektor ce se plombirati.<<strong>br</strong> />

Za izmeštanje toka Kriveljske reke u<<strong>br</strong> />

zoni Polja 3 predviđeno je da se izgradi<<strong>br</strong> />

tunel unutrašnjeg prečnika D = 3,0 m i<<strong>br</strong> />

dužine L = 1 700 m. Tunel se gradi u<<strong>br</strong> />

<strong>br</strong>dskoj masi leve obale, slika 4. Obloga<<strong>br</strong> />

tunela je debljine d = 25 cm i od armiranog<<strong>br</strong> />

betona je MB20 dvostrano armirana.<<strong>br</strong> />

Za vezu između postojećeg tunela kojim<<strong>br</strong> />

se sprovodi <strong>Bor</strong>ska reka, tj. <strong>za</strong><<strong>br</strong> />

uvođenje voda iz sliva <strong>Bor</strong>ske reke i voda<<strong>br</strong> />

od odvodnjavanja potkopa predviđen je<<strong>br</strong> />

armirano betonski kolektor unutrašnjeg<<strong>br</strong> />

prečnika D = 1,60 m i dužine L = 350 m.<<strong>br</strong> />

Kolektorom Saraka potoka uvode se<<strong>br</strong> />

vode sa slivnog područja Saraka potoka u<<strong>br</strong> />

tunel Kriveljske reke. Konstrukcija kolektora<<strong>br</strong> />

je od armiranog betona MB30<<strong>br</strong> />

dvostrano armirana. Unutrašnje površine<<strong>br</strong> />

su <strong>za</strong>štićene antikorozionim premazima.<<strong>br</strong> />

Dimenzije kolektora su:<<strong>br</strong> />

prečnik D = 1,8 m<<strong>br</strong> />

debljina zida d = 45 cm.<<strong>br</strong> />

Izgradnjom tunela <strong>za</strong> devijaciju<<strong>br</strong> />

Kriveljske reke u zoni Polja 3 doći ce do<<strong>br</strong> />

bitnog pogoršanja uslova sa stanovišta<<strong>br</strong> />

veličine zone <strong>za</strong>hvaćene plavljenjem velikim<<strong>br</strong> />

vodama Kriveljske reke. Naime,<<strong>br</strong> />

može se smatrati da će se i uzvodno od<<strong>br</strong> />

<strong>br</strong>ane 4 pri nailasku poplavnog talasa formirati<<strong>br</strong> />

uspor, odnosno akumulacija dubine<<strong>br</strong> />

oko 27 m (<strong>za</strong> slučaj 10 000 godišnjih velikih<<strong>br</strong> />

voda) što bi značilo plavljenje svih<<strong>br</strong> />

površina koje su na kotama nižim od kote<<strong>br</strong> />

320 m.<<strong>br</strong> />

Od postojećih rudničkih objekata koji<<strong>br</strong> />

se nalaze u mogućoj zoni plavljenja su:<<strong>br</strong> />

- površinski kop,<<strong>br</strong> />

- transportna sistem <strong>za</strong> jalovinu i<<strong>br</strong> />

- vodo<strong>za</strong>hvat sa taložnikom i pumpnom<<strong>br</strong> />

stanicom.<<strong>br</strong> />

Da bi se omogućilo regulisano oticanje<<strong>br</strong> />

Kriveljske reke <strong>za</strong> vreme poplava, neophodno<<strong>br</strong> />

je formirati dovoljno velik akumulacioni<<strong>br</strong> />

(retenzioni) prostor od oko 6 x l0 6<<strong>br</strong> />

m 3 na pogodnoj lokaciji u dolini Kriveljske<<strong>br</strong> />

reke uzvodno od Velikog Krivelja.<<strong>br</strong> />

Taj akumulacioni prostor bi se formirao sa<<strong>br</strong> />

maksimalnom kotom vode od 371,0 m što<<strong>br</strong> />

bi iziskivalo izgradnju <strong>br</strong>ane visine oko 34<<strong>br</strong> />

m sa krunom na koti 373,0 m.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 54<<strong>br</strong> />

RUDARSKI RADOVI


10<<strong>br</strong> />

7<<strong>br</strong> />

BRANA 1<<strong>br</strong> />

LEGENDA - OBJEKTI:<<strong>br</strong> />

1 Postojeci kolektor Kriveljske reke<<strong>br</strong> />

2 Postojeci tunel Kriveljske reke<<strong>br</strong> />

3 Novi tunel Kriveljske reke u Polju 2<<strong>br</strong> />

4 Novi tunel Kriveljske reke u Polju 3<<strong>br</strong> />

5 Postojeci tunel <strong>Bor</strong>ske reke<<strong>br</strong> />

6 Novi tunel <strong>Bor</strong>ske reke<<strong>br</strong> />

7 Postojeci kolektor Saraka<<strong>br</strong> />

8 Novi tunel Saraka<<strong>br</strong> />

9 Cevovov Surdup-<strong>Bor</strong><<strong>br</strong> />

10 Kriveljska reka<<strong>br</strong> />

9<<strong>br</strong> />

Sl. 4. Dispozicija objekata <strong>za</strong> izmeštanje Kriveljske reke u zoni flotacijskog jalovišta<<strong>br</strong> />

Veliki Krivelj<<strong>br</strong> />

4. ZAKLJUČAK<<strong>br</strong> />

Reali<strong>za</strong>cija planova razvoja rudnika Veliki<<strong>br</strong> />

Krivelj, u narednom četrdesetogodišnjem<<strong>br</strong> />

periodu, podrazumeva ispunjavanje niz<<strong>br</strong> />

preduslova, a među njima se kao veoma<<strong>br</strong> />

važan ističe izgradnja kapitalnih objekata<<strong>br</strong> />

<strong>za</strong> izmeštanje Kriveljske reke u zoni flotacijskog<<strong>br</strong> />

jalovišta Veliki Krivelj i to:<<strong>br</strong> />

- tunela <strong>za</strong> devijaciju Kriveljske reke u<<strong>br</strong> />

zoni Polja 2<<strong>br</strong> />

- tunela <strong>za</strong> devijaciju Kriveljske reke u<<strong>br</strong> />

zoni Polja 3<<strong>br</strong> />

- veze (tunel - kolektor) između sadašnjeg<<strong>br</strong> />

tunela <strong>za</strong> <strong>Bor</strong>sku reku i novog<<strong>br</strong> />

tunela <strong>za</strong> Kriveljsku reku i<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 55<<strong>br</strong> />

RUDARSKI RADOVI<<strong>br</strong> />

BRANA 2<<strong>br</strong> />

1<<strong>br</strong> />

- kolektora <strong>za</strong> uvođenje Saraka potoka<<strong>br</strong> />

u novi tunel Kriveljske reke.<<strong>br</strong> />

Takođe, da bi se izbeglo moguće formiranje<<strong>br</strong> />

poplavnog talasa uzvodno od <strong>br</strong>ane<<strong>br</strong> />

4, kao posledica izgradnje tunela kroz polje<<strong>br</strong> />

3 flotacijskog jalovišta i ugrožavanja<<strong>br</strong> />

površinskog kopa, transportnog sistema <strong>za</strong><<strong>br</strong> />

jalovinu i vodo<strong>za</strong>hvata sa taložnikom i<<strong>br</strong> />

pumpnom stanicom, neophodno je uzvodno<<strong>br</strong> />

od sela Veliki Krivelj izgraditi retenzionu<<strong>br</strong> />

<strong>br</strong>anu visine oko 34 m.


LITERATURA<<strong>br</strong> />

[1] Dopunski rudarski projekat otkopavanja<<strong>br</strong> />

i prerade rude bakra u ležištu<<strong>br</strong> />

Veliki Krivelj <strong>za</strong> kapacitet 10,6 x 10 6<<strong>br</strong> />

tona vlažne rude godišnje, <strong>Institut</strong> <strong>za</strong><<strong>br</strong> />

<strong>rudarstvo</strong> i <strong>metalurgiju</strong> <strong>Bor</strong>, mart <strong>2011</strong><<strong>br</strong> />

[2] Tehnički projekat odlaganja flotacijske<<strong>br</strong> />

jalovine <strong>za</strong> kapacitet od 10,6 x 10 6 tona<<strong>br</strong> />

vlažne rude, <strong>Institut</strong> <strong>za</strong> <strong>rudarstvo</strong> i<<strong>br</strong> />

<strong>metalurgiju</strong> <strong>Bor</strong>, mart <strong>2011</strong><<strong>br</strong> />

[3] Eksperti<strong>za</strong> o postojećem stanju jalovišta<<strong>br</strong> />

Veliki Krivelj sa koncepcijskim<<strong>br</strong> />

rešenjem odlaganja flotacijske jalovine<<strong>br</strong> />

u dolini Kriveljske reke, <strong>Institut</strong> <strong>za</strong><<strong>br</strong> />

bakar <strong>Bor</strong>, mart 2003<<strong>br</strong> />

[4] D. Kržanović, M. Mikić, M. Ljubojev,<<strong>br</strong> />

Anali<strong>za</strong> prostornog položaja rudničkih<<strong>br</strong> />

objekata rudnika Veliki Krivelj u<<strong>br</strong> />

odnosu na predloženu trasu tunela <strong>za</strong><<strong>br</strong> />

izmeštanje Kriveljske reke, Časopis<<strong>br</strong> />

<strong>Rudarski</strong> <strong>radovi</strong>, <strong>br</strong>. 3, <strong>2011</strong>, str. 89-95<<strong>br</strong> />

[5] M. Ljubojev, D. Ignjatović, L. Đ.<<strong>br</strong> />

Ignjatović, V. Ljubojev, Pripreme <strong>za</strong><<strong>br</strong> />

istraživanje trase tunela i snimanje<<strong>br</strong> />

terena, Časopis <strong>Rudarski</strong> <strong>radovi</strong>, <strong>br</strong>. 1,<<strong>br</strong> />

<strong>2011</strong>, str. 135-166<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 56<<strong>br</strong> />

RUDARSKI RADOVI


MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162<<strong>br</strong> />

COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622<<strong>br</strong> />

UDK: 622.26:622.271 (045)=20<<strong>br</strong> />

Daniel Kržanović ∗ , Miomir Mikić * , Milenko Ljubojev *<<strong>br</strong> />

ANALYSIS OF DEVELOPMENT EFFECTS OF THE VELIKI KRIVELJ<<strong>br</strong> />

MINE ON CONSTRUCTION THE NEW FACILITIES FOR DEVIATION<<strong>br</strong> />

THE KRIVELJ RIVER **<<strong>br</strong> />

Abstract<<strong>br</strong> />

This paper gives an overview of development the Veliki Krivelj Mine, located within the Mining<<strong>br</strong> />

and Smelting Basin <strong>Bor</strong>, in the next forty year period and an analysis of this development impact<<strong>br</strong> />

on construction the facilities for relocation the Krivelj River.<<strong>br</strong> />

Based on carried out analysis, it was determined that the new facilities have to be be built as<<strong>br</strong> />

the ore mining in the Veliki Krivelj Mine could be realized smoothly and in accordance with the<<strong>br</strong> />

adopted long-term plans of the Company management.<<strong>br</strong> />

Key words: Veliki Krivelj Mine, development, facilities for deviation the Krivelj River<<strong>br</strong> />

1. INTRODUCTION<<strong>br</strong> />

The major changes in the world copper<<strong>br</strong> />

production occurred primarily due to the<<strong>br</strong> />

constant increase in copper prices since<<strong>br</strong> />

2004, which also reached in <strong>2011</strong> the average<<strong>br</strong> />

value of 9 500 $, positively affected<<strong>br</strong> />

the copper production in the company<<strong>br</strong> />

RTB <strong>Bor</strong>.<<strong>br</strong> />

Based on the realized analyses of potentialities<<strong>br</strong> />

the deposits in <strong>Bor</strong> and Majdanpek,<<strong>br</strong> />

the management of RTB <strong>Bor</strong> has<<strong>br</strong> />

adopted a strategy of further development<<strong>br</strong> />

the mining production, which will be<<strong>br</strong> />

based on the mass exploitation of copper<<strong>br</strong> />

ore at the open pits Veliki Krivelj and<<strong>br</strong> />

Cerovo, operating within the Copper<<strong>br</strong> />

Mines Ltd. <strong>Bor</strong> (RBB ) and North and<<strong>br</strong> />

South Mining District, within the Copper<<strong>br</strong> />

Mine Majdanpek (RBM).<<strong>br</strong> />

Within the Copper Mine Veliki<<strong>br</strong> />

Krivelj, large there are two technological<<strong>br</strong> />

systems: open pit and flotation.<<strong>br</strong> />

Open Pit Krivelj is located at a distance<<strong>br</strong> />

about 4 km northeast of <strong>Bor</strong>a. It was<<strong>br</strong> />

found in 1969 and it was named after the<<strong>br</strong> />

same named village, located in the vicinity<<strong>br</strong> />

of deposit.<<strong>br</strong> />

∗ Mining and Metallurgy <strong>Institut</strong>e <strong>Bor</strong><<strong>br</strong> />

** This paper is produced from the project no. 33021 “Researching and monitoring changes in<<strong>br</strong> />

stress-deformation condition of rock massif “in-situ” around undergraund facilities with development<<strong>br</strong> />

of model with special emphasis on Krivelj river tunnel and <strong>Bor</strong> pit”, which is funded by<<strong>br</strong> />

means of the Ministry of Education and Science of the Republic of Serbia<<strong>br</strong> />

No 4, <strong>2011</strong>. 57<<strong>br</strong> />

MINING ENGINEERING


Works on overburden excavation began<<strong>br</strong> />

in 1979, and the first quantity of ore<<strong>br</strong> />

were excavated in 1982.Today, production<<strong>br</strong> />

of copper concentrate from the ore of the<<strong>br</strong> />

open pit Veliki Krivelj makes about 75%<<strong>br</strong> />

of the total production of RBB, while the<<strong>br</strong> />

share of open pit ore is with about 90% of<<strong>br</strong> />

the excavated ore, with a trend of further<<strong>br</strong> />

increasing.<<strong>br</strong> />

The crushing plants, flotation and<<strong>br</strong> />

other auxiliary facilities were built in the<<strong>br</strong> />

near vicinity of open pit, necessary for<<strong>br</strong> />

exploitation and processing, and enrichment<<strong>br</strong> />

of ore by the flotation method. The<<strong>br</strong> />

resulting copper concentrate is transported<<strong>br</strong> />

and processed in the Smelter in <strong>Bor</strong>.<<strong>br</strong> />

Copper mine Veliki Krivelj since the<<strong>br</strong> />

beginning of ore exploitation uses the<<strong>br</strong> />

space, obtained by damming the Krivelj<<strong>br</strong> />

River valley, for disposal the flotation<<strong>br</strong> />

tailings.<<strong>br</strong> />

In order to realize the new extension of<<strong>br</strong> />

flotation tailing dump, it is necessary to<<strong>br</strong> />

previously build the new facilities for deviation<<strong>br</strong> />

the Krivelj River, located in the<<strong>br</strong> />

zone of flotation tailings. In this way, the<<strong>br</strong> />

space will be provided for permanent disposal<<strong>br</strong> />

of flotation tailings.<<strong>br</strong> />

2. CONCEPT OF DEVELOPMENT<<strong>br</strong> />

THE COPPER MINE<<strong>br</strong> />

VELIKI KRIVELJ<<strong>br</strong> />

Based on the verified reserves of copper<<strong>br</strong> />

ore, the adopted annual ore mining<<strong>br</strong> />

capacity of 10.6 million tons of copper<<strong>br</strong> />

and predicted copper price on the world<<strong>br</strong> />

metal market of 6 000 $ per ton of cathode,<<strong>br</strong> />

the final optimum contour of open pit<<strong>br</strong> />

was defined to k-100, within which the<<strong>br</strong> />

future exploitation will be developed until<<strong>br</strong> />

2050, Figures 1 and 2.<<strong>br</strong> />

Conceptual development of open pit in<<strong>br</strong> />

the future period of exploitation is committed<<strong>br</strong> />

on the basis of the following conditions:<<strong>br</strong> />

� maximum utili<strong>za</strong>tion of deposit,<<strong>br</strong> />

� maintaining the continuity in the ore<<strong>br</strong> />

excavation, with corresponding<<strong>br</strong> />

quantities of overburden,<<strong>br</strong> />

� possibility of mining the ore parties<<strong>br</strong> />

with different copper contents and<<strong>br</strong> />

making the certain suitable composite,<<strong>br</strong> />

� creation the opportunities for smooth<<strong>br</strong> />

operation of several units of the applied<<strong>br</strong> />

basic equipment, and their<<strong>br</strong> />

work on different locations at the<<strong>br</strong> />

open pit,<<strong>br</strong> />

� providing the necessary security,<<strong>br</strong> />

both in the execution of mining<<strong>br</strong> />

works, and after excavation at the<<strong>br</strong> />

open pit.<<strong>br</strong> />

The basic exploitation parameters of<<strong>br</strong> />

the final optimum contour of the open pit<<strong>br</strong> />

Veliki Krivelj are:<<strong>br</strong> />

� total quantity of excavation, t<<strong>br</strong> />

..................................912 773 628<<strong>br</strong> />

� quantity of overburden, t<<strong>br</strong> />

..................................503 115 419<<strong>br</strong> />

� quantity of ore, t<<strong>br</strong> />

..................................409 658 209<<strong>br</strong> />

� limit copper content in the ore, % Cu<<strong>br</strong> />

..................................0.150<<strong>br</strong> />

� average copper content in the ore, % Cu<<strong>br</strong> />

..................................0.324<<strong>br</strong> />

� overburden coefficient, t/t<<strong>br</strong> />

..................................1.228<<strong>br</strong> />

No 4, <strong>2011</strong>. 58<<strong>br</strong> />

MINING ENGINEERING


305<<strong>br</strong> />

-100<<strong>br</strong> />

Fig. 1. View of the final contour of the open pit Veliki Krivelj up to the elevation k-100 m<<strong>br</strong> />

(2D review)<<strong>br</strong> />

No 4, <strong>2011</strong>. 59<<strong>br</strong> />

MINING ENGINEERING<<strong>br</strong> />

-55


Fig. 2. View of the final contour of the open pit Veliki Krivelj up to the elevation k-100 m<<strong>br</strong> />

(3D review)<<strong>br</strong> />

Copper ore from the open pit Veliki<<strong>br</strong> />

Krivelj is processed in the Flotation Plant<<strong>br</strong> />

Veliki Krivelj Great, whose current capacity<<strong>br</strong> />

is 8.5 million tons of ore.<<strong>br</strong> />

Increasing the capacity of the Flotation<<strong>br</strong> />

Plant to 10.6 million tons per year includes<<strong>br</strong> />

the following processes:<<strong>br</strong> />

- secondary and tertiary crushing with<<strong>br</strong> />

screening to the size range of 100%<<strong>br</strong> />

- 16 mm,<<strong>br</strong> />

- two-stage grinding in bar and ball<<strong>br</strong> />

mills with one-stage sizing in hydrocyclones<<strong>br</strong> />

to the size-range of 55 to<<strong>br</strong> />

60%, size class -0.074 mm,<<strong>br</strong> />

- primary ore flotation with additional<<strong>br</strong> />

grinding of primary and control concentrate<<strong>br</strong> />

to the size range of 85%<<strong>br</strong> />

- 0.074 mm and three-stage cleaning,<<strong>br</strong> />

- dewatering the final copper concentrate<<strong>br</strong> />

in the process of thickening and<<strong>br</strong> />

filtration to the moisture content of<<strong>br</strong> />

10%, and<<strong>br</strong> />

- disposal of tailings.<<strong>br</strong> />

Increasing the capacity of ore mining<<strong>br</strong> />

and processing from the current 8.5 million<<strong>br</strong> />

tons to 10.6 million tons at yearly<<strong>br</strong> />

level inevitably requires and provides the<<strong>br</strong> />

spaces for disposal of flotation tailings. At<<strong>br</strong> />

present, about 48.5 million m 3 of tailings<<strong>br</strong> />

could be deposited at the flotation tailing<<strong>br</strong> />

dump Veliki Krivelj, and that is the time<<strong>br</strong> />

limited to the beginning of 2015.<<strong>br</strong> />

Since the area of the Krivelj River valley<<strong>br</strong> />

is, for now, the only real, long-term<<strong>br</strong> />

disposal site for the flotation tailings from<<strong>br</strong> />

the Flotation Plant Veliki Krivelj there is a<<strong>br</strong> />

need to maximize the spatial opportunities<<strong>br</strong> />

provided by the Krivelj River valley.<<strong>br</strong> />

After filling the remaining space of the<<strong>br</strong> />

Veliki Krivelj flotation tailing dump, it is<<strong>br</strong> />

technologically possible to expand the<<strong>br</strong> />

Veliki Krivelj tailing dump upstream in<<strong>br</strong> />

the direction of the Open Pit Veliki<<strong>br</strong> />

Krivelj and transport system for waste by<<strong>br</strong> />

construction a new Dam 4. The new dam<<strong>br</strong> />

will also form a new accumulation Field 3<<strong>br</strong> />

upstream of the existing Dam 1, Figure 4.<<strong>br</strong> />

No 4, <strong>2011</strong>. 60<<strong>br</strong> />

MINING ENGINEERING


Fig. 3. Review of the present appearance of the flotation tailing dump Veliki Krivelj with the<<strong>br</strong> />

existing facilities for deviation of the Krivelj River in 3D format<<strong>br</strong> />

3. TECHNICAL DESCRIPTION OF<<strong>br</strong> />

THE NEW FACILITIES FOR<<strong>br</strong> />

DEVIATION OF THE<<strong>br</strong> />

KRIVELJ RIVER<<strong>br</strong> />

To realize the plans of potential development<<strong>br</strong> />

the Veliki Krivelj Mine, which<<strong>br</strong> />

include the following period until 2050, it<<strong>br</strong> />

is necessary to meet a number of preconditions,<<strong>br</strong> />

among them is certainly the<<strong>br</strong> />

construction of facilities for relocation the<<strong>br</strong> />

Krivelj River in the zone of flotation tailing<<strong>br</strong> />

dump Veliki Krivelj.<<strong>br</strong> />

For further exploitation of this mine,<<strong>br</strong> />

the construction of the following capital<<strong>br</strong> />

facilities is anticipated:<<strong>br</strong> />

- tunnel for deviation the Krivelj River<<strong>br</strong> />

in the zone of Field 2<<strong>br</strong> />

- tunnel for deviation the Krivelj River<<strong>br</strong> />

in the zone of Field 3<<strong>br</strong> />

- connections (tunnel - collector) between<<strong>br</strong> />

the existing tunnel for the <strong>Bor</strong><<strong>br</strong> />

River and a new tunnel for the<<strong>br</strong> />

Krivelj River<<strong>br</strong> />

- collector for introduction the Saraka<<strong>br</strong> />

Stream into a new tunnel of the<<strong>br</strong> />

Krivelj River.<<strong>br</strong> />

Also, it is necessary to construct the<<strong>br</strong> />

following hydrotechnical facilities:<<strong>br</strong> />

- drainage system for Dam 4<<strong>br</strong> />

- pump station of drainage water for<<strong>br</strong> />

Dam 4<<strong>br</strong> />

- system for supply of pulp and gravitational<<strong>br</strong> />

power of hydrocyclone on<<strong>br</strong> />

Dam 4.<<strong>br</strong> />

In addition to the construction of these<<strong>br</strong> />

facilities, it is necessary to install the new<<strong>br</strong> />

pipelines for return the feedback water<<strong>br</strong> />

from the lake of Field 3 to the tanks of the<<strong>br</strong> />

Krivelj Flotation Plant or connection into<<strong>br</strong> />

the existing system of feedback water and<<strong>br</strong> />

to make the relocation of pipeline for<<strong>br</strong> />

drinking water Surdup - <strong>Bor</strong>.<<strong>br</strong> />

No 4, <strong>2011</strong>. 61<<strong>br</strong> />

MINING ENGINEERING


For relocation the Krivelj River flow<<strong>br</strong> />

in the zone of Field 2, construction of a<<strong>br</strong> />

tunnel, inside diameter D = 3.0 m, length<<strong>br</strong> />

L = 2 450 m, is anticipated. The tunnel is<<strong>br</strong> />

built in the hilly mass of right bank, Figure<<strong>br</strong> />

4. The most difficult section for construction,<<strong>br</strong> />

about 300 m in length, is on a<<strong>br</strong> />

tunnel part that has to be performed under<<strong>br</strong> />

the foundation of Dam 2 to about 10 m<<strong>br</strong> />

below the rock level in the river bed. This<<strong>br</strong> />

section will be, if necessary, performed<<strong>br</strong> />

with the previous consolidation of field in<<strong>br</strong> />

the zone around planned excavation.<<strong>br</strong> />

Development of a tunnel in the rock<<strong>br</strong> />

mass under the valley sides, and at elevations<<strong>br</strong> />

contained in the level of the Krivelj<<strong>br</strong> />

River bed (andesites, conglomerates and<<strong>br</strong> />

sandstones, sandstones and marls) was not<<strong>br</strong> />

a significant technical problem, and therefore<<strong>br</strong> />

it should not be expected any special<<strong>br</strong> />

difficulties in a tunnel construction which<<strong>br</strong> />

will be made a permanent deviation of the<<strong>br</strong> />

Krivelj River in the remaining part of this<<strong>br</strong> />

section. After construction of tunnel on<<strong>br</strong> />

this section, the collector will be sealed.<<strong>br</strong> />

For relocation the Krivelj River flow<<strong>br</strong> />

in the zone of Field 3, construction of a<<strong>br</strong> />

tunnel, inside diameter D = 3.0 m, length<<strong>br</strong> />

L = 1 700 m, is anticipated. The tunnel is<<strong>br</strong> />

built in the hilly mass of left bank, Figure<<strong>br</strong> />

4. The tunnel lining thickness is d = 25 cm<<strong>br</strong> />

and made of reinforced concrete MB 20,<<strong>br</strong> />

two-sides reinforced.<<strong>br</strong> />

For connection of the existing tunnel,<<strong>br</strong> />

for the <strong>Bor</strong> River, that is the introduction<<strong>br</strong> />

of water from the <strong>Bor</strong> River basin and<<strong>br</strong> />

water from drainage adit, the reinforced<<strong>br</strong> />

concrete is designed collector, internal<<strong>br</strong> />

diameter D = 1.60 m and length L = 350<<strong>br</strong> />

m, is anticipated.<<strong>br</strong> />

The Saraka Stream collector introduces<<strong>br</strong> />

the water from the catchment area<<strong>br</strong> />

of the Saraka Stream into the Krivelj<<strong>br</strong> />

River tunnel. Collector structure is made<<strong>br</strong> />

of reinforced concrete MB30, two-sided<<strong>br</strong> />

reinforced. Internal surfaces are protected<<strong>br</strong> />

with anti-corrosive coatings. Dimensions<<strong>br</strong> />

of collector are:<<strong>br</strong> />

- diameter D = 1.8 m<<strong>br</strong> />

- wall thickness d = 45 cm.<<strong>br</strong> />

Tunnel construction for deviation the<<strong>br</strong> />

Krivelj River in the zone of Field 3 will<<strong>br</strong> />

substantially deteriorate the conditions<<strong>br</strong> />

from the point of zone size, affected by<<strong>br</strong> />

flooding with high water of the Krivelj<<strong>br</strong> />

River. Namely, it can be considered that<<strong>br</strong> />

upstream of Dam 4 in flooding wave, the<<strong>br</strong> />

flood wave will slow down, or the accumulation<<strong>br</strong> />

of about 27 m depth (in a case of<<strong>br</strong> />

10 000 annual high water), what would<<strong>br</strong> />

mean the flooding of all areas that are at<<strong>br</strong> />

elevations below 320 m elevation.<<strong>br</strong> />

The following existing mining facilities<<strong>br</strong> />

are situated in a possible flooding zone:<<strong>br</strong> />

- open pit,<<strong>br</strong> />

- transport system for waste, and<<strong>br</strong> />

- water intake with settling pond and<<strong>br</strong> />

pump station.<<strong>br</strong> />

To allow the regulated run of the<<strong>br</strong> />

Krivelj River during floods, it is necessary<<strong>br</strong> />

to form a large enough storage (retention)<<strong>br</strong> />

an area of approximately 6 x l0 6 m 3 at a<<strong>br</strong> />

suitable location in the Krivelj River valley<<strong>br</strong> />

upstream from Veliki Krivelj. The<<strong>br</strong> />

accumulation space would be formed with<<strong>br</strong> />

maximum water elevation of 371.0 m,<<strong>br</strong> />

what would require the construction of a<<strong>br</strong> />

dam, height of about 34, with a crown at<<strong>br</strong> />

elevation of 373.0 m.<<strong>br</strong> />

No 4, <strong>2011</strong>. 62<<strong>br</strong> />

MINING ENGINEERING


4. CONCLUSION<<strong>br</strong> />

Fig. 4. Disposition of facilities for relocation the Krivelj River in the zone of<<strong>br</strong> />

flotation tailing dump Veliki Krivelj large Krivelj<<strong>br</strong> />

Implementation the development plans<<strong>br</strong> />

of the Veliki Krivelj Mine, in the next<<strong>br</strong> />

forty year period, involves filling a number<<strong>br</strong> />

of pre-conditions, including the very<<strong>br</strong> />

important one as the construction of capital<<strong>br</strong> />

facilities for relocation the Krivelj<<strong>br</strong> />

River in the zone of flotation tailing dump<<strong>br</strong> />

Veliki Krivelj, as follows:<<strong>br</strong> />

- tunnel for deviation the Krivelj River<<strong>br</strong> />

in the zone of Field 2<<strong>br</strong> />

- tunnel for deviation the Krivelj River<<strong>br</strong> />

in the zone of Field 3<<strong>br</strong> />

10<<strong>br</strong> />

7<<strong>br</strong> />

BRANA 1<<strong>br</strong> />

LEGENDA - OBJEKTI:<<strong>br</strong> />

1 Postojeci kolektor Kriveljske reke<<strong>br</strong> />

2 Postojeci tunel Kriveljske reke<<strong>br</strong> />

3 Novi tunel Kriveljske reke u Polju 2<<strong>br</strong> />

4 Novi tunel Kriveljske reke u Polju 3<<strong>br</strong> />

5 Postojeci tunel <strong>Bor</strong>ske reke<<strong>br</strong> />

6 Novi tunel <strong>Bor</strong>ske reke<<strong>br</strong> />

7 Postojeci kolektor Saraka<<strong>br</strong> />

8 Novi tunel Saraka<<strong>br</strong> />

9 Cevovov Surdup-<strong>Bor</strong><<strong>br</strong> />

10 Kriveljska reka<<strong>br</strong> />

9<<strong>br</strong> />

No 4, <strong>2011</strong>. 63<<strong>br</strong> />

MINING ENGINEERING<<strong>br</strong> />

BRANA 2<<strong>br</strong> />

-<<strong>br</strong> />

1<<strong>br</strong> />

- connections (tunnel - collector) between<<strong>br</strong> />

the existing tunnel for the <strong>Bor</strong><<strong>br</strong> />

River and a new tunnel for the<<strong>br</strong> />

Krivelj River<<strong>br</strong> />

- collector for introduction the Saraka<<strong>br</strong> />

Stream into a new tunnel of the<<strong>br</strong> />

Krivelj River.<<strong>br</strong> />

Also, to avoid a possible formation of<<strong>br</strong> />

flooding wave upstream of Dam 4, as the<<strong>br</strong> />

consequence of a tunnel construction<<strong>br</strong> />

through Field 3 of the flotation tailing<<strong>br</strong> />

dump and threatening the open pit,


transport system for waste and water intake<<strong>br</strong> />

with settling pond and pump station,<<strong>br</strong> />

it is necessary to construct a retention<<strong>br</strong> />

dam, height of about 34 m, upstream from<<strong>br</strong> />

the village Veliki Krivelj.<<strong>br</strong> />

REFERENCES<<strong>br</strong> />

[1] Additional Mining Design of Copper<<strong>br</strong> />

Ore Mining and Processing from the<<strong>br</strong> />

Veliki Krivelj Deposit for Capacity of<<strong>br</strong> />

10.6 x 10 6 t of Wet Ore Annually,<<strong>br</strong> />

Mining and Metallurgy <strong>Institut</strong>e <strong>Bor</strong>,<<strong>br</strong> />

March <strong>2011</strong> (in Serbian)<<strong>br</strong> />

[2] Technical Design of Disposal the<<strong>br</strong> />

Flotation Tailings for Capacity of 10.6<<strong>br</strong> />

x 10 6 t of Wet Ore, Mining and<<strong>br</strong> />

Metallurgy <strong>Institut</strong>e <strong>Bor</strong>, March <strong>2011</strong><<strong>br</strong> />

(in Serbian)<<strong>br</strong> />

[3] Expertise the Current State of the Veliki<<strong>br</strong> />

Krivelj Tailing Dump with Conceptual<<strong>br</strong> />

Design of Disposal the Flotation<<strong>br</strong> />

Tailings disposal in the Krivelj River<<strong>br</strong> />

Valley, Copper <strong>Institut</strong>e <strong>Bor</strong>, March<<strong>br</strong> />

2003 (in Serbian)<<strong>br</strong> />

[4] D. Kržanović, M. Mikić, M. Ljubojev,<<strong>br</strong> />

Analysis the Spatial Position of the<<strong>br</strong> />

Mining Facilities of the Veliki Krivelj<<strong>br</strong> />

Mine in Relation to the Proposed<<strong>br</strong> />

Tunnel Route for Relocation the Krivelj<<strong>br</strong> />

River, Mining Engineering, No. 3,<<strong>br</strong> />

<strong>2011</strong>, pp. 1-12<<strong>br</strong> />

[5] M. Ljubojev, D. Ignjatović, L.<<strong>br</strong> />

Djurdjevac Ignjatović, V. Ljubojev,<<strong>br</strong> />

Preparations for Tunnel Investigation<<strong>br</strong> />

and Field Recording, Mining<<strong>br</strong> />

Engineering, No. 1, <strong>2011</strong>, pp. 135-166<<strong>br</strong> />

No 4, <strong>2011</strong>. 64<<strong>br</strong> />

MINING ENGINEERING


INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162<<strong>br</strong> />

KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622<<strong>br</strong> />

UDK: 622.272.3:622.33(045)=861<<strong>br</strong> />

Mirko Ivković*, Ljubiša Figun, Ivana Živojinović, Svjetlana Ivković<<strong>br</strong> />

OPTIMIZACIJA PROIZVODNO – TEHNIČKIH PARAMETARA<<strong>br</strong> />

STUBNE METODE OTKOPAVANJA UGLJENIH SLOJEVA<<strong>br</strong> />

Izvod<<strong>br</strong> />

Problematika o<strong>br</strong>ađena u ovom radu posvećena je definisanju metodologije optimi<strong>za</strong>cije<<strong>br</strong> />

osnovnih prirodno-tehničkih parametara stubne metode otkopavanja slojeva mrkog i lignitskog<<strong>br</strong> />

uglja veće debljine u složenim prirodno-geološkim uslovima. Na osnovu razmatranog<<strong>br</strong> />

metodološkog pristupa izvršeno je matematičko modeliranje parametara stubnog otkopa odnosno<<strong>br</strong> />

stubne otkopne baterije.<<strong>br</strong> />

Ključne reči: rudnik, kopanje, ugalj<<strong>br</strong> />

1. UVOD<<strong>br</strong> />

Složeni uslovi eksploatacije u ležištima<<strong>br</strong> />

uglja u Srbiji <strong>za</strong>htevaju sistematski rad u<<strong>br</strong> />

cilju unapređenja metode i tehnologije<<strong>br</strong> />

otkopavanja (sistem otkopavanja), posebno<<strong>br</strong> />

ve<strong>za</strong>no <strong>za</strong> parametre proizvodnosti,<<strong>br</strong> />

produktivnosti, sigurnosti i ekonomičnosti.<<strong>br</strong> />

Otkopavanje je osnovna fa<strong>za</strong> procesa<<strong>br</strong> />

eksploatacije uglja koja najvećim delom<<strong>br</strong> />

utiče i na ostale faze procesa podređujućih<<strong>br</strong> />

svom krajnjem cilju. Metoda i tehnologija<<strong>br</strong> />

otkopavanja sve više utiču na način<<strong>br</strong> />

otvaranja ležišta, dok njegov sistem<<strong>br</strong> />

priprema <strong>za</strong>visi u potpunosti od metode<<strong>br</strong> />

otkopavanja. Osnovni pravac sistema<<strong>br</strong> />

otkopavanja slojeva uglja podzemnim<<strong>br</strong> />

načinom usmerena je ka uvođenju i<<strong>br</strong> />

unapređenju metoda širokih čela sa<<strong>br</strong> />

kompleksnom mehani<strong>za</strong>cijom. Međutim, u<<strong>br</strong> />

pojedinim ležištima prirodno-geološki<<strong>br</strong> />

uslovi su takvi da ne omogućavaju primenu<<strong>br</strong> />

* JP PEU Resavica<<strong>br</strong> />

navedene metode, tako da se iznalaze druga<<strong>br</strong> />

specifična rešenja otkopavanja.<<strong>br</strong> />

Celokupna proizvodnja rudnika sa<<strong>br</strong> />

podzemnom eksploatacijom u Srbiji obavlja<<strong>br</strong> />

se u osam rudnika sa jedanaest jama, pri<<strong>br</strong> />

čemu su im opšte karakteristike niska<<strong>br</strong> />

proizvodnja, ni<strong>za</strong>k stepen mehanizovanosti<<strong>br</strong> />

i visoko učešće teškog fizičkog rada što u<<strong>br</strong> />

ukupnom bilansu daje nepovoljne<<strong>br</strong> />

finansiske efekte poslovanja. Prisutni<<strong>br</strong> />

prirodno – geološki uslovi uticali su na<<strong>br</strong> />

izbor tehnoloških rešenja otkopavanja, tako<<strong>br</strong> />

da se danas u svim jamama primenjuju<<strong>br</strong> />

stubne metode otkopavanja u različitim<<strong>br</strong> />

varijantama, kod kojih su radne faze<<strong>br</strong> />

polumehanizovane, a i proizvodni efekti<<strong>br</strong> />

različiti, uglavnom usled različitosti uslova<<strong>br</strong> />

eksploatacije. U cilju poboljšanja efekata<<strong>br</strong> />

primene stubnih otkopa u rudnicima uglja u<<strong>br</strong> />

Srbiji nameće se potreba njihove<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 65<<strong>br</strong> />

RUDARSKI RADOVI


acionali<strong>za</strong>cije i optimi<strong>za</strong>cije tehničkoekonomskih<<strong>br</strong> />

parametara, sobzirom da će<<strong>br</strong> />

ovaj način otkopavanja biti dominantan u<<strong>br</strong> />

mnogim rudnicima. Sada ovi rudnici<<strong>br</strong> />

predstavljaju proizvodne pogone sa niskom<<strong>br</strong> />

proizvodnjom. [1]..[12]<<strong>br</strong> />

Cilj provedenih istraživanja u okviru<<strong>br</strong> />

ove teme je da se da novi pristup stubnim<<strong>br</strong> />

metodama otkopavanja, a okvir istraživanja<<strong>br</strong> />

su rudnici sa podzemnom eksploatacijom<<strong>br</strong> />

uglja u Srbiji. Osim metoda analize i sinteze<<strong>br</strong> />

u istraživanjima su korišćene eksperimentalne<<strong>br</strong> />

metode i metode matematičkog<<strong>br</strong> />

modeliranja. [13]..[20].<<strong>br</strong> />

2. PRIMENA STUBNIH METODA<<strong>br</strong> />

OTKOPAVANJA UGLJENIH<<strong>br</strong> />

SLOJEVA VEĆE DEBLJINE<<strong>br</strong> />

Stubne metode otkopavanja sa tehnologijom<<strong>br</strong> />

miniranja primenjene u podzemnim<<strong>br</strong> />

rudnicima uglja u Srbiji karakterišu se<<strong>br</strong> />

sledećim:<<strong>br</strong> />

- širokom primenom zbog mogućnosti<<strong>br</strong> />

prilagođavanja geometrije radnog<<strong>br</strong> />

fronta i taktike otkopavanja složenim<<strong>br</strong> />

uslovima eksploatacije,<<strong>br</strong> />

- niskom proizvodnošću i produktivnošću,<<strong>br</strong> />

potrebom rada većeg <strong>br</strong>oja<<strong>br</strong> />

otkopnih jedinica i dekoncentrisanost<<strong>br</strong> />

rudarskih radova,<<strong>br</strong> />

- visokim utroškom repromaterijala u<<strong>br</strong> />

procesu pripreme i otkopavanja,<<strong>br</strong> />

- visokim učešćem pripremnih radova.<<strong>br</strong> />

Stubne metode otkopavanja primenjuju<<strong>br</strong> />

se <strong>za</strong> otkopavanje ugljenih slojeva u<<strong>br</strong> />

složenim prirodno-geološkim uslovima,<<strong>br</strong> />

odnosno u delovima ležišta u kojima nije<<strong>br</strong> />

racionalna primena metoda širokih čela ili<<strong>br</strong> />

kratkih mehanizovanih otkopa.[21]..[27].<<strong>br</strong> />

Metoda se primenjuje sa tehnologijom<<strong>br</strong> />

kratkobušotinskog miniranja <strong>za</strong> debljine slojeva<<strong>br</strong> />

2-6 m, a primenom dubokobušotinskog<<strong>br</strong> />

miniranja (DBM) i do debljine od 10m.<<strong>br</strong> />

Osnovni princip stubne metode<<strong>br</strong> />

otkopavanja sastoji se u otkopavanju<<strong>br</strong> />

pripremljenih stubova, i to povlačenjem<<strong>br</strong> />

otkopnih uskopa na obe strane. Osnovna<<strong>br</strong> />

priprema <strong>za</strong> primenu ove metode otkopa-<<strong>br</strong> />

vanja sastoji se u izradi prostorija po pružanju<<strong>br</strong> />

ugljenog sloja – osnovica <strong>za</strong> otkopavanje<<strong>br</strong> />

kojima se otkopno polje deli po padu<<strong>br</strong> />

sloja na nagnute stubove dužine cca 30 m.<<strong>br</strong> />

Osnovice <strong>za</strong> otkopavanje se izrađuju u<<strong>br</strong> />

podnom delu ugljenog sloja (a u slučaju<<strong>br</strong> />

bujave podine ostavlja se <strong>za</strong>štitna ploča<<strong>br</strong> />

debljine 0,5-1,0 m) i u toku otkopavanja se<<strong>br</strong> />

međusobno povezuju spojnim ve<strong>za</strong>ma radi<<strong>br</strong> />

bolje organi<strong>za</strong>cije transporta i provetravanja.<<strong>br</strong> />

Izrada otkopnih osnovica vrši se bušačkominerskim<<strong>br</strong> />

<strong>radovi</strong>ma i podgrađuje najčešće<<strong>br</strong> />

čeličnom kružnom podgradom.<<strong>br</strong> />

Dobijanje uglja se vrši u tri faze, i to:<<strong>br</strong> />

- I fa<strong>za</strong> otkopavanja – izrada otkopne<<strong>br</strong> />

pripreme (uskopa)<<strong>br</strong> />

- II fa<strong>za</strong> otkopavanja – dobivanje uglja<<strong>br</strong> />

iz bočnih krila u potkopnom i<<strong>br</strong> />

natkopnom delu i iznad otkopne<<strong>br</strong> />

pripreme,<<strong>br</strong> />

- III fa<strong>za</strong> otkopavanja – dobivanje<<strong>br</strong> />

uglja iz bočnih krila u potkopnom<<strong>br</strong> />

delu iznad raskršća otkopne osnovice<<strong>br</strong> />

i otkopne pripreme.<<strong>br</strong> />

Otkopna priprema se izrađuje iz<<strong>br</strong> />

otkopne osnovice po podini ugljenog sloja<<strong>br</strong> />

sa dužinom 30 m. i vrši se bušačko –<<strong>br</strong> />

minerskim <strong>radovi</strong>ma.<<strong>br</strong> />

Po <strong>za</strong>vršetku izrade otkopne pripreme<<strong>br</strong> />

<strong>za</strong>počinje se sa otkopavanjem bočnih krila<<strong>br</strong> />

i natkopnog dela. Širina bočnih krila iznosi<<strong>br</strong> />

prema starom radu 3,0 m, a prema<<strong>br</strong> />

narednom stubu 2,0 m. Dobivanje uglja u<<strong>br</strong> />

ovoj fazi vrši se naizmenično miniranjem<<strong>br</strong> />

bokova i stropa sa lepezom dubokih<<strong>br</strong> />

bušotina, sa jednim ili više razdvojenih<<strong>br</strong> />

(parcijalnih) punjenja. Posle miniranja<<strong>br</strong> />

svake lepeze vrši se separatno<<strong>br</strong> />

provetravanje radilišta, postavljanje<<strong>br</strong> />

<strong>za</strong>štitnih »vrata«, a <strong>za</strong>tim nagrtanje uglja<<strong>br</strong> />

na grabuljasti transporter i izvoz uglja iz<<strong>br</strong> />

otkopa.<<strong>br</strong> />

Točenje uglja iz otkopa vrši se<<strong>br</strong> />

postepeno sa kontinuiranim podasipapom<<strong>br</strong> />

starog rada. Na ovaj način se uspostavi<<strong>br</strong> />

kontinuirano točenje uglja iz odminirane<<strong>br</strong> />

lepeze i <strong>za</strong>stalog dela od predhodnih<<strong>br</strong> />

lepe<strong>za</strong>.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 66<<strong>br</strong> />

RUDARSKI RADOVI


Dobivanje uglja iznad raskršća otkopne<<strong>br</strong> />

osnovice i otkopne pripreme vrši se u<<strong>br</strong> />

trećoj fazi otkopavanja koja predstavlja<<strong>br</strong> />

<strong>za</strong>vršnu fazu otkopavanja jedne otkopne<<strong>br</strong> />

pripreme (uskopa).<<strong>br</strong> />

Provetravanje otkopnih priprema i<<strong>br</strong> />

otkopa vrši se separatno sa cevnim<<strong>br</strong> />

ventilatorima koji se lociraju u ograncima<<strong>br</strong> />

sveže vazdušne struje.<<strong>br</strong> />

Transport uglja kod ove metode je<<strong>br</strong> />

mehanizovan, a uspostavlja se sa dvolančanim<<strong>br</strong> />

grabuljastim transporterima koji se<<strong>br</strong> />

sukcesivno produžavaju sa napredovanjem<<strong>br</strong> />

radilišta, odnosno skraćuju kad<<strong>br</strong> />

povlačenja otkopa.<<strong>br</strong> />

Na jednoj otkopnoj osnovici formiraju<<strong>br</strong> />

se obično tri radilišta, pri čemu je jedno<<strong>br</strong> />

uvek u napredovanju, drugo naizmenično u<<strong>br</strong> />

napredovanju i povlačenju i treće u<<strong>br</strong> />

povlačenju.<<strong>br</strong> />

Dispozicija radilišta na jednoj otkopnoj<<strong>br</strong> />

osnovici kod primene ove metode otkopavanja<<strong>br</strong> />

dat je na slici 1.<<strong>br</strong> />

Sl. 1. Dispozicija radilišta na jednoj otkopnoj osnovici<<strong>br</strong> />

3. METODOLOGIJA PRORAČUNA<<strong>br</strong> />

KAPACITETA STUBNIH OTKOPA<<strong>br</strong> />

Istraživanja parametara stubnih otkopa<<strong>br</strong> />

u osnovi polaze od najvažnijeg parametra,<<strong>br</strong> />

debljine ugljenog sloja koji se otkopava, s<<strong>br</strong> />

obzirom da od ovog parametra <strong>za</strong>vise<<strong>br</strong> />

parametri kapaciteta otkopa i otkopnih<<strong>br</strong> />

učinaka, a samim time su pove<strong>za</strong>ni i<<strong>br</strong> />

ekonomski parametri.<<strong>br</strong> />

U samom otkopnom polju visina<<strong>br</strong> />

proizvodnje <strong>za</strong>visi od <strong>br</strong>oja otkopnih<<strong>br</strong> />

jedinica, odnosno <strong>br</strong>oja otkopnih osnovica<<strong>br</strong> />

na kojima se istovremeno vrše <strong>radovi</strong><<strong>br</strong> />

otkopavanja.<<strong>br</strong> />

Kod proračuna kapaciteta pošlo se od<<strong>br</strong> />

postavke da se proizvodnja dobija sa jedne<<strong>br</strong> />

otkopne osnovice u otkopnom polju, na<<strong>br</strong> />

kojoj radove izvode istovremeno tri radilišta.<<strong>br</strong> />

Ovako formirana radilišta čine jednu<<strong>br</strong> />

otkopnu bateriju.<<strong>br</strong> />

Kapacitet otkopa stubne otkopne<<strong>br</strong> />

baterije sa tehnologijom dobijanja sa DBM<<strong>br</strong> />

sastoji se od zbirnog kapaciteta otkopa u<<strong>br</strong> />

napredovanju (I fa<strong>za</strong>) i otkopa u povlačenju<<strong>br</strong> />

(sa natkopnim dobijanjem – II i III fa<strong>za</strong>).<<strong>br</strong> />

Qv=qvn + qvp<<strong>br</strong> />

gde su:<<strong>br</strong> />

qvn - kapacitet otkopa u napredovanju<<strong>br</strong> />

qvp – kapacikapacitet otkopa u povlačenju<<strong>br</strong> />

Kapacitet<<strong>br</strong> />

iznosi:<<strong>br</strong> />

otkopa u napredovanju<<strong>br</strong> />

qvn = Fn x γ x n1<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 67<<strong>br</strong> />

RUDARSKI RADOVI


gde je:<<strong>br</strong> />

Fn = 8,52 m 2 – profil otkopa u napredovanju<<strong>br</strong> />

γ = 1,30 – <strong>za</strong>preminska masa uglja<<strong>br</strong> />

n1 = napredovanje otkopa u smeni (m/smenu)<<strong>br</strong> />

Veličine Fn i γ su konstantne, dok je<<strong>br</strong> />

veličina n1 promenljiva i uglavnom <strong>za</strong>visi od<<strong>br</strong> />

organi<strong>za</strong>cije rada i primenjene mehani<strong>za</strong>cije.<<strong>br</strong> />

Kapacitet otkopa u povlačenju se<<strong>br</strong> />

izračunava pomoću izra<strong>za</strong>:<<strong>br</strong> />

qvp = Fp x γ x ζ x n2, (t/smenu)<<strong>br</strong> />

gde su:<<strong>br</strong> />

Fp – poprečni profil otkopa u<<strong>br</strong> />

povlačenju (m 2 )<<strong>br</strong> />

γ – <strong>za</strong>preminska masa uglja (1,30)<<strong>br</strong> />

ζ – koeficijent iskorišćenja<<strong>br</strong> />

n2 – <strong>br</strong>zina povlačenja otkopa<<strong>br</strong> />

(m/smenu)<<strong>br</strong> />

Fp = (S x d) - Fn<<strong>br</strong> />

Površina poprečnog preseka je<<strong>br</strong> />

određena širinom otkopa S (8,5 m 2 ),<<strong>br</strong> />

debljinom ugljenog sloja d umanjenog <strong>za</strong><<strong>br</strong> />

profil otkopa u napredovanju (8,5 m 2 )<<strong>br</strong> />

Fp = 8,5 d – 8,5<<strong>br</strong> />

Koeficijent iskorišćenja usvaja se kao<<strong>br</strong> />

veličina γ = 0,70 % dobijena na osnovu<<strong>br</strong> />

statističke analize iskustvenih podataka.<<strong>br</strong> />

Ukupno raspoloživo radno vreme u<<strong>br</strong> />

smeni je različito od rudnika do rudnika, a<<strong>br</strong> />

<strong>za</strong> potrebe izračunavanja vremena trajanja<<strong>br</strong> />

pojedinih radnih operacija usvojene su<<strong>br</strong> />

sledeće prosečne veličine:<<strong>br</strong> />

- radno vreme u jami ............. 450 min<<strong>br</strong> />

- dola<strong>za</strong>k na radilište ............. 30 min<<strong>br</strong> />

- odmor u toku smena............ 30 min<<strong>br</strong> />

- odla<strong>za</strong>k sa radilišta ............. 30 min<<strong>br</strong> />

- efektivno radno vreme u smeni<<strong>br</strong> />

.............................................. 360 min<<strong>br</strong> />

Vreme trajanja ciklusa na dobijanju<<strong>br</strong> />

uglja <strong>za</strong>visi od vremena trajanja pojedinih<<strong>br</strong> />

radnih operacija:<<strong>br</strong> />

T = t1 + t2 + t3 + t4 + t5 + t6, (min)<<strong>br</strong> />

gde je:<<strong>br</strong> />

t1 – vreme pripremnih radnji (min)<<strong>br</strong> />

t2 – vreme <strong>za</strong> izradu minskih bušotina<<strong>br</strong> />

(min)<<strong>br</strong> />

t3 – vreme punjenja i paljenja minskih<<strong>br</strong> />

bušotina (min)<<strong>br</strong> />

t4 – vreme <strong>za</strong> utovar i odvoz uglja<<strong>br</strong> />

t5 – vreme <strong>za</strong> podgrađivanje, odnosno<<strong>br</strong> />

osiguranje otkopa (min)<<strong>br</strong> />

t6 – vreme izvršenja pomoćnih radnih<<strong>br</strong> />

operacija (min)<<strong>br</strong> />

Vremena t1, t5 i t6 <strong>za</strong> sve debljine sloja<<strong>br</strong> />

imaju iste vrednosti, dok vremena t2, t3 i t4<<strong>br</strong> />

direktno <strong>za</strong>vise od debljine sloja koji se<<strong>br</strong> />

otkopava.<<strong>br</strong> />

Na osnovu analize vremena izvršenja<<strong>br</strong> />

radnih operacija (t2, t3 i t4) i promene<<strong>br</strong> />

debljine sloja (d= 3 – 10 m) formirana je<<strong>br</strong> />

kriva promene <strong>br</strong>zine napredovanja –<<strong>br</strong> />

povlačenja otkopa:<<strong>br</strong> />

b<<strong>br</strong> />

(m/smenu),<<strong>br</strong> />

n2 = a + d<<strong>br</strong> />

gde su:<<strong>br</strong> />

a = 0,62 i b = 1,75 koeficijenti dobijeni<<strong>br</strong> />

analizom vremena izvršenja<<strong>br</strong> />

pojedinih radnih operacija.<<strong>br</strong> />

Sređivanjem izra<strong>za</strong> <strong>za</strong> kapacitet otkopa<<strong>br</strong> />

u povlačenju dobija se sledeći oblik:<<strong>br</strong> />

qvp = (8,5 x d – 8,5) x 0,91 x<<strong>br</strong> />

1,<<strong>br</strong> />

75<<strong>br</strong> />

x (0,62 + ﴿ (t/smenu)<<strong>br</strong> />

d<<strong>br</strong> />

Izračunavanje vrednosti parametara<<strong>br</strong> />

vršeno je na računaru po izrađenom<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 68<<strong>br</strong> />

RUDARSKI RADOVI


matematičkom modelu, a međusobne<<strong>br</strong> />

<strong>za</strong>visnosti ispitivanih veličina prika<strong>za</strong>ne<<strong>br</strong> />

su tabelarno i dijagramski.<<strong>br</strong> />

1. d = 3, ... , 10m<<strong>br</strong> />

2. qvn = Fn x g x n,<<strong>br</strong> />

Fn = 8,5 m 2<<strong>br</strong> />

3. qvp = (8,5 x d – 8,5) x 0,91 x<<strong>br</strong> />

1,<<strong>br</strong> />

75<<strong>br</strong> />

x (62 + )<<strong>br</strong> />

d<<strong>br</strong> />

4. qvob = (qvn + qvp) x 1,5<<strong>br</strong> />

5. Qvn = 3 x qvn x 264<<strong>br</strong> />

6. Qvp = 3 x qvp x 264<<strong>br</strong> />

7. Qvob = 3 x qvob x 264<<strong>br</strong> />

8. Nvn = 3168<<strong>br</strong> />

9. Nvp = 3168<<strong>br</strong> />

10. Nvob = (Nvn + Nvp) x 1,5 = 9504<<strong>br</strong> />

Q<<strong>br</strong> />

11. U = vn<<strong>br</strong> />

vn<<strong>br</strong> />

Nvn<<strong>br</strong> />

Q<<strong>br</strong> />

12. U =<<strong>br</strong> />

vp<<strong>br</strong> />

vn<<strong>br</strong> />

Nvp<<strong>br</strong> />

Q<<strong>br</strong> />

13. U =<<strong>br</strong> />

vob<<strong>br</strong> />

vob<<strong>br</strong> />

Nvob<<strong>br</strong> />

14. N1 = 3 x 264 x 1,5 = 1188<<strong>br</strong> />

15. N2 = 1188 x n2 s<<strong>br</strong> />

Tabela 1. Ulazni podaci programa <strong>za</strong> proračun parammetara stubnog otkopa sa<<strong>br</strong> />

tehnologijom DBM<<strong>br</strong> />

Debljina Kapacitet otkopa Napr. povl. otkopa Nadnice Učinak<<strong>br</strong> />

sloja<<strong>br</strong> />

d (m)<<strong>br</strong> />

smenski<<strong>br</strong> />

qvp (t/sm)<<strong>br</strong> />

dnevni<<strong>br</strong> />

qvpd (t/v)<<strong>br</strong> />

smensko<<strong>br</strong> />

n2s(m/sm)<<strong>br</strong> />

dnevno<<strong>br</strong> />

n2d (m/d)<<strong>br</strong> />

u<<strong>br</strong> />

smeni<<strong>br</strong> />

dnevno<<strong>br</strong> />

otkopa<<strong>br</strong> />

Up(t/nad)<<strong>br</strong> />

1 2 3 4 5 6 7 8<<strong>br</strong> />

3 18.62 55.86 1.20 3.60 4 12 4.65<<strong>br</strong> />

4 24.54 73.62 1.05 3.17 4 12 6.13<<strong>br</strong> />

5 30.01 90.03 0.97 2.91 4 12 7.50<<strong>br</strong> />

6 35.26 105.78 0.91 2.73 4 12 8.81<<strong>br</strong> />

7 40.38 121.14 0.87 2.61 4 12 10.09<<strong>br</strong> />

8 45.41 134.84 0.83 2.49 4 12 11.35<<strong>br</strong> />

9 50.40 151.20 0.81 2.43 4 12 12.60<<strong>br</strong> />

10 55.34 166.02 0.79 2.38 4 12 13.84<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 69<<strong>br</strong> />

RUDARSKI RADOVI


Tabela 2. Promena parametara stubnog otkopa u povlačenju u <strong>za</strong>visnosti od<<strong>br</strong> />

debljine sloja<<strong>br</strong> />

Sl. 2. Zavisnost godišnje proizvodnje stubne otkopne baterije od debljine sloja<<strong>br</strong> />

Sl. 3. Zavisnost učinka kod stubne otkopne baterije od debljine sloja<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 70<<strong>br</strong> />

RUDARSKI RADOVI


4. ZAKLJUČAK<<strong>br</strong> />

Proračunom dobijene vrednosti parametara<<strong>br</strong> />

pokazuju da je kapacitet stubnog otkopa,<<strong>br</strong> />

odnosno stubne otkopne baterije, direktno<<strong>br</strong> />

<strong>za</strong>visan od debljine ugljenog sloja koji<<strong>br</strong> />

se otkopava kao i vremena izvršenja radnih<<strong>br</strong> />

operacija miniranja natkopnog uglja i utovara<<strong>br</strong> />

u odvozni transporter.<<strong>br</strong> />

U odnosu na sada primenjeni način<<strong>br</strong> />

stubnog otkopavanja, ovim istraživanjima<<strong>br</strong> />

je predviđeno dobijanje natkopa sa DBM<<strong>br</strong> />

razdvojenim parcijalnim minskim punjenjima,<<strong>br</strong> />

čime se dobija značajno uvećanje<<strong>br</strong> />

kapaciteta i povećava sigurnost <strong>za</strong>poslenih.<<strong>br</strong> />

Dalja istraživanja neophodno je usmeriti ka<<strong>br</strong> />

uvođenju mahanizovanog utovara sa mobilnim<<strong>br</strong> />

mašinama, a što će dodatno uticati na<<strong>br</strong> />

povećanje proizvodnosti i produktivnosti<<strong>br</strong> />

stubnog otkopavanja.<<strong>br</strong> />

S obzirom na prirodno-geološke uslove<<strong>br</strong> />

u većini ležišta uglja predisponiranih sistemu<<strong>br</strong> />

podzemne eksploatacije <strong>za</strong>ključuje se<<strong>br</strong> />

da će se stubno otkopavanje i dalje <strong>za</strong>držati<<strong>br</strong> />

te je <strong>za</strong> poboljšanje finansijskih performansi<<strong>br</strong> />

poslovanja rudnika, neophodno nastaviti sa<<strong>br</strong> />

daljim istraživanjima u primeni predloženih<<strong>br</strong> />

rešenja.<<strong>br</strong> />

LITERATURA<<strong>br</strong> />

[1] Ivković M., Miljanović J., Ivković Lj.,<<strong>br</strong> />

Tendencije razvoja netradicionalnih<<strong>br</strong> />

sistema podzemnog otkopavanja ugljenih<<strong>br</strong> />

slojeva, Naučno-stručno savetovanje<<strong>br</strong> />

"Energetika Srpske 98" sa<<strong>br</strong> />

međunarodnim učešćem, Banja Vrućica<<strong>br</strong> />

(str. 809-813), 1998. godine.<<strong>br</strong> />

[2] Ivković M., Miljanović J., Gagić D.,<<strong>br</strong> />

Izbor metode otkopavanja u ležištima<<strong>br</strong> />

uglja sa ograničenim rezervama, Naučno-stručno<<strong>br</strong> />

savetovanje "Energetika<<strong>br</strong> />

Srpske 98" sa međunarodnim učešćem,<<strong>br</strong> />

Banja Vrućica (str. 836-841), 1998.<<strong>br</strong> />

godine.<<strong>br</strong> />

[3] Ivković M., Miljanović J., Bijelić V.,<<strong>br</strong> />

Izbor sistema otkopavanja dela ležišta<<strong>br</strong> />

uglja "Ramići" Banja Luka predviđenog<<strong>br</strong> />

<strong>za</strong> podzemnu eksploataciju, Naučnostručno<<strong>br</strong> />

savetovanje sa međunarodnim<<strong>br</strong> />

učešćem "Mogući aspekti eksploatacije,<<strong>br</strong> />

pripreme i sagorevanja ugljeva<<strong>br</strong> />

Republike Srpske", Banja Vrućica,<<strong>br</strong> />

(str. 369-375), 1999. godine.<<strong>br</strong> />

[4] Ivković M., Marić R., Miljanović J.,<<strong>br</strong> />

Pravci prestrukruiranja podzemnih<<strong>br</strong> />

rudnika uglja sa posebnim osvrtom na<<strong>br</strong> />

aktiviranje novih ležišta, Naučnostručno<<strong>br</strong> />

savetovanje sa međunarodnim<<strong>br</strong> />

učešćem, Energetika Jugoslavije<<strong>br</strong> />

ENYU 2000, Zlatibor, 2000. godine<<strong>br</strong> />

(str. 350-354).<<strong>br</strong> />

[5] Miljanović J., Uticajni faktori na<<strong>br</strong> />

reali<strong>za</strong>ciju proizvodnje uglja u rudnicima<<strong>br</strong> />

sa podzemnom eksploa-tacijom<<strong>br</strong> />

Republike Srbije, Časopis "<strong>Rudarski</strong><<strong>br</strong> />

<strong>radovi</strong>" <strong>br</strong>. 1/2002, 1-12 Resavica<<strong>br</strong> />

2001. (str. 26-31).<<strong>br</strong> />

[6] Ivković M., Ljubojev M., Miljanović<<strong>br</strong> />

J., Uticaj podzemne eksploatacije<<strong>br</strong> />

mineralnih sirovina na oštećenje<<strong>br</strong> />

površine terena i izgrađene objekte<<strong>br</strong> />

Treća međunarodna konferencija o<<strong>br</strong> />

upravljanju <strong>za</strong>štitom okoline<<strong>br</strong> />

(ELEKTRA III) Herceg Novi 2004<<strong>br</strong> />

godine, (str. 242-246).<<strong>br</strong> />

[7] Ljubojev M., Ivković M., Miljanović<<strong>br</strong> />

J., Ignjatović L., Testing of geomechanical<<strong>br</strong> />

properties of coal series in<<strong>br</strong> />

order for support determination of the<<strong>br</strong> />

mechanized stope on the exanple of<<strong>br</strong> />

"Stara jama" mine in "Lubnica"<<strong>br</strong> />

Journal of Mining and Metalurgy, 45a<<strong>br</strong> />

(1), (2009) (str 58 –70)<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 71<<strong>br</strong> />

RUDARSKI RADOVI


[8] Ivković M., Đukanović D., Miljanović<<strong>br</strong> />

J., Investigation of properties and<<strong>br</strong> />

protection against coal dust explosion in<<strong>br</strong> />

underground mines in Serbia Technics<<strong>br</strong> />

technologies education management,<<strong>br</strong> />

Sarajevo 2010 (str.67-72)<<strong>br</strong> />

[9] Đukanović D. , Miljanović J., Ivković<<strong>br</strong> />

M., Designig and reliabty of mine<<strong>br</strong> />

ventilator focilities, Technics technologies<<strong>br</strong> />

education management,<<strong>br</strong> />

Sarajevo 2010 (str.54-59)<<strong>br</strong> />

[10] Ivković J., Miljanović J., Izračunavanje<<strong>br</strong> />

koncentracije gasova pri<<strong>br</strong> />

podzemnom sagorevanju uglja,<<strong>br</strong> />

Časopis "<strong>Rudarski</strong> <strong>radovi</strong>" <strong>br</strong>. 1/2010,<<strong>br</strong> />

<strong>Bor</strong> 2010 (str. 127 – 130)<<strong>br</strong> />

[11] S. Ćosić, H. Okanović, Modeliranje<<strong>br</strong> />

naponsko-deformacijskog stanja<<strong>br</strong> />

numeričkim metodama kod<<strong>br</strong> />

širokočelnog otkopavanja, Časopis<<strong>br</strong> />

"<strong>Rudarski</strong> <strong>radovi</strong>" <strong>br</strong>. 2/2010, <strong>Bor</strong><<strong>br</strong> />

2010 (str. 53 – 72)<<strong>br</strong> />

[12] M. Ljubojev, D. Ignjatović, V.<<strong>br</strong> />

Ljubojev, L. Đurđevac Ignjatović, D.<<strong>br</strong> />

Rakić, Deformabilnost i nosivost<<strong>br</strong> />

nasutog materijala u neposrednoj blizini<<strong>br</strong> />

otvora okna na P. K. “ZAGRAĐE” –<<strong>br</strong> />

KOP – 2, Časopis "<strong>Rudarski</strong> <strong>radovi</strong>" <strong>br</strong>.<<strong>br</strong> />

2/2010, <strong>Bor</strong> 2010 (str. 107 – 114)<<strong>br</strong> />

[13] D. Ignjatović, M. Ljubojev, L. Đ.<<strong>br</strong> />

Ignjatović, J. Petrović, Klasifikacija<<strong>br</strong> />

stenskog masiva pre izgradnje tunela<<strong>br</strong> />

(po Wickham-u i Bienawskom),<<strong>br</strong> />

Časopis "<strong>Rudarski</strong> <strong>radovi</strong>" <strong>br</strong>. 1/<strong>2011</strong>,<<strong>br</strong> />

<strong>Bor</strong> <strong>2011</strong> (str. 65 – 68)<<strong>br</strong> />

[14] Lj. Savić, R. Janković, S. Kovačević,<<strong>br</strong> />

Otkopavanje sigurnosnih stubova u<<strong>br</strong> />

rudniku ’’Trepča’’ – Stari trg, Časopis<<strong>br</strong> />

"<strong>Rudarski</strong> <strong>radovi</strong>" <strong>br</strong>. 1/<strong>2011</strong>, <strong>Bor</strong> <strong>2011</strong><<strong>br</strong> />

(str. 117 – 124)<<strong>br</strong> />

[15] D. Đukanović, M. Denić, D.<<strong>br</strong> />

Dragojević, Brzina izrade podzemnih<<strong>br</strong> />

prostorija, kao uslov uvođenja<<strong>br</strong> />

mehanizovane izrade podzemnih<<strong>br</strong> />

prostorija u rudnicima JP PEU<<strong>br</strong> />

Resavica, Časopis "<strong>Rudarski</strong> <strong>radovi</strong>"<<strong>br</strong> />

<strong>br</strong>. 1/<strong>2011</strong>, <strong>Bor</strong> <strong>2011</strong> (str. 167 – 170)<<strong>br</strong> />

[16] M. Ivković, R. Lekovski, M. Ljibojev,<<strong>br</strong> />

Definisanje sistema uticajnih uslova<<strong>br</strong> />

kod izbora metode otkopavanja<<strong>br</strong> />

kratkim mehanizovanim čelom u<<strong>br</strong> />

rudnicima uglja, Časopis "<strong>Rudarski</strong><<strong>br</strong> />

<strong>radovi</strong>" <strong>br</strong>. 2/<strong>2011</strong>, <strong>Bor</strong> <strong>2011</strong> (str. 113 –<<strong>br</strong> />

118)<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 72<<strong>br</strong> />

RUDARSKI RADOVI


MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162<<strong>br</strong> />

COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622<<strong>br</strong> />

UDK: 622.272.3:622.33(045)=20<<strong>br</strong> />

Mirko Ivković * , Ljubiša Figun, Ivana Živojinović, Svjetlana Ivković<<strong>br</strong> />

OPTIMIZATION OF NATURAL – TEHNICAL PARAMETERS FOR<<strong>br</strong> />

THE PILLAR METHOD OF COAL EXCAVATION<<strong>br</strong> />

Abstract<<strong>br</strong> />

This work is dedicated to a definition of the optimi<strong>za</strong>tion methodology of optimi<strong>za</strong>tion the basic<<strong>br</strong> />

natural- technical parameters for the pillar method of excavation the dark coal and lignite seams<<strong>br</strong> />

of larger thickness in complex natural – geological conditions. Mathematical modeling of pillar<<strong>br</strong> />

excavation parameters was done on the basis of discussed methodological approach.<<strong>br</strong> />

Key words: mine, excavation, coal<<strong>br</strong> />

1. INTRODUCTION<<strong>br</strong> />

The complex exploitation conditions of<<strong>br</strong> />

coal deposits in Serbia require systematical<<strong>br</strong> />

operation to the aim of improvement the<<strong>br</strong> />

method and technology of mining (mining<<strong>br</strong> />

system), particularly regarded to the<<strong>br</strong> />

parameters of production, productivity,<<strong>br</strong> />

safety and economy. Excavation is the main<<strong>br</strong> />

phase the coal mining that mainly affects the<<strong>br</strong> />

other phases of process subordinating them<<strong>br</strong> />

to its ultimate goal. Mining methods and<<strong>br</strong> />

technologies increasingly affect the way of<<strong>br</strong> />

deposit opening, while its preparing system<<strong>br</strong> />

depends entirely on the excavation method.<<strong>br</strong> />

The main direction of excavation system of<<strong>br</strong> />

underground coal mining is aimed to<<strong>br</strong> />

introduction and improvement the methods<<strong>br</strong> />

of longwall face using the complex<<strong>br</strong> />

machinery. However, in some deposits, the<<strong>br</strong> />

natural and geological conditions are such<<strong>br</strong> />

that they do not allow the use of given<<strong>br</strong> />

method, so it is necessary to seek the other<<strong>br</strong> />

specific solution of mining methods.<<strong>br</strong> />

* JP PEU Resavica<<strong>br</strong> />

The entire production of the mine with<<strong>br</strong> />

underground mining in Serbia is carried out<<strong>br</strong> />

in eight of eleven pit mines, with their<<strong>br</strong> />

general characteristics of low production,<<strong>br</strong> />

low level of mechani<strong>za</strong>tion and high<<strong>br</strong> />

proportion of hard physical labor in the total<<strong>br</strong> />

balance that give the adverse financial<<strong>br</strong> />

effects of business. Present natural -<<strong>br</strong> />

geological conditions have influenced the<<strong>br</strong> />

selection of mining technology solutions, so<<strong>br</strong> />

that today in all pits the pillar mining<<strong>br</strong> />

method are applied in different forms, where<<strong>br</strong> />

the working phases are de-mechanized and<<strong>br</strong> />

production effects are different, mainly due<<strong>br</strong> />

to the diversity of exploitation conditions. In<<strong>br</strong> />

order to improve the effects of use the pillar<<strong>br</strong> />

stopes in the coal mines in Serbia there is a<<strong>br</strong> />

need for their rationali<strong>za</strong>tion and<<strong>br</strong> />

optimi<strong>za</strong>tion of technical - economic<<strong>br</strong> />

parameters, considering that this mining<<strong>br</strong> />

method will be a dominant in many mines.<<strong>br</strong> />

No 4, <strong>2011</strong>. 73<<strong>br</strong> />

MINING ENGINEERING


Now, these mines are production<<strong>br</strong> />

facilities with low production [1], [12].<<strong>br</strong> />

The aim of realized research within this<<strong>br</strong> />

topic is to give a new approach to pillar<<strong>br</strong> />

mining methods, and within the research<<strong>br</strong> />

framework are mines with underground<<strong>br</strong> />

mining of coal in Serbia. In addition to the<<strong>br</strong> />

method of analysis and synthesis, the<<strong>br</strong> />

experimental methods and mathematical<<strong>br</strong> />

modeling methods were used in<<strong>br</strong> />

studies[13],[20].<<strong>br</strong> />

2. THE USE OF COAL PILLAR<<strong>br</strong> />

MINING METHODS FOR SEAMS<<strong>br</strong> />

WITH LARGER THICKNESS<<strong>br</strong> />

Pillar mining methods with the blasting<<strong>br</strong> />

technology, applied in the underground<<strong>br</strong> />

coal mines in Serbia, are characterized<<strong>br</strong> />

by the following:<<strong>br</strong> />

- Wide use due to a possibility of<<strong>br</strong> />

adjusting the geometry of working<<strong>br</strong> />

front and exploitation tactics to the<<strong>br</strong> />

complex mining conditions,<<strong>br</strong> />

- low production and productivity with<<strong>br</strong> />

a need to operate a number of<<strong>br</strong> />

excavation units and deconcentration<<strong>br</strong> />

of mining operations,<<strong>br</strong> />

- high consumption of raw materials in<<strong>br</strong> />

the preparation and excavation<<strong>br</strong> />

process,<<strong>br</strong> />

- high share of preparatory works.<<strong>br</strong> />

Pillar mining methods are applied for<<strong>br</strong> />

mining of coal seams in complex naturalgeological<<strong>br</strong> />

conditions, that is in the parts<<strong>br</strong> />

of deposit in which the rational application<<strong>br</strong> />

of longwall face method is short<<strong>br</strong> />

mechanized slopes is not used [21], [27].<<strong>br</strong> />

The method is used with a technology<<strong>br</strong> />

short-drill blasting for thickness of seams<<strong>br</strong> />

2 - 6m, and by use the deep-drill blasting<<strong>br</strong> />

(DDB) and to a thickness of 10 m.<<strong>br</strong> />

The basic principle of pillar mining<<strong>br</strong> />

method consists of excavation the prepared<<strong>br</strong> />

pillars by pulling the excavation<<strong>br</strong> />

slopes on both sides. Basic preparation for<<strong>br</strong> />

implementation of this mining method<<strong>br</strong> />

consists in making room per direction of<<strong>br</strong> />

coal seam - the basis for excavation where<<strong>br</strong> />

the excavation field is shared by drop of<<strong>br</strong> />

seam on the sloping pillars approximately<<strong>br</strong> />

30 m in length.<<strong>br</strong> />

Bases for excavation are made in the<<strong>br</strong> />

floor area of coal seam floor area (in the<<strong>br</strong> />

case flooding floor, a protective plate,<<strong>br</strong> />

thickness from 0.5 to 1.0 m, is left) and<<strong>br</strong> />

during excavation they are mutually connected<<strong>br</strong> />

with connecting links for better<<strong>br</strong> />

organi<strong>za</strong>tion of transport and ventilation.<<strong>br</strong> />

Preparation of excavation bases is carried<<strong>br</strong> />

out by drilling-blasting works and it is<<strong>br</strong> />

usually supported using the circular steel<<strong>br</strong> />

support.<<strong>br</strong> />

Coal is produced in three phases, as<<strong>br</strong> />

follows:<<strong>br</strong> />

- Phase I of excavation – preparation<<strong>br</strong> />

for excavation (exploitation sites)<<strong>br</strong> />

- Phase II of mining – coal obtaining<<strong>br</strong> />

from the side wings in the<<strong>br</strong> />

overlying and underlying part and<<strong>br</strong> />

over the excavation preparation<<strong>br</strong> />

- Phase III of excavation – coal<<strong>br</strong> />

obtaining from the side wings in<<strong>br</strong> />

the underlying part over the<<strong>br</strong> />

junction excavation base and<<strong>br</strong> />

excavation preparation.<<strong>br</strong> />

Excavation preparation is made from<<strong>br</strong> />

the excavation per underlying stratum coal<<strong>br</strong> />

seam to the length of 30m and the drilling<<strong>br</strong> />

– blasting works are carried out<<strong>br</strong> />

Upon completion of excavation preparation<<strong>br</strong> />

begins, the excavation of the side wings<<strong>br</strong> />

and over stope part starts. Width of side<<strong>br</strong> />

wings towards the old work is 3.0 m, and to<<strong>br</strong> />

the next pillar 2.0 m. Obtaining of coal at<<strong>br</strong> />

No 4, <strong>2011</strong>. 74<<strong>br</strong> />

MINING ENGINEERING


this stage is carried out alternately by blasting<<strong>br</strong> />

the sides and ceiling with a fan of deep<<strong>br</strong> />

blast holes, with one or more separated (partial)<<strong>br</strong> />

charging. After blasting of each fan, the<<strong>br</strong> />

separately ventilation of the site is done, the<<strong>br</strong> />

protective "door" are installed and then<<strong>br</strong> />

loading of coal on a face conveyor and coal<<strong>br</strong> />

transport from stope. Coal pouring from<<strong>br</strong> />

stope is carried out gradually with a continuous<<strong>br</strong> />

sub-stowing of old work. In this<<strong>br</strong> />

way, a continuous pouring of coal is established<<strong>br</strong> />

from blasted fan and retained part of<<strong>br</strong> />

previous fans.<<strong>br</strong> />

Obtaining of coal above the junction of<<strong>br</strong> />

the base and excavation preparation is<<strong>br</strong> />

carried out in the third stage of<<strong>br</strong> />

excavation, which represents the final<<strong>br</strong> />

3. CALCULATION METHODOLOGY<<strong>br</strong> />

OF PILLAR STOPE CAPACITY<<strong>br</strong> />

Studying the parameters of pillar stopes<<strong>br</strong> />

basically starts from the most important<<strong>br</strong> />

parameter, the thickness of coal seams<<strong>br</strong> />

which are mined, since this parameter depends<<strong>br</strong> />

on the parameters of stope capacity<<strong>br</strong> />

and stope effects, and thus the economic<<strong>br</strong> />

parameters are connected.<<strong>br</strong> />

Fig. 1. Layout of the site on one excavation base<<strong>br</strong> />

phase of a mining excavation preparation<<strong>br</strong> />

(exploitation sites). Ventilation of the excavation<<strong>br</strong> />

preparations is done separately<<strong>br</strong> />

with the tube fans, located in the <strong>br</strong>anches<<strong>br</strong> />

of fresh air flow.<<strong>br</strong> />

Transport of coal by this method is<<strong>br</strong> />

mechanized, and established bydoublechain<<strong>br</strong> />

face conveyors that are successively<<strong>br</strong> />

extended with the advancement of the site,<<strong>br</strong> />

or reduced in a stope drawing.<<strong>br</strong> />

In one excavation base, usually three<<strong>br</strong> />

sites are formed, with one still in progress,<<strong>br</strong> />

the second alternate in advancing and<<strong>br</strong> />

drawing and the third in drawing.<<strong>br</strong> />

The layout of the site on one excavation<<strong>br</strong> />

base for the application of this<<strong>br</strong> />

method of mining is shown in Figure 1.<<strong>br</strong> />

In the field of excavation, the height of<<strong>br</strong> />

production depends on the number of excavated<<strong>br</strong> />

units or the number of the excavated<<strong>br</strong> />

base on which the excavation works are<<strong>br</strong> />

carried out simultaneously.<<strong>br</strong> />

In calculation the capacity, it started<<strong>br</strong> />

from the assumption that the production is<<strong>br</strong> />

No 4, <strong>2011</strong>. 75<<strong>br</strong> />

MINING ENGINEERING


obtained from one excavated base in the<<strong>br</strong> />

excavation field, which is done by simultaneous<<strong>br</strong> />

operation of three sites. Such formed<<strong>br</strong> />

excavation sites make one pillar stope.<<strong>br</strong> />

Capacity of excavation the pillar stope<<strong>br</strong> />

with the technology of obtaining the DDB<<strong>br</strong> />

consists of the sum capacity of stope in progress<<strong>br</strong> />

(Phase I) and stope in drawing (with<<strong>br</strong> />

over stope obtaining - Phase II and III).<<strong>br</strong> />

Qv=qvn + qvp<<strong>br</strong> />

where:<<strong>br</strong> />

qvn - stope capacity in progress,<<strong>br</strong> />

qvp – stope capacity in drawing.<<strong>br</strong> />

Stope capacity in progress is:<<strong>br</strong> />

qvn = Fn x γ x n1<<strong>br</strong> />

where:<<strong>br</strong> />

Fn = 8.52 m 2 – stope profile in progress<<strong>br</strong> />

γ = 1.30 – bulk density of coal<<strong>br</strong> />

n1 = stope progress in a shift (m/shift)<<strong>br</strong> />

Values Fn and γ are constant, until<<strong>br</strong> />

value n1 is variable and mainly depends on<<strong>br</strong> />

work organi<strong>za</strong>tion and used mechani<strong>za</strong>tion.<<strong>br</strong> />

Stope capacity in drawing is calculated<<strong>br</strong> />

by the expression:<<strong>br</strong> />

qvp = Fp x γ x ζ x n2, (t/shift)<<strong>br</strong> />

where:<<strong>br</strong> />

Fp – stope cross section in drawing (m 2 )<<strong>br</strong> />

γ – bulk density of coal (1.30)<<strong>br</strong> />

ζ – utili<strong>za</strong>tion coefficient<<strong>br</strong> />

n2 – rate of stope drawing (m/shift)<<strong>br</strong> />

Fp = (S x d) - Fn<<strong>br</strong> />

Cross section area is determined by<<strong>br</strong> />

slope width S (8.5 m 2 ), coal seam thickness<<strong>br</strong> />

d less the stope profile in progress<<strong>br</strong> />

(8.5 m 2 )<<strong>br</strong> />

Fp = 8.5 d – 8.5<<strong>br</strong> />

Utili<strong>za</strong>tion coefficient is adopted as a<<strong>br</strong> />

value γ = 0.70 %, obtained based on statistical<<strong>br</strong> />

analysis of experienced data.<<strong>br</strong> />

Total available working time per shift<<strong>br</strong> />

is different from mine to mine, and for the<<strong>br</strong> />

needs of calculation the duration time of<<strong>br</strong> />

individual work operations, the following<<strong>br</strong> />

average values were adopted:<<strong>br</strong> />

- working time in a pit.............. 450 min<<strong>br</strong> />

- coming to a site ...................... 30 min<<strong>br</strong> />

- <strong>br</strong>eak during shift ................... 30 min<<strong>br</strong> />

- departure from site ................. 30 min<<strong>br</strong> />

- effective working time per shift... 360 min<<strong>br</strong> />

Time of coal production cycle depends<<strong>br</strong> />

on time of some working operations:<<strong>br</strong> />

T = t1 + t2 + t3 + t4 + t5 + t6, (min)<<strong>br</strong> />

where:<<strong>br</strong> />

t1 – time of preparation works (min)<<strong>br</strong> />

t2 – time for making the blast holes<<strong>br</strong> />

(min)<<strong>br</strong> />

t3 – time for charging and ignition the<<strong>br</strong> />

blast holes (min)<<strong>br</strong> />

t4 – time for loading and transport of<<strong>br</strong> />

coal<<strong>br</strong> />

t5 – time for support or stope ensuring<<strong>br</strong> />

(min)<<strong>br</strong> />

t6 – time for reali<strong>za</strong>tion the ancillary<<strong>br</strong> />

working operations (min)<<strong>br</strong> />

Times t1, t5 and t6 for all seam thicknesses<<strong>br</strong> />

have the same values, until the<<strong>br</strong> />

times t2, t3 and t4 are directly dependent on<<strong>br</strong> />

a seam thickness that is excavated.<<strong>br</strong> />

Based on time analysis of working operations<<strong>br</strong> />

(t2, t3 and t4) and change of seam<<strong>br</strong> />

thickness (d= 3 – 10 m), a curve of progress<<strong>br</strong> />

rate change – stope drawing, was<<strong>br</strong> />

formed.<<strong>br</strong> />

b<<strong>br</strong> />

(m/shift),<<strong>br</strong> />

n2 = a + d<<strong>br</strong> />

where:<<strong>br</strong> />

a = 0,62 and b = 1.75, a coefficient obtained<<strong>br</strong> />

by analysis the time of reali<strong>za</strong>tion<<strong>br</strong> />

of some working operations.<<strong>br</strong> />

No 4, <strong>2011</strong>. 76<<strong>br</strong> />

MINING ENGINEERING


Rearranging the expression for the<<strong>br</strong> />

stope capacity in drawing, the following<<strong>br</strong> />

form is obtained:<<strong>br</strong> />

qvp = (8,5 x d – 8,5) x 0,91 x<<strong>br</strong> />

1,<<strong>br</strong> />

75<<strong>br</strong> />

x (0,62 + ﴿ (t/shift)<<strong>br</strong> />

d<<strong>br</strong> />

Calculation of parameter values was<<strong>br</strong> />

done by computer per mathematical<<strong>br</strong> />

model, and interdependences of tested<<strong>br</strong> />

values are shown in tables and diagrams.<<strong>br</strong> />

1. d = 3, ... , 10m<<strong>br</strong> />

2. qvn = Fn x g x n,<<strong>br</strong> />

Fn = 8,5 m 2<<strong>br</strong> />

3. qvp = (8,5 x d – 8,5) x 0,91 x<<strong>br</strong> />

1,<<strong>br</strong> />

75<<strong>br</strong> />

x (62 + )<<strong>br</strong> />

d<<strong>br</strong> />

4. qvob = (qvn + qvp) x 1,5<<strong>br</strong> />

5. Qvn = 3 x qvn x 264<<strong>br</strong> />

6. Qvp = 3 x qvp x 264<<strong>br</strong> />

7. Qvob = 3 x qvob x 264<<strong>br</strong> />

8. Nvn = 3168<<strong>br</strong> />

9. Nvp = 3168<<strong>br</strong> />

10. Nvob = (Nvn + Nvp) x 1,5 = 9504<<strong>br</strong> />

Q<<strong>br</strong> />

11. U = vn<<strong>br</strong> />

vn<<strong>br</strong> />

Nvn<<strong>br</strong> />

Q<<strong>br</strong> />

12. U =<<strong>br</strong> />

vp<<strong>br</strong> />

vn<<strong>br</strong> />

Nvp<<strong>br</strong> />

Q<<strong>br</strong> />

13. U =<<strong>br</strong> />

vob<<strong>br</strong> />

vob<<strong>br</strong> />

Nvob<<strong>br</strong> />

14. N1 = 3 x 264 x 1,5 = 1188<<strong>br</strong> />

15. N2 = 1188 x n2 s<<strong>br</strong> />

Table 1. Input data of program for calculation the parameters of pillar stope with DDB<<strong>br</strong> />

technology<<strong>br</strong> />

Seam Stope capacity Stope progress - drawing Wages Effect<<strong>br</strong> />

thickness<<strong>br</strong> />

d (m)<<strong>br</strong> />

Shift<<strong>br</strong> />

qvp(t/shift)<<strong>br</strong> />

Daily<<strong>br</strong> />

qvpd (t/v)<<strong>br</strong> />

Shift<<strong>br</strong> />

n2s(m/shift)<<strong>br</strong> />

DAily<<strong>br</strong> />

n2d(m/d)<<strong>br</strong> />

In a<<strong>br</strong> />

shift<<strong>br</strong> />

Daily<<strong>br</strong> />

Stope<<strong>br</strong> />

Up(t/wage)<<strong>br</strong> />

1 2 3 4 5 6 7 8<<strong>br</strong> />

3 18.62 55.86 1.20 3.60 4 12 4.65<<strong>br</strong> />

4 24.54 73.62 1.05 3.17 4 12 6.13<<strong>br</strong> />

5 30.01 90.03 0.97 2.91 4 12 7.50<<strong>br</strong> />

6 35.26 105.78 0.91 2.73 4 12 8.81<<strong>br</strong> />

7 40.38 121.14 0.87 2.61 4 12 10.09<<strong>br</strong> />

8 45.41 134.84 0.83 2.49 4 12 11.35<<strong>br</strong> />

9 50.40 151.20 0.81 2.43 4 12 12.60<<strong>br</strong> />

10 55.34 166.02 0.79 2.38 4 12 13.84<<strong>br</strong> />

No 4, <strong>2011</strong>. 77<<strong>br</strong> />

MINING ENGINEERING


Table 2. Change of parameters of pillar stope in drawing depending on a seam<<strong>br</strong> />

thickness<<strong>br</strong> />

Fig. 2. Dependence of annual production of a pillar stope on a seam thickness<<strong>br</strong> />

Fig. 3. Dependence of effect of a pillar stope on a seam thickness<<strong>br</strong> />

No 4, <strong>2011</strong>. 78<<strong>br</strong> />

MINING ENGINEERING


4. CONCLUSION<<strong>br</strong> />

Calculation of the obtained parameter<<strong>br</strong> />

shows that the capacity pillar stope is directly<<strong>br</strong> />

dependent on the thickness of coal<<strong>br</strong> />

seams which are mined as well as the time<<strong>br</strong> />

of performing the work operations of<<strong>br</strong> />

blasting the over stope coal and loading on<<strong>br</strong> />

a transport conveyor.<<strong>br</strong> />

In relation to the existing used method<<strong>br</strong> />

of pillar mining, this research has provided<<strong>br</strong> />

the obtaining of over stope with<<strong>br</strong> />

DDB separated by partial blasting charging,<<strong>br</strong> />

resulting in a significant increase in<<strong>br</strong> />

capacity and increase the safety of employees.<<strong>br</strong> />

Further research has to be directed<<strong>br</strong> />

to introduction the mechanized<<strong>br</strong> />

loading with mobile machines, what will<<strong>br</strong> />

further affect the increase in production<<strong>br</strong> />

and productivity and productivity of pillar<<strong>br</strong> />

mining.<<strong>br</strong> />

Regarding to the natural-geological<<strong>br</strong> />

conditions in the majority of coal deposits<<strong>br</strong> />

of predisposed to the underground mining<<strong>br</strong> />

system, it is concluded that the pillar mining<<strong>br</strong> />

will further exist so for improvement<<strong>br</strong> />

of financial performance of the mine, it is<<strong>br</strong> />

necessary to continue with further studies<<strong>br</strong> />

in the application of proposed solutions.<<strong>br</strong> />

REFERENCES<<strong>br</strong> />

[1] Ivković M., Miljanović J., Ivković<<strong>br</strong> />

Lj., Tendency of development the<<strong>br</strong> />

non-traditional system of<<strong>br</strong> />

underground mining of coal seams,<<strong>br</strong> />

Scientific-expert Symposium<<strong>br</strong> />

"Energetika Srpske 98" with<<strong>br</strong> />

international participation, Vrućica Spa<<strong>br</strong> />

(pp. 809-813), 1998<<strong>br</strong> />

[2] Ivković M., Miljanović J., Gagić D.,<<strong>br</strong> />

Selection of mining method in the coal<<strong>br</strong> />

deposits with limited reserves,<<strong>br</strong> />

Scientific-expert Symposium "Energetika<<strong>br</strong> />

Srpske 98" with international<<strong>br</strong> />

participation, Vrućica Spa (pp. 836-<<strong>br</strong> />

841), 1998<<strong>br</strong> />

[3] Ivković M., Miljanović J., Bijelić V.,<<strong>br</strong> />

Selection of mining system for a part<<strong>br</strong> />

of the coal deposit "Ramići" Banja<<strong>br</strong> />

Luka, provided for underground<<strong>br</strong> />

mining, Scientific-expert Symposium<<strong>br</strong> />

with international participation<<strong>br</strong> />

"Possible aspects of exploitation, coal<<strong>br</strong> />

preparation and combustion of the<<strong>br</strong> />

Republic of Serbian", Vrućica Spa<<strong>br</strong> />

(pp. 369-375), 1999<<strong>br</strong> />

[4] Ivković M., Marić R., Miljanović J.,<<strong>br</strong> />

Directions of restructuring the<<strong>br</strong> />

underground coal mines with special<<strong>br</strong> />

reference to the activation of new<<strong>br</strong> />

deposits, Scientific symposium with<<strong>br</strong> />

international participation, Energy of<<strong>br</strong> />

Yugoslavia ENYU 2000, Zlatibor,<<strong>br</strong> />

2000 (pp. 350-354)<<strong>br</strong> />

[5] Miljanović J., Influential factors on the<<strong>br</strong> />

reali<strong>za</strong>tion of coal production in the<<strong>br</strong> />

mines with underground mining of the<<strong>br</strong> />

Republic of Serbia, Mining Engineering<<strong>br</strong> />

No.1/2002, 1-12 Resavica (pp.26-31)<<strong>br</strong> />

[6] Ivković M., Ljubojev M., Miljanović J.,<<strong>br</strong> />

The effect of ground exploitation of<<strong>br</strong> />

mineral resources on a damage of field<<strong>br</strong> />

surface and built facilities, Third<<strong>br</strong> />

International Conference on<<strong>br</strong> />

Environmental Management<<strong>br</strong> />

(ELEKTRA III), Herceg Novi 2004,<<strong>br</strong> />

(pp.242-246), (in Serbian)<<strong>br</strong> />

No 4, <strong>2011</strong>. 79<<strong>br</strong> />

MINING ENGINEERING


[7] Ljubojev M., Ivković M., Miljanović J.,<<strong>br</strong> />

Ignjatović L.,Testing of geomechanical<<strong>br</strong> />

properties of coal series in order to<<strong>br</strong> />

support determination of mechanized<<strong>br</strong> />

stope on the example of the "Stara<<strong>br</strong> />

jama" mine in "Lubnica", Journal of<<strong>br</strong> />

Mining and Metallurgy, 45a (1), (2009)<<strong>br</strong> />

(pp. 58-70)<<strong>br</strong> />

[8] Ivković M., Đukanović D., Miljanović<<strong>br</strong> />

J., Investigation of properties and<<strong>br</strong> />

protection against coal dust explosion<<strong>br</strong> />

in the underground mines in Serbia,<<strong>br</strong> />

Technics technologies education<<strong>br</strong> />

management, Sarajevo 2010 (pp.67-72)<<strong>br</strong> />

[9] Đukanović D., Miljanović J., Ivković<<strong>br</strong> />

M., Designing and reliably of mine<<strong>br</strong> />

ventilator facilities, Technics<<strong>br</strong> />

technologies education management,<<strong>br</strong> />

Sarajevo 2010 (pp.54-59)<<strong>br</strong> />

[10] Ivković J., Miljanović J., Calculation of<<strong>br</strong> />

gas concentration in the underground<<strong>br</strong> />

coal combustion, Mining Engineering<<strong>br</strong> />

No.1/2010, <strong>Bor</strong> 2010 (pp. 127 – 130)<<strong>br</strong> />

[11] S. Ćosić, H. Okanović, Modeling of<<strong>br</strong> />

stress-deformation state using the<<strong>br</strong> />

numerical methods in the wide face<<strong>br</strong> />

mining, Mining Engineering<<strong>br</strong> />

No.2/2010, <strong>Bor</strong>, (pp.73-92)<<strong>br</strong> />

[12] M. Ljubojev, D. Ignjatović, V.<<strong>br</strong> />

Ljubojev, L. Đurđevac Ignjatović, D.<<strong>br</strong> />

Rakić, Deformation and bearing<<strong>br</strong> />

capacity of burried material near the<<strong>br</strong> />

shaft opening at the open pit mine<<strong>br</strong> />

”Zagradje”-OPEN PIT 2, Mining<<strong>br</strong> />

Engineering No.2/2010, <strong>Bor</strong>, (pp.115-<<strong>br</strong> />

122)<<strong>br</strong> />

[13] D. Ignjatović, M. Ljubojev, L. Đ.<<strong>br</strong> />

Ignjatović, J. Petrović, Rock mass<<strong>br</strong> />

classification before the tunnel<<strong>br</strong> />

construction (per wickham and<<strong>br</strong> />

bienawski), Mining Engineering<<strong>br</strong> />

No.1/<strong>2011</strong>, <strong>Bor</strong>, (pp.69-72)<<strong>br</strong> />

[14] Lj. Savić, R. Janković, S. Kovačević,<<strong>br</strong> />

Mining of safety pillars in the’’Trepca’’<<strong>br</strong> />

- Stari trg mine, Mining Engineering<<strong>br</strong> />

No.1/<strong>2011</strong>, <strong>Bor</strong>, (pp.125-134)<<strong>br</strong> />

[15] D. Đukanović, M. Denić, D.<<strong>br</strong> />

Dragojević. Drivage rate of<<strong>br</strong> />

underground rooms, as a condition of<<strong>br</strong> />

introduction the mechanized drivage of<<strong>br</strong> />

underground rooms in the JP PEU<<strong>br</strong> />

Resavica mines, Mining Engineering<<strong>br</strong> />

No.1/<strong>2011</strong>, <strong>Bor</strong>, (pp.171-174)<<strong>br</strong> />

[16] M. Ivković, R. Lekovski, M. Ljibojev,<<strong>br</strong> />

Definition of system the influential<<strong>br</strong> />

conditions in the selection of mining<<strong>br</strong> />

method with the short mechanized face<<strong>br</strong> />

in the coal mines, Mining Engineering<<strong>br</strong> />

No.2/<strong>2011</strong>, <strong>Bor</strong>, (pp.119-124)<<strong>br</strong> />

No 4, <strong>2011</strong>. 80<<strong>br</strong> />

MINING ENGINEERING


INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162<<strong>br</strong> />

KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622<<strong>br</strong> />

UDK: 681.51:622.271(045)=861<<strong>br</strong> />

Daniel Kržanović ∗ , Radmilo Rajković * , Miodrag Žikić ∗∗<<strong>br</strong> />

PRIMENA SOFTVERSKIH PAKETA WHITTLE I GEMCOM ZA<<strong>br</strong> />

PRORAČUN BILANSNIH REZERVI RUDE BAKRA U LEŽIŠTU JUŽNI<<strong>br</strong> />

REVIR MAJDANPEK ∗∗∗<<strong>br</strong> />

Izvod<<strong>br</strong> />

Primena softvera <strong>za</strong> proračun rezervi u savremenoj geološkoj i rudarskoj nauci i praksi omogućuje<<strong>br</strong> />

da se u kratkom vremenskom periodu sagleda veliki <strong>br</strong>oj varijanti i iznađu najbolja<<strong>br</strong> />

rešenja.<<strong>br</strong> />

Dobijeni rezultati su <strong>za</strong>dovoljavajućeg kvaliteta i tačnosti, i u skladu sa svetskim standardima.<<strong>br</strong> />

U radu je prika<strong>za</strong>na primena softvera Whittle i Gemcom <strong>za</strong> (kod) o<strong>br</strong>ačuna bilansnih rezervi<<strong>br</strong> />

ležišta Južni revir Majdanpek.<<strong>br</strong> />

Ključne reči: softverski paketi Whittle i Gemcom, ležište Južni revir Majdanpek, bilansne rezerve.<<strong>br</strong> />

1. UVOD<<strong>br</strong> />

Bilansne rezerve čvrstih mineralnih sirovina<<strong>br</strong> />

čine delovi ležišta koji se mogu<<strong>br</strong> />

rentabilno eksploatisati postojećom<<strong>br</strong> />

tehnikom i tehnologijom.<<strong>br</strong> />

Bilansnost rezervi utvrđuje se propisanom<<strong>br</strong> />

tehnoekonomskom analizom.<<strong>br</strong> />

Za utvrđivanje bilansnih rezervi potrebno<<strong>br</strong> />

je prethodno usvojiti odgovarajuće<<strong>br</strong> />

kriterijume, odnosno usvojiti granične<<strong>br</strong> />

vrednosti nekih naturalnih poka<strong>za</strong>telja, koje<<strong>br</strong> />

se odnose na kvalitet mineralne sirovine i<<strong>br</strong> />

rudarsko tehničke uslove eksploatacije.<<strong>br</strong> />

U slučaju ležišta bakra Južni revir Majdanpek,<<strong>br</strong> />

<strong>za</strong> utvrđivanje bilansnosti rezervi<<strong>br</strong> />

od bitnog su značaja maksimalna dubina<<strong>br</strong> />

eksploatacije, maksimalno dozvoljena<<strong>br</strong> />

vrednost koeficijenta otkrivke i minimalni,<<strong>br</strong> />

tj. maksimalni srednji sadržaj korisnih<<strong>br</strong> />

komponenti u ležištu.<<strong>br</strong> />

Nakon prethodne izrade blok modela<<strong>br</strong> />

∗ <strong>Institut</strong> <strong>za</strong> <strong>rudarstvo</strong> i <strong>metalurgiju</strong> <strong>Bor</strong><<strong>br</strong> />

∗∗ Tehnički fakultet u <strong>Bor</strong>u<<strong>br</strong> />

∗∗∗ Rad je proi<strong>za</strong>šao iz projekta <strong>br</strong>oj 33038 „Usavršavanje tehnologija eksploatacije i prerade<<strong>br</strong> />

rude bakra sa monitoringom životne i radne sredine u RTB <strong>Bor</strong> Grupa“, koji je finansiran<<strong>br</strong> />

sredstvima Ministarstva <strong>za</strong> prosvetu i nauku Republike Srbije<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 81<<strong>br</strong> />

RUDARSKI RADOVI


ležišta, kao i utvrđenih polaznih parametara<<strong>br</strong> />

(cene eksploatacije i prerade, gubitaka, razblaženja,<<strong>br</strong> />

investicija i cena finalnih proizvoda)<<strong>br</strong> />

moguće je pristupiti optimi<strong>za</strong>ciji<<strong>br</strong> />

ležišta u programskom paketu Whittle.<<strong>br</strong> />

Za izbor najpovoljnije konture bilansnih<<strong>br</strong> />

rezervi izvršena je anali<strong>za</strong> više varijanti<<strong>br</strong> />

kopa u konturi graničnog sadržaja<<strong>br</strong> />

bakra 0,15%, konkretno 86 varijanti. Nakon<<strong>br</strong> />

toga konstruisan je površinski kop u<<strong>br</strong> />

softveru Gemcom i na osnovu njega izvršen<<strong>br</strong> />

proračun bilansnih rezervi, <strong>za</strong> šta je<<strong>br</strong> />

korišćen takođe Gemcom, i to njegov<<strong>br</strong> />

modul Volumetrics.<<strong>br</strong> />

2. PRIMENJENE METODE<<strong>br</strong> />

PRORAČUNA REZERVI<<strong>br</strong> />

Za proračun (rudnih) rezervi u ležištu<<strong>br</strong> />

Južni revir Majdanpek korišćena je metoda<<strong>br</strong> />

mini blokova.<<strong>br</strong> />

Metoda mini blokova je stručno verifikovana<<strong>br</strong> />

i detaljno prika<strong>za</strong>na u odgovarajućoj<<strong>br</strong> />

stručnoj literaturi, u kojoj se izdvaja kao<<strong>br</strong> />

posebna metoda u grupi topoloških metoda<<strong>br</strong> />

proračuna rudnih rezervi.<<strong>br</strong> />

Pri izboru metode mini blokova, kao<<strong>br</strong> />

osnovne, imalo se u vidu da je ležište bakra<<strong>br</strong> />

Južni revir Majdanpek u osnovi istraženo<<strong>br</strong> />

pravougaonom mrežom istražnih bušotina<<strong>br</strong> />

100×50 m, a konture orudnjenja proverene<<strong>br</strong> />

su na nekoliko horizonata rudarskim istražnim<<strong>br</strong> />

<strong>radovi</strong>ma. Takođe, ležište ima izgled<<strong>br</strong> />

izduženog sočiva ujednačene debljine<<strong>br</strong> />

orudnjenja.<<strong>br</strong> />

Usvojeni mini blokovi predstavljaju<<strong>br</strong> />

kocku čije su stranice 15 m zbog toga što je<<strong>br</strong> />

projektovana visina eksploatacionih etaža<<strong>br</strong> />

takođe 15 m, kao i moćnost rude u njemu.<<strong>br</strong> />

Za procenu proračunskih blokova<<strong>br</strong> />

korišćena je metoda pravog krigovanja.<<strong>br</strong> />

Kod velikih ležišta, kao što je slučaj sa<<strong>br</strong> />

ležištem bakra Južni revir Majdanpek,<<strong>br</strong> />

prednost proračuna rezervi korišćenjem<<strong>br</strong> />

računarske tehnike u odnosu na proračun<<strong>br</strong> />

drugim („manuelnim”) metodama ogleda<<strong>br</strong> />

se u sledećem:<<strong>br</strong> />

� moguće je u kratkom vremenskom<<strong>br</strong> />

periodu generisati veliki <strong>br</strong>oj varijanti,<<strong>br</strong> />

izvršiti njihovu analizu i<<strong>br</strong> />

iznaći najbolje rešenje,<<strong>br</strong> />

� ovako dobijeni rezultati <strong>za</strong>dovoljavajuće<<strong>br</strong> />

su tačnosti i u stručnoj<<strong>br</strong> />

javnosti prihvaćeni kao reprezentativni,<<strong>br</strong> />

� potencijalni kreditori i koncesionari<<strong>br</strong> />

<strong>za</strong>htevaju da se ispoštuje opisana<<strong>br</strong> />

metodologija i da ležište bude prika<strong>za</strong>no<<strong>br</strong> />

u digitalnom obliku.<<strong>br</strong> />

3. TEHNO EKONOMSKI PODACI ZA<<strong>br</strong> />

PROCENU VREDNOSTI LEŽIŠTA<<strong>br</strong> />

Usvojeni polazni tehno ekonomski podaci,<<strong>br</strong> />

potrebni <strong>za</strong> procenu vrednosti ležišta,<<strong>br</strong> />

prika<strong>za</strong>ni su u tabeli 1. Oni su usvojeni na<<strong>br</strong> />

bazi dugogodišnjeg proizvodnog iskustva<<strong>br</strong> />

na ovom rudniku, planskih dokumenata<<strong>br</strong> />

rudnika, postojećih studija <strong>za</strong> eksploataciju<<strong>br</strong> />

ovog ležišta i procene kretanja tržišnih<<strong>br</strong> />

cena metala u Svetu u narednom periodu.<<strong>br</strong> />

Ukupna investiciona ulaganja <strong>za</strong> kop i<<strong>br</strong> />

flotaciju procenjena su na 50 000 000 $.<<strong>br</strong> />

Mogući kapacitet proizvodnje usvojen je<<strong>br</strong> />

prema Planu razvoja proizvodnje rude<<strong>br</strong> />

bakra u RTB-u i iznosi 8,5 miliona tona<<strong>br</strong> />

rude godišnje<<strong>br</strong> />

Za analizu mogućnosti otkopavanja<<strong>br</strong> />

uzeto je stanje kopa geodetski snimljeno<<strong>br</strong> />

na dan 05. 02. <strong>2011</strong>. godine.<<strong>br</strong> />

Bazni parametri eksploatacije usvojene<<strong>br</strong> />

su na osnovu dosada stečenog iskustva u<<strong>br</strong> />

otkopavanju istog ležišta, odnosno:<<strong>br</strong> />

- visina etaže 15 m,<<strong>br</strong> />

- ugao kosine etaže 70°,<<strong>br</strong> />

- ugao <strong>za</strong>vršne kosine kopa u rasponu<<strong>br</strong> />

od 35 - 38° i<<strong>br</strong> />

- širina etažnih ravni u rasponu od 13,0<<strong>br</strong> />

– 18,5 m.<<strong>br</strong> />

Pregled ostalih tehno ekonomski parametri<<strong>br</strong> />

<strong>za</strong> optimi<strong>za</strong>ciju ležišta sistematizovan<<strong>br</strong> />

je u tabeli <strong>br</strong>oj 1.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 82<<strong>br</strong> />

RUDARSKI RADOVI


Tabela 1. Pregled polaznih tehno ekonomskih parametara <strong>za</strong> optimi<strong>za</strong>ciju ležišta<<strong>br</strong> />

Parametar<<strong>br</strong> />

Bazne cene metala<<strong>br</strong> />

Jednica Vednost<<strong>br</strong> />

� bakra USD/t 6 500,00<<strong>br</strong> />

� zlata USD/kg 35 000,00<<strong>br</strong> />

� sre<strong>br</strong>a USD/kg 650,00<<strong>br</strong> />

Troškovi otkopavanja rude USD/t 2,00<<strong>br</strong> />

Troškovi otkopavanja jalovine USD/t 2,00<<strong>br</strong> />

Troškovi flotacijske prerade rude USD/t 3,80<<strong>br</strong> />

Troškovi metalurške prerade koncentrata<<strong>br</strong> />

bakra<<strong>br</strong> />

USD/t Cu katode 750,00<<strong>br</strong> />

Troškovi rafinacije zlata USD/kg 150,00<<strong>br</strong> />

Troškovi rafinacije sre<strong>br</strong>a<<strong>br</strong> />

Flotacijska iskorišćenja<<strong>br</strong> />

USD/kg 15,00<<strong>br</strong> />

� bakra % 82,0<<strong>br</strong> />

� zlata % 55,0<<strong>br</strong> />

� sre<strong>br</strong>a % 55,0<<strong>br</strong> />

Metalurška iskorišćenja<<strong>br</strong> />

� bakra % 95,0<<strong>br</strong> />

� zlata % 91,0<<strong>br</strong> />

� sre<strong>br</strong>a % 91,0<<strong>br</strong> />

Godišnji kapacitet prerade rude t/god 8 500 000<<strong>br</strong> />

Diskontna stopa % 10<<strong>br</strong> />

4. EKONOMSKE GRANICE<<strong>br</strong> />

OTKOPAVANJA LEŽIŠTA I<<strong>br</strong> />

PRORAČUN BILANSNIH<<strong>br</strong> />

RUDNIH REZERVI<<strong>br</strong> />

Utvrđivanje ekonomske granice otkopavanja<<strong>br</strong> />

ležišta površinskim kopom, tj.<<strong>br</strong> />

utvrđivanje graničnog kopa <strong>za</strong> navedene<<strong>br</strong> />

polazne tehnoekonomske parametre,<<strong>br</strong> />

urađeno je programskim paketom <strong>za</strong> optimi<strong>za</strong>ciju<<strong>br</strong> />

površinskih kopova Whittle, a na<<strong>br</strong> />

osnovu izrađenog blok modela ležišta.<<strong>br</strong> />

Navedeni programski paket određuje<<strong>br</strong> />

granicu kopa po Lersh-Grossman algoritmu,<<strong>br</strong> />

a primenjen je Cut–off postupak.<<strong>br</strong> />

Ovim metodom se <strong>za</strong> svaki orudnjeni blok<<strong>br</strong> />

izračunava mogući profit i troškovi <strong>za</strong><<strong>br</strong> />

slučaj njegovog otkopavanja.<<strong>br</strong> />

Za jednu kombinaciju tehnoekonomskih<<strong>br</strong> />

parametara dobija se jedan granični kop, ali<<strong>br</strong> />

se promenom nekih od ulaznih parametara<<strong>br</strong> />

menja kontura graničnog kopa. Softwer ima<<strong>br</strong> />

mogućnosti da primenom koeficijenta cene<<strong>br</strong> />

metala menja veličinu prihoda i time<<strong>br</strong> />

generiše više mogućih kontura kopova, što<<strong>br</strong> />

je prika<strong>za</strong>no na slici 1.<<strong>br</strong> />

Promenom cena metala tj. mogućeg<<strong>br</strong> />

prihoda, primenom faktora prihoda definisane<<strong>br</strong> />

su različite granice kopova. Sa<<strong>br</strong> />

grafika se takođe može očitati ukupna<<strong>br</strong> />

količina iskopina (rude i jalovine) koje su<<strong>br</strong> />

<strong>za</strong>hvaćene kopom, kao i količine koje je<<strong>br</strong> />

softver okarakterisao kao ruda.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 83<<strong>br</strong> />

RUDARSKI RADOVI


Sl. 1. Grafički prikaz količina rude i jalovine i vrednosti kopova <strong>za</strong><<strong>br</strong> />

granični sadržaj 0,15% Cu u rudi<<strong>br</strong> />

Projektovano otkopavanje na površinskom<<strong>br</strong> />

kopu Južni revir vršiće se po varijanti<<strong>br</strong> />

„best case“, odnosno otkopavanje po<<strong>br</strong> />

među<strong>za</strong>hvatima tzv. pushback-ovima.<<strong>br</strong> />

Granični kop <strong>za</strong> napred navedene polazne<<strong>br</strong> />

tehnoekonomske parametre je kop sa<<strong>br</strong> />

faktorom prihoda jednakim jedinici, odnosno<<strong>br</strong> />

kop <strong>br</strong>oj 36. S obzirom da su kopovi<<strong>br</strong> />

od <strong>br</strong>oja 34 do <strong>br</strong>oja 38 pozitivni, po “best“<<strong>br</strong> />

varijanti otkopavanja, sa postojećim podacima<<strong>br</strong> />

koji su uzeti u optimi<strong>za</strong>ciji, <strong>za</strong> konstrukciju<<strong>br</strong> />

površinskog kopa koji obuhvata<<strong>br</strong> />

bilansne rezerve i<strong>za</strong><strong>br</strong>an je kop <strong>br</strong>oj 33, koji<<strong>br</strong> />

ima faktor povraćaja 0,94. Ovaj kop<<strong>br</strong> />

i<strong>za</strong><strong>br</strong>an je sa jedne strane zbog prostornih<<strong>br</strong> />

ograničenja, a sa druge strane zbog sigurnosti,<<strong>br</strong> />

s obzirom na mogućnost da investicona<<strong>br</strong> />

ulaganja nisu u potpunosti definisana.<<strong>br</strong> />

Pretpostavljeni profit koji je dobijen u programskom<<strong>br</strong> />

paketu Whittle <strong>za</strong> varijantu kopa<<strong>br</strong> />

<strong>br</strong>oj 33, omogućila bi dodatne investicije, a<<strong>br</strong> />

da pri tome ekonomska vrednost ležišta<<strong>br</strong> />

ostane pozitivna.<<strong>br</strong> />

Konstruisana <strong>za</strong>vršna kontura kopa u<<strong>br</strong> />

programu Gemcom ima 41 etažu. Najviša<<strong>br</strong> />

etaža je E+590, a najniža etaža je E-10.<<strong>br</strong> />

Projektovanim <strong>za</strong>hvatom predviđeno je<<strong>br</strong> />

otkopavanje čiji su glavni parametric dati<<strong>br</strong> />

u tabeli 2. Izgled <strong>za</strong>vršne konture kopa<<strong>br</strong> />

prika<strong>za</strong>n je na slici 2.<<strong>br</strong> />

Tabela 2. Bilansne rezerve u ležištu bakra<<strong>br</strong> />

Južni revir Majdanpek u<<strong>br</strong> />

konturi graničnog sadržaja<<strong>br</strong> />

0,15% Cu<<strong>br</strong> />

Materijal Količina<<strong>br</strong> />

Ruda (t) 246 947 462<<strong>br</strong> />

Jalovina (t) 596 081 443<<strong>br</strong> />

Iskopina (t) 843 028 905<<strong>br</strong> />

Koeficijent raskrivke (t/t) 2,414<<strong>br</strong> />

Cu (%) 0,357<<strong>br</strong> />

Ag (g/t) 1,469<<strong>br</strong> />

Au (g/t) 0,199<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 84<<strong>br</strong> />

RUDARSKI RADOVI


5. ZAKLJUČAK<<strong>br</strong> />

Bilansne rezerve ležišta Južni revir<<strong>br</strong> />

Majdanpek utvrđene su na osnovu vrednosti<<strong>br</strong> />

graničnih naturalnih poka<strong>za</strong>telja koje<<strong>br</strong> />

se odnose na kvalitet mineralne sirovine i<<strong>br</strong> />

rudarsko tehničke uslove eksploatacije,<<strong>br</strong> />

primenom softvera Whittle i Gemcom.<<strong>br</strong> />

Za utvrđivanje bilansnosti rezervi, u slučaju<<strong>br</strong> />

tog ležišta, od bitnog značaja su maksimalna<<strong>br</strong> />

dubina eksploatacije, maksimalno<<strong>br</strong> />

dozvoljena veličina koeficijenta otkrivke i<<strong>br</strong> />

minimalni, tj. maksimalni srednji sadržaj<<strong>br</strong> />

korisnih komponenti u ležištu.<<strong>br</strong> />

Za izbor najpovoljnije konture bilansnih<<strong>br</strong> />

rezervi izvršena je optimi<strong>za</strong>cija ležišta u<<strong>br</strong> />

softveru Whittle na osnovu izrađenog<<strong>br</strong> />

Sl. 2. Izgled <strong>za</strong>vršne konture kopa<<strong>br</strong> />

blok modela ležišta, pri čemu je dobijeno<<strong>br</strong> />

više varijanti kopa u konturi graničnog<<strong>br</strong> />

sadržaja bakra 0,15%, tačnije 86 varijanti<<strong>br</strong> />

kopova. Navedeni programski paket određuje<<strong>br</strong> />

granicu kopa po Lersh-Grossman<<strong>br</strong> />

algoritmu, a primenjen je Cut–off postupak.<<strong>br</strong> />

Ovim metodom se <strong>za</strong> svaki orudnjeni<<strong>br</strong> />

blok izračunava mogući profit i troškovi<<strong>br</strong> />

<strong>za</strong> slučaj njegovog otkopavanja.<<strong>br</strong> />

Proračun bilansnih rezervi izvršen je u<<strong>br</strong> />

softveru Gemcom, modul Volumetrics.<<strong>br</strong> />

Granični kop <strong>za</strong> napred navedene polazne<<strong>br</strong> />

tehnoekonomske parametre je kop sa<<strong>br</strong> />

faktorom prihoda jednakim jedinici, odnosno<<strong>br</strong> />

kop <strong>br</strong>oj 36. S obzirom da postoji<<strong>br</strong> />

mogućnost greške kod procene investicionih<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 85<<strong>br</strong> />

RUDARSKI RADOVI


ulaganja, zbog sigurnosti <strong>za</strong> konstrukciju<<strong>br</strong> />

površinskog kopa koji obuhvata bilansne<<strong>br</strong> />

rezerve i<strong>za</strong><strong>br</strong>an je kop <strong>br</strong>oj 33. Pretpostavljeni<<strong>br</strong> />

profit koji je dobijen u programskom<<strong>br</strong> />

paketu Whittle <strong>za</strong> varijantu<<strong>br</strong> />

kopa <strong>br</strong>oj 33, omogućio bi dodatne investicije,<<strong>br</strong> />

a da pri tome ekonomska vrednost<<strong>br</strong> />

ležišta ostane pozitivna.<<strong>br</strong> />

LITERATURA<<strong>br</strong> />

[1] Gemcom User Manuel, Gemcom<<strong>br</strong> />

Software International Inc.Sute<<strong>br</strong> />

2200.1066 West Hastings, P.O.<<strong>br</strong> />

Box12507,<<strong>br</strong> />

Vancouver,BC.CanadaV6E 3X1<<strong>br</strong> />

[2] http://www.gemcomsoftware.com/<<strong>br</strong> />

/products/whittle<<strong>br</strong> />

[3] Studija izvodljivosti eksploatacije<<strong>br</strong> />

ležišta Južni revir u Rudniku bakra<<strong>br</strong> />

Majdanpek, IRM <strong>Bor</strong>, septembar<<strong>br</strong> />

<strong>2011</strong>.<<strong>br</strong> />

[4] D. Kržanović, R. Rajković, V.<<strong>br</strong> />

Marinković, Geološke karakteristike,<<strong>br</strong> />

modeliranje i tehničko rešenje<<strong>br</strong> />

otkopavanja tehnogenog ležišta<<strong>br</strong> />

„Depo šljake 1“ u <strong>Bor</strong>u, Časopis<<strong>br</strong> />

<strong>Rudarski</strong> <strong>radovi</strong>, <strong>br</strong>. 1, 2009, str. 7-16<<strong>br</strong> />

[5] R. Rajković, D. Kržanović, V.<<strong>br</strong> />

Marinković, Geološka interpretacija<<strong>br</strong> />

ležišta „DEO“ Donja Bela Reka<<strong>br</strong> />

programom Gemcom 6.1.3, Časopis<<strong>br</strong> />

<strong>Rudarski</strong> <strong>radovi</strong>, <strong>br</strong>. 1, 2009, str. 1-6<<strong>br</strong> />

[6] D. Kržanović, M. Žikić, Z.<<strong>br</strong> />

Vaduvesković, Inovirani blok model<<strong>br</strong> />

ležišta rude bakra Južni revir<<strong>br</strong> />

Majdanpek kao osnova <strong>za</strong> analizu<<strong>br</strong> />

optimalnog razvoja površinskog kopa<<strong>br</strong> />

primenom softverskih paketa Whittle<<strong>br</strong> />

i Gemcom, Časopis <strong>Rudarski</strong> <strong>radovi</strong>,<<strong>br</strong> />

<strong>br</strong>. 3, <strong>2011</strong>, str. 61-69<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 86<<strong>br</strong> />

RUDARSKI RADOVI


MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162<<strong>br</strong> />

COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622<<strong>br</strong> />

UDK: 681.51:622.271 (045)=20<<strong>br</strong> />

Daniel Kržanović ∗ , Radmilo Rajković * , Miodrag Žikić ∗∗<<strong>br</strong> />

APPLICATION THE SOFTWARE PACKAGES WHITTLE AND GEM-<<strong>br</strong> />

COM FOR CALCULATION THE BALANCE RESERVES OF COPPER<<strong>br</strong> />

ORE IN THE SOUTH MINING DISTRICT DEPOSIT MAJDANPEK ∗∗∗<<strong>br</strong> />

Abstract<<strong>br</strong> />

Application of software for calculation the reserves in a modern geological and mining science<<strong>br</strong> />

and practice enables the short term look at a number of variants and finding out the best solutions.<<strong>br</strong> />

The obtained results had satisfactory quality and accuracy, and according to the international<<strong>br</strong> />

standards.<<strong>br</strong> />

This paper presents the application of software Whittle and Gemcom for a (Code) of calculation<<strong>br</strong> />

the balance reserves of the deposits South Mining District Majdanpek.<<strong>br</strong> />

Key words: software packages Whittle and Gemcom, deposit, South Mining District Majdanpek,<<strong>br</strong> />

balance reserves.<<strong>br</strong> />

1. INTRODUCTION<<strong>br</strong> />

Balance reserves of solid mineral deposits<<strong>br</strong> />

are deposit parts that can be profitably<<strong>br</strong> />

mined by the existing techniques and<<strong>br</strong> />

technology.<<strong>br</strong> />

Balance of reserves is determined by<<strong>br</strong> />

prescribed techno-economic analysis.<<strong>br</strong> />

It is necessary to adopt previously the<<strong>br</strong> />

appropriate criteria for determining the balance<<strong>br</strong> />

of reserves, i.e. to adopt the limit values<<strong>br</strong> />

of some natural indicators, which relate to<<strong>br</strong> />

the quality of mineral resource and mining–<<strong>br</strong> />

technical conditions of exploitation.<<strong>br</strong> />

In a case of the copper deposits South<<strong>br</strong> />

Mining District, maximum depth of exploitation,<<strong>br</strong> />

maximum allowed value of<<strong>br</strong> />

overburden ratio and minimum, i.e.<<strong>br</strong> />

maximum average content of useful components<<strong>br</strong> />

in deposit are very important for<<strong>br</strong> />

determining the balance of reserves.<<strong>br</strong> />

After previous development the block<<strong>br</strong> />

model of deposit as well as determined<<strong>br</strong> />

initial parameters (costs of exploitation and<<strong>br</strong> />

processing, losses, dilution, investment and<<strong>br</strong> />

price of final products), it is possible to<<strong>br</strong> />

∗ Mining and Metallurgy <strong>Institut</strong>e <strong>Bor</strong><<strong>br</strong> />

∗∗ Technical Faculty in <strong>Bor</strong><<strong>br</strong> />

∗∗∗ The work has resulted from the Project No. 33038 “Improving the Technology of Copper Ore<<strong>br</strong> />

Mining and Processing with Monitoring of Living and Working Environment in RTB <strong>Bor</strong><<strong>br</strong> />

Group”, funded by the Ministry of Education and Science of the Republic of Serbia<<strong>br</strong> />

No 4, <strong>2011</strong>. 87<<strong>br</strong> />

MINING ENGINEERING


access the deposit optimi<strong>za</strong>tion in the<<strong>br</strong> />

Whittle software package.<<strong>br</strong> />

Many variations of the open pit, in a<<strong>br</strong> />

contour of limit copper content 0.15%,<<strong>br</strong> />

specifically 86 variants, were analyzed to<<strong>br</strong> />

select the best contour of balance reserves.<<strong>br</strong> />

Then, the open pit was designed in the<<strong>br</strong> />

software Gemcom, and based on it, a calculation<<strong>br</strong> />

of balance reserves was made, for<<strong>br</strong> />

which Gemcom was also used, and it is its<<strong>br</strong> />

module Volumetrics.<<strong>br</strong> />

2. THE APPLIED METHODS OF<<strong>br</strong> />

RESERVE CALCULATIONS<<strong>br</strong> />

Mini-block method was used for calculation<<strong>br</strong> />

the ore reserves in the deposit<<strong>br</strong> />

South Mining District Majdanpek.<<strong>br</strong> />

Mini-block method is professionally<<strong>br</strong> />

verified present in a detail in the relevant<<strong>br</strong> />

technical literature, where it is isolated as a<<strong>br</strong> />

separate method in a group of topological<<strong>br</strong> />

methods for calculation the ore reserves.<<strong>br</strong> />

In selecting the mini-block method, as<<strong>br</strong> />

the base, it was in a mind that the copper<<strong>br</strong> />

deposit South Mining District Majdanpek<<strong>br</strong> />

was basically explored by rectangular grid<<strong>br</strong> />

of exploration drill holes 100 × 50 m, and<<strong>br</strong> />

the contours of minerali<strong>za</strong>tion were tested<<strong>br</strong> />

in several horizons by mining prospecting<<strong>br</strong> />

works. Also, the deposit has a form of<<strong>br</strong> />

elongated lenses of uniform minerali<strong>za</strong>tion<<strong>br</strong> />

thickness.<<strong>br</strong> />

The adopted mini-blocks are a cube<<strong>br</strong> />

with sides of 15 m due to the designed<<strong>br</strong> />

height of exploitation benches, also 15 m,<<strong>br</strong> />

and ore thickness in it.<<strong>br</strong> />

Kriging method was used for evaluation<<strong>br</strong> />

the calculation blocks.<<strong>br</strong> />

In large deposits, as it is the case with<<strong>br</strong> />

the copper deposit South Mining District<<strong>br</strong> />

Majdanpek, the advantage of reserve calculation<<strong>br</strong> />

using computer technology in<<strong>br</strong> />

relation to the calculation of other (“manual”)<<strong>br</strong> />

methods are the following:<<strong>br</strong> />

� it is possible in a short period of<<strong>br</strong> />

time to generate a large number of<<strong>br</strong> />

variants, carry out their analysis<<strong>br</strong> />

and find the best solution,<<strong>br</strong> />

� thus obtained results have satisfactory<<strong>br</strong> />

accuracy and they are accepted<<strong>br</strong> />

as the representative in the expert<<strong>br</strong> />

public,<<strong>br</strong> />

� potential creditors and concessionaires<<strong>br</strong> />

require to comply with described<<strong>br</strong> />

methodology and that the<<strong>br</strong> />

deposit is displayed in a digital<<strong>br</strong> />

form.<<strong>br</strong> />

3. TECHNO-ECONOMIC DATA FOR<<strong>br</strong> />

EVALUATION THE<<strong>br</strong> />

DEPOSIT VALUE<<strong>br</strong> />

The adopted initial techno-economic<<strong>br</strong> />

data needed to evaluate the deposit value,<<strong>br</strong> />

are shown in Table 1. They were adopted<<strong>br</strong> />

on the basis of many years production<<strong>br</strong> />

experience in this mine, mine planning<<strong>br</strong> />

documents, existing studies for exploitation<<strong>br</strong> />

of this deposit and assess the trends in<<strong>br</strong> />

market prices of metals in the world in<<strong>br</strong> />

next period.<<strong>br</strong> />

Total investments for open pit and flotation<<strong>br</strong> />

are estimated to 50 000 000 $. Possible<<strong>br</strong> />

production capacity was adopted<<strong>br</strong> />

according to the Plan of development the<<strong>br</strong> />

copper ore production in RTB and it is 8.5<<strong>br</strong> />

million tons of ore annually.<<strong>br</strong> />

The condition of open pit, geodetic recorded<<strong>br</strong> />

on 05.02.<strong>2011</strong>, was taken for<<strong>br</strong> />

analysis the possibility of mining.<<strong>br</strong> />

The basic parameters of exploitation<<strong>br</strong> />

were adopted on the basis of gained experience<<strong>br</strong> />

in excavation the deposit, that is:<<strong>br</strong> />

- bench height, 15 m,<<strong>br</strong> />

- angle of bench slope, 70°,<<strong>br</strong> />

- angle of final pit slope in the range<<strong>br</strong> />

of 35 - 38°, and<<strong>br</strong> />

- width of bench level in the range of<<strong>br</strong> />

13.0 to 18.5 m.<<strong>br</strong> />

Review of other techno-economic parameters<<strong>br</strong> />

for deposit optimi<strong>za</strong>tion is systematized<<strong>br</strong> />

in Table 1.<<strong>br</strong> />

No 4, <strong>2011</strong>. 88<<strong>br</strong> />

MINING ENGINEERING


Table 1. Summary of initial techno-economic parameters for deposit optimi<strong>za</strong>tion<<strong>br</strong> />

Parameter<<strong>br</strong> />

Base metal prices<<strong>br</strong> />

Unit Value<<strong>br</strong> />

� copper USD/t 6 500.00<<strong>br</strong> />

� gold USD/kg 35 000.00<<strong>br</strong> />

� silver USD/kg 650.00<<strong>br</strong> />

Costs of ore mining USD/t 2.00<<strong>br</strong> />

Costs of waste mining USD/t 2.00<<strong>br</strong> />

Costs of flotation ore processing USD/t 3.80<<strong>br</strong> />

Costs of metallurgical treatment of copper<<strong>br</strong> />

USD/t Cu 750.00<<strong>br</strong> />

concentrate<<strong>br</strong> />

cathode<<strong>br</strong> />

Gold refining costs USD/kg 150.00<<strong>br</strong> />

Silver refining costs<<strong>br</strong> />

Flotation efficiencies<<strong>br</strong> />

USD/kg 15.00<<strong>br</strong> />

� copper % 82.0<<strong>br</strong> />

� gold % 55.0<<strong>br</strong> />

� silver<<strong>br</strong> />

Metallurgy recoveries<<strong>br</strong> />

% 55.0<<strong>br</strong> />

� copper % 95.0<<strong>br</strong> />

� gold % 91.0<<strong>br</strong> />

� silver % 91.0<<strong>br</strong> />

Annual ore processing capacity t/year 8 500 000<<strong>br</strong> />

Discount rate % 10<<strong>br</strong> />

4. ECONOMIC LIMITS OF<<strong>br</strong> />

DEPOSIT EXCAVATION AND<<strong>br</strong> />

CALCULATION THE BALANCE<<strong>br</strong> />

ORE RESERVES<<strong>br</strong> />

Determination of economic limit of<<strong>br</strong> />

deposit excavation by open pit, i.e. determination<<strong>br</strong> />

the limit open pit for mentioned<<strong>br</strong> />

starting techno-economic parameters, was<<strong>br</strong> />

carried out using the software package for<<strong>br</strong> />

optimi<strong>za</strong>tion the open pit, Whittle, based<<strong>br</strong> />

on developed block model of deposit.<<strong>br</strong> />

The mentioned software package sets<<strong>br</strong> />

the open pit limit per Lersh-Grossman<<strong>br</strong> />

algorithm, and the Cut-off procedure was<<strong>br</strong> />

applied. This method is used to calculate a<<strong>br</strong> />

potential profit for each mineralized block<<strong>br</strong> />

and costs in the event of its excavation.<<strong>br</strong> />

For one combination of technoeconomic<<strong>br</strong> />

parameters, one limit open pit is<<strong>br</strong> />

obtained, but the contour of limit open pit<<strong>br</strong> />

is changed by changing of some input<<strong>br</strong> />

parameters. Software has the abilities to<<strong>br</strong> />

change the size of revenues using the coefficient<<strong>br</strong> />

of metal price and thus to generate<<strong>br</strong> />

a number of possible open pit contours,<<strong>br</strong> />

as shown in Figure 1.<<strong>br</strong> />

Changing the metal prices, i.e. potential<<strong>br</strong> />

revenue, different limits of open pit were<<strong>br</strong> />

defined by applying the revenue factor. It is<<strong>br</strong> />

also read from graphic the total quantity of<<strong>br</strong> />

excavation (ore and waste) that are affected<<strong>br</strong> />

by open pit as well as the characterized<<strong>br</strong> />

quantities by software as the ore.<<strong>br</strong> />

No 4, <strong>2011</strong>. 89<<strong>br</strong> />

MINING ENGINEERING


Fig. 1. Graphical presentation the quantities of ore and waste and value of open pits for<<strong>br</strong> />

limit content of 0.15% Cu in the ore<<strong>br</strong> />

Designed open pit mining of the South<<strong>br</strong> />

Mining District will be realized by the<<strong>br</strong> />

“best case” variant or so-called pushback<<strong>br</strong> />

excavation.<<strong>br</strong> />

Limit open pit for the aforementioned<<strong>br</strong> />

initial techno-economic parameters is the<<strong>br</strong> />

open pit with a factor of income equal to<<strong>br</strong> />

one, or the open pit No.36. Since the open<<strong>br</strong> />

pits from No.34 to No.38 are positive,<<strong>br</strong> />

according to the “best“ variant of excavation,<<strong>br</strong> />

with the existing data taken into optimi<strong>za</strong>tion,<<strong>br</strong> />

the open pit No.33, with recovery<<strong>br</strong> />

factor of 0.94, was selected for<<strong>br</strong> />

construction the open pit that includes the<<strong>br</strong> />

balance reserves.<<strong>br</strong> />

This open pit was selected due to the<<strong>br</strong> />

spatial constraints, on one hand, and the<<strong>br</strong> />

other hand, due to the security, regarding to<<strong>br</strong> />

a possibility that the investments are not<<strong>br</strong> />

fully defined. The assumed profit, obtained<<strong>br</strong> />

in the software package Whittle for the<<strong>br</strong> />

variant of open pit No.33, would provide<<strong>br</strong> />

the additional investments, while the economic<<strong>br</strong> />

value of deposit remains positive.<<strong>br</strong> />

Constructed final contour of open pit in<<strong>br</strong> />

the software package Gemcom has 41<<strong>br</strong> />

benches. The highest bench is E+590, and<<strong>br</strong> />

the lowest bench is E-10. The designed<<strong>br</strong> />

pushback assumed excavation with main<<strong>br</strong> />

parameters given in Table 2. View of the<<strong>br</strong> />

final open pit contour is shown in Figure 2.<<strong>br</strong> />

Table 2. Balance reserves in the copper<<strong>br</strong> />

deposit South Mining District<<strong>br</strong> />

Majdanpek in a contour of limit<<strong>br</strong> />

content 0.15% Cu<<strong>br</strong> />

Material Qunatity<<strong>br</strong> />

Ore (t) 246 947 462<<strong>br</strong> />

Waste (t) 596 081 443<<strong>br</strong> />

Excavation (t) 843 028 905<<strong>br</strong> />

Overburden ratio (t/t) 2.414<<strong>br</strong> />

Cu (%) 0.357<<strong>br</strong> />

Ag (g/t) 1.469<<strong>br</strong> />

Au (g/t) 0.199<<strong>br</strong> />

No 4, <strong>2011</strong>. 90<<strong>br</strong> />

MINING ENGINEERING


5. CONCLUSION<<strong>br</strong> />

Balance reserves of the deposit South<<strong>br</strong> />

Mining District Majdanpek were determined<<strong>br</strong> />

on the basis of limit natural indicators<<strong>br</strong> />

related to the quality of mineral resources<<strong>br</strong> />

and mining technical conditions of<<strong>br</strong> />

exploitation, using the software Whittle<<strong>br</strong> />

and Gemcom.<<strong>br</strong> />

For selection the most suitable contour<<strong>br</strong> />

of balance reserves, the deposit optimi<strong>za</strong>tion<<strong>br</strong> />

was made in the software Whittle,<<strong>br</strong> />

based on developed block model of deposit,<<strong>br</strong> />

where several variants were obtained<<strong>br</strong> />

in a contour of limit copper content 0.15%,<<strong>br</strong> />

more precisely 86 variants of open pits.<<strong>br</strong> />

The mentioned software package sets<<strong>br</strong> />

the open pit limit per Lersh-Grossman<<strong>br</strong> />

algorithm, and the Cut-off procedure was<<strong>br</strong> />

applied. This method is used to calculate a<<strong>br</strong> />

potential profit for each mineralized block<<strong>br</strong> />

and costs in the event of its excavation.<<strong>br</strong> />

Fig. 2. View of the final open pit contour<<strong>br</strong> />

Calculation of balance reserves was<<strong>br</strong> />

mode in the software Gemcom, module<<strong>br</strong> />

Volumetrics.<<strong>br</strong> />

Limit open pit for the aforementioned<<strong>br</strong> />

initial techno-economic parameters is the<<strong>br</strong> />

open pit with a factor of income equal to<<strong>br</strong> />

one, or the open pit No.36. Since the open<<strong>br</strong> />

pits from No.34 to No.38 are positive,<<strong>br</strong> />

according to the “best“ variant of excavation,<<strong>br</strong> />

with the existing data taken into optimi<strong>za</strong>tion,<<strong>br</strong> />

the open pit No.33 was selected<<strong>br</strong> />

for construction the open pit that<<strong>br</strong> />

includes the balance reserves. The assumed<<strong>br</strong> />

profit, obtained in the software<<strong>br</strong> />

package Whittle for the variant of open pit<<strong>br</strong> />

No.33, would provide the additional investments,<<strong>br</strong> />

while the economic value of<<strong>br</strong> />

deposit remains positive.<<strong>br</strong> />

No 4, <strong>2011</strong>. 91<<strong>br</strong> />

MINING ENGINEERING


REFERENCES<<strong>br</strong> />

[1] Gemcom User Manuel, Gemcom<<strong>br</strong> />

Software International Inc. Sute<<strong>br</strong> />

2200.1066 West Hastings, P.O.<<strong>br</strong> />

Box12507, Vancouver, BC.CanadaV6E<<strong>br</strong> />

3X1<<strong>br</strong> />

[2] http://www.gemcomsoftware.com/products/whittle<<strong>br</strong> />

[3] Feasibility Study of Exploitation the<<strong>br</strong> />

South Mining District Deposit in the<<strong>br</strong> />

Copper Mine Majdanpek, MMI <strong>Bor</strong>,<<strong>br</strong> />

September <strong>2011</strong> (in Serbian)<<strong>br</strong> />

[4] D. Kržanović, R. Rajković, V.<<strong>br</strong> />

Marinković, Geological Characteristics,<<strong>br</strong> />

Modeling and Technical Solution of<<strong>br</strong> />

Mining the Technogenic Deposit “Slag<<strong>br</strong> />

Depot 1“ in <strong>Bor</strong>, Mining Engineering,<<strong>br</strong> />

No., 2009, pp.7-16<<strong>br</strong> />

[5] R. Rajković, D. Kržanović, V.<<strong>br</strong> />

Marinković, Geological Interpretation<<strong>br</strong> />

of the deposit “DEO“ Donja Bela Reka<<strong>br</strong> />

using Program Gemcom 6.1.3, Mining<<strong>br</strong> />

Engineering, No.1, 2009, pp.1-6<<strong>br</strong> />

[6] D. Kržanović, M. Žikić, Z.<<strong>br</strong> />

Vaduvesković, Innovated Block Model<<strong>br</strong> />

of the Copper Ore Deposits South<<strong>br</strong> />

Mining District Majdanpek as the Basis<<strong>br</strong> />

for Analysis the Optimum<<strong>br</strong> />

Development of the Open Pit using the<<strong>br</strong> />

Software Packages Whittle and<<strong>br</strong> />

Gemcom, Mining Engineering, No. 3,<<strong>br</strong> />

<strong>2011</strong>, pp. 1-6<<strong>br</strong> />

No 4, <strong>2011</strong>. 92<<strong>br</strong> />

MINING ENGINEERING


INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162<<strong>br</strong> />

KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622<<strong>br</strong> />

UDK: 669.952:622.7(045)=861<<strong>br</strong> />

Branislav Čađenović * , Bojan Drobnjaković * , Dragan Milanović * , Srđana Magdalinović *<<strong>br</strong> />

NOVO LABORATORIJSKO POSTROJENJE ZA GRANULIRANJE<<strong>br</strong> />

IZMENJENIM TEHNOLOŠKIM POSTUPKOM IZLIVANJA<<strong>br</strong> />

TOPIONIČKE ŠLJAKE **<<strong>br</strong> />

Izvod<<strong>br</strong> />

Jalovišta i šljakišta kao izvor velikih količina metala imaju sve veći ekonomski značaj. Šljaka u<<strong>br</strong> />

pogonima RTB-a prerađuje se u postrojenju koje nije projektovano <strong>za</strong> preradu šljake, već samo<<strong>br</strong> />

prilagođeno tim uslovima. Dobijeni rezultati su lošiji od očekivanih, pa se nastavljaju ispitivanja<<strong>br</strong> />

koja bi mogla da ih unaprede. Jedna od mogućnosti je proces granuliranja šljake koji daje čitav<<strong>br</strong> />

niz pravaca <strong>za</strong> ispitivanje uticaja na proces usitnjavanja i koncentracije. Za te potrebe konstruisano<<strong>br</strong> />

je laboratorijsko postrojenje uz pomoć kojeg će se dobiti veće količine granulata neophodnog<<strong>br</strong> />

<strong>za</strong> dalja ispitivanja.<<strong>br</strong> />

Ključne reči: topionička šljaka, granuliranje, laboratorijsko postrojenje<<strong>br</strong> />

1. UVOD<<strong>br</strong> />

Proizvodnja metala bi u budućnosti<<strong>br</strong> />

mogla biti značajno manja u odnosu na<<strong>br</strong> />

sadašnju, zbog činjenice da se rezerve metala<<strong>br</strong> />

u prirodnom obliku u rovnim rudama<<strong>br</strong> />

u<strong>br</strong><strong>za</strong>no iz godine u godinu smanjuju. Drugi<<strong>br</strong> />

razlog, limitirane proizvodnje metala<<strong>br</strong> />

predstavljaju sve strožiji <strong>za</strong>koni o <strong>za</strong>štiti<<strong>br</strong> />

životne sredine, zbog otpada koji nastaje<<strong>br</strong> />

masovnom preradom siromašnih ruda.<<strong>br</strong> />

Ogromne količine metala <strong>za</strong>robljene u<<strong>br</strong> />

jalovištima i šljakištima, <strong>za</strong> naredni period<<strong>br</strong> />

mogu predstavljati potencijalne sirovine <strong>za</strong><<strong>br</strong> />

dobijanje novih količina metala. Mineraloški<<strong>br</strong> />

sastav šljaka dobijen iz metalurške prerade<<strong>br</strong> />

<strong>za</strong>visi od mnogih faktora, a jedan od<<strong>br</strong> />

značajnih je tehnologija metalurške prerade.<<strong>br</strong> />

U <strong>za</strong>visnosti od gore napomenutog, sadržaj<<strong>br</strong> />

korisne komponente varira u granicama koje<<strong>br</strong> />

predstavljaju veći sadržaj nego prisustvo<<strong>br</strong> />

njihovo u rovnim rudama.<<strong>br</strong> />

Šljake dobijene preradom obojenih<<strong>br</strong> />

metala su uglavnom šljake iz proizvodnje<<strong>br</strong> />

* <strong>Institut</strong> <strong>za</strong> <strong>rudarstvo</strong> i <strong>metalurgiju</strong> <strong>Bor</strong><<strong>br</strong> />

** Ovaj rad je proi<strong>za</strong>šao iz projekta TR:33023 pod naslovom „Razvoj tehnologija flotacijske<<strong>br</strong> />

prerade ruda bakra i plemenitih metala radi posti<strong>za</strong>nja boljih tehnoloških rezultata” <strong>za</strong> čije<<strong>br</strong> />

finansiranje ovom prilikom želimo da <strong>za</strong>hvalimo Ministarstvu <strong>za</strong> prosvetu i nauku Republike<<strong>br</strong> />

Srbije.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 93<<strong>br</strong> />

RUDARSKI RADOVI


akra. Glavne komponente šljaka dobijenih<<strong>br</strong> />

iz metalurgije bakra su Fe i SiO2. Sadržaj<<strong>br</strong> />

bakra u skoro svim šljakama metalurške<<strong>br</strong> />

prerade bakra kreće se u rasponu od 0,5 do<<strong>br</strong> />

4,0 %, što je znatno više od sadržaja bakra u<<strong>br</strong> />

rudama ležišta bakra, koja se danas<<strong>br</strong> />

eksploatišu. Šljake dobijene metalurškom<<strong>br</strong> />

preradom bakra, najčešće se različitim<<strong>br</strong> />

postupcima pripreme i koncentracije<<strong>br</strong> />

tretiraju radi ponovnog dobijanja bakra.<<strong>br</strong> />

U poslednjih nekoliko decenija, sve veći<<strong>br</strong> />

značaj se daje preradi sekundarnih sirovina,<<strong>br</strong> />

sa ciljem ukupnog povećanja stepena<<strong>br</strong> />

iskorišćenja na korisnoj komponenti –<<strong>br</strong> />

bakru. Praksa je poka<strong>za</strong>la da se sekundarne<<strong>br</strong> />

sirovine razlikuju od primarnih sirovina,<<strong>br</strong> />

ruda, u pogledu mineraloško fizičkohemijskih<<strong>br</strong> />

i mehaničkih karakteristika.<<strong>br</strong> />

Dosadašnja svetska istraživanja u oblasti<<strong>br</strong> />

prerade mineralnih sirovina, bazirala su se<<strong>br</strong> />

na istraživanju prerade primarnih sirovina<<strong>br</strong> />

(ruda). Samim tim svi rezultati, teorije i<<strong>br</strong> />

<strong>za</strong>ključci dobijeni istraživanjima primarnih<<strong>br</strong> />

sirovina, ne mogu se u potpunosti prihvatiti<<strong>br</strong> />

i primenjivati u procesu tretmana sekundarnih<<strong>br</strong> />

sirovina.<<strong>br</strong> />

Topionička šljaka iz procesa metalurške<<strong>br</strong> />

prerade koncentrata se po svojim<<strong>br</strong> />

mineraloškim, fizičko – hemijskim i<<strong>br</strong> />

mehaničkim osobinama dosta razlikuje od<<strong>br</strong> />

primarnih sirovina. Ponašanje topioničke<<strong>br</strong> />

šljake u procesima drobljenja, mlevenja,<<strong>br</strong> />

flotiranja, različito je od ponašanja ruda koje<<strong>br</strong> />

su osnov <strong>za</strong> dobijanje koncentrata bogatog<<strong>br</strong> />

bakrom. Karakteristike topioničke šljake,<<strong>br</strong> />

kao što su specifična masa i tvrdoća, utiču da<<strong>br</strong> />

se sam proces prerade rude ne može bez<<strong>br</strong> />

ikakvih promena primeniti u preradi<<strong>br</strong> />

topioničke šljake.[1] Razlike koje postoje u<<strong>br</strong> />

fizičko-hemijskim i mehaničkim osobinama<<strong>br</strong> />

primarne sirovine, rude i sekundarne<<strong>br</strong> />

sirovine, topioničke šljake, nameću potrebu<<strong>br</strong> />

<strong>za</strong> temeljnim istraživanjima, radi upoznavanja<<strong>br</strong> />

ponašanja topioničke šljake u procesu<<strong>br</strong> />

prerade i mogućnost optimi<strong>za</strong>cije procesa<<strong>br</strong> />

radi poboljšanja tehnoloških rezultata i<<strong>br</strong> />

smanjenja troškova prerade.<<strong>br</strong> />

2. GRANULIRANJE ŠLJAKE<<strong>br</strong> />

Topionička šljaka iz pogona RTB-a,<<strong>br</strong> />

prerađuje se u pogonu flotacije koji je<<strong>br</strong> />

projektovan <strong>za</strong> preradu rude a koji je samo<<strong>br</strong> />

prilagođen uslovima prerade šljake. Sa tim u<<strong>br</strong> />

vezi javlja se niz poteškoća koje se ogledaju<<strong>br</strong> />

kroz veliku potrošnju električne energije i<<strong>br</strong> />

lošije tehnološke rezultate od nekih sličnih<<strong>br</strong> />

pogona u svetu. Ranija istraživanja koja se<<strong>br</strong> />

odnose na stepen usitnjavanja, poka<strong>za</strong>la su<<strong>br</strong> />

da krupnoća granulometrijskog sastava ula<strong>za</strong><<strong>br</strong> />

u mlin sa šipkama može da se snizi<<strong>br</strong> />

postupkom granuliranja[2] koji je ustvari<<strong>br</strong> />

jedan jednostavan i jeftin proces, a kojim<<strong>br</strong> />

može da se izbegne tehnološki postupak<<strong>br</strong> />

trostepenog drobljenja i prosejavanja.<<strong>br</strong> />

Tokom granuliranja vodi se predaje značajna<<strong>br</strong> />

količina toplotne energije, koja može da se<<strong>br</strong> />

koristi u razne svrhe. Proces granulacije tek<<strong>br</strong> />

treba istražiti, ispitati uticaj granuliranja i<<strong>br</strong> />

način izvođenja postupka granuliranja na<<strong>br</strong> />

tehnološke poka<strong>za</strong>telje flotacijske koncentracije.<<strong>br</strong> />

U cilju daljih ispitivanja konstruisano<<strong>br</strong> />

je laboratorijsko postrojenje <strong>za</strong> granuliranje<<strong>br</strong> />

šljake uz pomoć kojeg će se dobiti veće<<strong>br</strong> />

količine granulirane šljake neophodne <strong>za</strong><<strong>br</strong> />

eksperimente.<<strong>br</strong> />

3. OPIS GRANULATORA<<strong>br</strong> />

Konstruisani granulator je mobilan, tako<<strong>br</strong> />

da može da opslužuje više različitih<<strong>br</strong> />

laboratorijskih peći <strong>za</strong> topljenje, koje imaju<<strong>br</strong> />

različitu funkcionalnu namenu. Peći su<<strong>br</strong> />

locirane u laboratoriji <strong>za</strong> piro<strong>metalurgiju</strong> u<<strong>br</strong> />

<strong>Institut</strong>u <strong>za</strong> <strong>rudarstvo</strong> i <strong>metalurgiju</strong> <strong>Bor</strong>.<<strong>br</strong> />

Konstrukcija granulatora omogućava, da se<<strong>br</strong> />

šljaka naglo hladi mlaznicama, koje se<<strong>br</strong> />

nalaze na čeonoj prednjoj strani rezervoara,<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 94<<strong>br</strong> />

RUDARSKI RADOVI


odmah i<strong>za</strong> valjka, kome je jedan deo<<strong>br</strong> />

potopljen u rashladnu vodu. Ispod valjka je<<strong>br</strong> />

prihvatni koš sa perforiranim dnom, koji<<strong>br</strong> />

prihvata nastale granule i koji se nakon<<strong>br</strong> />

izlivanja celokupne količine šljake iz peći<<strong>br</strong> />

vadi uz pomoć di<strong>za</strong>lice i nakon ceđenja,<<strong>br</strong> />

odlaže u korpu <strong>za</strong> granulisanu šljaku.<<strong>br</strong> />

Na slikama <strong>br</strong>. 1 i 2., dati su respektivno<<strong>br</strong> />

vizuelni 3D prikaz konstruisanog<<strong>br</strong> />

granulatora topioničke šljake i jedna od<<strong>br</strong> />

laboratorijskih peći <strong>za</strong> topljenje, koje su,<<strong>br</strong> />

kako smo već naveli, locirane u laboratoriji<<strong>br</strong> />

<strong>za</strong> piro<strong>metalurgiju</strong> u <strong>Institut</strong>u <strong>za</strong><<strong>br</strong> />

<strong>rudarstvo</strong> i <strong>metalurgiju</strong> <strong>Bor</strong>.<<strong>br</strong> />

Laboratorijski granulator i peć su<<strong>br</strong> />

kompatibilni i funkcionišu u sprezi kada se<<strong>br</strong> />

usijana i rastopljena šljaka izliva direktno<<strong>br</strong> />

u laboratorijski granulator radi naglog<<strong>br</strong> />

hlađenja. Tada se dešava složeni proces<<strong>br</strong> />

očvršćavanja topioničke šljake kroz njenu<<strong>br</strong> />

prekristali<strong>za</strong>ciju i složenu mineralošku<<strong>br</strong> />

transformaciju do potpunog hlađenja iste i<<strong>br</strong> />

stvaranja staklaste fajalitske strukture sa<<strong>br</strong> />

ostacima bakra u nekoj mineralnoj ili<<strong>br</strong> />

slobodnoj – metalnoj-elementarnoj formi u<<strong>br</strong> />

ukupnom iznosu od oko 1%.<<strong>br</strong> />

Prilikom naglog hlađenja šljake<<strong>br</strong> />

oslobađaju se i gasovi sa vodenom parom,<<strong>br</strong> />

koje prihvata hauba u kojoj se vrši<<strong>br</strong> />

konden<strong>za</strong>cija vodene pare, a ostatak gasa<<strong>br</strong> />

sa nekondenzovanom vodenom parom<<strong>br</strong> />

odvodi u sistem <strong>za</strong> prečišćavanje otpadnih<<strong>br</strong> />

gasova, koji je tako konstruisan, da<<strong>br</strong> />

opslužuje i druge laboratorijske peći <strong>za</strong><<strong>br</strong> />

topljenje.<<strong>br</strong> />

Sl.1. Vizuelni 3D prikaz konstruisanog granulatora topioničke šljake<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 95<<strong>br</strong> />

RUDARSKI RADOVI


Sam granulator slika 1., se sastoji iz<<strong>br</strong> />

rezervoara <strong>za</strong> vodu, koša, o<strong>br</strong>tnog valjka i<<strong>br</strong> />

cirkulacionog sistema <strong>za</strong> vodu. Rezervoar<<strong>br</strong> />

<strong>za</strong> vodu je napravljen od čeličnog lima<<strong>br</strong> />

debljine 1-3mm. Unutar sebe, na izlaznom<<strong>br</strong> />

kraju su dve pregrade <strong>za</strong> smirivanje<<strong>br</strong> />

preliva vode i taloženje čvrstih čestica.<<strong>br</strong> />

Omogućeno je pražnjenje razervoara pri<<strong>br</strong> />

dnu. Koš <strong>za</strong> granule je od čeličnog lima sa<<strong>br</strong> />

perforiranim dnom i sa mogućnošću<<strong>br</strong> />

vađenja iz rezervoara. Cirkulacioni sistem<<strong>br</strong> />

se sastoji iz cirkulacione pumpe,<<strong>br</strong> />

razvodnog cevovoda nazivnog prečnika<<strong>br</strong> />

NV25 i mlaznica <strong>za</strong> raspršivanje vode.<<strong>br</strong> />

Sl.2. Laboratorijska peć <strong>za</strong> topljenje<<strong>br</strong> />

Mlaznice <strong>za</strong> raspršivanje vode stvaraju<<strong>br</strong> />

horizontalni ravanski mlaz vode. Potrošnja<<strong>br</strong> />

električne energije cirkulacione pumpe je<<strong>br</strong> />

od 0,8-1,3 kW. Protok vode je do 5 m 3 /h,<<strong>br</strong> />

radni pritisak u cevovodu je 6 bara.<<strong>br</strong> />

Ukupna masa granulatora je oko 200 kg.<<strong>br</strong> />

Gabaritne dimenzije granulatora<<strong>br</strong> />

dužina/širina/visina su: 1600 mm /850 mm/<<strong>br</strong> />

/810 mm. Izgled sprege peći <strong>za</strong> topljenje i<<strong>br</strong> />

laboratorijskog granulatora dat je kroz<<strong>br</strong> />

tehnološku šemu laboratorijskog izvođenja<<strong>br</strong> />

postupka <strong>za</strong> granuliranje topioničke šljake<<strong>br</strong> />

prika<strong>za</strong>nog na slici 3.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 96<<strong>br</strong> />

RUDARSKI RADOVI


Sl.3. Tehnološka šema laboratorijskog postupka <strong>za</strong> granuliranje topioničke šljake<<strong>br</strong> />

4. POSTUPAK GRANULIRANJA<<strong>br</strong> />

ŠLJAKE<<strong>br</strong> />

Za laboratorijski eksperiment korišćena<<strong>br</strong> />

je šljaka koja je izuzeta iz pogona<<strong>br</strong> />

drobljenja sa transportne trake, pre procesa<<strong>br</strong> />

tercijernog drobljenja. Šljaka je na deponiji<<strong>br</strong> />

bila izložena atmosferilijama, pa je sadržala<<strong>br</strong> />

Tablica 1: Hemijski sastav polazne šljake<<strong>br</strong> />

određenu količinu vlage zbog čega je<<strong>br</strong> />

prethodno osušena na sobnoj temperaturi.<<strong>br</strong> />

Radi karakteri<strong>za</strong>cije izuzetog uzorka<<strong>br</strong> />

urađena je hemijska anali<strong>za</strong> šljake i<<strong>br</strong> />

prika<strong>za</strong>na je u tablici 1.<<strong>br</strong> />

Jedinjenje -<<strong>br</strong> />

hemijski element Cu Fe3O4 CaO S Fe FeO SiO2 Al2O3<<strong>br</strong> />

Sadržaj [%] 0,68 1,754 17,26 1,07 25,69 26,75 43,76 3,89<<strong>br</strong> />

Šljaka je <strong>za</strong>tim podvrgnuta topljenju u<<strong>br</strong> />

laboratorijskoj indukcionoj peći <strong>za</strong><<strong>br</strong> />

topljenje, snage 100 kWh, u loncu<<strong>br</strong> />

<strong>za</strong>premine V=10 l, proizvođača ELING -<<strong>br</strong> />

Loznica. Sama granulacija izvedena je u<<strong>br</strong> />

laboratorijskim uslovima u posudi <strong>za</strong><<strong>br</strong> />

hlađenje šljake. Prilikom eksperimenta<<strong>br</strong> />

istopljeno je 25 kg šljake, a temperatura<<strong>br</strong> />

pri kojoj je šljaka izlivena je bila<<strong>br</strong> />

t=1250 o C. Merenje temperature šljake<<strong>br</strong> />

obavljeno je potapajućim pirometrom.<<strong>br</strong> />

Na taj način dobijen je primarni uzorak<<strong>br</strong> />

granulirane topioničke šljake na kojem je<<strong>br</strong> />

sprovedeno dalje ispitivanje<<strong>br</strong> />

granulometrijskog sastava, hemijskog<<strong>br</strong> />

sastava itd. Dakle, u laboratorijskim<<strong>br</strong> />

uslovima je potvrđena mogućnost<<strong>br</strong> />

granuliranja topioničke šljake i stvoreni su<<strong>br</strong> />

preduslovi <strong>za</strong> konstrukciju laboratorijskog<<strong>br</strong> />

uređaja <strong>za</strong> granuliranje. Taj novi<<strong>br</strong> />

laboratorijski uređaj treba da omogući,<<strong>br</strong> />

kao prvo:<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 97<<strong>br</strong> />

RUDARSKI RADOVI


− Ispitivanje uslova granulacije topioničke<<strong>br</strong> />

šljake u cilju dobijanja što finijeg<<strong>br</strong> />

granulata kroz varijaciju geometrijsko<<strong>br</strong> />

- konstruktivnih, tehnoloških<<strong>br</strong> />

i radnih parametara laboratorijskog<<strong>br</strong> />

granulatora topioničke šljake.<<strong>br</strong> />

Kao drugo:<<strong>br</strong> />

− Stvaranje veće količine raznih tipova<<strong>br</strong> />

granulirane šljake radi tehnoloških<<strong>br</strong> />

ispitivanja flotacijske koncentracije<<strong>br</strong> />

korisnih komponenata.<<strong>br</strong> />

I konačno:<<strong>br</strong> />

− Kreaciju predloga novog ili izmenjenog<<strong>br</strong> />

tehnološkog procesa flotaci-jske<<strong>br</strong> />

koncentracije korisnih komponenata<<strong>br</strong> />

energetski i tehnološki efikasnijeg.<<strong>br</strong> />

Ujedno, ovaj novi laboratorijski uređaj<<strong>br</strong> />

predstavlja model koji će poslužiti pored<<strong>br</strong> />

navedenih ispitivanja i <strong>za</strong> konstrukciju<<strong>br</strong> />

većeg polu-industrijskog ili industrijskog<<strong>br</strong> />

granulatora topioničke šljake.<<strong>br</strong> />

5. ZAKLJUČAK<<strong>br</strong> />

Za potrebe unapređenja rezultata<<strong>br</strong> />

flotacijske prerade topioničke šljake konstruisan<<strong>br</strong> />

je laboratorijski uređaj <strong>za</strong><<strong>br</strong> />

granuliranje pomoću kojeg će se jednostavnijim<<strong>br</strong> />

putem u laboratoriji dobiti veće<<strong>br</strong> />

količine granulata neophodnog <strong>za</strong> dalja<<strong>br</strong> />

tehnološka ispitivanja. Novi laboratorijski<<strong>br</strong> />

uređaj predstavlja model koji će poslužiti <strong>za</strong><<strong>br</strong> />

konstrukciju većeg polu-industrijskog ili<<strong>br</strong> />

industrijskog granulatora topioničke šljake.<<strong>br</strong> />

Na taj način omogućeće se flotacijska<<strong>br</strong> />

prerada topioničke šljake energetski i<<strong>br</strong> />

tehnološki efikasnijim procesom.<<strong>br</strong> />

LITERATURA<<strong>br</strong> />

[1] GRP otkopavanja šljake iz tehnogenog<<strong>br</strong> />

ležišta „Depo šljake 1.,“ verifikacija<<strong>br</strong> />

tehnološkog procesa dobijanja<<strong>br</strong> />

koncentrata i nadvišenja flotacijskog<<strong>br</strong> />

jalovišta „RTH“ u <strong>Bor</strong>u do K+378 <strong>za</strong><<strong>br</strong> />

godišnju proizvodnju od 1.200.000 t<<strong>br</strong> />

šljake. IRM <strong>Bor</strong>,Arhiva <strong>za</strong>vod<<strong>br</strong> />

<strong>za</strong> <strong>rudarstvo</strong> i PMS, Oktobar 2007 god.<<strong>br</strong> />

[2] S. Magdalinović, D. Milanović, B.<<strong>br</strong> />

Čađenović, V. Marjanović: Tehnološki<<strong>br</strong> />

postupak granuliranja šljake radi<<strong>br</strong> />

sniženja krupnoće na ulazu u<<strong>br</strong> />

flotaciju, <strong>Rudarski</strong> <strong>radovi</strong>, 3/<strong>2011</strong>.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 98<<strong>br</strong> />

RUDARSKI RADOVI


MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162<<strong>br</strong> />

COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622<<strong>br</strong> />

UDK: 669.952:622.7 (045)=20<<strong>br</strong> />

Branislav Čađenović * , Bojan Drobnjaković * , Dragan Milanović * , Srđana Magdalinović *<<strong>br</strong> />

NEW LABORATORY PLANT FOR GRANULATION USING THE<<strong>br</strong> />

CHANGED TECHNOLOGICAL PROCESS OF<<strong>br</strong> />

SMELTER SLAG DISCHARGING **<<strong>br</strong> />

Abstract<<strong>br</strong> />

Tailing and slag dumps, as a source of large quantities of metals, are of increasing economic<<strong>br</strong> />

importance. Slag in the plants of RTB is processed in a plant which is not designed for slag processing,<<strong>br</strong> />

but only adapted to those conditions. The obtained results are worse than the expected<<strong>br</strong> />

ones, and testing are continued that could improve them. One possibility is the process of slag<<strong>br</strong> />

granulation, which provides a number of directions for investigation the impacts on the process of<<strong>br</strong> />

fragmentation and concentration. For this purposes, a laboratory plant was designed to obtain<<strong>br</strong> />

larger quantities of granulate, needed for further investigations.<<strong>br</strong> />

Key words: smelter slag, granulation, laboratory plant<<strong>br</strong> />

1. INTRODUCTION<<strong>br</strong> />

Production of metals in the future<<strong>br</strong> />

could be significantly lower than the present,<<strong>br</strong> />

due to a fact that the reserves of metals<<strong>br</strong> />

in natural form in the run-of-mine ore<<strong>br</strong> />

are rapidly decreased from year to year.<<strong>br</strong> />

The other reason of limited metal production<<strong>br</strong> />

is more and stricter laws on environmental<<strong>br</strong> />

protection due to a waste waste<<strong>br</strong> />

generated in the mass processing of low<<strong>br</strong> />

grade ore. Large quantities of metal,<<strong>br</strong> />

trapped in the tailing and slag dumps, for<<strong>br</strong> />

the next period, may be the potential raw<<strong>br</strong> />

materials for new quantities of metal. Mineralogical<<strong>br</strong> />

composition of slag, obtained<<strong>br</strong> />

from metallurgical treatment, depends on<<strong>br</strong> />

many factors, and one of the important is a<<strong>br</strong> />

technology of metallurgical treatment. Depending<<strong>br</strong> />

on the above mentioned, the content<<strong>br</strong> />

of useful components varies within the<<strong>br</strong> />

limits that present higher content than their<<strong>br</strong> />

presence in their run-of-mine ore.<<strong>br</strong> />

* Mining and Metallurgy <strong>Institut</strong>e Bo<<strong>br</strong> />

** This work has resulted from the TR Project: 33023, entitled "Technology Development of Flotation<<strong>br</strong> />

Processing of Copper Ore and Precious Metals in Order to Achieve Better Technological<<strong>br</strong> />

Results" for which funding, on this occasion, we would like to thank to the Ministry of Education<<strong>br</strong> />

and Science of the Republic of Serbia.<<strong>br</strong> />

No 4, <strong>2011</strong>. 99<<strong>br</strong> />

MINING ENGINEERING


The slag, obtained by treatment of<<strong>br</strong> />

non-ferrous metals, is mainly slag from<<strong>br</strong> />

copper production. The main components<<strong>br</strong> />

of slag, obtained from the copper metallurgy,<<strong>br</strong> />

are Fe and SiO2. Copper content, in<<strong>br</strong> />

almost all slag of copper metallurgical<<strong>br</strong> />

treatment, is in the range of 0.5 to 4.0%,<<strong>br</strong> />

what is considerably more than copper<<strong>br</strong> />

content in the ore deposits of copper,<<strong>br</strong> />

which is now exploited. The slag, obtained<<strong>br</strong> />

by metallurgical copper treatment,<<strong>br</strong> />

usually with different methods of preparation<<strong>br</strong> />

and concentration, are treated for reobtaining<<strong>br</strong> />

of copper.<<strong>br</strong> />

In recent decades, an increasing importance<<strong>br</strong> />

is given to the processing of secondary<<strong>br</strong> />

raw materials in order to increase a<<strong>br</strong> />

recovery degree of useful component -<<strong>br</strong> />

copper. Practice has shown that the secondary<<strong>br</strong> />

materials are different from primary<<strong>br</strong> />

raw materials, ores, in terms of mineralogical<<strong>br</strong> />

physic-chemical and mechanical<<strong>br</strong> />

characteristics. Previous world investigations<<strong>br</strong> />

in the field of processing the mineral<<strong>br</strong> />

raw materials, are based on an investigation<<strong>br</strong> />

of primary processing of raw materials<<strong>br</strong> />

(ores). Therefore, all results, theories<<strong>br</strong> />

and findings obtained by investigation the<<strong>br</strong> />

primary raw materials, cannot be fully<<strong>br</strong> />

accepted and applied in the processing of<<strong>br</strong> />

secondary raw materials.<<strong>br</strong> />

Balance reserves of solid mineral deposits<<strong>br</strong> />

are deposit parts that can be profitably<<strong>br</strong> />

mined by the existing techniques and<<strong>br</strong> />

technology.<<strong>br</strong> />

Balance of reserves is determined by<<strong>br</strong> />

prescribed techno-economic analysis.<<strong>br</strong> />

It is necessary to adopt previously the<<strong>br</strong> />

appropriate criteria for determining the<<strong>br</strong> />

balance of reserves, i.e. to adopt the limit<<strong>br</strong> />

values of some natural indicators, which<<strong>br</strong> />

relate to the quality of mineral resource<<strong>br</strong> />

and mining-technical conditions of exploitation.<<strong>br</strong> />

Smelter slag from the process of metallurgical<<strong>br</strong> />

treatment of concentrate is quite<<strong>br</strong> />

different from primary raw materials on<<strong>br</strong> />

its mineralogical, physical - chemical and<<strong>br</strong> />

mechanical properties. The behavior of<<strong>br</strong> />

smelter slag in the processes of crushing,<<strong>br</strong> />

grinding and flotation, is different from<<strong>br</strong> />

behavior of minerals that are the basis for<<strong>br</strong> />

obtaining the rich copper concentrate.<<strong>br</strong> />

Characteristics of smelter slag, as well as<<strong>br</strong> />

the specific weight and hardness, have<<strong>br</strong> />

influence to the process of ore processing<<strong>br</strong> />

that cannot be applied without any<<strong>br</strong> />

changes in processing of smelter slag (1).<<strong>br</strong> />

Differences in physical-chemical and mechanical<<strong>br</strong> />

properties of primary raw materials,<<strong>br</strong> />

ore and secondary raw materials,<<strong>br</strong> />

smelter slag, have imposed the need for<<strong>br</strong> />

basic research, in order to introduce the<<strong>br</strong> />

behavior of smelter slag in the processing<<strong>br</strong> />

and possibility of process optimi<strong>za</strong>tion<<strong>br</strong> />

due to improve the technological results<<strong>br</strong> />

and reduce the treatment costs.<<strong>br</strong> />

2. SLAG GRANULATION<<strong>br</strong> />

Smelter slag from the sites of RTB, is<<strong>br</strong> />

processed in the flotation plant which is<<strong>br</strong> />

designed for ore processing, and which is<<strong>br</strong> />

only adapted to the conditions of slag<<strong>br</strong> />

processing. Regarding to this, there are a<<strong>br</strong> />

number of difficulties which are reflected<<strong>br</strong> />

through high power consumption and<<strong>br</strong> />

poorer technological results of some similar<<strong>br</strong> />

plants in the world. Previous studies<<strong>br</strong> />

regarding to a degree of fragmentation,<<strong>br</strong> />

have showed that coarseness of grain-size<<strong>br</strong> />

distribution of inlet into rod mill can be<<strong>br</strong> />

lowered by granulation process(2) which<<strong>br</strong> />

is actually a simple and inexpensive process<<strong>br</strong> />

and which can be used for avoiding<<strong>br</strong> />

the technological process of three-stage<<strong>br</strong> />

crushing and sieving. During granulation,<<strong>br</strong> />

a significant amount of thermal energy is<<strong>br</strong> />

submitted to water, which can be used for<<strong>br</strong> />

various purposes. Granulation process has<<strong>br</strong> />

yet to be studied, to examine the influence<<strong>br</strong> />

of granulation and granulation method<<strong>br</strong> />

conducting on technological parameters of<<strong>br</strong> />

flotation concentration. For the aim of<<strong>br</strong> />

No 4, <strong>2011</strong>. 100<<strong>br</strong> />

MINING ENGINEERING


further testing, the laboratory plant was<<strong>br</strong> />

designed for slag granulation which will<<strong>br</strong> />

give large quantities of granulated slag,<<strong>br</strong> />

needed for the experiments.<<strong>br</strong> />

3. DESCRIPTION OF GRANULATOR<<strong>br</strong> />

The constructed granulator is mobile,<<strong>br</strong> />

so it can handle a variety of laboratory<<strong>br</strong> />

smelting furnaces that have different functional<<strong>br</strong> />

purpose. Furnaces are located in the<<strong>br</strong> />

laboratory in the Mining and Metallurgy<<strong>br</strong> />

<strong>Bor</strong>. The construction of granulator allows<<strong>br</strong> />

rapidly cooling of slag by jets, which are<<strong>br</strong> />

located on the front side of tank, just behind<<strong>br</strong> />

the cylinder, with a submerged part<<strong>br</strong> />

in cooling water. A reception cage, with<<strong>br</strong> />

perforated bottom, is below a roller, which<<strong>br</strong> />

accepts the resulting granules and those,<<strong>br</strong> />

after discharge the total amount of slag<<strong>br</strong> />

from the furnace, is removed with a crane,<<strong>br</strong> />

and after filtering, stored in a cage for<<strong>br</strong> />

granulated slag.<<strong>br</strong> />

In figures 1 and 2, respectively, are<<strong>br</strong> />

given the visual 3D reviews of constructed<<strong>br</strong> />

granulator of smelter slag and one of the<<strong>br</strong> />

laboratory smelting furnaces, which, as<<strong>br</strong> />

already stated, are located in the laboratory<<strong>br</strong> />

for pyrometallurgy in the Mining and<<strong>br</strong> />

Metallurgy <strong>Institut</strong>e <strong>Bor</strong>.<<strong>br</strong> />

Laboratory granulator and furnace are<<strong>br</strong> />

compatible and work in conjunction when<<strong>br</strong> />

heated and molten slag is discharged directly<<strong>br</strong> />

into the laboratory granulator for<<strong>br</strong> />

rapid cooling. Then, the complex process<<strong>br</strong> />

of smelter slag hardening is carried out<<strong>br</strong> />

through its precrystali<strong>za</strong>tion and complex<<strong>br</strong> />

mineralogical transformation to a complete<<strong>br</strong> />

cooling of the same and formation<<strong>br</strong> />

the glassy fayalite structure with the remains<<strong>br</strong> />

of copper in some mineral or free -<<strong>br</strong> />

metal-elemental form in the total amount<<strong>br</strong> />

of about 1%.<<strong>br</strong> />

During the rapid cooling of slag, gases<<strong>br</strong> />

are released with water vapor, which accepts<<strong>br</strong> />

the hood where the condensation of<<strong>br</strong> />

water vapor is carried out, and the rest of<<strong>br</strong> />

gas with non-condensed water vapor is led<<strong>br</strong> />

into the system for waste gas treatment,<<strong>br</strong> />

which is so constructed to serve also the<<strong>br</strong> />

other laboratory smelting furnaces.<<strong>br</strong> />

Fig. 1. Visual 3D review of designed granulator for smelter slag<<strong>br</strong> />

No 4, <strong>2011</strong>. 101<<strong>br</strong> />

MINING ENGINEERING


The granulator, Figure 1, consists of a<<strong>br</strong> />

water tank, cage, rotating drum and water<<strong>br</strong> />

circulation system. The water tank is made<<strong>br</strong> />

of steel sheet, thickness 1-3mm. Within it,<<strong>br</strong> />

at the output end, two compartments are<<strong>br</strong> />

situated for soothing the water overflow<<strong>br</strong> />

and sedimentation of solid particles.<<strong>br</strong> />

The tank is possible to discharge on<<strong>br</strong> />

the bottom. Cage for granules is made of<<strong>br</strong> />

steel sheet with perforated bottom and<<strong>br</strong> />

possibility of removing from the tank.<<strong>br</strong> />

Circulation system consists of a circulation<<strong>br</strong> />

pump, distribution pipeline of NV25<<strong>br</strong> />

nominal diameter and nozzles for water<<strong>br</strong> />

Fig. 2. Laboratory smelting furnace<<strong>br</strong> />

spraying. Nozzles for water spraying produce<<strong>br</strong> />

a horizontal plane water jet. Electricity<<strong>br</strong> />

consumption of circulation pump is<<strong>br</strong> />

from 0.8 to 1.3 kW. Water flow is up to<<strong>br</strong> />

5m 3 /h, working pressure in the pipeline is 6<<strong>br</strong> />

bar. The total mass of granulators is about<<strong>br</strong> />

200 kg. Granulator dimensions of length/<<strong>br</strong> />

/width/heightare 1600mm/850mm/810mm.<<strong>br</strong> />

Appearance of coupling of smelting furnace<<strong>br</strong> />

and laboratory granulator is provided<<strong>br</strong> />

through a technological scheme of laboratory<<strong>br</strong> />

performing the procedure for smelter<<strong>br</strong> />

slag granulation, shown in Figure 3.<<strong>br</strong> />

No 4, <strong>2011</strong>. 102<<strong>br</strong> />

MINING ENGINEERING


Fig. 3. Technological scheme of laboratory process for smelter slag granulation<<strong>br</strong> />

4. PROCESS OF SLAG<<strong>br</strong> />

GRANULATION<<strong>br</strong> />

For laboratory experiment, the slag<<strong>br</strong> />

was used which was taken from the crushing<<strong>br</strong> />

plant from conveyor belt, before the<<strong>br</strong> />

tertiary crushing process. Slag was exposed<<strong>br</strong> />

to the weather conditions on a<<strong>br</strong> />

dump, so it contained the certain amount<<strong>br</strong> />

of moisture why it was pre-dried at room<<strong>br</strong> />

temperature. For characteri<strong>za</strong>tion of taken<<strong>br</strong> />

sample, the chemical analysis of slag was<<strong>br</strong> />

carried out and shown in Table 1.<<strong>br</strong> />

Table 1: Chemical composition of starting slag<<strong>br</strong> />

Compound–<<strong>br</strong> />

chemical element<<strong>br</strong> />

Cu Fe3O4 CaO S Fe FeO SiO2 Al2O3<<strong>br</strong> />

Content [%] 0.68 1.754 17.26 1.07 25.69 26.75 43.76 3.89<<strong>br</strong> />

Slag was then subjected to smelting in a<<strong>br</strong> />

laboratory induction furnace, power of 100<<strong>br</strong> />

kWh, in a pot, volume V = 10 l, ELING –<<strong>br</strong> />

Loznica manufacturer. The granulation was<<strong>br</strong> />

carried out in the laboratory conditions in a<<strong>br</strong> />

pot for slag cooling. During the experiment,<<strong>br</strong> />

25 kg of slag was melted and the temperature<<strong>br</strong> />

of slag pouring was t=1250 o C. Temperature<<strong>br</strong> />

measurement was performed by the<<strong>br</strong> />

slag immersion pyrometer.<<strong>br</strong> />

In this way, the primary sample of<<strong>br</strong> />

granulated slag was obtained where further<<strong>br</strong> />

investigation of grain-size distribution,<<strong>br</strong> />

chemical composition, etc. was conducted.<<strong>br</strong> />

So, in the laboratory conditions, a<<strong>br</strong> />

possibility of smelter slag granulation was<<strong>br</strong> />

confirmed and the preconditions were<<strong>br</strong> />

formed for construction of laboratory device<<strong>br</strong> />

for granulation. This new laboratory<<strong>br</strong> />

device should provide, as the first:<<strong>br</strong> />

No 4, <strong>2011</strong>. 103<<strong>br</strong> />

MINING ENGINEERING


- Study the conditions of smelter slag<<strong>br</strong> />

granulation in order to obtain as much<<strong>br</strong> />

as possible finer granules through the<<strong>br</strong> />

variation of geometrical-structural,<<strong>br</strong> />

technological and operational parameters<<strong>br</strong> />

of laboratory granulator of<<strong>br</strong> />

smelter slag.<<strong>br</strong> />

As the second:<<strong>br</strong> />

- Creating the large quantities of various<<strong>br</strong> />

types of granulated slag for technological<<strong>br</strong> />

testing the flotation concentration<<strong>br</strong> />

of useful components.<<strong>br</strong> />

And final:<<strong>br</strong> />

- Designing the new or changed technological<<strong>br</strong> />

process of flotation concentration<<strong>br</strong> />

the useful components and energy<<strong>br</strong> />

and technology more efficient.<<strong>br</strong> />

Also, this new laboratory device represents<<strong>br</strong> />

a model that will be used in addition<<strong>br</strong> />

to the above mentioned tests and for construction<<strong>br</strong> />

a larger semi-industrial or industrial<<strong>br</strong> />

granulator of smelter slag.<<strong>br</strong> />

5. CONCLUSION<<strong>br</strong> />

For the needs of improvement the results<<strong>br</strong> />

of flotation processing the smelting<<strong>br</strong> />

slag, a laboratory device was designed for<<strong>br</strong> />

granulation which will be used for obtaining<<strong>br</strong> />

larger amounts of granules, required<<strong>br</strong> />

for further technological studies, by simplest<<strong>br</strong> />

way in the laboratory. The new laboratory<<strong>br</strong> />

device is a model that will be used<<strong>br</strong> />

for construction of larger semi-industrial<<strong>br</strong> />

or industrial granulator of smelter slag. In<<strong>br</strong> />

this way, the flotation processing of<<strong>br</strong> />

smelter slag will be energy and technology<<strong>br</strong> />

more efficient.<<strong>br</strong> />

REFERENCES<<strong>br</strong> />

[1] Main Mining Desing of Slag<<strong>br</strong> />

Excavation from the Technigenic<<strong>br</strong> />

Deposit “Slag Depot 1”, verification of<<strong>br</strong> />

technological process of obtaining the<<strong>br</strong> />

concentrate and surpasing the flotation<<strong>br</strong> />

tailing dump “RTH” in <strong>Bor</strong> to K+378<<strong>br</strong> />

for annual production of 1,200,000 t of<<strong>br</strong> />

slag. MMI <strong>Bor</strong>, Archives of<<strong>br</strong> />

Department for Mining and Mineral<<strong>br</strong> />

Processing, October 2007 (in Serbian)<<strong>br</strong> />

[2] Srđana Magdalinović, Ph.D. Dragan<<strong>br</strong> />

Milanović, Branislav Čađenović, Vesna<<strong>br</strong> />

Marjanović: Technological Method for<<strong>br</strong> />

Slag Granulation for Size-range<<strong>br</strong> />

Reduction at the Inlet into the Flotation<<strong>br</strong> />

Process, Mining Engineering, 2/<strong>2011</strong><<strong>br</strong> />

No 4, <strong>2011</strong>. 104<<strong>br</strong> />

MINING ENGINEERING


INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162<<strong>br</strong> />

KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622<<strong>br</strong> />

UDK: 622.8(497.15)(045)=861<<strong>br</strong> />

Muhamed Plasto *<<strong>br</strong> />

ANALIZA RIZIKA I HAZARDA EVIDENTIRANIH U RMU KAKANJ **<<strong>br</strong> />

Izvod<<strong>br</strong> />

Rizik i krizne situacije atributi su koji se sudbinski vežu <strong>za</strong> sam pojam rudarenja, jer je taj poziv<<strong>br</strong> />

historijski pove<strong>za</strong>n sa rizikom prilikom svakodnevnog obavljanja radnih operacija i funkcionisanja<<strong>br</strong> />

rudnika u cjelini.<<strong>br</strong> />

Važeća <strong>za</strong>konska regulativa u BiH nije u suglasju sa primjenjenim ISO standardima, koji nemaju<<strong>br</strong> />

ustanovljene modele <strong>za</strong> upravljanje strateškim rizikom u rudarskoj djelatnosti. Zato treba<<strong>br</strong> />

nastojati da se primjenjeni modeli nađu što prije u oblasti koju je potrebno regulisati <strong>za</strong>konskim<<strong>br</strong> />

aktima ili na neki drugi način uvesti u pravni okvir koji će biti obavezujući. Svjetska iskustva nakon<<strong>br</strong> />

uvođenja strateškog upravljanja rizikom i kriznim situacijama ukazuju na poboljšanje općih<<strong>br</strong> />

sigurnosnih uvjeta i smanjenje incidentnih događaja sa štetnim posljedicama.<<strong>br</strong> />

U radu je istaknuto da je, u uslovima koji vladaju, moguće i potrebno pristupiti sistemskom<<strong>br</strong> />

upravljanju rizikom i ha<strong>za</strong>rdom u rudarstvu, bez obzira na nepostojanje ustanovljenih normi.<<strong>br</strong> />

Ključne riječi: rizik, ha<strong>za</strong>rd, <strong>rudarstvo</strong>, upravljanje rizikom<<strong>br</strong> />

1. UVOD<<strong>br</strong> />

U svom višestoljetnom postojanju, rudarenje<<strong>br</strong> />

je ostalo duboko ukorijenjeno u<<strong>br</strong> />

svim sredinama u kojima je imalo dugu<<strong>br</strong> />

tradiciju. Posebno je to izraženo u novije<<strong>br</strong> />

vrijeme, dakle <strong>za</strong>dnjih nešto više od stotinu<<strong>br</strong> />

godina, kada je došlo do intenziviranja<<strong>br</strong> />

proizvodnje uglja, što je praktično bio osnov<<strong>br</strong> />

<strong>za</strong> industrijsku revoluciju. U svim<<strong>br</strong> />

sredinama gdje se vršila rudarska djelatnost,<<strong>br</strong> />

bez obzira na lokalitet, može se slobodno<<strong>br</strong> />

reći da je rudarenje bilo osnov<<strong>br</strong> />

privrednog-gospodarskog generatora od<<strong>br</strong> />

početka XX vijeka. Bez obzira na tu<<strong>br</strong> />

privrednu značajku, rudarenje je imalo i<<strong>br</strong> />

svoje društvene uticaje na sredine u kojima<<strong>br</strong> />

je obavljano. Tu se slobodno može govoriti<<strong>br</strong> />

o "rudarskoj civili<strong>za</strong>ciji" koja se<<strong>br</strong> />

manifestovala i uvukla u sve pore života:<<strong>br</strong> />

od jezika, arhitekture, supkulture, kulture i<<strong>br</strong> />

sporta. Rudarska kultura, da bi opstala bila<<strong>br</strong> />

je prisiljena da "komunicira" s podzemnom<<strong>br</strong> />

okolinom i mjestom rada i da se<<strong>br</strong> />

* Rudnik mrkog uglja Kakanj<<strong>br</strong> />

** Ovaj rad je proistekao iz magistarskog rada autora pod naslovom „Upravljanje rizikom i<<strong>br</strong> />

kriznim situacijama u tranzicionom modelu strateškog odlučivanja u rudnicma uglja u BiH“<<strong>br</strong> />

RGGF Tuzla, marta 2010. godine.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 105<<strong>br</strong> />

RUDARSKI RADOVI


prema njemu odnosi s strahopoštovanjem.<<strong>br</strong> />

Svako <strong>za</strong>nemarivanje ili i<strong>za</strong>zivanje<<strong>br</strong> />

znakova koje priroda i jama šalju može<<strong>br</strong> />

biti kobno <strong>za</strong> život cijelog "kamarata"<<strong>br</strong> />

smjene. Za nepoštivanje ili olako shvaćanje<<strong>br</strong> />

tih implicitnih i nepisanih pravila<<strong>br</strong> />

vrlo se često plaćala najviša cijena. To je<<strong>br</strong> />

uslovilo razvitak svojevrsnog strahopoštovanja<<strong>br</strong> />

prema jami i rudniku natpisom<<strong>br</strong> />

"SRETNO" koji stoji iznad svih ula<strong>za</strong> u<<strong>br</strong> />

jamu. Tim univer<strong>za</strong>lnim pozdravom se<<strong>br</strong> />

pozdravljaju svi rudari u svijetu.[1]<<strong>br</strong> />

2. TRETIRANJE RIZIKA I<<strong>br</strong> />

HAZARDA<<strong>br</strong> />

Na prostorima sadašnje Bosne i Hercegovine<<strong>br</strong> />

kao i bližeg okruženja, dakle prostora<<strong>br</strong> />

bivše Jugoslavije, problem rizika i ha<strong>za</strong>rda,<<strong>br</strong> />

ve<strong>za</strong>nih <strong>za</strong> rudarsku djelatnost, nije posebno<<strong>br</strong> />

izučavan niti je tretiran kao takav. Sve se<<strong>br</strong> />

svodilo da se u okvirima postojeće <strong>za</strong>konske<<strong>br</strong> />

legislative i regulative kao i tehničkih propisa<<strong>br</strong> />

ukaže na pojedine opasnosti i krizne<<strong>br</strong> />

situacije koje su mogle da se dogode. Kao<<strong>br</strong> />

rezultat toga, tehnički propisi su mijenjani i<<strong>br</strong> />

pooštravane su mjere koje je trebalo preduzimati<<strong>br</strong> />

kako ne bi došlo do reali<strong>za</strong>cije incidentnih,<<strong>br</strong> />

odnosno kriznih situacija sa fatalnim<<strong>br</strong> />

posljedicama bilo <strong>za</strong> ljude ili materijalna<<strong>br</strong> />

sredstva. Mora se konstatovati da su propisane<<strong>br</strong> />

mjere često bile posljedica realiziranog<<strong>br</strong> />

kriznog događaja koji se desio. A takvih je<<strong>br</strong> />

nažalost, na ovim prostorima bilo jako puno.<<strong>br</strong> />

Međutim, u svijetu, u drugačijem<<strong>br</strong> />

društvenom ambijentu ili svojinskim odnosima,<<strong>br</strong> />

uvidjelo se da treba predviđati<<strong>br</strong> />

krizne situacije, njihovo predupređivanje,<<strong>br</strong> />

eliminaciju kao i kvantificiranje svih elemenata<<strong>br</strong> />

koji ulaze u ukupnu analizu.<<strong>br</strong> />

Gledano istorijski, metode i tehnike<<strong>br</strong> />

ocjene nivoa rizika tehničkih sistema razvijaju<<strong>br</strong> />

se relativno kasno u odnosu na ostale<<strong>br</strong> />

oblasti inženjerske struke.<<strong>br</strong> />

U novije vrijeme, u vremenu opće<<strong>br</strong> />

globali<strong>za</strong>cije svih vidova tržišta i gospodarstva<<strong>br</strong> />

u širem smislu te riječi, isto tako,<<strong>br</strong> />

ideje i praksa upravljanja rizikom se globaliziraju.<<strong>br</strong> />

[2] Isti principi se primjenjuju od<<strong>br</strong> />

Azije do Afrike, Evrope i Amerike. Ipak,<<strong>br</strong> />

još uvijek nedostaje oblik najčešće prihvaćenog<<strong>br</strong> />

"standardnog" i jedinstvenog skupa<<strong>br</strong> />

definisanih pojmova. Regionalni standardi<<strong>br</strong> />

postoje u Australiji, Novom Zelandu, Kanadi<<strong>br</strong> />

i od nedavno u Velikoj Britaniji, kao i<<strong>br</strong> />

podstudija u drugim zemljama. Tokom<<strong>br</strong> />

posljednjih godina, Radna grupa International<<strong>br</strong> />

Standards Organi<strong>za</strong>tion (ISO), uz<<strong>br</strong> />

neke poteškoće, pokušava postići konsenzus<<strong>br</strong> />

oko <strong>za</strong>jedničke globalne definicije<<strong>br</strong> />

<strong>za</strong> upravljanje rizikom.<<strong>br</strong> />

3. TEORETSKI I PRAKTIČNI<<strong>br</strong> />

OSNOVI UPRAVLJANJA RIZIKOM<<strong>br</strong> />

Pod pojmom "upravljanje rizikom" podrazumijeva<<strong>br</strong> />

se čitav niz postupaka i<<strong>br</strong> />

procesa kojima se vrši monitoring stanja<<strong>br</strong> />

rizika, procjenjuje prihvatljivost rizika i<<strong>br</strong> />

sprovode mjere redukcije rizika u oblastima<<strong>br</strong> />

gdje se identificira neprihvatljiv rizik.<<strong>br</strong> />

Drugim riječima, upravljanje rizikom se<<strong>br</strong> />

može definisati kao opća upravljačka funkcija<<strong>br</strong> />

koja nastoji da identifikuje rizike, procijeni<<strong>br</strong> />

rizik i pripremi organi<strong>za</strong>ciju (preduzeće)<<strong>br</strong> />

na uzroke i efekte (posljedice)<<strong>br</strong> />

rizika. Smisao upravljanja rizikom je da se<<strong>br</strong> />

osposobi organi<strong>za</strong>cija da realizuje svoje<<strong>br</strong> />

ciljeve na najdirektniji, najefikasniji i najefektivniji<<strong>br</strong> />

način.<<strong>br</strong> />

Ni jedna aktivnost se ne može obaviti<<strong>br</strong> />

bez rizika, odnosno sa rizikom nula. Ukoliko<<strong>br</strong> />

postoji bilo kakva mogućnost da dođe<<strong>br</strong> />

do manifestacije ha<strong>za</strong>rda, rizik nije jednak<<strong>br</strong> />

nuli. To ima <strong>za</strong> posljedicu da je rizik uvijek<<strong>br</strong> />

prisutan, te se rizik koji ostaje nakon<<strong>br</strong> />

svih poduzetih mjera naziva "rezidualni"<<strong>br</strong> />

ili preostali rizik.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 106<<strong>br</strong> />

RUDARSKI RADOVI


Međutim, na početku ćemo pojasniti<<strong>br</strong> />

pojmove šta su to ha<strong>za</strong>rdi, a šta rizici.<<strong>br</strong> />

Ha<strong>za</strong>rd je opasnost koja može predstavljati<<strong>br</strong> />

"potencijalnu štetu <strong>za</strong> ljude, imovinu ili<<strong>br</strong> />

okolinu" i kao takvi predstavlja polaznu<<strong>br</strong> />

osnovu <strong>za</strong> utvrđivanje rizika.<<strong>br</strong> />

Ha<strong>za</strong>rd se prema međunarodnim ISO<<strong>br</strong> />

standardima definiše kao „potencijalni izvor<<strong>br</strong> />

štete ili događaja koji može prouzrokovati<<strong>br</strong> />

gubitak“, dok se rizik definiše kao kombinovani<<strong>br</strong> />

izraz vjerovatnoće da će se desiti<<strong>br</strong> />

ha<strong>za</strong>rd i posljedica koje će i<strong>za</strong>zvati njegova<<strong>br</strong> />

reali<strong>za</strong>cija. [3]<<strong>br</strong> />

Odredjeni <strong>br</strong>oj otvora<<strong>br</strong> />

Predstavlja aktivne otkaze<<strong>br</strong> />

Gubici<<strong>br</strong> />

Cilj upravljanja rizikom je da se nivo<<strong>br</strong> />

rezidualnog rizika održava ispod postavljene<<strong>br</strong> />

granice kriterija "prihvatljivosti rizika". Kako<<strong>br</strong> />

odrediti prihvatljiv nivo rizika je složen<<strong>br</strong> />

<strong>za</strong>datak koji uključuje niz faktora, počev od<<strong>br</strong> />

legislativnih, normativa datim standardima i<<strong>br</strong> />

pod<strong>za</strong>konskim aktima, poslovne politike<<strong>br</strong> />

kompanije i drugog ni<strong>za</strong> faktora. Moguće je<<strong>br</strong> />

da se <strong>za</strong> isti rizik imaju različiti nivoi<<strong>br</strong> />

prihvatljivosti, ovisno o tome ko procjenjuje<<strong>br</strong> />

opasnost.<<strong>br</strong> />

Sl. 1. Komparacija sigurnosnih sistema od<strong>br</strong>ane po modelu "švicarskog sira"[4]<<strong>br</strong> />

Na gornjoj slici vrlo je pregledno i<<strong>br</strong> />

slikovito prika<strong>za</strong>n mehani<strong>za</strong>m djelovanja<<strong>br</strong> />

potencijalne opasnosti koja će u određenom<<strong>br</strong> />

ambijentu (datoj radnoj ili nekoj<<strong>br</strong> />

drugoj sredini), stvoriti pretpostavke da se<<strong>br</strong> />

pretvori u štetnu posljedicu koja će imati<<strong>br</strong> />

svoju, eventualnu mjerljivu težinu i koja<<strong>br</strong> />

će prouzrokovati gubitke. Da se to ne bi<<strong>br</strong> />

desilo, potrebno je uspostaviti različite<<strong>br</strong> />

Ostali otvori predstavljaju<<strong>br</strong> />

skrivene otkaze ili utjecaj<<strong>br</strong> />

okoline<<strong>br</strong> />

Razliciti mehanizmi o<strong>br</strong>ane i <strong>za</strong>stite po dubini<<strong>br</strong> />

Opasnosti<<strong>br</strong> />

mehanizme od<strong>br</strong>ane i <strong>za</strong>štiti se od štetnih<<strong>br</strong> />

posljedica. Ukoliko se preduzmu sve<<strong>br</strong> />

predviđene mjere <strong>za</strong>štite (<strong>za</strong>tvore otvori),<<strong>br</strong> />

mogućnosti nastanka štetne posljedice i<<strong>br</strong> />

gubitka su manje. Međutim, stvarnost je<<strong>br</strong> />

uvijek drugačija tako da uvijek ostane<<strong>br</strong> />

prostora <strong>za</strong> skrivene opasnosti ili jednostavno<<strong>br</strong> />

uticaj okoline koji je nemoguće<<strong>br</strong> />

izbjeći.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 107<<strong>br</strong> />

RUDARSKI RADOVI


4. GENETSKA KLASIFIKACIJA<<strong>br</strong> />

HAZARDA U RUDARSTVU<<strong>br</strong> />

Ovisno o nastanku (genezi) ha<strong>za</strong>rdi u<<strong>br</strong> />

rudarstvu se mogu podijeliti na:<<strong>br</strong> />

1. Prirodne ha<strong>za</strong>rde, i<<strong>br</strong> />

2. Antropogene ha<strong>za</strong>rde<<strong>br</strong> />

Definiranje prirodnih ha<strong>za</strong>rda kao onih<<strong>br</strong> />

kod čijeg pojavljivanja čovjek ne igra<<strong>br</strong> />

ključnu ulogu ili antropogenih kod kojih<<strong>br</strong> />

je ključna uloga čovjeka, je složeno u<<strong>br</strong> />

realnim uslovima, a posebno u granama<<strong>br</strong> />

nauke kakva je <strong>rudarstvo</strong> uglja.<<strong>br</strong> />

U praksi je prisutna tendencija da se<<strong>br</strong> />

kvalificiraju kao „prirodne opasnosti“ ili<<strong>br</strong> />

„prirodni ha<strong>za</strong>rdi“ veliki <strong>br</strong>oj ha<strong>za</strong>rda kod<<strong>br</strong> />

kojih je atribut „prirodan“ vrlo upitan i<<strong>br</strong> />

ponajprije se odnosi na nemogućnost<<strong>br</strong> />

čovjeka da spozna i definiše uslove pod<<strong>br</strong> />

kojim dolazi do reali<strong>za</strong>cije ovih ha<strong>za</strong>rda.<<strong>br</strong> />

Tako se u rudarskoj praksi kao prirodna<<strong>br</strong> />

opasnost tretira požar nastao tzv. „samoupalom<<strong>br</strong> />

uglja“, na osnovu čega se može izvesti<<strong>br</strong> />

<strong>za</strong>ključak da su ovakvi požari rezultat<<strong>br</strong> />

prirodne sklonosti uglja „ka samoupali“ i<<strong>br</strong> />

izvan su objektivnih utjecaja čovjeka. Međutim,<<strong>br</strong> />

ako se ima u vidu da se ovakve<<strong>br</strong> />

upale dešavaju upravo, zbog neprilagođenosti<<strong>br</strong> />

tehnologije otkopavanja prirodnim<<strong>br</strong> />

osobinama uglja, ovakva vrsta ha<strong>za</strong>rda<<strong>br</strong> />

može se takođe tretirati kao potpuno<<strong>br</strong> />

antropogeni ha<strong>za</strong>rd. Zastoji u napredovanju<<strong>br</strong> />

otkopnih fronti, veliki intenziteti potencijala<<strong>br</strong> />

pritiska, ostavljanje izdrobljenog uglja,<<strong>br</strong> />

neadekvatna rana detekcija požara i slično,<<strong>br</strong> />

samo su niz „potpuno ljudskih“ uzročnika<<strong>br</strong> />

koji mogu realizirati ovakve ha<strong>za</strong>rde. U<<strong>br</strong> />

tom smislu mnogo je primjereniji izraz<<strong>br</strong> />

„samoupala uglja“ <strong>za</strong>mijeniti izrazom<<strong>br</strong> />

„spontana upala uglja“.<<strong>br</strong> />

Svrstavanje ha<strong>za</strong>rda po genezi u prirodne<<strong>br</strong> />

može imati <strong>za</strong> posljedicu izostanak<<strong>br</strong> />

mjera redukcije vjerovatnoće reali<strong>za</strong>cije<<strong>br</strong> />

ha<strong>za</strong>rda, odnosno pravdanje „prirodnom<<strong>br</strong> />

pojavom“ opasnosti protiv čijeg se pojavljivanja<<strong>br</strong> />

može uspješno boriti danas<<strong>br</strong> />

dostupnim i poznatim metodama <strong>za</strong>štite.<<strong>br</strong> />

4.1. KLASIFIKACIJA PO<<strong>br</strong> />

MEHANIZMU NASTANKA<<strong>br</strong> />

4.1.1. Tehnološka klasifikacija<<strong>br</strong> />

Po ovom kriteriju ha<strong>za</strong>rdi se kategorišu<<strong>br</strong> />

ovisno o fa<strong>za</strong>ma tehnološkog<<strong>br</strong> />

procesa u kojima nastaju ili na koje mogu<<strong>br</strong> />

imati posljedice:<<strong>br</strong> />

1. Ha<strong>za</strong>rdi pri razradi ležišta, izradi i<<strong>br</strong> />

pripremi prostorija.<<strong>br</strong> />

2. Ha<strong>za</strong>rdi pri otkopavanju mineralne<<strong>br</strong> />

sirovine (uglja).<<strong>br</strong> />

3. Ha<strong>za</strong>rdi u transportu mineralne sirovine<<strong>br</strong> />

(uglja).<<strong>br</strong> />

4. Ha<strong>za</strong>rdi u procesu pripreme, prerade<<strong>br</strong> />

ili oplemenjivanja mineralne<<strong>br</strong> />

sirovine(uglja).<<strong>br</strong> />

5. Ha<strong>za</strong>rdi u procesu dopreme repromaterijala.<<strong>br</strong> />

6. Ha<strong>za</strong>rdi u procesu snabdijevanja<<strong>br</strong> />

električnom energijom.<<strong>br</strong> />

7. Ha<strong>za</strong>rdi u procesu odvodnjavanja<<strong>br</strong> />

ili snabdijevanja vodom.<<strong>br</strong> />

8. Ha<strong>za</strong>rdi u procesu funkcionisanja<<strong>br</strong> />

ventilacionog sistema sa svim determinantama.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 108<<strong>br</strong> />

RUDARSKI RADOVI


4.1.2. Klasifikacija po posljedicama<<strong>br</strong> />

1. Ha<strong>za</strong>rdi malih posljedica – odnose<<strong>br</strong> />

se na ha<strong>za</strong>rde pri čijoj reali<strong>za</strong>ciji ne<<strong>br</strong> />

dolazi do značajnije materijalne<<strong>br</strong> />

štete ili povređivanja ljudi. Materijalne<<strong>br</strong> />

štete su manje, a otklanjanje<<strong>br</strong> />

posljedica ovih ha<strong>za</strong>rda može se<<strong>br</strong> />

provesti angažovanjem resursa unutar<<strong>br</strong> />

organi<strong>za</strong>cije u okviru redovnih<<strong>br</strong> />

radnih obave<strong>za</strong>.<<strong>br</strong> />

2. Ha<strong>za</strong>rdi srednjih posljedica – su<<strong>br</strong> />

ha<strong>za</strong>rdi pri kojima nastaje veća materijalna<<strong>br</strong> />

šteta, lakše ili srednje<<strong>br</strong> />

teške povrede te <strong>za</strong>stoja u proizvodnju<<strong>br</strong> />

<strong>za</strong> koji je nepohodna eksterna<<strong>br</strong> />

intervencija kako bi se ponovo<<strong>br</strong> />

uspostavila proizvodnja.<<strong>br</strong> />

3. Ha<strong>za</strong>rdi velikih posljedica – su<<strong>br</strong> />

ha<strong>za</strong>rdi pri kojima dolazi do većih<<strong>br</strong> />

materijalnih šteta, teških povreda<<strong>br</strong> />

ili smrti te <strong>za</strong>stoja u proizvodnji<<strong>br</strong> />

koji <strong>za</strong>htijeva reinvenstiranje u<<strong>br</strong> />

otklanjanje posljedica.<<strong>br</strong> />

Tabela 1.<<strong>br</strong> />

PRIRODNI<<strong>br</strong> />

(uslovi radne sredine)<<strong>br</strong> />

Gasovi<<strong>br</strong> />

(CO2,CO,CH4,SO2,H2S i dr)<<strong>br</strong> />

4.1.3. Klasifikacija rizika usvojenih u<<strong>br</strong> />

ovom radu<<strong>br</strong> />

U ovom radu usvojena je podjela koja<<strong>br</strong> />

bi mogla biti neznatno dopunjena ali se<<strong>br</strong> />

može usvojiti pristup koji ne izlazi iz sfere<<strong>br</strong> />

teoretskih podjela. Dakle, rizici koji se<<strong>br</strong> />

mogu javiti u podzemnoj eksploataciji u<<strong>br</strong> />

osnovi mogu biti:<<strong>br</strong> />

- prirodni rizici i<<strong>br</strong> />

- antropogeni rizici nastali usljed uticaja<<strong>br</strong> />

ljudi-radne sredine-sredstva rada.<<strong>br</strong> />

Ovakva podjela je iskustvena i ograničeno<<strong>br</strong> />

upotrijebljiva, a <strong>za</strong>snovana je na teoretskim<<strong>br</strong> />

osnovama podjele dopunjenim uticajem<<strong>br</strong> />

još dva neodvojiva faktora koji su<<strong>br</strong> />

vrlo bitan činilac u formiranju ambijenta<<strong>br</strong> />

<strong>za</strong> rad u složenim radnim uslovima kakav<<strong>br</strong> />

vlada u podzemnoj eksploataciji.<<strong>br</strong> />

ANTROPOGENI<<strong>br</strong> />

(uticajljudi-radne sredine-sredstva<<strong>br</strong> />

rada)<<strong>br</strong> />

Eksplozije (smješa gas-vazduh, ugljena<<strong>br</strong> />

prašina, eksplozivna sredstva)<<strong>br</strong> />

Prašina Dinamičke pojave<<strong>br</strong> />

(<strong>za</strong>rušavanja, gorski udari, izboji gasa)<<strong>br</strong> />

Požari -Oksidacije Klima<<strong>br</strong> />

(temperatura, vlaga, <strong>br</strong>zina)<<strong>br</strong> />

Prodori vode i žitkih materijala Buka<<strong>br</strong> />

Vi<strong>br</strong>acije<<strong>br</strong> />

Osvjetljenje<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 109<<strong>br</strong> />

RUDARSKI RADOVI


5. EVIDENTIRANJE I ANALIZA<<strong>br</strong> />

RIZIKA I HAZARDA SA VELIKOM<<strong>br</strong> />

SKALOM UTICAJA<<strong>br</strong> />

U istraživanju <strong>za</strong> izradu ovog rada, koja<<strong>br</strong> />

se odnose na ambijent RMU Kakanj, analiziran<<strong>br</strong> />

je period od 1992-2008 godine, do<<strong>br</strong> />

kada postoje pisani tragovi u kojima su<<strong>br</strong> />

evidentirane aktivnosti Štaba službe spasavanja.<<strong>br</strong> />

Štab službe spasavanja je krovno<<strong>br</strong> />

tijelo u ovom rudniku koje utvrđuje, analizira,<<strong>br</strong> />

ocjenjuje i donosi odluke kako da se<<strong>br</strong> />

rješavaju nastale krizne situacije. Na osnovu<<strong>br</strong> />

tih saznanja i uvidom u "Knjige štaba<<strong>br</strong> />

službe spasavanja",[5] evidentirano je u<<strong>br</strong> />

Frekvencija događ<<strong>br</strong> />

45<<strong>br</strong> />

40<<strong>br</strong> />

35<<strong>br</strong> />

30<<strong>br</strong> />

25<<strong>br</strong> />

20<<strong>br</strong> />

15<<strong>br</strong> />

10<<strong>br</strong> />

5<<strong>br</strong> />

0<<strong>br</strong> />

Incidentni događaji<<strong>br</strong> />

Period 11992-2008<<strong>br</strong> />

proteklom periodu od 16 godina, toliko<<strong>br</strong> />

događaja i slučajeva kojima se bavilo ovo<<strong>br</strong> />

krovno tijelo, koji se s pravom mogu nazvati<<strong>br</strong> />

kriznim ili ha<strong>za</strong>rdnim situacijama. U<<strong>br</strong> />

slijedećem grafičkom prikazu može se<<strong>br</strong> />

vidjeti pregled ha<strong>za</strong>rdnih i kriznih situacija<<strong>br</strong> />

koje su se desile u periodu od 16. godina. Iz<<strong>br</strong> />

grafika 1. vidi se karakter i frekventnost<<strong>br</strong> />

pojavljivanja određenih događaja u naznačenom<<strong>br</strong> />

periodu.<<strong>br</strong> />

Grafik 1. Evidentirani incidentni događaji i frekventnost<<strong>br</strong> />

5.1. OPIS INCIDENTNIH DOGAĐAJA<<strong>br</strong> />

1. Pojava požara je incidentni<<strong>br</strong> />

događaj koji se pojavljivao u<<strong>br</strong> />

naznačenom periodu u najvećem<<strong>br</strong> />

<strong>br</strong>oju slučajeva. Na osnovu uvida u<<strong>br</strong> />

izvore informacija, ovaj <strong>br</strong>oj pojavljivanja<<strong>br</strong> />

ne znači da je bilo toliko<<strong>br</strong> />

požarnih procesa, ali je bio na<<strong>br</strong> />

dnevnom redu Štaba službe spasavanja<<strong>br</strong> />

koji se njime bavio. Evidenti<<strong>br</strong> />

Požari 41<<strong>br</strong> />

Proboji 37<<strong>br</strong> />

Ostalo 32<<strong>br</strong> />

Plinovi 15<<strong>br</strong> />

CO plin 13<<strong>br</strong> />

Likv.čela 11<<strong>br</strong> />

Prorušci 7<<strong>br</strong> />

rani <strong>br</strong>oj pojavljivanja događaja na<<strong>br</strong> />

dnevnom redu, uzet je kao veličina<<strong>br</strong> />

sa kojom se kasnije operisalo u daljim<<strong>br</strong> />

anali<strong>za</strong>ma. Požari koji su evidentirani<<strong>br</strong> />

su pojave koje su se<<strong>br</strong> />

dešavale na širokim čelima, starim<<strong>br</strong> />

<strong>radovi</strong>ma i trafo stanicama.<<strong>br</strong> />

2. Proboji radilišta su pojave koje su<<strong>br</strong> />

uvrštavane u rasprave <strong>za</strong> dnevni<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 110<<strong>br</strong> />

RUDARSKI RADOVI


ed Štaba službe spasavanja, <strong>za</strong>to<<strong>br</strong> />

što su tretirali proboje u stare radove<<strong>br</strong> />

ili ranije <strong>za</strong>tvorene prostorije,<<strong>br</strong> />

kao i proboje poslije kojih se vršila<<strong>br</strong> />

regulacija vazduha ili promjena u<<strong>br</strong> />

režimu provjetravanja.<<strong>br</strong> />

3. Ostali događaji imaju veliku <strong>za</strong>stupljenost,<<strong>br</strong> />

ali njihova tematika nije<<strong>br</strong> />

posebno značajna, izuzev događaja<<strong>br</strong> />

smrtnih udesa na transportnom sistemu<<strong>br</strong> />

koji su svrstani u ovu kategoriju.<<strong>br</strong> />

4. Anali<strong>za</strong> plinskog stanja je tematika<<strong>br</strong> />

koja je uslijedila nakon pojava<<strong>br</strong> />

metana(CH4) na pripremnim<<strong>br</strong> />

radilištima u većim koncentracijama<<strong>br</strong> />

ili pojavama ugljendioksida(CO2)<<strong>br</strong> />

u dubljim dijelovima<<strong>br</strong> />

jame nakon povlačenja vode ili iz<<strong>br</strong> />

starih radova.<<strong>br</strong> />

5. Pojava CO plina je incidentni<<strong>br</strong> />

događaj koji je evidentiran nakon što<<strong>br</strong> />

se CO plin pojavljivao u liniji i<strong>za</strong> zidova<<strong>br</strong> />

u starim <strong>radovi</strong>ma, u širokim<<strong>br</strong> />

čelima ili na drugim mjestima.<<strong>br</strong> />

6. Likvidacija širokih čela predstavlja<<strong>br</strong> />

jednu od najkompleksnijih operacija<<strong>br</strong> />

u rudarskom poslu u podzemnoj<<strong>br</strong> />

eksploataciji. Pri tom procesu<<strong>br</strong> />

dolazi do čestih incidentnih situacija<<strong>br</strong> />

u smislu teškoća prilikom vađenja<<strong>br</strong> />

ili raubovanja, transporta ili u<<strong>br</strong> />

procesu ustrajanja sekcija SHP.<<strong>br</strong> />

7. Prorušci su dinamičke pojave koje<<strong>br</strong> />

su ponekad imale i fatalne posljedice<<strong>br</strong> />

a ne samo teškoće u smislu<<strong>br</strong> />

njihove sanacije.<<strong>br</strong> />

6. ODREĐIVANJE RIZIKA<<strong>br</strong> />

(VJEROVATNOSTI I<<strong>br</strong> />

POSLJEDICA) TE OCJENA<<strong>br</strong> />

RIZIKA<<strong>br</strong> />

Nakon popisivanja ha<strong>za</strong>rda i njihovih<<strong>br</strong> />

uzroka, potrebno je procijeniti rizik <strong>za</strong><<strong>br</strong> />

svaki od njih. U ovom kontekstu to znači<<strong>br</strong> />

procijeniti vjerojatnosti da ha<strong>za</strong>rd uzrokuje<<strong>br</strong> />

štetnu posljedicu i težinu te štetne posljedice.<<strong>br</strong> />

Međutim, u procjenu ulaze i propratni<<strong>br</strong> />

parametri poput učestalosti pojave i<<strong>br</strong> />

trajanja izlaganju ha<strong>za</strong>rdu te vjerovatnosti<<strong>br</strong> />

da se štetna posljedica izbjegne.<<strong>br</strong> />

Pri procjeni rizika potrebno je odrediti<<strong>br</strong> />

može li se ha<strong>za</strong>rd manifestovati pod uslovima<<strong>br</strong> />

bez pogreške, uslovima jedne<<strong>br</strong> />

pogreške ili pak uslovima više pogrešaka.<<strong>br</strong> />

Ha<strong>za</strong>rdi s teškim posljedicama ne smiju se<<strong>br</strong> />

tolerisati ni pod kojim uslovima.<<strong>br</strong> />

Sljedeći primjer preuzet je iz norme<<strong>br</strong> />

IEC 60601-1-4. Ona definiše šest nivoa<<strong>br</strong> />

vjerovatnosti pojave štetne posljedice,<<strong>br</strong> />

redom od najnižeg prema najvišem:<<strong>br</strong> />

- Izrazito nevjerovatna<<strong>br</strong> />

- Nevjerovatna<<strong>br</strong> />

- Rijetka<<strong>br</strong> />

- Povremena<<strong>br</strong> />

Vjerovatna<<strong>br</strong> />

- Učestala.<<strong>br</strong> />

Također, definiše i četiri nivoa težine<<strong>br</strong> />

štetne posljedice:<<strong>br</strong> />

- Katastrofalna - više mrtvih ili teško<<strong>br</strong> />

ozlijeđenih osoba<<strong>br</strong> />

- Kritična - jedna ili nekoliko mrtvih<<strong>br</strong> />

ili teško ozlijeđenih osoba<<strong>br</strong> />

- Granična – moguća ozljeda<<strong>br</strong> />

- Zanemariva – moguća lakša ili nikakva<<strong>br</strong> />

ozljeda.<<strong>br</strong> />

Tabela <strong>br</strong>oj 2. prikazuje najjednostavniji<<strong>br</strong> />

način kombiniranja tih parametara.<<strong>br</strong> />

Upravo zbog te jednostavnosti i činjenice<<strong>br</strong> />

da i<strong>za</strong> njega stoji međunarodna norma,<<strong>br</strong> />

veoma je raširen u upotrebi.[6] Naravno,<<strong>br</strong> />

stručnjak koji ga koristi nije ograničen na<<strong>br</strong> />

gornje definicije te ih može po potrebi<<strong>br</strong> />

mijenjati, proširivati ili skraćivati kako bi<<strong>br</strong> />

postigao optimalnu podjelu <strong>za</strong> vlastiti slučaj.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 111<<strong>br</strong> />

RUDARSKI RADOVI


Tabela 2.[7]<<strong>br</strong> />

Vjerovatnost<<strong>br</strong> />

štetne<<strong>br</strong> />

posljedice<<strong>br</strong> />

A-izričito nevjer<<strong>br</strong> />

B-nevjerovatna<<strong>br</strong> />

C-rijetka<<strong>br</strong> />

D-povremena<<strong>br</strong> />

E-vjerovatna<<strong>br</strong> />

F-učestala<<strong>br</strong> />

Težina štetne posljedice<<strong>br</strong> />

I II III IV<<strong>br</strong> />

Zanemar. Granična Kritična Katastrof<<strong>br</strong> />

IV-A III-A II-A I-A<<strong>br</strong> />

IV-B III-B II-B I-B<<strong>br</strong> />

IV-C III-C II-C I-C<<strong>br</strong> />

IV-D III-D II-D I-D<<strong>br</strong> />

IV-E III-E II-E I-E<<strong>br</strong> />

IV-F III-F II-F I-F<<strong>br</strong> />

Uvrštavajući u prethodnu klasifikaciju<<strong>br</strong> />

nivoa vjerovatnosti štetnih ili incidentnih<<strong>br</strong> />

događaja koji su se desili u posljednjih 16<<strong>br</strong> />

godina u Rudniku Kakanj, dolazimo do<<strong>br</strong> />

sljedeće slike. Naravno, pri tome uvrštavamo<<strong>br</strong> />

događaje sa težinom njihovim posljedicama,<<strong>br</strong> />

dok pretpostavljamo događaje<<strong>br</strong> />

koji se nisu desili, obzirom na slobodu u<<strong>br</strong> />

datoj normi koja se koristi u našem slučaju.<<strong>br</strong> />

Na osnovu nivoa vjerovatnosti događaja i<<strong>br</strong> />

nivoa koji je <strong>za</strong>bilježen u našem slučaju<<strong>br</strong> />

imamo sljedeću podjelu:<<strong>br</strong> />

- A – Izričito nevjerovatan – Eksplozija<<strong>br</strong> />

širokih razmjera (nije se desila<<strong>br</strong> />

u posmatranom periodu)<<strong>br</strong> />

- B – Nevjerovatan – Eksplozija<<strong>br</strong> />

ograničenog karaktera(nije <strong>za</strong>bilježeno<<strong>br</strong> />

u posmatranom periodu)<<strong>br</strong> />

- C – Rijetka – Likvidacija čela (11),<<strong>br</strong> />

Prorušci (7)<<strong>br</strong> />

- D – Povremena – Pojava ostalih plinova<<strong>br</strong> />

(15), Pojava CO (13)<<strong>br</strong> />

- E – Vjerovatna – Proboji radilišta<<strong>br</strong> />

(35), Ostalo (32)<<strong>br</strong> />

- F – Učestala – Pojava požara (41)<<strong>br</strong> />

Prema težini štetnosti posljedice, evidentirani<<strong>br</strong> />

incidentni događaji mogu se<<strong>br</strong> />

klasificirati po sljedećim nivoima:<<strong>br</strong> />

- I – Katastrofalan – U evidentiranom<<strong>br</strong> />

periodu pojava prorušaka (7), i likvidacije<<strong>br</strong> />

čela (11), nose najviše smrtnih<<strong>br</strong> />

udesa. (Za pretpostaviti je da bi i eksplozije<<strong>br</strong> />

ograničenog i šireg karaktera<<strong>br</strong> />

imale iste posljedice.)<<strong>br</strong> />

- II – Kritična – Ostali događaji (32)<<strong>br</strong> />

zbog smrtnosti na trakama<<strong>br</strong> />

- III – Granična – Pojava požara (41),<<strong>br</strong> />

Pojava ostalih plinova (15), Pojava<<strong>br</strong> />

CO (13)<<strong>br</strong> />

- IV – Zanemariva – Proboji radilišta<<strong>br</strong> />

(37)<<strong>br</strong> />

Tabela koja se može formirati na osnovu<<strong>br</strong> />

kombinovanja datih nivoa vjerovatnosti<<strong>br</strong> />

i nivoa štetnosti događaja izgleda<<strong>br</strong> />

ovako:<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 112<<strong>br</strong> />

RUDARSKI RADOVI


Tabela 3.[8]<<strong>br</strong> />

Vjerovatnost<<strong>br</strong> />

Težina štetne posljedice<<strong>br</strong> />

štetne<<strong>br</strong> />

IV III II I<<strong>br</strong> />

posljedice Zanemar. Granični Kritičan Katastrofa<<strong>br</strong> />

A-izraz.nevjer I-A<<strong>br</strong> />

B-nevjerovat I-B<<strong>br</strong> />

C-rijetko 2xI-C<<strong>br</strong> />

D-povremeno 2xIII-D<<strong>br</strong> />

E-vjerovatno IV-E II-E<<strong>br</strong> />

F-učestalo III-F<<strong>br</strong> />

7. KRITERIJI ZA ODREĐIVANJE<<strong>br</strong> />

TOLERANTNIH NIVOA RIZIKA<<strong>br</strong> />

U STRATEŠKOM ODLUČIVANJU<<strong>br</strong> />

Pri izboru jedne od dviju metodologija<<strong>br</strong> />

<strong>za</strong> procjenu rizika, treba odvagati njene<<strong>br</strong> />

prednosti i nedostatke. Iako nije teško<<strong>br</strong> />

procijeniti rizike u predmetnoj oblasti<<strong>br</strong> />

ovoga rada (eksploatacija uglja) zbog svih<<strong>br</strong> />

prirodnih i stvorenih okolnosti, kao i zbog<<strong>br</strong> />

činjenica da su i manifestirani sa katastrofalnim<<strong>br</strong> />

posljedicama, trud bi trebao da se<<strong>br</strong> />

isplati jer omogućuje procjenu učinka implementiranih<<strong>br</strong> />

mjera da bi se smanjio rizik<<strong>br</strong> />

mogućih štetnih događaja. Kombinacija<<strong>br</strong> />

tih nivoa predstavlja rizik dotičnog ha<strong>za</strong>rda.<<strong>br</strong> />

Nedostatak ove metode leži upravo u<<strong>br</strong> />

toj proizvoljnosti jer cijela anali<strong>za</strong> ovisi o<<strong>br</strong> />

ponekad previše subjektivnim proizvoljnim<<strong>br</strong> />

odlukama analitičara.[9]<<strong>br</strong> />

Potencijalna slabost metode jest u nepouzdanosti<<strong>br</strong> />

podataka iz kojih se izvlače<<strong>br</strong> />

vrijednosti, obzirom na karakter djelatnosti<<strong>br</strong> />

u kojoj nema pravila u kontinuitetu<<strong>br</strong> />

ili periodičnosti dešavanja ha<strong>za</strong>rdnih<<strong>br</strong> />

događaja.<<strong>br</strong> />

Mnoštvo metoda može se upotrijebiti<<strong>br</strong> />

<strong>za</strong> kombinovanje nivoa vjerovatnosti i<<strong>br</strong> />

težine štetne posljedice. Prva je svakakojednostavno<<strong>br</strong> />

navesti oba parametra.<<strong>br</strong> />

Nakon procjene, svaki se rizik u sistemu<<strong>br</strong> />

mora evaluirati kako bi se ustanovila<<strong>br</strong> />

njegova prihvatljivost i eventualne mjere <strong>za</strong><<strong>br</strong> />

njegovo smanjivanje. Evaluacija rizika<<strong>br</strong> />

izlazi iz striktno tehničkih okvira, jer posjeduje<<strong>br</strong> />

i svoje pravne i etičke aspekte. Cilj<<strong>br</strong> />

joj je pronaći balans, u našem slučaju, između<<strong>br</strong> />

dobitka koji se dobije na kraju<<strong>br</strong> />

procesa, cijene uložene u procese da se<<strong>br</strong> />

eliminišu rizici, <strong>za</strong>dovoljstva aktera u<<strong>br</strong> />

procesima, usklađenosti sa razvojnim konceptima<<strong>br</strong> />

i ostalih <strong>za</strong>interesiranih činilaca u<<strong>br</strong> />

cijelom sistemu grane u kojima se obavlja<<strong>br</strong> />

ova rudarska djelatnost. U kontekstu primijenjenom<<strong>br</strong> />

na uslove rudarske djelatnosti,<<strong>br</strong> />

posebno u podzemnoj eksploataciji uglja,<<strong>br</strong> />

na prvo mjesto u svim razmatranjima<<strong>br</strong> />

dolazi sigurnost neposrednih izvršilaca,<<strong>br</strong> />

odnosno rudara u jamskoj eksploataciji.<<strong>br</strong> />

Dvije glavne smjernice kojima se treba<<strong>br</strong> />

voditi pri evaluaciji rizika jesu:<<strong>br</strong> />

- Društvena javnost ima veoma nisku<<strong>br</strong> />

toleranciju na rizik <strong>za</strong> čije se uklanjanje<<strong>br</strong> />

sredstva jako teško nalaze u<<strong>br</strong> />

trenutnom ekonomskom ambijentu i<<strong>br</strong> />

države i privredne grane.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 113<<strong>br</strong> />

RUDARSKI RADOVI


- Tolerancija društva na rezidualni rizik<<strong>br</strong> />

ovisi o koristi i do<strong>br</strong>obitima koje<<strong>br</strong> />

donose rudnici u ukupnom privrednom<<strong>br</strong> />

ambijentu, mada se <strong>za</strong> rizicima u<<strong>br</strong> />

ovoj oblasti saživilo i kao takav je<<strong>br</strong> />

postao društvena zbilja.<<strong>br</strong> />

Iz njih proizilazi činjenica da evaluacija<<strong>br</strong> />

rizika mora biti kontinuirani proces jer se s<<strong>br</strong> />

vremenom mogu pojaviti nove tehnike <strong>za</strong><<strong>br</strong> />

smanjivanje rezidualnog rizika, a samo postojanje<<strong>br</strong> />

takvog procesa pozitivno utiče na<<strong>br</strong> />

svijest javnosti. Treba naglasiti da naše društvo<<strong>br</strong> />

ima veoma ni<strong>za</strong>k prag tolerancije prema<<strong>br</strong> />

riziku, u rudarstvu, pa je sklono "tešku<<strong>br</strong> />

ozljedu" percepirati kao "katastrofalnu".<<strong>br</strong> />

Slika <strong>br</strong>oj 2. prikazuje grafički prikaz koji<<strong>br</strong> />

pomaže pri donošenju odluke o prihvatljivosti<<strong>br</strong> />

rizika. Lijevo dolje predstavlja<<strong>br</strong> />

područje niskog rizika i svi rizici koji pod<<strong>br</strong> />

njega spadaju, smatraju se prihvatljivima i<<strong>br</strong> />

<strong>za</strong>htijevaju stalni nadzor. Desno gore<<strong>br</strong> />

predstavlja područje visokog rizika. Svi<<strong>br</strong> />

rizici u njemu su neprihvatljivi i funkcionisanje<<strong>br</strong> />

sistema o kome je riječ (<strong>rudarstvo</strong>)<<strong>br</strong> />

je moguće jedino kad se oni odgovarajućim<<strong>br</strong> />

mjerama uklone i prebace u<<strong>br</strong> />

središnje područje ALARP[10] (As Low<<strong>br</strong> />

As Reasonably Possible-kao nisko kao<<strong>br</strong> />

Sl. 2. Područje razine rizika<<strong>br</strong> />

razumno moguće) rizika. Upravo se u<<strong>br</strong> />

tome području odvija većina odluka u vezi<<strong>br</strong> />

sa rizicima. Osnovni princip jest da se<<strong>br</strong> />

svaki rizik pomjera prema lijevom donjem<<strong>br</strong> />

uglu, dok je to praktično moguće i izvodivo<<strong>br</strong> />

i dok su troškovi sa njihovo<<strong>br</strong> />

izmještanje srazmjerni izvučenoj koristi,<<strong>br</strong> />

jednom riječju razumno. To praktično<<strong>br</strong> />

znači povećanje proizvodnih poka<strong>za</strong>telja<<strong>br</strong> />

po svim nivoima uz maksimalnu sigurnost<<strong>br</strong> />

<strong>za</strong>poslenih. Također, potrebno je posvetiti<<strong>br</strong> />

mnogo pažnje činjenici da uvođenje mjera<<strong>br</strong> />

koje bi trebale povećati sigurnost sistema,<<strong>br</strong> />

takođe povećava i njegovu kompleksnost<<strong>br</strong> />

što u većini slučajeva negativno utiče na<<strong>br</strong> />

pouzdanost i opću razinu sigurnosti.<<strong>br</strong> />

Odluka o tome šta je razumno, a šta ne,<<strong>br</strong> />

ključna je <strong>za</strong> cijeli proces. U sebi<<strong>br</strong> />

obuhvaća cijenu implementacije mjera <strong>za</strong><<strong>br</strong> />

redukciju rizika, iznos same redukcije i<<strong>br</strong> />

dobivenu korist. Često odluka postaje subjektivna<<strong>br</strong> />

te se zbog toga preporučuje da je<<strong>br</strong> />

donosi interdisciplinarni tim s više perspektiva<<strong>br</strong> />

na isti problem.<<strong>br</strong> />

U tabeli <strong>br</strong>oj 4. prika<strong>za</strong>na je podjela rizika<<strong>br</strong> />

prema normi IEC 61508-5 koja definiše 4<<strong>br</strong> />

klase rizika u odnosu na prihvatljivost.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 114<<strong>br</strong> />

RUDARSKI RADOVI


Tabela 4.[11] Parametri rizika prema prihvatljivosti<<strong>br</strong> />

Klasa rizika Tumačenje<<strong>br</strong> />

NR Neprihvatljiv<<strong>br</strong> />

NP<<strong>br</strong> />

Nepoželjan i prihvatljiv samo ako je redukcija nepraktična ili ako su<<strong>br</strong> />

troškovi poboljšanja veliki<<strong>br</strong> />

PR Prihvatljiv ukoliko su troškovi poboljšanja veći od dobitka<<strong>br</strong> />

ZN Zanemariv<<strong>br</strong> />

Klasa prihvatljivog rizika ekvivalentna<<strong>br</strong> />

je istoimenom području na slijedećim tabelama<<strong>br</strong> />

<strong>br</strong>oj 5 i 6, dok žuta boja označava<<strong>br</strong> />

područje ALARP. Crvena boja je područje<<strong>br</strong> />

neprihvatljivog rizika i slijedi reinženjering<<strong>br</strong> />

koji je slijedeći korak u tretmanu<<strong>br</strong> />

rizika ove kategorije. Područje rizika<<strong>br</strong> />

Tabela 5. Tabela 6.<<strong>br</strong> />

označenih žutom bojom spada u područje<<strong>br</strong> />

upravljanja rizikom i to je glavni <strong>za</strong>datak<<strong>br</strong> />

cijelog procesa. Rizici označeni zelenom<<strong>br</strong> />

bojom su u zoni prihvatljivog rizika, ali u<<strong>br</strong> />

našem slučaju zbog učestalosti mogu biti<<strong>br</strong> />

predmet njihove dalje analize.<<strong>br</strong> />

Vjerovatnost<<strong>br</strong> />

Težina štetne posljedice Vjerovatnost Težina štetne posljedice<<strong>br</strong> />

štetne<<strong>br</strong> />

IV III II I štetne IV III II I<<strong>br</strong> />

posljedice Zanem Granič Kritič Katastr posljedice<<strong>br</strong> />

Zane<<strong>br</strong> />

m<<strong>br</strong> />

Granič Kritič Katastr<<strong>br</strong> />

A-izr.nevjerov NP NR NR NR A-izr.nevjerov I-A<<strong>br</strong> />

B-nevjerovatn PR NP NR NR B-nevjerovatno I-B<<strong>br</strong> />

C-rijetko PR PR NP NR C-rijetko 2xI-C<<strong>br</strong> />

D-povremeno ZN PR PR NP D-prvremeno 2xIII-D<<strong>br</strong> />

E-vjerovatno ZN ZN PR NP E-vjerovatno IV-E II-E<<strong>br</strong> />

F-učestalo ZN ZN ZN PR F-učestalo III-F<<strong>br</strong> />

8. SISTEMSKE I OPERATIVNE<<strong>br</strong> />

MJERE REDUKCIJE, TRANS-<<strong>br</strong> />

FERA I MITIGACIJE RIZIKA<<strong>br</strong> />

Nakon provedene faze identifikacije i<<strong>br</strong> />

evaluacije rizika, pristupa se njegovu smanjenju<<strong>br</strong> />

<strong>za</strong> koje postoji gotovo neograničen<<strong>br</strong> />

spektar mogućnosti. Optimalni pristup u<<strong>br</strong> />

pravilu se nazire već kod same analize<<strong>br</strong> />

problema, no često su potrebni kompromisi<<strong>br</strong> />

zbog ekonomske, tehničke i vremenske<<strong>br</strong> />

<strong>za</strong>htjevnosti njegove provedbe. U pravilu<<strong>br</strong> />

se odabire najjednostavnija metoda koja<<strong>br</strong> />

rizik svodi na prihvatljiv nivo.<<strong>br</strong> />

Redukcija rizika ima <strong>za</strong> cilj korekciju<<strong>br</strong> />

uticaja pojedinih rizika na prihvatljivu ili<<strong>br</strong> />

najmanju moguću mjeru. Pouzdanost analize<<strong>br</strong> />

rizika je važna pretpostavka da rizici<<strong>br</strong> />

budu pravilno identifikovani i valorizovani.<<strong>br</strong> />

Ukoliko nije postignuta visoka pouzdanost<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 115<<strong>br</strong> />

RUDARSKI RADOVI


u procjenama rizika, nepohodan je pojačani<<strong>br</strong> />

monitoring i poduzimanje širokog aspekta<<strong>br</strong> />

mjera sigurnosti na radu. Nivo rezidualnog<<strong>br</strong> />

rizika određuje se na osnovu ni<strong>za</strong> kriterija.<<strong>br</strong> />

Strogo postavljene granice, odnosno ni<strong>za</strong>k<<strong>br</strong> />

nivo prihvatljivog rizika može dovesti u<<strong>br</strong> />

pitanje ekonomičnost proizvodnog procesa.<<strong>br</strong> />

Pravilno odmjeravanje rizika koji se<<strong>br</strong> />

mogu prihvatiti te mjere njihovog nadzora<<strong>br</strong> />

tako imaju sa jedne strane veliki uticaj na<<strong>br</strong> />

sigurnost radnika, a sa druge strane na<<strong>br</strong> />

ekonomičnost i uopšte smisao rada.<<strong>br</strong> />

Na priloženoj shemi upravljanja<<strong>br</strong> />

rizikom, putem iterativnih petlji, što ukazuje<<strong>br</strong> />

na važnost procjene rizika, tj. razmatranje<<strong>br</strong> />

rezultata analize rizika u odnosu na<<strong>br</strong> />

Kriterij<<strong>br</strong> />

prihvaćanja<<strong>br</strong> />

rizika<<strong>br</strong> />

Anali<strong>za</strong> rizika<<strong>br</strong> />

Kalkulacija<<strong>br</strong> />

rizika<<strong>br</strong> />

Procjena rizika<<strong>br</strong> />

Frekvencija<<strong>br</strong> />

anali<strong>za</strong><<strong>br</strong> />

Sl. 3. Opći model određivanja i kontrole rizika [12]<<strong>br</strong> />

kriterije prihvatljivosti rizika, kao sastavni<<strong>br</strong> />

dio procesa upravljanja sigurnošću. Ako su<<strong>br</strong> />

rezultati neprihvatljiv rizik, onda se stvara<<strong>br</strong> />

nova petlja kroz implementaciju mjera <strong>za</strong><<strong>br</strong> />

smanjenje rizika te ažuriranje anali<strong>za</strong> rizika<<strong>br</strong> />

na način da odražava sliku tih promjena.<<strong>br</strong> />

Treba napomenuti da su dva ishoda<<strong>br</strong> />

"procjene rizika", okvir su prihvatljivo i<<strong>br</strong> />

neprihvatljivo. To se temelji na pristupu<<strong>br</strong> />

kojim je preuzeto i osigurano poštivanje<<strong>br</strong> />

eksplicitnih kriterija prihvatljivosti rizika<<strong>br</strong> />

kao prve tačke, nakon čega slijedi ALARP<<strong>br</strong> />

evaluacija. To je razlog <strong>za</strong>što u shemi<<strong>br</strong> />

postoji stavka "dalje mjere <strong>za</strong> smanjenje<<strong>br</strong> />

rizika", u slučaju prihvatljivih razina rizika.<<strong>br</strong> />

Anali<strong>za</strong> rizika<<strong>br</strong> />

planiranje<<strong>br</strong> />

Sistem<<strong>br</strong> />

definisanja<<strong>br</strong> />

Ha<strong>za</strong>rd<<strong>br</strong> />

identifikacija<<strong>br</strong> />

Slika<<strong>br</strong> />

rizika<<strong>br</strong> />

Procjena<<strong>br</strong> />

rizika<<strong>br</strong> />

Dalje mjere <strong>za</strong><<strong>br</strong> />

smanjenje rizika<<strong>br</strong> />

Posljedica<<strong>br</strong> />

anali<strong>za</strong><<strong>br</strong> />

Prihvatljivo<<strong>br</strong> />

Neprihvatljivo<<strong>br</strong> />

Mjere <strong>za</strong><<strong>br</strong> />

smanjenje<<strong>br</strong> />

rizika<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 116<<strong>br</strong> />

RUDARSKI RADOVI


9. ZAKLJUČNA RAZMATRANJA<<strong>br</strong> />

Ovim radom se pokušalo uka<strong>za</strong>ti na<<strong>br</strong> />

problem upravljanja rizikom i ha<strong>za</strong>rdom u<<strong>br</strong> />

rudnicima uglja. Fokus pažnje tokom istraživanja<<strong>br</strong> />

je ambijent Rudnika Kakanj, sa<<strong>br</strong> />

svim svojim specifičnostima i iskustvima,<<strong>br</strong> />

odnosno evidencijom i analizom događaja<<strong>br</strong> />

koji su se već desili. Da bi se sprovela<<strong>br</strong> />

anali<strong>za</strong> konkretnih rizika bilo koje vrste i u<<strong>br</strong> />

bilo kojoj oblasti, potrebno je opšte teorijsko<<strong>br</strong> />

istraživanje projektno-metodološkog i sistemskog<<strong>br</strong> />

okvira upravljanja rizicima. Zahtjevi<<strong>br</strong> />

koji su pretpostavljeni u procesu analize<<strong>br</strong> />

rizika i ha<strong>za</strong>rda u rudnicima uglja, na neki<<strong>br</strong> />

način predstavljaju vizionarsko razmišljanje,<<strong>br</strong> />

jer je potrebno u datom ambijentu koji je<<strong>br</strong> />

sam po sebi rizičan i opasan, naći pravu<<strong>br</strong> />

mjeru i način da se minimiziraju neizvjesnosti<<strong>br</strong> />

rizika.<<strong>br</strong> />

U toj sudbinskoj pove<strong>za</strong>nosti čovjeka,<<strong>br</strong> />

aktera u rudniku, i rudarske sredine koja<<strong>br</strong> />

nosi sve poznate i skrivene opasnosti, potrebno<<strong>br</strong> />

je pravilno identifikovati i ocijeniti<<strong>br</strong> />

rizik, dati mu dimenziju, kvantifikovati<<strong>br</strong> />

ga, kontrolisati ga i upravljati njime u<<strong>br</strong> />

svakodnevnom životu rudnika, promjenjivom<<strong>br</strong> />

okruženju i budućem savremenom<<strong>br</strong> />

ali uvijek kriznom vremenu.<<strong>br</strong> />

Da je to tako, stalno nas opominju i<<strong>br</strong> />

upozoravaju događaji iz prošlosti koji<<strong>br</strong> />

nose fatalne i katastrofalne posljedice, a<<strong>br</strong> />

rezultat su neadekvatnog pristupa određenim<<strong>br</strong> />

opasnim i kriznim situacijama.<<strong>br</strong> />

Drugim riječima, ukoliko se ne uspije<<strong>br</strong> />

upravljati svim rizicima i opasnostima<<strong>br</strong> />

koje prijete ili bar onim najvećim, postoji<<strong>br</strong> />

opasnost od nefunkcionisanja ili gašenja<<strong>br</strong> />

cijelog projekta, u ovom slučaju rudnika<<strong>br</strong> />

uz sigurno velike gubitke materijalne i<<strong>br</strong> />

nematerijalne prirode.<<strong>br</strong> />

Kako ne postoji jedinstvena metodologija<<strong>br</strong> />

koja bi adekvatno obuhvatila<<strong>br</strong> />

sve ha<strong>za</strong>rde, posebno u rudarstvu, potrebno<<strong>br</strong> />

je analizu provesti koristeći sva<<strong>br</strong> />

raspoloživa dostignuća, saznanja i<<strong>br</strong> />

iskustva u svijetu, kako bi se konačno<<strong>br</strong> />

krenulo u pravom smjeru. Naravno, da se<<strong>br</strong> />

pri tome ne očekuju revolucionarni rezultati,<<strong>br</strong> />

ali se treba odlijepiti od stereotipa i<<strong>br</strong> />

tradicionalizma kad su u pitanju rješavanja<<strong>br</strong> />

opće sigurnosti u rudarstvu.<<strong>br</strong> />

Bez obzira na sve rečeno, u ovom radu<<strong>br</strong> />

i ono što nije rečeno a do<strong>br</strong>o je poznato,<<strong>br</strong> />

<strong>za</strong> djelatnost kakva je <strong>rudarstvo</strong>, posmatrajući<<strong>br</strong> />

svaki njegov dio ili cjelinu, ljudsko<<strong>br</strong> />

znanje i ljudski faktor su ključni segmenti<<strong>br</strong> />

čitavog procesa.<<strong>br</strong> />

LITERATURA<<strong>br</strong> />

[1] Andrea Matošević, Podzemna<<strong>br</strong> />

<strong>za</strong>jednica: Antropologija rudarenja i<<strong>br</strong> />

kultura podzemlja na području Raše,<<strong>br</strong> />

2007<<strong>br</strong> />

[2] Dragan Komljenović, Ph D.,P.Eng.<<strong>br</strong> />

«Upravljanje tehnološkim rizikom i<<strong>br</strong> />

njegova primjena u inženjerskoj<<strong>br</strong> />

praksi» Tuzla, 2006<<strong>br</strong> />

[3] Web. Riskinfo, Risk Managment<<strong>br</strong> />

Reports, rujan, 2000<<strong>br</strong> />

[4] Dr.Sc.Edin Delić, Istraživanja,<<strong>br</strong> />

ekspertize, Tuzla, 2009<<strong>br</strong> />

[5] Dokumentacija RMU Kakanj<<strong>br</strong> />

[6] Nikola Rašić, Smanjenje rizika u<<strong>br</strong> />

programskoj podršci medicinskih<<strong>br</strong> />

uređaja (Sa osvrtom na relevantne<<strong>br</strong> />

norme)<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 117<<strong>br</strong> />

RUDARSKI RADOVI


[7] Opći <strong>za</strong>htjev <strong>za</strong> kolateral standarda,<<strong>br</strong> />

IEC 60601-1-4<<strong>br</strong> />

[8] Istraživački rad<<strong>br</strong> />

[9] NIOS, National <strong>Institut</strong>e for<<strong>br</strong> />

Occupational Safety and Health,<<strong>br</strong> />

octobar, 2008<<strong>br</strong> />

[10] International standard, IEC 61508-5,<<strong>br</strong> />

International electrotechnical<<strong>br</strong> />

commission, First edition 1998-12<<strong>br</strong> />

[11] Profesor Jan Erik Vinnem, University<<strong>br</strong> />

of Stavanger, Norway, Offshore Risk<<strong>br</strong> />

Assessment, 2nd Edition, January<<strong>br</strong> />

2007<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 118<<strong>br</strong> />

RUDARSKI RADOVI


MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162<<strong>br</strong> />

COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622<<strong>br</strong> />

UDK: 622.8(497.15)(045)=20<<strong>br</strong> />

Muhamed Plasto *<<strong>br</strong> />

ANALYSIS OF RISKS AND HAZARDS REGISTERED IN THE<<strong>br</strong> />

BROWN COAL MINE KAKANJ **<<strong>br</strong> />

Abstract<<strong>br</strong> />

Risk and crisis are inevitably tied to mining; this vocation is historically associated with risk, in<<strong>br</strong> />

everyday operations and functioning of the mine as a whole.<<strong>br</strong> />

The current legislation in Bosnia and Herzegovina is not in accordance with the applicable<<strong>br</strong> />

ISO standards, which themselves have not established models for strategic risk management in<<strong>br</strong> />

mining. Therefore, it is required to insist on establishment the applied models, their regulation<<strong>br</strong> />

through legal documents and introduction of a binding legal framework in this field. The worldwide<<strong>br</strong> />

experiences have shown that the introduction of strategic risk and crisis management led to<<strong>br</strong> />

the improvement of general safety conditions and reduction of incidents with harmful effects.<<strong>br</strong> />

This paper aims to point out that, in the given conditions, systematic risk and ha<strong>za</strong>rd management<<strong>br</strong> />

in mining is possible and necessary, regardless to a lack of established norms.<<strong>br</strong> />

Key words: risk, ha<strong>za</strong>rd, mining, risk management<<strong>br</strong> />

1. INTRODUCTION<<strong>br</strong> />

Throughout its multi-century existence,<<strong>br</strong> />

mining remained deeply rooted in all areas<<strong>br</strong> />

tied to it by long tradition. This especially<<strong>br</strong> />

refers to the recent period or last more than<<strong>br</strong> />

hundred years, when the coal excavation<<strong>br</strong> />

intensified and practically laid the basis for<<strong>br</strong> />

industrial revolution. From beginning of<<strong>br</strong> />

the 20th century, mining was the basis of<<strong>br</strong> />

economic development in all areas in<<strong>br</strong> />

which people excavated coal. Besides its<<strong>br</strong> />

economic significance, mining also had<<strong>br</strong> />

social influence in these areas. It can be<<strong>br</strong> />

said that it was the "mining civili<strong>za</strong>tion"<<strong>br</strong> />

hich manifested itself in all spheres of life:<<strong>br</strong> />

from language and architecture to subculture<<strong>br</strong> />

and sports. In order to survive, this<<strong>br</strong> />

mining culture had to "communicate" with<<strong>br</strong> />

the underground and stand in awe of it.<<strong>br</strong> />

Ignoring the signs of nature inside the pit<<strong>br</strong> />

could cost the lives of whole shift. Taking<<strong>br</strong> />

these implicit and unwritten rules lightly or<<strong>br</strong> />

disrespectfully was often paid by the highest<<strong>br</strong> />

costs. Thus, pits have been regarded<<strong>br</strong> />

with awe and their entrances carried the<<strong>br</strong> />

* Brown Coal Mine Kakanj<<strong>br</strong> />

** This paper is based on the author's master's thesis titled "Risk and crisis management in<<strong>br</strong> />

transitional model of strategic decision-making in coal mines of Bosnia and Herzegovina“<<strong>br</strong> />

RGGF Tuzla, March 2010.<<strong>br</strong> />

No 4, <strong>2011</strong>. 119<<strong>br</strong> />

MINING ENGINEERING


sign saying "GOOD LUCK". This is also<<strong>br</strong> />

the universal greeting of miners around the<<strong>br</strong> />

world.[1]<<strong>br</strong> />

2. RISK AND HAZARD TREATMENT<<strong>br</strong> />

In the area of Bosnia and Herzegovina<<strong>br</strong> />

and former Yugoslavia, the issue of risk<<strong>br</strong> />

and ha<strong>za</strong>rd in mining was not particularly<<strong>br</strong> />

studied or treated as such. This issue was<<strong>br</strong> />

reduced to an indication of certain ha<strong>za</strong>rds<<strong>br</strong> />

and crises that could occur, within the<<strong>br</strong> />

frame of existing legislation and technical<<strong>br</strong> />

regulations. Some changes in technical<<strong>br</strong> />

regulations were adopted prescribing<<strong>br</strong> />

stricter measures to be undertaken in order<<strong>br</strong> />

to avoid incidents and crises with fatal consequences<<strong>br</strong> />

for men and property. It should<<strong>br</strong> />

be pointed out that the new measures were<<strong>br</strong> />

often issued as the result of crises that had<<strong>br</strong> />

happened previously. Unfortunately, such<<strong>br</strong> />

incidents were quite numerous.<<strong>br</strong> />

However, other parts of the world, as<<strong>br</strong> />

the result of different social environment<<strong>br</strong> />

and property relations, realized that crises<<strong>br</strong> />

should be foreseen, prevented and eliminated<<strong>br</strong> />

and all their elements quantified by<<strong>br</strong> />

complete analysis.<<strong>br</strong> />

Through history, methods and techniques<<strong>br</strong> />

of risk assessment in technical systems<<strong>br</strong> />

were developed relatively late in comparison<<strong>br</strong> />

to the other fields of engineering.<<strong>br</strong> />

Lately, in the period of globali<strong>za</strong>tion of<<strong>br</strong> />

markets and economy, the risk management<<strong>br</strong> />

ideas and practice spread globally. [2]<<strong>br</strong> />

Today, the same principles are applied<<strong>br</strong> />

from Asia and Africa to Europe and America.<<strong>br</strong> />

However, there is still no generally<<strong>br</strong> />

accepted "standard" and a single set of defined<<strong>br</strong> />

terms. There are regional standards in<<strong>br</strong> />

Australia, New Zealand, Canada and more<<strong>br</strong> />

recently, in Great Britain, as well as the<<strong>br</strong> />

sub-studies in some other countries. In recent<<strong>br</strong> />

years, the working group of the International<<strong>br</strong> />

Standards Organi<strong>za</strong>tion (ISO) is<<strong>br</strong> />

faced with the certain difficulties in their<<strong>br</strong> />

attempts to reach consensus on the common<<strong>br</strong> />

global definition of risk management.<<strong>br</strong> />

3. THEORETICAL AND PRACTICAL<<strong>br</strong> />

BASIS OF RISK MANAGEMENT<<strong>br</strong> />

"Risk management" refers to a set of<<strong>br</strong> />

actions and processes used to monitor<<strong>br</strong> />

risks, to assess their tolerability and to<<strong>br</strong> />

reduce risks identified as intolerable. In<<strong>br</strong> />

other words, risk management can be defined<<strong>br</strong> />

as the general management function<<strong>br</strong> />

aiming to identify risks, assess them and<<strong>br</strong> />

prepare an organi<strong>za</strong>tion (company) for<<strong>br</strong> />

their causes and effects (consequences).<<strong>br</strong> />

The purpose of risk management is to enable<<strong>br</strong> />

an organi<strong>za</strong>tion to realize its goals in<<strong>br</strong> />

the most direct, efficient and effective<<strong>br</strong> />

manner.<<strong>br</strong> />

No activity can be undertaken without<<strong>br</strong> />

risk i.e. with zero risk. If there is any possibility<<strong>br</strong> />

for manifestation of ha<strong>za</strong>rd, risk<<strong>br</strong> />

does not equal zero. Therefore, risk is always<<strong>br</strong> />

present and the risk remaining after<<strong>br</strong> />

all the measures have been undertaken is<<strong>br</strong> />

referred to as "residual" or remaining risk.<<strong>br</strong> />

It is also important to define ha<strong>za</strong>rd and<<strong>br</strong> />

risk.<<strong>br</strong> />

Ha<strong>za</strong>rd is a danger which can represent<<strong>br</strong> />

"potential harm for humans, property or<<strong>br</strong> />

environment"; as such, it gives an initial<<strong>br</strong> />

basis for determination of risk.<<strong>br</strong> />

According to the international ISO<<strong>br</strong> />

standard, the definition of ha<strong>za</strong>rd is: "potential<<strong>br</strong> />

source of harm or event that may<<strong>br</strong> />

result in loss", while risk is defined as a<<strong>br</strong> />

combination of probability the occurrence<<strong>br</strong> />

of harm and the severity of that harm. [3]<<strong>br</strong> />

The aim of risk management is to keep<<strong>br</strong> />

the level of residual risk below the limit<<strong>br</strong> />

set by "risk tolerability" criteria. Determination<<strong>br</strong> />

of acceptable level of risk is a<<strong>br</strong> />

complex task involving a series of factors,<<strong>br</strong> />

such as legislation, standards, bylaws,<<strong>br</strong> />

No 4, <strong>2011</strong>. 120<<strong>br</strong> />

MINING ENGINEERING


usiness policy of the company and other.<<strong>br</strong> />

Different levels of tolerability can be as-<<strong>br</strong> />

Some holes represent active<<strong>br</strong> />

failures<<strong>br</strong> />

Losses<<strong>br</strong> />

sessed for the same risk, depending on the<<strong>br</strong> />

person who assesses it.<<strong>br</strong> />

Fig. 1 Comparison of safeguard systems according to the "Swiss cheese model"[4]<<strong>br</strong> />

The above Figure 1 clearly depicts the<<strong>br</strong> />

effect mechanism of potential danger<<strong>br</strong> />

which, in certain environment (the given<<strong>br</strong> />

working or other environment), can create<<strong>br</strong> />

preconditions to become an adverse effect<<strong>br</strong> />

of possibly measurable severity, causing<<strong>br</strong> />

losses. In order to avoid this, it is necessary<<strong>br</strong> />

to establish different mechanisms of<<strong>br</strong> />

defense and safeguards, protecting from<<strong>br</strong> />

adverse consequences. Undertaking of all<<strong>br</strong> />

foreseen defense measures (closing holes)<<strong>br</strong> />

reduces the possibility of occurrence the<<strong>br</strong> />

adverse effects and losses. However, in<<strong>br</strong> />

the real-life situations, there is always a<<strong>br</strong> />

chance of latent dangers or environmental<<strong>br</strong> />

influence which can not be avoided.<<strong>br</strong> />

4. GENERIC CLASSIFICATION OF<<strong>br</strong> />

HAZARDS IN MINING<<strong>br</strong> />

According to their genesis, the ha<strong>za</strong>rds<<strong>br</strong> />

in mining can be classified into two types:<<strong>br</strong> />

1. Natural ha<strong>za</strong>rds and<<strong>br</strong> />

2. Anthropogenic (man-made) ha<strong>za</strong>rds<<strong>br</strong> />

Defining natural ha<strong>za</strong>rds, as the ones<<strong>br</strong> />

which emerge without key influence by<<strong>br</strong> />

man and anthropogenic ha<strong>za</strong>rds as the<<strong>br</strong> />

Ha<strong>za</strong>rds<<strong>br</strong> />

Other holes represent<<strong>br</strong> />

latent failures or environmental<<strong>br</strong> />

influences<<strong>br</strong> />

Various mechanisms of defence and safeguards per layers<<strong>br</strong> />

ha<strong>za</strong>rds resulting from the influence of<<strong>br</strong> />

human beings, is complex in the real-life<<strong>br</strong> />

conditions and especially in the fields<<strong>br</strong> />

such as coal mining.<<strong>br</strong> />

In practice, ha<strong>za</strong>rds are often qualified<<strong>br</strong> />

as “natural dangers” or “natural ha<strong>za</strong>rds”<<strong>br</strong> />

even though, in many cases, the attribute<<strong>br</strong> />

“natural” is disputable and mainly refer to<<strong>br</strong> />

man's incapability to realize and define<<strong>br</strong> />

conditions in which such ha<strong>za</strong>rds occur.<<strong>br</strong> />

Thus, in the mining practice, fire resulting<<strong>br</strong> />

from "self-ignition of coal" is treated as a<<strong>br</strong> />

natural danger which leads to conclusion<<strong>br</strong> />

that such fires result from coal's natural<<strong>br</strong> />

affinity to "self-ignition" and that they are<<strong>br</strong> />

beyond the objective influence of man.<<strong>br</strong> />

However, since such ignitions are occurring<<strong>br</strong> />

due to use of excavation technology<<strong>br</strong> />

which is to natural characteristics of coal,<<strong>br</strong> />

such ha<strong>za</strong>rds can also be treated as completely<<strong>br</strong> />

anthropogenic. Stoppages in advancement<<strong>br</strong> />

of excavation line, high intensities<<strong>br</strong> />

of pressure potential, deposition of<<strong>br</strong> />

crushed coal, inadequate early detection of<<strong>br</strong> />

fire and so on, all represent a series of<<strong>br</strong> />

"completely man made" causes which<<strong>br</strong> />

could lead to fire. In this sense, it would<<strong>br</strong> />

No 4, <strong>2011</strong>. 121<<strong>br</strong> />

MINING ENGINEERING


e appropriate to use the term "spontaneous<<strong>br</strong> />

coal ignition" instead of "self-ignition<<strong>br</strong> />

of coal". Classifying ha<strong>za</strong>rds as natural<<strong>br</strong> />

can result in absence of measures to reduce<<strong>br</strong> />

probability of ha<strong>za</strong>rd occurrence, i.e.<<strong>br</strong> />

ha<strong>za</strong>rds which could be successfully reduced<<strong>br</strong> />

using the available and recognized<<strong>br</strong> />

methods of defense could be justified by<<strong>br</strong> />

"natural causes".<<strong>br</strong> />

4.1. CLASSIFICATION ACCORDING<<strong>br</strong> />

TO THE OCCURENCE<<strong>br</strong> />

MECHANISM<<strong>br</strong> />

4.1.1. Technological classification<<strong>br</strong> />

According to this criterion, the ha<strong>za</strong>rds<<strong>br</strong> />

are classified depending on phases of<<strong>br</strong> />

technological process in which they occur<<strong>br</strong> />

or on which they influence:<<strong>br</strong> />

1. ha<strong>za</strong>rds during development of deposits<<strong>br</strong> />

and preparation of rooms,<<strong>br</strong> />

2. ha<strong>za</strong>rds during excavation of coal,<<strong>br</strong> />

3. ha<strong>za</strong>rds during transportation of<<strong>br</strong> />

coal,<<strong>br</strong> />

4. ha<strong>za</strong>rds during the process of<<strong>br</strong> />

preparation, treatment or dressing<<strong>br</strong> />

of coal,<<strong>br</strong> />

5. ha<strong>za</strong>rds during the process of delivery<<strong>br</strong> />

of treated material,<<strong>br</strong> />

6. ha<strong>za</strong>rds during the process of electricity<<strong>br</strong> />

supply,<<strong>br</strong> />

7. ha<strong>za</strong>rds during the process of<<strong>br</strong> />

drainage or water supply.<<strong>br</strong> />

8. ha<strong>za</strong>rds during the process of functioning<<strong>br</strong> />

of ventilation system with<<strong>br</strong> />

all determinants.<<strong>br</strong> />

4.1.2. Classification according to<<strong>br</strong> />

severity<<strong>br</strong> />

1. Low-consequence ha<strong>za</strong>rds – low<<strong>br</strong> />

probability of occurrence of significant<<strong>br</strong> />

property damage or injury.<<strong>br</strong> />

Property damage is minor and the<<strong>br</strong> />

effects can be remedied using the<<strong>br</strong> />

company's internal resources, in the<<strong>br</strong> />

frame of regular working duties.<<strong>br</strong> />

2. Medium-consequence ha<strong>za</strong>rds –<<strong>br</strong> />

probability of occurrence of major<<strong>br</strong> />

property damage, mild or medium<<strong>br</strong> />

injuries and production stoppages<<strong>br</strong> />

that require external intervention,<<strong>br</strong> />

in order to re-establish production.<<strong>br</strong> />

3. High-consequence ha<strong>za</strong>rds – probability<<strong>br</strong> />

of occurrence of major<<strong>br</strong> />

property damage, serious injuries<<strong>br</strong> />

or fatalities and stoppages in production<<strong>br</strong> />

requiring reinvestment in<<strong>br</strong> />

order to remedy the effects.<<strong>br</strong> />

4.1.3. Classification of risks adopted<<strong>br</strong> />

in this paper<<strong>br</strong> />

This paper adopts a slightly adapted<<strong>br</strong> />

theoretical classification. Thus, the risks<<strong>br</strong> />

which can occur in the underground exploitation<<strong>br</strong> />

can be:<<strong>br</strong> />

- natural risks, and<<strong>br</strong> />

- anthropogenic risks occurring as the<<strong>br</strong> />

result of influence of man – workplace<<strong>br</strong> />

– equipment.<<strong>br</strong> />

This classification is empirical and of<<strong>br</strong> />

limited applicability; it is based on theoretical<<strong>br</strong> />

classification and supplemented by<<strong>br</strong> />

two inseparable factors (workplace and<<strong>br</strong> />

equipment), which significantly influence<<strong>br</strong> />

the complex working environment in<<strong>br</strong> />

theunderground mining.<<strong>br</strong> />

No 4, <strong>2011</strong>. 122<<strong>br</strong> />

MINING ENGINEERING


Table 1.<<strong>br</strong> />

NATURAL<<strong>br</strong> />

(workplace conditions)<<strong>br</strong> />

Gases<<strong>br</strong> />

(CO2,CO,CH4,SO2,H2S, etc.)<<strong>br</strong> />

ANTHROPOGENIC<<strong>br</strong> />

(man-made influence – workplace –<<strong>br</strong> />

equipment)<<strong>br</strong> />

Explosions (gas-air mixture, coal dust,<<strong>br</strong> />

explosive materials)<<strong>br</strong> />

Dust Dynamic phenomena<<strong>br</strong> />

(collapses, rock bursts, gas penetrations)<<strong>br</strong> />

Fires - Oxidation Climate<<strong>br</strong> />

(temperature, humidity, speed)<<strong>br</strong> />

Penetration of water and liquid<<strong>br</strong> />

material<<strong>br</strong> />

5. RECORDINGAND ANALYSIS OF<<strong>br</strong> />

RISK AND HAZARD WITH HIGH<<strong>br</strong> />

SCALE OF INFLUENCE<<strong>br</strong> />

The research encompasses the period<<strong>br</strong> />

from 1992 to 2008 in the Brown Coal<<strong>br</strong> />

Mine Kakanj, based on data on the activities<<strong>br</strong> />

of the Rescue Service Headquarters.<<strong>br</strong> />

This Service is the Mine's topmost authority,<<strong>br</strong> />

which determines, analyses, assesses<<strong>br</strong> />

and makes decisions regarding crises.<<strong>br</strong> />

Based on these records and upon inspection<<strong>br</strong> />

of "The Book of the Rescue Service<<strong>br</strong> />

Noise<<strong>br</strong> />

Vi<strong>br</strong>ation<<strong>br</strong> />

Illumination<<strong>br</strong> />

Headquarters",[5] we find a number of<<strong>br</strong> />

cases this authority has dealt with in the<<strong>br</strong> />

last 16 years which can freely be denoted<<strong>br</strong> />

as crises or ha<strong>za</strong>rdous situations. The chart<<strong>br</strong> />

below shows an overview of crises and<<strong>br</strong> />

ha<strong>za</strong>rdous situations happened in the mentioned<<strong>br</strong> />

16-year-period. Chart 1 presents<<strong>br</strong> />

the character and frequency of occurrence<<strong>br</strong> />

the certain incidents in this period.<<strong>br</strong> />

No 4, <strong>2011</strong>. 123<<strong>br</strong> />

MINING ENGINEERING


Frekvencija događ<<strong>br</strong> />

45<<strong>br</strong> />

40<<strong>br</strong> />

35<<strong>br</strong> />

30<<strong>br</strong> />

25<<strong>br</strong> />

20<<strong>br</strong> />

15<<strong>br</strong> />

10<<strong>br</strong> />

5<<strong>br</strong> />

0<<strong>br</strong> />

Incidentni događaji<<strong>br</strong> />

Period 11992-2008<<strong>br</strong> />

Chart 1. Recorded incidents and their frequency<<strong>br</strong> />

5.1. description of incidental events<<strong>br</strong> />

1. Fire was the most frequent incident<<strong>br</strong> />

in this period. Based on inspection<<strong>br</strong> />

of data sources, it was found that the<<strong>br</strong> />

registered number does not refer to<<strong>br</strong> />

the actual fire occurrences, but this<<strong>br</strong> />

issue was on the agenda of the Rescue<<strong>br</strong> />

Service Headquarters. Registered<<strong>br</strong> />

number of occurrences in the<<strong>br</strong> />

agenda was taken as the basis for<<strong>br</strong> />

further analyses. Registered fires<<strong>br</strong> />

occurred at longwall faces, old sites<<strong>br</strong> />

and power transformer stations.<<strong>br</strong> />

2. Penetrations were also frequent on<<strong>br</strong> />

the meeting agendas. The registered<<strong>br</strong> />

number includes penetrations<<strong>br</strong> />

to the old mining sites and already<<strong>br</strong> />

closed rooms, as well as penetrations<<strong>br</strong> />

that required air regulation or<<strong>br</strong> />

changes in ventilation regime.<<strong>br</strong> />

3. Other incidents were highly frequent,<<strong>br</strong> />

but are not of great importance,<<strong>br</strong> />

except for the cases of fatalities<<strong>br</strong> />

at conveyors, which are also<<strong>br</strong> />

classified in this category.<<strong>br</strong> />

4. Gas situation analysis followed<<strong>br</strong> />

occurrence of high concentrations<<strong>br</strong> />

of methane (CH4) at preparatory<<strong>br</strong> />

Požari 41<<strong>br</strong> />

Proboji 37<<strong>br</strong> />

Ostalo 32<<strong>br</strong> />

Plinovi 15<<strong>br</strong> />

CO plin 13<<strong>br</strong> />

Likv.čela 11<<strong>br</strong> />

Prorušci 7<<strong>br</strong> />

sites or occurrence of carbon dioxide<<strong>br</strong> />

(CO2) in deeper parts of pits,<<strong>br</strong> />

after withdrawal of water or from<<strong>br</strong> />

old mining sites.<<strong>br</strong> />

5. CO gas occurrence refers to occurrence<<strong>br</strong> />

of CO gas in the fronts<<strong>br</strong> />

behind walls at old mining sites, at<<strong>br</strong> />

longwall faces and elsewhere.<<strong>br</strong> />

6. Closure of longwall face is one of<<strong>br</strong> />

the most complex operations in underground<<strong>br</strong> />

mining. In this process,<<strong>br</strong> />

there are often incidents in terms of<<strong>br</strong> />

difficulties during excavation,<<strong>br</strong> />

transportation or in persistence<<strong>br</strong> />

process of self-propelled hydraulic<<strong>br</strong> />

support sections.<<strong>br</strong> />

7. Cavities are dynamic occurrences<<strong>br</strong> />

with possibly fatal consequences,<<strong>br</strong> />

along with reparation difficulties.<<strong>br</strong> />

6. RISK DETERMINATION<<strong>br</strong> />

(PROBABILITIES AND EFFECTS)<<strong>br</strong> />

AND RISK ASSESSMENT<<strong>br</strong> />

After listing ha<strong>za</strong>rds and their causes,<<strong>br</strong> />

it is necessary to assess the risks for each<<strong>br</strong> />

of them. In this context, it means to assess<<strong>br</strong> />

the probabilities that the adverse effects<<strong>br</strong> />

No 4, <strong>2011</strong>. 124<<strong>br</strong> />

MINING ENGINEERING


will occur from exposure to ha<strong>za</strong>rd and to<<strong>br</strong> />

assess the severity of such effects. However,<<strong>br</strong> />

assessment also includes accompanying<<strong>br</strong> />

criteria, such as frequency of occurrence<<strong>br</strong> />

and duration of exposure to ha<strong>za</strong>rd,<<strong>br</strong> />

as well as likelihood of avoiding adverse<<strong>br</strong> />

effects.<<strong>br</strong> />

In the risk assessment, it is necessary to<<strong>br</strong> />

determine whether ha<strong>za</strong>rd can manifest<<strong>br</strong> />

itself in conditions without errors, with one<<strong>br</strong> />

error and with several errors. Ha<strong>za</strong>rds with<<strong>br</strong> />

severe effects can not be tolerated under<<strong>br</strong> />

any circumstances.<<strong>br</strong> />

The following classification is in accordance<<strong>br</strong> />

with the IEC 60601-1-4 Standard.<<strong>br</strong> />

It defines six degrees of likelihood<<strong>br</strong> />

of occurrence of adverse effect, from lowest<<strong>br</strong> />

to highest.<<strong>br</strong> />

- very unlikely<<strong>br</strong> />

- unlikely<<strong>br</strong> />

- seldom<<strong>br</strong> />

- occasional<<strong>br</strong> />

Table 2.[7]<<strong>br</strong> />

- likely<<strong>br</strong> />

- frequent.<<strong>br</strong> />

Four degrees of severity of adverse effect<<strong>br</strong> />

are also defined:<<strong>br</strong> />

- catastrophic – several fatalities and<<strong>br</strong> />

serious injuries<<strong>br</strong> />

- critical – one or few fatalities and serious<<strong>br</strong> />

injuries<<strong>br</strong> />

- marginal – possible injuries<<strong>br</strong> />

- negligible – possible mild or no injuries.<<strong>br</strong> />

Table 2 shows a simple way of combining<<strong>br</strong> />

these criteria. This is a widespread<<strong>br</strong> />

approach, due to its simplicity and the fact<<strong>br</strong> />

that it is included in the International<<strong>br</strong> />

Standard.[6] However, a professional usage<<strong>br</strong> />

of this approach is not limited to the<<strong>br</strong> />

definitions given above and it can change,<<strong>br</strong> />

expand or shorten them in order to achieve<<strong>br</strong> />

the optimum classification in the case it<<strong>br</strong> />

works on.<<strong>br</strong> />

Degree of probability Degree of severity<<strong>br</strong> />

A- very unlikely<<strong>br</strong> />

B- unlikely<<strong>br</strong> />

C- seldom<<strong>br</strong> />

D- occasional<<strong>br</strong> />

E- likely<<strong>br</strong> />

F- frequent<<strong>br</strong> />

The above classification was applied<<strong>br</strong> />

to incidents that occurred at Kakanj Coal<<strong>br</strong> />

Mine in the last 16 years. According to the<<strong>br</strong> />

degree of probability, they can be classified<<strong>br</strong> />

as follows:<<strong>br</strong> />

- A – Very unlikely – Wide range explosion<<strong>br</strong> />

(not happened in the observed<<strong>br</strong> />

period)<<strong>br</strong> />

- B – Unlikely – Limited explosion<<strong>br</strong> />

(not happened in the observed period)<<strong>br</strong> />

- C – Seldom – Closure of longwall<<strong>br</strong> />

face (11), cavities(7)<<strong>br</strong> />

- D – Occasional – Occurrence of other<<strong>br</strong> />

gases (15), occurrence of CO (13)<<strong>br</strong> />

I II III IV<<strong>br</strong> />

Negligible Marginal Critical Catastrophic<<strong>br</strong> />

IV-A III-A II-A I-A<<strong>br</strong> />

IV-B III-B II-B I-B<<strong>br</strong> />

IV-C III-C II-C I-C<<strong>br</strong> />

IV-D III-D II-D I-D<<strong>br</strong> />

IV-E III-E II-E I-E<<strong>br</strong> />

IV-F III-F II-F I-F<<strong>br</strong> />

- E – Likely – Penetrations (35), other<<strong>br</strong> />

(32)<<strong>br</strong> />

- F – Frequent – Fire (41)<<strong>br</strong> />

According to the degree of severity,<<strong>br</strong> />

the recorded incidents can be classified as<<strong>br</strong> />

follows:<<strong>br</strong> />

- I – Catastrophic – In the observed<<strong>br</strong> />

period, cavities (7) and closure of<<strong>br</strong> />

longwall face (11), produced most<<strong>br</strong> />

fatalities (it can be assumed that<<strong>br</strong> />

wide range and limited explosions<<strong>br</strong> />

would produce the same consequences.)<<strong>br</strong> />

No 4, <strong>2011</strong>. 125<<strong>br</strong> />

MINING ENGINEERING


- II – Critical – Other incidents (32),<<strong>br</strong> />

due to fatalities on conveyors<<strong>br</strong> />

- III – Marginal – Fire (41), Occurrence<<strong>br</strong> />

of other gases (15), occurrence<<strong>br</strong> />

of CO (13)<<strong>br</strong> />

Table 3.[8]<<strong>br</strong> />

Degree of<<strong>br</strong> />

probability<<strong>br</strong> />

- IV – Negligible – Penetrations (37)<<strong>br</strong> />

Table 3 can be combines on the basis<<strong>br</strong> />

of combination the given degrees of probability<<strong>br</strong> />

and severity as follows:<<strong>br</strong> />

Degree of severity<<strong>br</strong> />

IV III II I<<strong>br</strong> />

Negligible Marginal Critical Catastrophic<<strong>br</strong> />

I-A<<strong>br</strong> />

A-very<<strong>br</strong> />

unlikely<<strong>br</strong> />

B-unlikely I-B<<strong>br</strong> />

C-seldom 2xI-C<<strong>br</strong> />

D-occasional 2xIII-D<<strong>br</strong> />

E-likely IV-E II-E<<strong>br</strong> />

F-frequent III-F<<strong>br</strong> />

7. CRITERIA FOR DETERMINATION<<strong>br</strong> />

OF TOLERABLE RISK LEVEL IN<<strong>br</strong> />

THE STRATEGIC DECISION<<strong>br</strong> />

MAKING<<strong>br</strong> />

Risk assessment methodology should<<strong>br</strong> />

be selected based on weighing of its advantages<<strong>br</strong> />

and disadvantages. It is not easy<<strong>br</strong> />

to assess the risks in coal exploitation, due<<strong>br</strong> />

to all natural and man-made conditions.<<strong>br</strong> />

However, it should be rewarding since it<<strong>br</strong> />

enables to assess the effectiveness of<<strong>br</strong> />

measures implemented in order to reduce<<strong>br</strong> />

the risk of possible harmful incidents.<<strong>br</strong> />

Combination of t degrees represents the<<strong>br</strong> />

risk of the ha<strong>za</strong>rd in question. However,<<strong>br</strong> />

this method's disadvantage lies in its arbitrariness,<<strong>br</strong> />

since complete analysis depends<<strong>br</strong> />

on sometimes too subjective and arbitrary<<strong>br</strong> />

decisions of the analyst.[9]<<strong>br</strong> />

Another possible weakness of this<<strong>br</strong> />

method can be unreliability of the used<<strong>br</strong> />

data, considering the fact that, when it<<strong>br</strong> />

comes to mining, there are no rules in<<strong>br</strong> />

terms of continuity or periodicity of ha<strong>za</strong>rdous<<strong>br</strong> />

incidents.<<strong>br</strong> />

A number of methods can be used to<<strong>br</strong> />

combine the degree of probability and<<strong>br</strong> />

degree of severity. The simplest approach<<strong>br</strong> />

is to state the both values.<<strong>br</strong> />

Upon evaluation, each risk in the system<<strong>br</strong> />

need to be assessed so that its tolerability<<strong>br</strong> />

can be established and possible<<strong>br</strong> />

measures for its reduction adopted. Assessment<<strong>br</strong> />

of risk surpasses strictly technical<<strong>br</strong> />

frame, since there are also legal and<<strong>br</strong> />

ethical aspects to it. In this case, the aim is<<strong>br</strong> />

to reach the balance between the improvement<<strong>br</strong> />

gained at the end of the process,<<strong>br</strong> />

the investment into elimination of<<strong>br</strong> />

risks, the satisfaction of actors in the process,<<strong>br</strong> />

the conformity with developmental<<strong>br</strong> />

concepts and other factors in the overall<<strong>br</strong> />

system. In the context of the mining activity<<strong>br</strong> />

and especially underground mining,<<strong>br</strong> />

safety of direct actors, i.e. miners in the<<strong>br</strong> />

underground mining are the most important<<strong>br</strong> />

factor in all considerations.<<strong>br</strong> />

Two main guidelines that need to be<<strong>br</strong> />

observed in assessment of risk are:<<strong>br</strong> />

public has low risk tolerance, and resources<<strong>br</strong> />

for risk elimination are hard<<strong>br</strong> />

to find in the current economic environment,<<strong>br</strong> />

in the country and industry,<<strong>br</strong> />

tolerance of society for residual risk<<strong>br</strong> />

depends on the benefits that mines<<strong>br</strong> />

No 4, <strong>2011</strong>. 126<<strong>br</strong> />

MINING ENGINEERING


ing to the overall economy. However,<<strong>br</strong> />

risks in this field have become a<<strong>br</strong> />

social reality and society has learned to<<strong>br</strong> />

live with them.<<strong>br</strong> />

These lead to a fact that risk assessment<<strong>br</strong> />

has to be a continuous process, since<<strong>br</strong> />

time can <strong>br</strong>ing new techniques for reduction<<strong>br</strong> />

the residual risk and existence of such<<strong>br</strong> />

process itself has a positive effect to the<<strong>br</strong> />

public consciousness. It should be underlined<<strong>br</strong> />

that our society has low level of tolerance<<strong>br</strong> />

towards risks in mining and that<<strong>br</strong> />

people are prone to perceiving a "serious<<strong>br</strong> />

injury" as a "catastrophic injury".<<strong>br</strong> />

Figure 2 gives a graphic representation<<strong>br</strong> />

that would be used as an aid in decision<<strong>br</strong> />

making regarding risk tolerability. Lower<<strong>br</strong> />

left region represents the region of low<<strong>br</strong> />

risk and all risks in this region are considered<<strong>br</strong> />

tolerable and require constant supervision.<<strong>br</strong> />

Upper left is the region of high<<strong>br</strong> />

risk. All risks in this area are intolerable<<strong>br</strong> />

and the system in question (mining) can<<strong>br</strong> />

only function if they are eliminated using<<strong>br</strong> />

appropriate measures and transferred to<<strong>br</strong> />

the central region, known as ALARP[10]<<strong>br</strong> />

(As Low As Reasonably Possible). This is<<strong>br</strong> />

the region where the most decision mak-<<strong>br</strong> />

Fig. 2. Risk level regions<<strong>br</strong> />

ing regarding risks takes place. The basic<<strong>br</strong> />

principle is to transfer each risk towards<<strong>br</strong> />

the lower left angle, as much as it is practical<<strong>br</strong> />

and feasible and as long as the costs<<strong>br</strong> />

of such transfer are proportionally to the<<strong>br</strong> />

improvement gained, i.e. reasonable. In<<strong>br</strong> />

practice, this means the increase of production<<strong>br</strong> />

indicators at all levels, with the<<strong>br</strong> />

maximum safety of employees. Also, it<<strong>br</strong> />

should be noted that introduction of measures<<strong>br</strong> />

which increase the safety of a system<<strong>br</strong> />

also increases its complexity and, in most<<strong>br</strong> />

cases, negatively influences its reliability<<strong>br</strong> />

and general safety level.<<strong>br</strong> />

Making decision on what is reasonable<<strong>br</strong> />

and what isn't is crucial to the entire process.<<strong>br</strong> />

This decision includes the cost of implementation<<strong>br</strong> />

of risk reduction measures,<<strong>br</strong> />

the extent of reduction and the improvement<<strong>br</strong> />

gained. Such decisions are often<<strong>br</strong> />

subjective, and it is recommended that<<strong>br</strong> />

they should be made by interdisciplinary<<strong>br</strong> />

team, which has multiple perspectives of<<strong>br</strong> />

the same problem.<<strong>br</strong> />

Table 4 shows classification of risks<<strong>br</strong> />

according to the IEC 61508-5 Standard<<strong>br</strong> />

which defines 4 classes of risks in terms<<strong>br</strong> />

of tolerability.<<strong>br</strong> />

No 4, <strong>2011</strong>. 127<<strong>br</strong> />

MINING ENGINEERING


Table 4.[11] Risk criteria according to tolerability<<strong>br</strong> />

Risk class Interpretation<<strong>br</strong> />

IR Intolerable risk<<strong>br</strong> />

UR<<strong>br</strong> />

Undesirable risk, acceptable only if risk reduction is impracticable<<strong>br</strong> />

or if of the costs of improvement are high<<strong>br</strong> />

TR<<strong>br</strong> />

Tolerable risk if the costs of risk reduction higher than the profit<<strong>br</strong> />

NR Negligible risk<<strong>br</strong> />

Tolerable risk is represented by green<<strong>br</strong> />

in Tables 5 and 6, while yellow represents<<strong>br</strong> />

the ALARP region. Red represents the<<strong>br</strong> />

region of intolerable risk and reengineering<<strong>br</strong> />

as the next step in the treatment<<strong>br</strong> />

of risks classified in this category.<<strong>br</strong> />

Table 5. Table 6.<<strong>br</strong> />

Region marked yellow is the region of risk<<strong>br</strong> />

management, as the main task of entire<<strong>br</strong> />

process. Risks marked green are in the<<strong>br</strong> />

region of tolerable risk. However, in our<<strong>br</strong> />

case, they can be further analyzed, depending<<strong>br</strong> />

on their frequency.<<strong>br</strong> />

Degree of severity Degree of severity<<strong>br</strong> />

Degree of<<strong>br</strong> />

IV III II I Degree of<<strong>br</strong> />

probabil-<<strong>br</strong> />

IV III II I<<strong>br</strong> />

probability<<strong>br</strong> />

ity Negligible Marginal Critical Catastrophic<<strong>br</strong> />

Negligible Marginal Critical Catastrophic<<strong>br</strong> />

A-very<<strong>br</strong> />

unlikely<<strong>br</strong> />

UR IR IR IR<<strong>br</strong> />

A-very<<strong>br</strong> />

unlikely<<strong>br</strong> />

I-A<<strong>br</strong> />

B-unlikely TR UR IR IR B-unlikely I-B<<strong>br</strong> />

C-seldom TR TR UR IR C-seldom 2xI-C<<strong>br</strong> />

Doccasional<<strong>br</strong> />

NR TR TR UR<<strong>br</strong> />

Doccasional<<strong>br</strong> />

2xIII-D<<strong>br</strong> />

E-likely NR NR TR TR E-likely IV-E II-E<<strong>br</strong> />

F-frequent NR NR NR TR F-frequent III-F<<strong>br</strong> />

8. SYSTEMATIC AND OPERATIVE<<strong>br</strong> />

MEASURES OF REDUCTION,<<strong>br</strong> />

TRANSFER AND MITIGATION<<strong>br</strong> />

OF RISK<<strong>br</strong> />

After the phase of identification and<<strong>br</strong> />

assessment of risk, its reduction is approached<<strong>br</strong> />

as a phase with almost unlimited<<strong>br</strong> />

range of possibilities. The optimum approach<<strong>br</strong> />

can usually be selected during the<<strong>br</strong> />

problem analysis phase itself, but compromise<<strong>br</strong> />

is often required due to economic,<<strong>br</strong> />

technical and time requirements of its implementation.<<strong>br</strong> />

In general, the simplest<<strong>br</strong> />

method is selected which reduces risk to<<strong>br</strong> />

an acceptable level.<<strong>br</strong> />

Reduction of risk aims to correct the<<strong>br</strong> />

influence of individual risks to acceptable<<strong>br</strong> />

or as low as possible measure. Reliability<<strong>br</strong> />

of risk analysis is an important precondition<<strong>br</strong> />

of proper risk identification and<<strong>br</strong> />

evaluation. If high reliability of risk assessment<<strong>br</strong> />

was not reached, it is necessary<<strong>br</strong> />

to undertake the additional monitoring and<<strong>br</strong> />

wide range of occupational safety measures.<<strong>br</strong> />

A level of residual risk is determined<<strong>br</strong> />

based on a series of criteria. Strictly set<<strong>br</strong> />

limits, i.e. low level of risk tolerability,<<strong>br</strong> />

can <strong>br</strong>ing into question the costeffectiveness<<strong>br</strong> />

of production process.<<strong>br</strong> />

Proper determination of tolerable risks<<strong>br</strong> />

No 4, <strong>2011</strong>. 128<<strong>br</strong> />

MINING ENGINEERING


and measures of their control can have a<<strong>br</strong> />

great influence to safety of employees and<<strong>br</strong> />

Risk<<strong>br</strong> />

tolerability<<strong>br</strong> />

criteria<<strong>br</strong> />

Risk analysis<<strong>br</strong> />

Risk calculation<<strong>br</strong> />

Risk assesment<<strong>br</strong> />

Frequency<<strong>br</strong> />

analysis<<strong>br</strong> />

to cost-effectiveness and purport of work<<strong>br</strong> />

in general.<<strong>br</strong> />

Diagram 1. General model of risk determination and control[12 ]<<strong>br</strong> />

Diagram 1 of risk management uses iterative<<strong>br</strong> />

loops to present a review of risk<<strong>br</strong> />

analysis results in relation to risk tolerability<<strong>br</strong> />

criteria, as an integral part of safety<<strong>br</strong> />

management process. If it results in intolerable<<strong>br</strong> />

risk, the new loop is created for<<strong>br</strong> />

implementation the risk reduction measures<<strong>br</strong> />

and updates the risk analysis, so that<<strong>br</strong> />

it would reflect the changes.<<strong>br</strong> />

There are two possible outcomes of<<strong>br</strong> />

"risk assessment": tolerable and intolerable.<<strong>br</strong> />

This is based on the approach which ensures<<strong>br</strong> />

appreciation of explicit criteria of risk<<strong>br</strong> />

tolerability, as the first phase, followed by<<strong>br</strong> />

an ALARP assessment. For this reason, the<<strong>br</strong> />

above diagram includes "further risk reduc-<<strong>br</strong> />

Risk analysis<<strong>br</strong> />

planning<<strong>br</strong> />

Definition system<<strong>br</strong> />

Ha<strong>za</strong>rd<<strong>br</strong> />

identification<<strong>br</strong> />

Risk picture<<strong>br</strong> />

Risk<<strong>br</strong> />

assessment<<strong>br</strong> />

Further risk<<strong>br</strong> />

reduction measures<<strong>br</strong> />

Consequence<<strong>br</strong> />

analysis<<strong>br</strong> />

Acceptable<<strong>br</strong> />

Intolerable<<strong>br</strong> />

Risk<<strong>br</strong> />

reduction<<strong>br</strong> />

measures<<strong>br</strong> />

tion measures", in case of tolerable risk<<strong>br</strong> />

levels.<<strong>br</strong> />

9. CONCLUSION<<strong>br</strong> />

This paper aims to draw attention to<<strong>br</strong> />

the issue of risk and ha<strong>za</strong>rd management<<strong>br</strong> />

in the coal mines. The focus of this research<<strong>br</strong> />

was the environment of the Brown<<strong>br</strong> />

Coal Mine Kakanj, with its specificities<<strong>br</strong> />

and experiences, based on the analysis of<<strong>br</strong> />

recorded incidents. In order to conduct an<<strong>br</strong> />

analysis of specific risks of any kind, in<<strong>br</strong> />

any given field, we need to conduct a general<<strong>br</strong> />

theoretic research of design, methodology<<strong>br</strong> />

and system frame of risk management.<<strong>br</strong> />

The assumed requirements in risk<<strong>br</strong> />

No 4, <strong>2011</strong>. 129<<strong>br</strong> />

MINING ENGINEERING


and ha<strong>za</strong>rd analysis represent visionary<<strong>br</strong> />

thinking, since it is hard to find the right<<strong>br</strong> />

measure and way to minimize the uncertainty<<strong>br</strong> />

of risk in a risky and ha<strong>za</strong>rdous environment<<strong>br</strong> />

as this one.<<strong>br</strong> />

In this destined correlation between<<strong>br</strong> />

man, actor in a mine, and mining environment,<<strong>br</strong> />

with its known and hidden dangers,<<strong>br</strong> />

we need to make a proper identification<<strong>br</strong> />

and assessment of risk, give the risk a<<strong>br</strong> />

proper dimension, quantify it, control it<<strong>br</strong> />

and manage it in everyday life in a mine,<<strong>br</strong> />

taking into consideration the variability of<<strong>br</strong> />

the environment and future time crises.<<strong>br</strong> />

Incidents from the past remain a reminder<<strong>br</strong> />

and warning, with their fatal and<<strong>br</strong> />

catastrophic consequences as a result of<<strong>br</strong> />

inadequate approach to certain ha<strong>za</strong>rds<<strong>br</strong> />

and crises.<<strong>br</strong> />

In other words, unless there is no control<<strong>br</strong> />

of the risks and ha<strong>za</strong>rds, or at least the<<strong>br</strong> />

major ones, the entire project, i.e. the Coal<<strong>br</strong> />

Mine could stop functioning and cease to<<strong>br</strong> />

exist, with huge losses in property and<<strong>br</strong> />

other.<<strong>br</strong> />

Since there is no single methodology<<strong>br</strong> />

that would adequately encompass all the<<strong>br</strong> />

ha<strong>za</strong>rds, especially in mining, we need to<<strong>br</strong> />

conduct an analysis using all available<<strong>br</strong> />

knowledge and experience from around<<strong>br</strong> />

the world in order to head in the right direction.<<strong>br</strong> />

Certainly, it is not expected that<<strong>br</strong> />

the results would be revolutionary, but it<<strong>br</strong> />

is necessary to walk away from the stereotypes<<strong>br</strong> />

and traditional approaches when it<<strong>br</strong> />

comes to the general safety solutions in<<strong>br</strong> />

mining.<<strong>br</strong> />

Notwithstanding what has and has not<<strong>br</strong> />

been said in this paper, in activity such as<<strong>br</strong> />

mining, seen partially or as a whole, the<<strong>br</strong> />

human knowledge and human factor are<<strong>br</strong> />

the key segments of the process.<<strong>br</strong> />

REFERENCES<<strong>br</strong> />

[1] Andrea Matošević, Underground<<strong>br</strong> />

Community: Anthropology of Mining<<strong>br</strong> />

and Culture of Underground in the Area<<strong>br</strong> />

of Raša, 2007 (in Serbian)<<strong>br</strong> />

[2] Ph.D.Dragan Komljenović, Technological<<strong>br</strong> />

Risk Management and Its Use in<<strong>br</strong> />

Engineering Practice, Tuzla, 2006 (in<<strong>br</strong> />

Serbian)<<strong>br</strong> />

[3] Web. Riskinfo, Risk Managment<<strong>br</strong> />

Reports, September, 2000<<strong>br</strong> />

[4] Ph. D. Edin Delić, Researches,<<strong>br</strong> />

Expertise, Tuzla, 2009 (in Serbian)<<strong>br</strong> />

[5] Files of the Brown Coal Mine Kakanj<<strong>br</strong> />

(in Serbian)<<strong>br</strong> />

[6] Nikola Rašić, Risk Reduction in the<<strong>br</strong> />

Program Support of Medical Devices<<strong>br</strong> />

(with Reference to the Relevant<<strong>br</strong> />

Standards), (in Serbian)<<strong>br</strong> />

[7] General Requirement for Collateral<<strong>br</strong> />

Standards, IEC 60601-1-4 (in Serbian)<<strong>br</strong> />

[8] Research Work (in Serbian)<<strong>br</strong> />

[9] NIOS, National <strong>Institut</strong>e for<<strong>br</strong> />

Occupational Safety and Health,<<strong>br</strong> />

October, 2008<<strong>br</strong> />

[10] International Standard, IEC 61508-5,<<strong>br</strong> />

International Electrotechnical<<strong>br</strong> />

Commission, First Edition 1998-12<<strong>br</strong> />

[11] Profesor Jan Erik Vinnem, University<<strong>br</strong> />

of Stavanger, Norway, Offshore Risk<<strong>br</strong> />

Assessment, 2nd Edition, January 2007<<strong>br</strong> />

No 4, <strong>2011</strong>. 130<<strong>br</strong> />

MINING ENGINEERING


INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162<<strong>br</strong> />

KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622<<strong>br</strong> />

UDK:338.1:316.4:622(045)=861<<strong>br</strong> />

Radmilo Nikolić * , Nenad Vušović * , Igor Svrkota * , Aleksandra Fedajev *<<strong>br</strong> />

EKONOMIJA POSLOVANJA RTB BOR U PERIODU TRANZICIJE **<<strong>br</strong> />

Izvod<<strong>br</strong> />

Rudarsko topioničarski basen <strong>Bor</strong> je naša kompanija poznata po proizvodnji bakra i plemenitih<<strong>br</strong> />

metala. Sa velikim <strong>br</strong>ojem uposlenih radnika, organizovana na principu reproceline, važila je <strong>za</strong><<strong>br</strong> />

uglednog privrednog subjekta na prostoru bivše Jugoslavije, po profitabilnom poslovanju, pogotovu<<strong>br</strong> />

u delu izvo<strong>za</strong>. U isto vreme, RTB je činio okosnicu privrednog razvoja Timočkog regiona, pa i šire.<<strong>br</strong> />

Početkom devedesetih godina prošlog veka, zbog raspada bivše Jugoslavije, ratova u okruženju,<<strong>br</strong> />

a pogotovu rigoroznih sankcija UN, kompaniju, kao uostalom i privredu cele zemlje, <strong>za</strong>hvata<<strong>br</strong> />

velika kri<strong>za</strong>. To je dovelo do pada proizvodnje, otežanog izvo<strong>za</strong>, smanjenja <strong>br</strong>oja <strong>za</strong>poslenih i<<strong>br</strong> />

njihovog životnog standarda. Presahle su investicije, a poslovanje sa gubitkom je sve izraženije.<<strong>br</strong> />

U cilju poboljšanja efikasnosti poslovanja, u kompaniji su preduzete mnoge aktivnosti na planu<<strong>br</strong> />

njenog restruktuiranja. Iz njenog sastava izdvojene su pojedine fa<strong>br</strong>ike i <strong>za</strong>držan samo bazni deo<<strong>br</strong> />

proizvodnje bakra. U međuvremenu, dva puta je pokušana privati<strong>za</strong>cija, odnosno prodaja kompanije,<<strong>br</strong> />

ali bezuspešno, tako da danas ona ima status državnog preduzeća.<<strong>br</strong> />

Poslednjih godina čine se napori na unapređenju ekonomije poslovanja kompanije. U toku su<<strong>br</strong> />

ozbiljni investicioni <strong>za</strong>hvati – rekonstrukcija topionice i izgradnja fa<strong>br</strong>ike sumporne kiseline, nabavka<<strong>br</strong> />

rudarske mehani<strong>za</strong>cije, izgradnja infrastrukturnih objekata i dr. Uz to, uvećava se proizvodnja,<<strong>br</strong> />

izvoz raste, a kompanija je, posle dužeg perioda, do<strong>br</strong>im delom i zbog povoljnog stanja na<<strong>br</strong> />

tržištu bakra, u 2010. godini iska<strong>za</strong>la pozitivno poslovanje.<<strong>br</strong> />

Ključne reči: tranzicija, ekonomska kri<strong>za</strong>, restruktuiranje, ekonomija poslovanja.<<strong>br</strong> />

UVOD<<strong>br</strong> />

Rudarenje na području <strong>Bor</strong>a i Majdanpeka<<strong>br</strong> />

ima dugu tradiciju. Prve količine<<strong>br</strong> />

bakra iskopane su davne 1903. godine.<<strong>br</strong> />

Radi se o bogatom rudnom telu „Čoka<<strong>br</strong> />

Dulkan“. Inače, prvo geološko istraživanje<<strong>br</strong> />

na ovom području izvršeno je 1897.<<strong>br</strong> />

godine u oblasti Tilva Roš.<<strong>br</strong> />

Svoj u<strong>br</strong><strong>za</strong>ni razvoj RTB <strong>Bor</strong> doživljava<<strong>br</strong> />

posle drugog svetskog rata. Izvršeno je otvaranje<<strong>br</strong> />

nekoliko rudnika i izgrađen veći<<strong>br</strong> />

<strong>br</strong>oj prerađivačkih kapaciteta. Time je<<strong>br</strong> />

stvoren privredni gigant sa preko 20.000<<strong>br</strong> />

<strong>za</strong>poslenih, prepoznatljiv po proizvodnji<<strong>br</strong> />

visokokvalitetnog katodnog bakra.<<strong>br</strong> />

* Univerzitet u Beogradu, Tehnički fakultet u <strong>Bor</strong>u<<strong>br</strong> />

** Ovaj rad je deo projekta <strong>br</strong>oj TR 33038 koji finansira Ministarstvo <strong>za</strong> prosvetu i nauku Republike<<strong>br</strong> />

Srbije, a u okviru projekta „Usavršavanje tehnologija eksploatacije i prerade rude bakra<<strong>br</strong> />

sa monitoringom životne i radne sredine u RTB <strong>Bor</strong> Grupa“<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 131<<strong>br</strong> />

RUDARSKI RADOVI


U toku je preispitivanje postojećeg<<strong>br</strong> />

stanja unutrašnje organizovanosti. Teži se<<strong>br</strong> />

iznalaženju takvog modela organizovanja<<strong>br</strong> />

koji će biti <strong>za</strong>snovan na tržišnim principima<<strong>br</strong> />

i načelima i obezbediti veću efikasnost<<strong>br</strong> />

i profitabilnost u poslovanju.<<strong>br</strong> />

Tokom svog egzistiranja, kompanija je<<strong>br</strong> />

Danas kompaniju čine matično i tri<<strong>br</strong> />

<strong>za</strong>visna preduzeća – Rudnici bakra <strong>Bor</strong>,<<strong>br</strong> />

Rudnik bakra Majdanpek i Topionica i<<strong>br</strong> />

rafinacija bakra <strong>Bor</strong>. Unutrašnje ustrojstvo<<strong>br</strong> />

je podređeno proizvodnji bakra i funkcioniše<<strong>br</strong> />

kao reprocelina.<<strong>br</strong> />

U radu se ukazuje na neke karakteristike<<strong>br</strong> />

ekonomije poslovanja RTB <strong>Bor</strong> u<<strong>br</strong> />

periodu tranzicionih promena.<<strong>br</strong> />

RASPOLOŽIVE RUDNE REZERVE<<strong>br</strong> />

<strong>Bor</strong>ska metalogenetska zona raspolaže<<strong>br</strong> />

Sl. 1. Organi<strong>za</strong>ciona šema RTB <strong>Bor</strong> Grupe [8]<<strong>br</strong> />

menjala svoj oblik organizovanja, prilagođavjući<<strong>br</strong> />

se promenama u privrednom sistemu<<strong>br</strong> />

zemlje. Najpre posluje kao državno i društveno<<strong>br</strong> />

preduzeće, <strong>za</strong>tim SOUR, Holding, da bi<<strong>br</strong> />

danas opet bila u vlasništvu države. To nije<<strong>br</strong> />

konačan status, obzirom da predstoji svojinsko<<strong>br</strong> />

prestruktuiranje kompanije.<<strong>br</strong> />

značajnim rezervama rude bakra. Prema<<strong>br</strong> />

raspoloživim podacima, rudne rezerve u<<strong>br</strong> />

ležištima aktivnih rudnika RTB <strong>Bor</strong><<strong>br</strong> />

iznose oko 1,2 milijarde tona, čijom<<strong>br</strong> />

preradom bi se moglo dobiti 4.663.321 t<<strong>br</strong> />

bakra, 158.446 kg zlata i 1.243.228 kg<<strong>br</strong> />

sre<strong>br</strong>a. Upravo to je i razlog interesovanja<<strong>br</strong> />

mnogih međunarodnih kompanija <strong>za</strong> izvođenje<<strong>br</strong> />

istražnih radova na pojedinim<<strong>br</strong> />

lokalitetima. Procenjuje se da Republika<<strong>br</strong> />

Srbija učestvuje sa 2% u ukupnim svetskim<<strong>br</strong> />

rezervama bakra.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 132<<strong>br</strong> />

RUDARSKI RADOVI


Tabela 1. Rudne rezerve u ležištima aktivnih rudnika RTB BOR [6]<<strong>br</strong> />

Ležište Ruda, t Bakar, t Zlato, kg Sre<strong>br</strong>o, kg<<strong>br</strong> />

Jama, tekući <strong>za</strong>hvat 7,262,726 70,079 1,727 11,711<<strong>br</strong> />

Jama, <strong>Bor</strong>ska Reka 319,969,179 1,599,846 65,274 518,350<<strong>br</strong> />

Veliki Krivelj 465,150,392 1,511,726 31,584 180,478<<strong>br</strong> />

Čoka Marin 220,714 4,767 1,307 8,945<<strong>br</strong> />

Južni Revir - Majdanpek 246,082,778 881,904 46,654 353,684<<strong>br</strong> />

Cerovo 170,000,000 595,000 11,900 170,000<<strong>br</strong> />

Ukupno 1,208,685,789 4,663,321 158,446 1,243,228<<strong>br</strong> />

Najveće rezerve koncentrisane su na<<strong>br</strong> />

tri lokaliteta – Veliki Krivelj, Jama – <strong>Bor</strong>ska<<strong>br</strong> />

reka i Južni revir – Majdanpek. Pri<<strong>br</strong> />

tome, najperspektivnije, odnosno ležište<<strong>br</strong> />

najbogatije rudom je <strong>Bor</strong>ska reka.<<strong>br</strong> />

Posmatrano po ležištima, sadržaj bakra<<strong>br</strong> />

u rudi je dosta različit. Tokom 2010.<<strong>br</strong> />

godine, u Jami <strong>Bor</strong> se eksploatisala ruda<<strong>br</strong> />

sa sadržajem od 0,92%, pa čak do 5,65%.<<strong>br</strong> />

Za rudnik Veliki Krivelj srednji sadržaj je<<strong>br</strong> />

0,247%, a u rudniku bakra Majdanpek<<strong>br</strong> />

0,252%. Uključivanjem ležišta <strong>Bor</strong>ska<<strong>br</strong> />

reka u redovnu eksploataciju, ukupan<<strong>br</strong> />

srednji sadržaj bakra će biti povećan.<<strong>br</strong> />

OSTVARENA PROIZVODNJA<<strong>br</strong> />

Sve do devedesetih godina prošlog<<strong>br</strong> />

veka proizvodnja bakra, uz određene os-<<strong>br</strong> />

Sl. 2. Kretanje sadržaja bakra u rudi<<strong>br</strong> />

Međutim, nepovoljna strana ovih rezervi<<strong>br</strong> />

je stalno trend smanjenja sadržaja<<strong>br</strong> />

metala u rudi. Od 9% u prvim godinama<<strong>br</strong> />

eksploatacije, do današnjih 0,27%.<<strong>br</strong> />

cilacije, ima trend stalnog uvećanja. Najveća<<strong>br</strong> />

proizvodnja katodnog bakra iz sopsvenih<<strong>br</strong> />

sirovina ostvarena je 1988. godine, i<<strong>br</strong> />

iznosila je 105.390 t, dok je ukupna najveća<<strong>br</strong> />

proizvodnja iz sopstvenih i uvoznih sirovina<<strong>br</strong> />

dostignuta 1990. godine, kada je proizvedeno<<strong>br</strong> />

151.395 t katodnog bakra. Od devedesetih<<strong>br</strong> />

godina, iz objektivnih razloga, ali i<<strong>br</strong> />

mnogih unutrašnjih slabosti, proizvodnja<<strong>br</strong> />

drastično opada, najpre u Majdanpeku, a<<strong>br</strong> />

<strong>za</strong>tim i na rudnicima u <strong>Bor</strong>u.<<strong>br</strong> />

Najniža proizvodnja iz sopstvenih izvora<<strong>br</strong> />

ostvarena je u periodu 2003. do<<strong>br</strong> />

2005. godine, oko desetak hiljada tona<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 133<<strong>br</strong> />

RUDARSKI RADOVI


katodnog bakra. Upravo je to razdoblje<<strong>br</strong> />

kada se kompanija našla u najdubljoj ekonomskoj<<strong>br</strong> />

krizi. Od 2006. godine proizvodnja<<strong>br</strong> />

bakra se oporavlja, da bi 2010. godine<<strong>br</strong> />

Tabela 2. Kretanje proizvodnje katodnog bakra [3]<<strong>br</strong> />

Godina<<strong>br</strong> />

Katodni bakar iz<<strong>br</strong> />

sopstvenih<<strong>br</strong> />

sirovina,<<strong>br</strong> />

t<<strong>br</strong> />

dostigla 21.240 t. Na drugoj strani, proizvodnja<<strong>br</strong> />

bakra iz uvoznih sirovina naglo<<strong>br</strong> />

opada, u 2010. godini proizvedeno je<<strong>br</strong> />

svega 963 t.<<strong>br</strong> />

Katodni bakar iz<<strong>br</strong> />

uvoznih sirovina,<<strong>br</strong> />

t<<strong>br</strong> />

Ukupna proizvodnja<<strong>br</strong> />

katodnog bakra,<<strong>br</strong> />

t<<strong>br</strong> />

1990 102,222 49,173 151,395<<strong>br</strong> />

1991 95,077 38,702 133,779<<strong>br</strong> />

1992 78,561 36,203 114,764<<strong>br</strong> />

1993 43,410 7,765 51,175<<strong>br</strong> />

1994 66,308 5,841 72,149<<strong>br</strong> />

1995 70,992 6,459 77,451<<strong>br</strong> />

1996 60,015 43,985 104,000<<strong>br</strong> />

1997 64,264 42,319 106,583<<strong>br</strong> />

1998 61,587 32,809 94,396<<strong>br</strong> />

1999 42,611 7,411 50,022<<strong>br</strong> />

2000 30,357 15,278 45,632<<strong>br</strong> />

2001 17,403 14,962 32,605<<strong>br</strong> />

2002 20,984 14,913 35,897<<strong>br</strong> />

2003 9,914 4,115 14,029<<strong>br</strong> />

2004 9,343 2,654 11,997<<strong>br</strong> />

2005 9,916 21,368 31,284<<strong>br</strong> />

2006 11,120 31,434 42,554<<strong>br</strong> />

2007 16,062 15,136 31,198<<strong>br</strong> />

2008 18,550 15,201 33,751<<strong>br</strong> />

2009 18,875 8,537 27,412<<strong>br</strong> />

2010 21,240 963 22,203<<strong>br</strong> />

Kod eksploatacije bakra, poseban<<strong>br</strong> />

značaj ima učešće pratećih metala i ostalih<<strong>br</strong> />

korisnih elemenata u rudi. Smatra se da se<<strong>br</strong> />

u rudi bakra može naći najmanje 14 pratećih<<strong>br</strong> />

metaličnih i nemetaličnih elemenata,<<strong>br</strong> />

čija eksploatacija može biti ekonomski<<strong>br</strong> />

opravdana (A.Šutulov). Njihovom proizvodnjom<<strong>br</strong> />

dobijaju se korisna do<strong>br</strong>a, što se<<strong>br</strong> />

odražava na uvećanje ukupne vrednosti<<strong>br</strong> />

proizvodnje, a u isto vreme, zbog smanjenja<<strong>br</strong> />

fiksnih troškova pojedinici proizvoda,<<strong>br</strong> />

ostvaruje se niža cena koštanja<<strong>br</strong> />

bakra. Naravno, pod uslovom da prerada<<strong>br</strong> />

pratećih elemenata ne uvećava troškove<<strong>br</strong> />

proizvodnje bakra.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 134<<strong>br</strong> />

RUDARSKI RADOVI


Tabela 3. Proizvodnja pratećih proizvoda [7]<<strong>br</strong> />

Naziv Jedinica mere 2005. 2006. 2007. 2008. 2009. 2010.<<strong>br</strong> />

Zlato kg 414 581 504 1006 628 356<<strong>br</strong> />

Sre<strong>br</strong>o kg 3.501 3.933 4.160 6.812 3.314 1.884<<strong>br</strong> />

Bakar sulfat t 792 1.120 899 949 850 759<<strong>br</strong> />

Selen kg 10.607 17.169 15.704 16.827 19.075 10.592<<strong>br</strong> />

Platina kg 4 - - - 12 -<<strong>br</strong> />

Paladijum kg 22 7 9 70 38 22<<strong>br</strong> />

Najveća proizvodnja plemenitih<<strong>br</strong> />

metala (zlata i sre<strong>br</strong>a) ostvarena je 2008.<<strong>br</strong> />

godine. Zadnjih godina njihova proizvodnja<<strong>br</strong> />

se naglo smanjuje, u prvom redu zbog<<strong>br</strong> />

smanjene prerade uvoznih sirovina. Kod<<strong>br</strong> />

ostalih pratećih proizvoda <strong>za</strong>paža se<<strong>br</strong> />

osetna oscilacija u proizvodnji.<<strong>br</strong> />

Tabela 4. Konsolidovani bilans uspeha [7]<<strong>br</strong> />

POSLOVNI REZULTAT<<strong>br</strong> />

Smanjenje poslovnih aktivnosti neposredno<<strong>br</strong> />

se odrazilo na poslovni rezultat kompanije.<<strong>br</strong> />

Posle perioda uspešnog poslovanja,<<strong>br</strong> />

preduzeće upada u duboku ekonomsku i<<strong>br</strong> />

finansijsku krizu. Ostvareni prihodi nisu u<<strong>br</strong> />

stanju da pokriju nastale rashode, pa je sve<<strong>br</strong> />

izraženije negativno poslovanje. Zadnjih<<strong>br</strong> />

godina gubitak je izuzetno veliki u odnosu<<strong>br</strong> />

na ostvareni obim poslovanja.<<strong>br</strong> />

Pozicija 2007 2008 2009 2010<<strong>br</strong> />

1. Poslovni prihodi 8,766,420 8,938,164 8,809,555 18,389,847<<strong>br</strong> />

2. Poslovni rashodi 10,864,803 11,620,925 12,042,666 15,620,359<<strong>br</strong> />

3. Poslovni dobitak-gubitak -2,098,383 -2,682,761 -3,233,111 2,769,488<<strong>br</strong> />

4. Finansijski prihodi 1,387,617 892,107 165,130 1,210,901<<strong>br</strong> />

5. Finansijski rashodi 1,225,935 4,528,311 2,521,466 6,081,677<<strong>br</strong> />

6. Neposlovni i vanredni<<strong>br</strong> />

prihodi<<strong>br</strong> />

217,100 86,406 81,832 2,972,185<<strong>br</strong> />

7. Neposlovni i vanredni<<strong>br</strong> />

rashodi<<strong>br</strong> />

376,455 399,908 326,856 794,283<<strong>br</strong> />

8. Dobitak-gubitak iz redovnog<<strong>br</strong> />

poslovanja<<strong>br</strong> />

-2,096,056 -6,632,467 -5,834,471 76,614<<strong>br</strong> />

9. Neto gubitak poslovanja koje<<strong>br</strong> />

se obustavlja<<strong>br</strong> />

-54,046 - - -48,883<<strong>br</strong> />

10. Neto dobitak-gubitak -2,150,102 -6,632,467 -5,834,471 27,731<<strong>br</strong> />

U 2010. godini došlo je do vidnog<<strong>br</strong> />

poboljšanja poslovnih aktivnosti. Ukupan<<strong>br</strong> />

prihod je više nego udvostručen, što je uz<<strong>br</strong> />

daleko sporiji rast rashoda omogućilo da<<strong>br</strong> />

kompanija posle dužeg perioda iskaže<<strong>br</strong> />

pozitivno poslovanje. Ostvarena dobit od<<strong>br</strong> />

27.731.000 dinara nije velika u odnosu na<<strong>br</strong> />

obim poslovanja, ali je to možda znak da<<strong>br</strong> />

kompanija polako izlazi iz ekonomske i<<strong>br</strong> />

finansijske krize.<<strong>br</strong> />

Treba istaći da je ovakvom poslovnom<<strong>br</strong> />

rezultatu u 2010. godini umnogome doprinela<<strong>br</strong> />

i povoljna tržišna cena bakra i<<strong>br</strong> />

plemenitih metala na svetskom tržištu.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 135<<strong>br</strong> />

RUDARSKI RADOVI


Grafikon 2. Kretanje cene bakra u priodu 1909-2010 g.(us$/t)<<strong>br</strong> />

Početkom devedesetih godina cena<<strong>br</strong> />

bakra je iznosila 2.716 US$/t, da bi u<<strong>br</strong> />

1999.godini pala na najniži nivo, svega<<strong>br</strong> />

1.572 US$/t; <strong>za</strong>tim, uz određene oscilacije,<<strong>br</strong> />

počinje da raste, naročito od<<strong>br</strong> />

2004. godine, da bi u 2010. godini dostigla<<strong>br</strong> />

7.576 US$/t, sa tendencijom daljeg<<strong>br</strong> />

uvećanja.<<strong>br</strong> />

Međutim, dosta solidna cena bakra bila<<strong>br</strong> />

je i prethodnih godina (2007-2008), pa je<<strong>br</strong> />

kompanija negativno poslovala. Pored<<strong>br</strong> />

uvećanja poslovnih rashoda, na poslovni<<strong>br</strong> />

rezultat umnogome utiču i veliki finansijski<<strong>br</strong> />

rashodi. Oni u 2010.godini dostižu<<strong>br</strong> />

iznos od 6.081.677.000 dinara. U pitanju<<strong>br</strong> />

su kursne razlike i plaćene kamate.<<strong>br</strong> />

STANJE ZAPOSLENOSTI I ZARADE<<strong>br</strong> />

Početkom devedesetih godina RTB<<strong>br</strong> />

<strong>Bor</strong> <strong>za</strong>pošljava 24.096 radnika. Najviše ih<<strong>br</strong> />

je redilo u TIR-u (5.308), RBN-u (4.572),<<strong>br</strong> />

RBM-u (4.085), IPM-u (2.247), FOD-u<<strong>br</strong> />

(1.639) i FKZ-u (1.040). Obzirom na delatnost<<strong>br</strong> />

poslovanja, kvalifikaciona struktura<<strong>br</strong> />

<strong>za</strong>poslenih bila je dosta povoljna.<<strong>br</strong> />

Vremenom, <strong>br</strong>oj <strong>za</strong>poslenih radnika<<strong>br</strong> />

stalno opada. Posle izvršenih promena i<<strong>br</strong> />

restruktuiranja, u RTB <strong>Bor</strong> danas radi<<strong>br</strong> />

nešto manje od pet hiljada radnika.<<strong>br</strong> />

Tabela 5. Broj <strong>za</strong>poslenih radnika [7]<<strong>br</strong> />

Preduzeće<<strong>br</strong> />

Stanje na kraju godine<<strong>br</strong> />

(31.12.)<<strong>br</strong> />

2008. 2009. 2010.<<strong>br</strong> />

RBB <strong>Bor</strong> 1.986 1.872 2.088<<strong>br</strong> />

RBM Majdanpek<<strong>br</strong> />

988 952 962<<strong>br</strong> />

TIR <strong>Bor</strong> 1.830 1.731 1.706<<strong>br</strong> />

Matično<<strong>br</strong> />

preduzeće<<strong>br</strong> />

84 93 114<<strong>br</strong> />

Ukupno 4.888 4.648 4.870<<strong>br</strong> />

Poslednjih godina <strong>br</strong>oj <strong>za</strong>poslenih dosta<<strong>br</strong> />

varira, sa izraženom fluktuacijom tokom<<strong>br</strong> />

godine. Sa poboljšanjem poslovnih aktivnosti,<<strong>br</strong> />

očekuje se i uvećanje <strong>br</strong>oja <strong>za</strong>poslenih.<<strong>br</strong> />

Prosečne neto <strong>za</strong>rade <strong>za</strong>poslenih imaju<<strong>br</strong> />

tendenciju usporenog rasta. One su nešto<<strong>br</strong> />

veće od prosečnih <strong>za</strong>rada u privredi Srbije,<<strong>br</strong> />

što je i normalno, imajući u vidu uslove<<strong>br</strong> />

poslovanja u kompaniji.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 136<<strong>br</strong> />

RUDARSKI RADOVI


Tabela 6. Prosečne neto <strong>za</strong>rade<<strong>br</strong> />

<strong>za</strong>poslenih (prosek januardecembar,<<strong>br</strong> />

u RSD) [7]<<strong>br</strong> />

Preduzeće 2008. 2009. 2010.<<strong>br</strong> />

RBB <strong>Bor</strong> 34.676 37.027 40.619<<strong>br</strong> />

RBM Majdanpek<<strong>br</strong> />

34.026 35.811 40.056<<strong>br</strong> />

TIR <strong>Bor</strong> 34.633 37.165 40.574<<strong>br</strong> />

Matično<<strong>br</strong> />

preduzeće<<strong>br</strong> />

42.055 45.138 50.722<<strong>br</strong> />

RTB <strong>Bor</strong> 34.651 36.983 40.701<<strong>br</strong> />

Republički<<strong>br</strong> />

prosek<<strong>br</strong> />

32.746 31.733 34.009<<strong>br</strong> />

Indeks, % 105,8 116,5 119,7<<strong>br</strong> />

Prosečna isplaćena neto <strong>za</strong>rada u RTB<<strong>br</strong> />

<strong>Bor</strong> u 2010. godini iznosi 40.701 dinar i<<strong>br</strong> />

veća je od republičkog proseka <strong>za</strong> 19,7%.<<strong>br</strong> />

Po proizvodnim preduzećima <strong>za</strong>rade<<strong>br</strong> />

<strong>za</strong>poslenih su skoro ujednačene.<<strong>br</strong> />

INVESTICIJE<<strong>br</strong> />

Ekonomska i finansijska kri<strong>za</strong>, nepovoljna<<strong>br</strong> />

ekonomija poslovanja i nedostatak<<strong>br</strong> />

finansijskih sredstava onemogućili su reali<strong>za</strong>ciju<<strong>br</strong> />

mnogih investicionih projekata u<<strong>br</strong> />

kompaniji. Uz to, godinama se nije<<strong>br</strong> />

ulagalo ni u <strong>za</strong>menu postojeće, amortizovane<<strong>br</strong> />

opreme. To se nepovoljno odrazilo<<strong>br</strong> />

na stanje tehničke opremljenosti rada<<strong>br</strong> />

i primenu savremene tehnologije u<<strong>br</strong> />

procesu proizvodnje.<<strong>br</strong> />

Posle dužeg perioda, prva značajnija<<strong>br</strong> />

investiciona ulaganja izvršena su u 2010.<<strong>br</strong> />

godini. Nabavljena je i stavljena u funkciju<<strong>br</strong> />

visokokapacitetna rudarska utovarna i<<strong>br</strong> />

transportna oprema <strong>za</strong> potrebe rudnika<<strong>br</strong> />

Veliki Krivelj i Majdanpek. Ukupna vrednost<<strong>br</strong> />

svih ulaganja u oblasti rudarstva i<<strong>br</strong> />

metalurgije iznose 63.524.000 US$. Time<<strong>br</strong> />

<strong>za</strong>počinje novi investicioni ciklus u ovom<<strong>br</strong> />

preduzeću.<<strong>br</strong> />

Za <strong>2011</strong>. godinu, plan investicionih<<strong>br</strong> />

aktivnosti je još ambiciozniji. Očekuju se<<strong>br</strong> />

ulaganja u iznosu od 272 miliona US$, od<<strong>br</strong> />

toga 103.800.000 u <strong>rudarstvo</strong>,<<strong>br</strong> />

163.200.000 u <strong>metalurgiju</strong> i 5.000.000 u<<strong>br</strong> />

ostale oblasti. Najveća ulaganja odnose se<<strong>br</strong> />

na rekonstrukciju topionice i izgradnju<<strong>br</strong> />

fa<strong>br</strong>ike sumporne kiseline. Time bi se<<strong>br</strong> />

stvorili uslovi <strong>za</strong> uvećanje proizvodnje,<<strong>br</strong> />

poboljšane uslove rada i rešavanje sadašnjih<<strong>br</strong> />

ekoloških problema u <strong>Bor</strong>u.<<strong>br</strong> />

ZAKLJUČAK<<strong>br</strong> />

Od devedesetih godina prošlog veka<<strong>br</strong> />

RTB <strong>Bor</strong> posluje u izuzetno složenim i<<strong>br</strong> />

otežanim uslovima. Tome su doprinele<<strong>br</strong> />

mnoge okolnosti – raspad Jugoslavije,<<strong>br</strong> />

sankcije UN, ratovi u okruženju, NATO<<strong>br</strong> />

agresija, <strong>za</strong>tim tranzicioni procesi u zemlji,<<strong>br</strong> />

te <strong>br</strong>ojne unutrašnje slabosti u kolektivu.<<strong>br</strong> />

U pitanju je, svakako, jedna od najtežih<<strong>br</strong> />

kri<strong>za</strong> u koju je <strong>za</strong>pala kompanija<<strong>br</strong> />

tokom svog egzistiranja dužeg od jednog<<strong>br</strong> />

veka.<<strong>br</strong> />

Osnovne karakteristike sadašnjeh<<strong>br</strong> />

poslovanja kompanije su ni<strong>za</strong>k sadržaj<<strong>br</strong> />

bakra u rudi, mala proizvodnja, visoka<<strong>br</strong> />

cena koptanja proizvoda, nepovoljna ekonomija<<strong>br</strong> />

poslovanja. Tu je i visok stepen<<strong>br</strong> />

nelikvidnosti, velika <strong>za</strong>duženost, pa i ozbiljni<<strong>br</strong> />

ekološki problemi.<<strong>br</strong> />

Posle višegodišnje agonije, 2010.<<strong>br</strong> />

godina kao da označava izvesnu prekretnicu<<strong>br</strong> />

u daljem egzistiranju preduzeća. Proizvodnja<<strong>br</strong> />

iz sopstvenih sirovina raste,<<strong>br</strong> />

tržišna cena u znatnoj meri nadmašuje<<strong>br</strong> />

cenu koštanja proizvodnje bakra, pa je<<strong>br</strong> />

ostvareni poslovni rezultat, posle dužeg<<strong>br</strong> />

perioda, pozitivan. Izvršena su značajna<<strong>br</strong> />

investiciona ulaganja, a očekuje se da i<<strong>br</strong> />

ona u narednom periodu budu u znatno<<strong>br</strong> />

većem obimu. No, mnogi nerešeni problemi<<strong>br</strong> />

iz prošlosti i dalje opterećuju<<strong>br</strong> />

poslovanje kompanije.<<strong>br</strong> />

Zapaža se i veća <strong>za</strong>interesovanost<<strong>br</strong> />

države <strong>za</strong> sređivanje stanja u ovoj kompaniji.<<strong>br</strong> />

To se posebno odnosi na aktivnosti<<strong>br</strong> />

oko rekonstrukcije topionice i izgradnje<<strong>br</strong> />

fa<strong>br</strong>ike sumporne kiseline, kao i na<<strong>br</strong> />

poslovnu i finansijsku konsolidaciju preduzeća.<<strong>br</strong> />

To daje nadu da RTB <strong>Bor</strong>, uz povoljan<<strong>br</strong> />

poslovni ambijent i eliminisanje<<strong>br</strong> />

mnogih unutrašnjih slabosti, pre svega<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 137<<strong>br</strong> />

RUDARSKI RADOVI


neracionalnosti u poslovanju, može da<<strong>br</strong> />

prevaziđe krizu i postane profitabilna,<<strong>br</strong> />

uspešna kompanija.<<strong>br</strong> />

LITERATURA<<strong>br</strong> />

[1] R. Nikolić, Ekonomija prirodnih<<strong>br</strong> />

resursa, Kompjuter centar <strong>Bor</strong>, <strong>Bor</strong>,<<strong>br</strong> />

2010.<<strong>br</strong> />

[2] R. Nikolić, Troškovi u poslovnoj<<strong>br</strong> />

ekonomiji, Grafomag, Beograd, 2004.<<strong>br</strong> />

[3] B. Jovanović, Privreda Timočke<<strong>br</strong> />

krajine, JP Štampa, radio i film, <strong>Bor</strong>,<<strong>br</strong> />

1995.<<strong>br</strong> />

[4] B. Jovanović, M. Đurđević, Sto<<strong>br</strong> />

godina borskog rudarstva 1903-2003.,<<strong>br</strong> />

<strong>Bor</strong>, 2005.<<strong>br</strong> />

[5] N. Cvetanović, Bakar u svetu, IP<<strong>br</strong> />

Nauka, Beograd, 2005.<<strong>br</strong> />

[6] B. Mihajlović, Ž. Milićević, Održivi<<strong>br</strong> />

razvoj proizvodnje rude bakra u RTB<<strong>br</strong> />

<strong>Bor</strong>, Reciklaža i održivi razvoj, <strong>Bor</strong>,<<strong>br</strong> />

2008.<<strong>br</strong> />

[7] Dokumentacija RTB <strong>Bor</strong>.<<strong>br</strong> />

[8] G. Slavković, B. Trumić, D. Stanković,<<strong>br</strong> />

Prognoze cena metala platinske grupe<<strong>br</strong> />

u prozvodnji katali<strong>za</strong>torskih mreža i<<strong>br</strong> />

hvatača, <strong>Rudarski</strong> <strong>radovi</strong> <strong>br</strong> 2/<strong>2011</strong>, str.<<strong>br</strong> />

181-186.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 138<<strong>br</strong> />

RUDARSKI RADOVI


MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162<<strong>br</strong> />

COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622<<strong>br</strong> />

UDK: 338.1:316.4:622(045)=20<<strong>br</strong> />

Radmilo Nikolic * , Nenad Vusovic * , Igor Svrkota * , Aleksandra Fedajev *<<strong>br</strong> />

BUSINESS ECONOMY OF RTB BOR IN TRANSITION PERIOD **<<strong>br</strong> />

Abstract<<strong>br</strong> />

RTB <strong>Bor</strong> is our known company for production of copper and precious metals. With a large<<strong>br</strong> />

number of employees, organized on a principle of production complex, it was a reputable business<<strong>br</strong> />

entity in the former Yugoslavia with a profitable business, especially in the area of export. At the<<strong>br</strong> />

same time, RTB was a backbone of economic development in the Timok region and beyond.<<strong>br</strong> />

In 90’s, the company fell into deep crisis due to a disintegration of the former Yugoslavia, civil<<strong>br</strong> />

wars in the neighborhood and tough economic sanctions by UN. It led to a drop of production,<<strong>br</strong> />

difficult export, reduced number of employees as well as their living standards. Investments were<<strong>br</strong> />

stopped and business losses became bigger and bigger.<<strong>br</strong> />

In order to improve the business efficiency, the company took several steps in its restructuring.<<strong>br</strong> />

Some down-stream factories were disported and only the base of copper production was kept. In<<strong>br</strong> />

the meantime, there were two attempts of company privati<strong>za</strong>tion, but both were unsuccessful, so<<strong>br</strong> />

the company is currently state-owned.<<strong>br</strong> />

Measures for improvement the company business economy are taken in the last couple of years.<<strong>br</strong> />

Some serious investments are in progress, such as reconstruction of the Smelter Plant and construction<<strong>br</strong> />

of the Sulfuric Acid Plant, procurement of mining equipment, infrastructural works, etc. Besides this,<<strong>br</strong> />

the production and export constantly increase and the company, after a long period of time, managed<<strong>br</strong> />

to finish 2010 with positive business results due to a favorable condition of the copper market.<<strong>br</strong> />

Key words: transition, economic crisis, restructuring, business economy<<strong>br</strong> />

INTRODUCTION<<strong>br</strong> />

Mining has a long tradition in the area<<strong>br</strong> />

of <strong>Bor</strong> and Majdanpek. First tones of copper<<strong>br</strong> />

ore were mined in 1903. It is a rich ore<<strong>br</strong> />

body Coka Dulkan. Namely, the first geological<<strong>br</strong> />

exploration of this area was carried<<strong>br</strong> />

out in 1897 in the area of Tilva Ros.<<strong>br</strong> />

RTB <strong>Bor</strong> was developed strongly after<<strong>br</strong> />

the World War II. During this period, several<<strong>br</strong> />

mines were opened along with<<strong>br</strong> />

processing and smelting plants. After years<<strong>br</strong> />

of growth, company became one of the largest<<strong>br</strong> />

producers of high quality cathode copper<<strong>br</strong> />

with over 20,000 employees.<<strong>br</strong> />

A review of the current situation of internal<<strong>br</strong> />

organi<strong>za</strong>tion is undergone. It aims to find<<strong>br</strong> />

an organi<strong>za</strong>tion model that will be based on<<strong>br</strong> />

the market principles and provide higher efficiency<<strong>br</strong> />

and profitability of the business.<<strong>br</strong> />

* University of Belgrade, Technical Faculty <strong>Bor</strong><<strong>br</strong> />

** This paper is the result of Project No. 33038, “Eksploitation and processing of copper ore technology<<strong>br</strong> />

development with monitoring of living and working enviroment in the RTB <strong>Bor</strong><<strong>br</strong> />

Group”, funded by the Ministry of Education and Science of the Republic of Serbia.<<strong>br</strong> />

No 4, <strong>2011</strong>. 139<<strong>br</strong> />

MINING ENGINEERING


During the years, the company had<<strong>br</strong> />

changed its form, thus adjusting to<<strong>br</strong> />

changes into economic systems of the<<strong>br</strong> />

country. At first, it was state-owned, then<<strong>br</strong> />

it was self-managed working organi<strong>za</strong>tion,<<strong>br</strong> />

Currently, the company consists of a<<strong>br</strong> />

parent company and three dependent companies<<strong>br</strong> />

–Copper Mines <strong>Bor</strong>, Copper Mine<<strong>br</strong> />

Majdanpek and Copper Smelter and Refinery<<strong>br</strong> />

<strong>Bor</strong>. Relations between units is managed<<strong>br</strong> />

in order to function as a single company.<<strong>br</strong> />

This paper considers some characteristics<<strong>br</strong> />

of RTB <strong>Bor</strong> business economy in the<<strong>br</strong> />

transition period.<<strong>br</strong> />

THE AVAILABLE ORE RESERVES<<strong>br</strong> />

The <strong>Bor</strong> metalogenetic zone includes<<strong>br</strong> />

significant copper ore reserves. According<<strong>br</strong> />

to the available data, the ore reserves in<<strong>br</strong> />

Fig. 1. Organi<strong>za</strong>tion scheme of RTB <strong>Bor</strong> Group [8]<<strong>br</strong> />

then it was holding company and finally,<<strong>br</strong> />

now it is state-owned, again. This is not<<strong>br</strong> />

final status, since the company has to face<<strong>br</strong> />

the permanent ownership restructuring.<<strong>br</strong> />

deposits of active mines of RTB <strong>Bor</strong> are<<strong>br</strong> />

1.2 billion tons, what means that<<strong>br</strong> />

4,663,321 t of copper, 158,446 kg of gold<<strong>br</strong> />

and 1,243,228 kg of silver could be extracted.<<strong>br</strong> />

That is why numerous international<<strong>br</strong> />

companies show interest for the<<strong>br</strong> />

exploratory works at some locations. It is<<strong>br</strong> />

estimated that some 2% of global copper<<strong>br</strong> />

ore reserves lay in Serbia.<<strong>br</strong> />

No 4, <strong>2011</strong>. 140<<strong>br</strong> />

MINING ENGINEERING


Table 1. Ore reserves in the active mines of RTB <strong>Bor</strong> [6]<<strong>br</strong> />

Mine Ore, t Copper, t Gold, kg Silver, kg<<strong>br</strong> />

Jama, current operation 7,262,726 70,079 1,727 11,711<<strong>br</strong> />

Jama, ore body <strong>Bor</strong>ska Reka 319,969,179 1,599,846 65,274 518,350<<strong>br</strong> />

Veliki Krivelj 465,150,392 1,511,726 31,584 180,478<<strong>br</strong> />

Coka Marin 220,714 4,767 1,307 8,945<<strong>br</strong> />

Juzni Revir 246,082,778 881,904 46,654 353,684<<strong>br</strong> />

Cerovo 170,000,000 595,000 11,900 170,000<<strong>br</strong> />

Total 1,208,685,789 4,663,321 158,446 1,243,228<<strong>br</strong> />

The most of ore reserves are concentrated<<strong>br</strong> />

in three deposits – Veliki Krivelj,<<strong>br</strong> />

Jama (<strong>Bor</strong> River) and South Mining District<<strong>br</strong> />

(Majdanpek). Between these three,<<strong>br</strong> />

most of the copper reserves lay in the ore<<strong>br</strong> />

body <strong>Bor</strong> River.<<strong>br</strong> />

REALIZED PRODUCTION<<strong>br</strong> />

Until last decade of the last century,<<strong>br</strong> />

the copper production had a trend of constant<<strong>br</strong> />

increase, beside minor variations.<<strong>br</strong> />

The highest production from own ore deposits<<strong>br</strong> />

was reached in 1988 – 105,390 tons<<strong>br</strong> />

of copper, while the best results from own<<strong>br</strong> />

and imported copper ore were obtained in<<strong>br</strong> />

1990, when 151,395 t was produced in<<strong>br</strong> />

RTB <strong>Bor</strong>. From the start of the 90’s, due<<strong>br</strong> />

to the objective reasons, the production<<strong>br</strong> />

has fallen rapidly, first in Majdanpek, and<<strong>br</strong> />

then in the mines in <strong>Bor</strong>.<<strong>br</strong> />

Fig. 2. Variation of copper content in the ore<<strong>br</strong> />

However, the ore reserves have a constant<<strong>br</strong> />

trend of decrease the metal content in<<strong>br</strong> />

the ore. It started with 9% at the beginning,<<strong>br</strong> />

and now it is 0.27%.<<strong>br</strong> />

The lowest production from own resources<<strong>br</strong> />

was realized in period between 2003<<strong>br</strong> />

and 2005, about ten thousand tons of cathode<<strong>br</strong> />

copper. At the same time, that was the<<strong>br</strong> />

period of biggest economic crisis in the<<strong>br</strong> />

company. Starting from 2006, the copper<<strong>br</strong> />

production has started to recover, to reach<<strong>br</strong> />

over 21,000 t in 2010, while production<<strong>br</strong> />

from imported ore decreases to just 963 t<<strong>br</strong> />

in 2010.<<strong>br</strong> />

No 4, <strong>2011</strong>. 141<<strong>br</strong> />

MINING ENGINEERING


Table 2. Variation of cathode copper production, 1990 – 2010[3]<<strong>br</strong> />

Year<<strong>br</strong> />

Copper production<<strong>br</strong> />

from own copper ore, t<<strong>br</strong> />

Copper production<<strong>br</strong> />

from imported ore,<<strong>br</strong> />

t<<strong>br</strong> />

Total copper production,<<strong>br</strong> />

t<<strong>br</strong> />

1990 102,222 49,173 151,395<<strong>br</strong> />

1991 95,077 38,702 133,779<<strong>br</strong> />

1992 78,561 36,203 114,764<<strong>br</strong> />

1993 43,410 7,765 51,175<<strong>br</strong> />

1994 66,308 5,841 72,149<<strong>br</strong> />

1995 70,992 6,459 77,451<<strong>br</strong> />

1996 60,015 43,985 104,000<<strong>br</strong> />

1997 64,264 42,319 106,583<<strong>br</strong> />

1998 61,587 32,809 94,396<<strong>br</strong> />

1999 42,611 7,411 50,022<<strong>br</strong> />

2000 30,357 15,278 45,632<<strong>br</strong> />

2001 17,403 14,962 32,605<<strong>br</strong> />

2002 20,984 14,913 35,897<<strong>br</strong> />

2003 9,914 4,115 14,029<<strong>br</strong> />

2004 9,343 2,654 11,997<<strong>br</strong> />

2005 9,916 21,368 31,284<<strong>br</strong> />

2006 11,120 31,434 42,554<<strong>br</strong> />

2007 16,062 15,136 31,198<<strong>br</strong> />

2008 18,550 15,201 33,751<<strong>br</strong> />

2009 18,875 8,537 27,412<<strong>br</strong> />

2010 21,240 963 22,203<<strong>br</strong> />

Besides the exploitation of copper, the<<strong>br</strong> />

accompanying minerals and other useful<<strong>br</strong> />

elements in the ore have a special importance.<<strong>br</strong> />

It is considered that at least 14 accompanying<<strong>br</strong> />

metallic and nonmetallic<<strong>br</strong> />

elements could be found in the ore, whose<<strong>br</strong> />

extraction would be economically justified<<strong>br</strong> />

(A.Šutulov). Their production gives the<<strong>br</strong> />

useful goods, what is reflected to an increase<<strong>br</strong> />

in the total value of production,<<strong>br</strong> />

while at the same time, due to the reduction<<strong>br</strong> />

of fixed costs of individual products,<<strong>br</strong> />

a lower cost of copper is achieved. Certainly,<<strong>br</strong> />

under the condition that processing<<strong>br</strong> />

of accompanying elements does not increase<<strong>br</strong> />

the costs of copper production.<<strong>br</strong> />

No 4, <strong>2011</strong>. 142<<strong>br</strong> />

MINING ENGINEERING


Table 3. Production of accompanying products [7]<<strong>br</strong> />

Name Unit 2005. 2006. 2007. 2008. 2009. 2010.<<strong>br</strong> />

Gold kg 414 581 504 1006 628 356<<strong>br</strong> />

Silver kg 3.501 3.933 4.160 6.812 3.314 1.884<<strong>br</strong> />

Copper sulphate t 792 1.120 899 949 850 759<<strong>br</strong> />

Selenium kg 10.607 17.169 15.704 16.827 19.075 10.592<<strong>br</strong> />

Platinum kg 4 - - - 12 -<<strong>br</strong> />

Paladium kg 22 7 9 70 38 22<<strong>br</strong> />

The highest production of precious<<strong>br</strong> />

metals (gold and silver) was achieved in<<strong>br</strong> />

2008. In recent years it decreases significantly,<<strong>br</strong> />

due to the reduced processing of<<strong>br</strong> />

imported raw materials, Production of<<strong>br</strong> />

other accompanying products varies significantly,<<strong>br</strong> />

Table 4. Consolidated balance of success [7]<<strong>br</strong> />

BUSINESS RESULTS<<strong>br</strong> />

Decrease of business activities had a<<strong>br</strong> />

strong influence on the company business<<strong>br</strong> />

results, After a long period of successful<<strong>br</strong> />

operation, the company sinks into a deep<<strong>br</strong> />

economical and financial crisis,<<strong>br</strong> />

Realized revenues are not able to cover<<strong>br</strong> />

the incurred expenses, and the business is<<strong>br</strong> />

an increasingly negative, In recent years,<<strong>br</strong> />

the loss is very large in relation to the realized<<strong>br</strong> />

volume of business,<<strong>br</strong> />

Position 2007 2008 2009 2010<<strong>br</strong> />

1. Incomes 8,766,420 8,938,164 8,809,555 18,389,847<<strong>br</strong> />

2. Outcomes 10,864,803 11,620,925 12,042,666 15,620,359<<strong>br</strong> />

3. Profit-loss -2,098,383 -2,682,761 -3,233,111 2,769,488<<strong>br</strong> />

4. Financial incomes 1,387,617 892,107 165,130 1,210,901<<strong>br</strong> />

5. Financial outcomes 1,225,935 4,528,311 2,521,466 6,081,677<<strong>br</strong> />

6. Non-business and extra<<strong>br</strong> />

incomes<<strong>br</strong> />

217,100 86,406 81,832 2,972,185<<strong>br</strong> />

7. Non-business and extra<<strong>br</strong> />

outcomes<<strong>br</strong> />

376,455 399,908 326,856 794,283<<strong>br</strong> />

8. Profit-loss from regular<<strong>br</strong> />

activity<<strong>br</strong> />

-2,096,056 -6,632,467 -5,834,471 76,614<<strong>br</strong> />

9. Aborted business loss -54,046 - - -48,883<<strong>br</strong> />

10. Net profit-loss -2,150,102 -6,632,467 -5,834,471 27,731<<strong>br</strong> />

As we can see, there was a significant<<strong>br</strong> />

improvement in 2010. Incomes were doubled,<<strong>br</strong> />

which, along with slightly increased<<strong>br</strong> />

outcomes, <strong>br</strong>ought positive economic results<<strong>br</strong> />

to the company after many years.<<strong>br</strong> />

Although 27,731,000 RSD profit isn’t too<<strong>br</strong> />

No 4, <strong>2011</strong>. 143<<strong>br</strong> />

MINING ENGINEERING


ig related to overall business volume, it<<strong>br</strong> />

is still a sign that company finds its way<<strong>br</strong> />

out of business and financial crisis.<<strong>br</strong> />

We should mention that one of the key<<strong>br</strong> />

factors of good financial result in 2010<<strong>br</strong> />

was favorable price of copper and precious<<strong>br</strong> />

metals at the world market.<<strong>br</strong> />

Fig. 3. Variation of the copper prices in a period between 1990-2010, in US$/t<<strong>br</strong> />

In early 90’s, the copper price was<<strong>br</strong> />

2,716 US$/t and in 1999 it dropped down<<strong>br</strong> />

to the lowest level of 1,572 US$/t, After<<strong>br</strong> />

that, its price recovered gradually and<<strong>br</strong> />

since 2004 the increase was rapid, In<<strong>br</strong> />

2010, it reached 7,516 US$/t, with a tendency<<strong>br</strong> />

of further increase,<<strong>br</strong> />

However, the favorable metal price<<strong>br</strong> />

was also in the previous years (2007-<<strong>br</strong> />

2008), but the company had negative<<strong>br</strong> />

business results, Overall business results<<strong>br</strong> />

are strongly influenced by the financial<<strong>br</strong> />

outputs, In 2010, they reached<<strong>br</strong> />

6,081,677,000 RSD, These outcomes are<<strong>br</strong> />

mainly related to exchange differences<<strong>br</strong> />

and paid interests,<<strong>br</strong> />

STATE OF EMPLOYMENT AND<<strong>br</strong> />

WAGES<<strong>br</strong> />

In early 90’s RTB <strong>Bor</strong> had 24,096 employees,<<strong>br</strong> />

Most of them were employed in<<strong>br</strong> />

TIR (5,308), then RBN (4,572), RBM<<strong>br</strong> />

(4,085), IPM (2,247), FOD (1,639) and FKZ<<strong>br</strong> />

(1,040), Considering the type of industry,<<strong>br</strong> />

qualification structure of employees was<<strong>br</strong> />

quite good,<<strong>br</strong> />

After that, the number of employees is<<strong>br</strong> />

in constant decrease, After the transition<<strong>br</strong> />

period and restructuring, there are less<<strong>br</strong> />

than 5,000 of employee in RTB <strong>Bor</strong>,<<strong>br</strong> />

Table 5. Number of employees [7]<<strong>br</strong> />

State of employment at<<strong>br</strong> />

the year end (31.12.)<<strong>br</strong> />

No 4, <strong>2011</strong>. 144<<strong>br</strong> />

MINING ENGINEERING<<strong>br</strong> />

Unit<<strong>br</strong> />

2008. 2009. 2010.<<strong>br</strong> />

RBB <strong>Bor</strong> 1.986 1.872 2.088<<strong>br</strong> />

RBM<<strong>br</strong> />

Majdanpek<<strong>br</strong> />

988 952 962<<strong>br</strong> />

TIR <strong>Bor</strong> 1.830 1.731 1.706<<strong>br</strong> />

Company<<strong>br</strong> />

management<<strong>br</strong> />

84 93 114<<strong>br</strong> />

Total 4.888 4.648 4.870<<strong>br</strong> />

In recent years, the number of employees<<strong>br</strong> />

varies with significant fluctuation during<<strong>br</strong> />

the year; with improvements in business<<strong>br</strong> />

activities, it is expected that the number<<strong>br</strong> />

will rise.


The average net wages have a tendency<<strong>br</strong> />

of slow increase. They are a bit higher than<<strong>br</strong> />

the average wages in the industry of Serbia,<<strong>br</strong> />

what is normal having in mind the business<<strong>br</strong> />

conditions in the company.<<strong>br</strong> />

Table 6. Net wages (anual average in<<strong>br</strong> />

RSD) [7]<<strong>br</strong> />

Unit 2008. 2009. 2010.<<strong>br</strong> />

RBB <strong>Bor</strong> 34.676 37.027 40.619<<strong>br</strong> />

RBM Majdanpek<<strong>br</strong> />

34.026 35.811 40.056<<strong>br</strong> />

TIR <strong>Bor</strong> 34.633 37.165 40.574<<strong>br</strong> />

Company<<strong>br</strong> />

management<<strong>br</strong> />

42.055 45.138 50.722<<strong>br</strong> />

RTB <strong>Bor</strong> 34.651 36.983 40.701<<strong>br</strong> />

Serbian average<<strong>br</strong> />

32.746 31.733 34.009<<strong>br</strong> />

Index, % 105,8 116,5 119,7<<strong>br</strong> />

The average paid net wage in RTB <strong>Bor</strong><<strong>br</strong> />

in 2010 is 40,701 RSD per month and it is<<strong>br</strong> />

higher than the average wage in Serbia by<<strong>br</strong> />

19.7%. By the production units inside the<<strong>br</strong> />

company, the wages are almost equal.<<strong>br</strong> />

INVESTMENTS<<strong>br</strong> />

Economic and financial crisis, unfavorable<<strong>br</strong> />

business economy and lack of<<strong>br</strong> />

financial means disabled the reali<strong>za</strong>tion of<<strong>br</strong> />

many investment projects in the company.<<strong>br</strong> />

Besides that, there were no investments<<strong>br</strong> />

into replacement of old equipment. As a<<strong>br</strong> />

consequence, the technical level of production<<strong>br</strong> />

was very low and applied technologies<<strong>br</strong> />

were obsolete.<<strong>br</strong> />

After a long period, the first major investments<<strong>br</strong> />

were realized in 2010. In mining,<<strong>br</strong> />

a new high-capacity loading and<<strong>br</strong> />

transport equipment was put into operation<<strong>br</strong> />

for the needs of the Veliki Krivelj and<<strong>br</strong> />

Majdanpek mines. Total value of all investments<<strong>br</strong> />

in the field of mining and metallurgy<<strong>br</strong> />

reached 63,524,000 US$. Thus, a<<strong>br</strong> />

new investment cycle has started in this<<strong>br</strong> />

company.<<strong>br</strong> />

Plan of investments for <strong>2011</strong> is even<<strong>br</strong> />

more ambitious. The expected investments<<strong>br</strong> />

have reached the total of 272 million US$,<<strong>br</strong> />

out of which 103,800,000 US$ in mining<<strong>br</strong> />

sector, 163,200,000 in metallurgy and<<strong>br</strong> />

5,000,000 in the other fields. The highest<<strong>br</strong> />

investments are related to the reconstruction<<strong>br</strong> />

of Smelter Plant and construction a<<strong>br</strong> />

new Sulfuric Acid Plant. These investments<<strong>br</strong> />

are very important because they will enable<<strong>br</strong> />

the increase of production, improvement of<<strong>br</strong> />

working conditions and solving the existing<<strong>br</strong> />

environmental problems in <strong>Bor</strong>.<<strong>br</strong> />

CONCLUSION<<strong>br</strong> />

Since 90’s, RTB <strong>Bor</strong> operates in extremely<<strong>br</strong> />

complex and tough conditions.<<strong>br</strong> />

Many circumstances had their role in it –<<strong>br</strong> />

disintegration of Yugoslavia, the UN<<strong>br</strong> />

sanctions, civil wars in the neighborhood,<<strong>br</strong> />

NATO campaign, transition processes in<<strong>br</strong> />

the country and finally many problems<<strong>br</strong> />

inside the company. This is certainly one<<strong>br</strong> />

of the most serious crisis in which the<<strong>br</strong> />

company found itself during its existence<<strong>br</strong> />

longer than a century.<<strong>br</strong> />

The main characteristics of recent production<<strong>br</strong> />

were low graded ore, low production,<<strong>br</strong> />

high metal price and unfavorable<<strong>br</strong> />

business economy. Also, here is a high<<strong>br</strong> />

degree of liquidity, high indebtedness and<<strong>br</strong> />

serious environmental problems.<<strong>br</strong> />

After years of agony, 2010 <strong>br</strong>ought<<strong>br</strong> />

some changes and it might be considered<<strong>br</strong> />

as the <strong>br</strong>eaking point in company existence.<<strong>br</strong> />

Production of copper from own<<strong>br</strong> />

resources rises, copper price significantly<<strong>br</strong> />

exceeds the production costs and overall<<strong>br</strong> />

financial results are, after very long period,<<strong>br</strong> />

positive. This is a period of huge<<strong>br</strong> />

investments, and it is expected that it will<<strong>br</strong> />

be continued in future. On the other hand,<<strong>br</strong> />

there are still many problems remained<<strong>br</strong> />

from the past that make more difficult the<<strong>br</strong> />

business activities of company.<<strong>br</strong> />

No 4, <strong>2011</strong>. 145<<strong>br</strong> />

MINING ENGINEERING


It is important to mention the largest<<strong>br</strong> />

interest of the government in recovery<<strong>br</strong> />

process of RTB <strong>Bor</strong>. All of that are encouraging<<strong>br</strong> />

signs that the company will<<strong>br</strong> />

eventually be able to completely overcome<<strong>br</strong> />

years of crisis and become strong,<<strong>br</strong> />

profitable and successful.<<strong>br</strong> />

REFERENCES<<strong>br</strong> />

[1] R. Nikolić, Economics of Natural<<strong>br</strong> />

Resources, Kompjuter centar <strong>Bor</strong>,<<strong>br</strong> />

<strong>Bor</strong>, 2010 (in Serbian)<<strong>br</strong> />

[2] R. Nikolić, Costs in the Business<<strong>br</strong> />

Economy, Grafomag, Belgrade, 2004<<strong>br</strong> />

(in Serbian)<<strong>br</strong> />

[3] B. Jovanović, Economy of the Timok<<strong>br</strong> />

Region, JP Štampa, radio i film, <strong>Bor</strong>,<<strong>br</strong> />

1995 (in Serbian)<<strong>br</strong> />

[4] B. Jovanović, M. Djurdjević, A<<strong>br</strong> />

Hundred Years of the <strong>Bor</strong> Mining<<strong>br</strong> />

1903-2003, <strong>Bor</strong>, 2005 (in Serbian)<<strong>br</strong> />

[5] N. Cvetanović, Copper in the World,<<strong>br</strong> />

IP Nauka, Belgrade, 2005 (in Serbian)<<strong>br</strong> />

[6] B. Mihajlović, Ž. Milićević, Sustainable<<strong>br</strong> />

Development of Copper Ore Production<<strong>br</strong> />

in RTB <strong>Bor</strong>, Recycling and Sustainable<<strong>br</strong> />

Development, <strong>Bor</strong>, 2008 (in Serbian)<<strong>br</strong> />

[7] Documentation of RTB <strong>Bor</strong><<strong>br</strong> />

(in Serbian)<<strong>br</strong> />

[8] G. Slavković, B. Trumić, D.<<strong>br</strong> />

Stanković, Price forecast for platinum<<strong>br</strong> />

group metals in the production of<<strong>br</strong> />

catalyst nets and catchers, Mining<<strong>br</strong> />

engineering, No. 2/<strong>2011</strong>, pp. 187-192<<strong>br</strong> />

No 4, <strong>2011</strong>. 146<<strong>br</strong> />

MINING ENGINEERING


INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162<<strong>br</strong> />

KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622<<strong>br</strong> />

UDK:519.21:330.322(045)=861<<strong>br</strong> />

Izvod<<strong>br</strong> />

Velimir Dutina * , Ljubo Marković * , Miljan Kovačević*<<strong>br</strong> />

PLANIRANJE VREMENA REALIZACIJE INVESTICIONOG<<strong>br</strong> />

PROJEKTA METODOM ZA POREĐENJE FUZZY BROJEVA<<strong>br</strong> />

Planiranje je jedna od najvažnijih funkcija menadžmenta građevinske kompanije. Efekat<<strong>br</strong> />

planiranja <strong>za</strong>visiće od toga koliko su tačno usvojene pretpostavke na kojima budući plan treba da<<strong>br</strong> />

počiva, tj. sa koliko razumevanja su korišćena stečena iskustva. Da bi se planiranje moglo uspešno<<strong>br</strong> />

provoditi neophodna je stalna kontrola i analizira procesa reali<strong>za</strong>cije, kao i sprovodenje principa<<strong>br</strong> />

permanentnog usavršavanja. Veliki <strong>br</strong>oj faktora utiče na to da se u procesu planiranja mora uzeti<<strong>br</strong> />

u obzir neizvesnost ili nepreciznost u manjoj ili većoj meri. Najznačajniji alternativan pristup<<strong>br</strong> />

<strong>za</strong>snovan je na konceptu rasplinutih (fuzzy) skupova.<<strong>br</strong> />

Ključne reči: planiranje, teorija mogućnosti, rasplinuti (fuzzy) skupovi, verovatnoća.<<strong>br</strong> />

UVOD<<strong>br</strong> />

Planiranje vremena reali<strong>za</strong>cije investicionog<<strong>br</strong> />

projekta jedna je od najvažnijih<<strong>br</strong> />

funkcija menadžmenta građevinske<<strong>br</strong> />

kompanije. Bez planiranja, reali<strong>za</strong>cija je<<strong>br</strong> />

prepuštena stihijskom odvijanju koje u<<strong>br</strong> />

nekim slučajevima može da dovede do<<strong>br</strong> />

prekida u reali<strong>za</strong>ciji projekta i raskida<<strong>br</strong> />

ugovornih odnosa. Da bi planiranje bilo<<strong>br</strong> />

realno, racionalno i ekonomično, treba<<strong>br</strong> />

da odgovara proizvodnim mogućnostima<<strong>br</strong> />

kompanije, da koristi ažurirane baze<<strong>br</strong> />

podataka (o realizovanim projektima i<<strong>br</strong> />

istraživanjima tržišta) i da se oslanja na<<strong>br</strong> />

savremenu matematičku teoriju.<<strong>br</strong> />

Efekti planiranja <strong>za</strong>vise od tačnosti i<<strong>br</strong> />

preciznosti pretpostavki na kojima plan treba<<strong>br</strong> />

da počiva, tj. od načina korišćenja<<strong>br</strong> />

prikupljenih informacija i stečenih iskustava.<<strong>br</strong> />

Da bi planiranje bilo uspešno, neophodna je<<strong>br</strong> />

stalna kontrola i anali<strong>za</strong> procesa reali<strong>za</strong>cije,<<strong>br</strong> />

permanentno praćenje i primena novih<<strong>br</strong> />

* Univerzitet u Prištini, Fakultet tehničkih nauka-Kosovska Mitrovica<<strong>br</strong> />

tehnoloških rešenja i inovacija, kao i<<strong>br</strong> />

sprovođenje usavršavanja obuke i edukacije<<strong>br</strong> />

<strong>za</strong>poslenih. Uočene greške kod planiranja i<<strong>br</strong> />

organi<strong>za</strong>cije na jednom objektu treba<<strong>br</strong> />

prikupiti, sistematizovati sistematizovati i<<strong>br</strong> />

analizirati, naći adekvatna rešenja i u skladu<<strong>br</strong> />

sa njima preduzimati mere da se greške više<<strong>br</strong> />

ne ponove. To je racionalan put ka unapređenju<<strong>br</strong> />

proizvodnje.<<strong>br</strong> />

Veliki <strong>br</strong>oj faktora utiče na to da se u<<strong>br</strong> />

procesu planiranja neizvesnost ili nepreciznost<<strong>br</strong> />

mora uzeti u obzir. Zbog toga,<<strong>br</strong> />

deterministički model koji se najčešće koriste<<strong>br</strong> />

(CPM metoda) postaje sasvim neodgovarajući<<strong>br</strong> />

i neprimenljiv. Klasičan pristup pri kvantitativnom<<strong>br</strong> />

tretiranju neizvesnosti koristi<<strong>br</strong> />

matematički aparat teorije verovatnoće (odnos<<strong>br</strong> />

povoljnih prema ukupnom <strong>br</strong>oju mogućih<<strong>br</strong> />

ishoda). Pristup teorije verovatnoće ima<<strong>br</strong> />

ograničene mogućnosti primene i izvesne<<strong>br</strong> />

slabosti pri razmatranju problema kod kojih se<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 147<<strong>br</strong> />

RUDARSKI RADOVI


pojavljuju tipovi neodređenosti drugačiji od<<strong>br</strong> />

onih koji se računaju kao odnos <strong>br</strong>oja<<strong>br</strong> />

povoljnih i <strong>br</strong>oja mogućih ishoda.<<strong>br</strong> />

Najznačajniji alternativan pristup razvio<<strong>br</strong> />

je kalifornijski profesor L. Zadeh [1]. Taj<<strong>br</strong> />

pristup dozvoljava opisivanje „rasplinutih“<<strong>br</strong> />

pojava i znanja, operacije nad njima,<<strong>br</strong> />

izvođenje <strong>za</strong>ključaka i predstavlja osnovu <strong>za</strong><<strong>br</strong> />

razvoj nove matematičke teorije rasplinutih<<strong>br</strong> />

(fuzzy) skupova. Fuzzy upravljanje je korisno<<strong>br</strong> />

u slučajevima kada su tehnološki procesi<<strong>br</strong> />

složeni <strong>za</strong> analizu uz pomoć poznatih metoda<<strong>br</strong> />

ili kada su dostupne informacije interpretirane<<strong>br</strong> />

kvalitativno, ali neodređeno [2].<<strong>br</strong> />

TEORIJA RASPLINUTIH ( FUZZY)<<strong>br</strong> />

SKUPOVA I POJAM MOGUĆNOSTI<<strong>br</strong> />

Teorija rasplinutih skupova obezbeđuje<<strong>br</strong> />

formalni sistem <strong>za</strong> predstavljanje i razumevanje<<strong>br</strong> />

situacija prilikom pojave nesigurnih,<<strong>br</strong> />

subjektivnih i nepreciznih informacija. U<<strong>br</strong> />

klasičnom modelovanju veze<<strong>br</strong> />

U procesu reali<strong>za</strong>cije građevinskih projekata<<strong>br</strong> />

pored ocene trajanja kao i verovatnoća<<strong>br</strong> />

trajanja pojedinih aktivnosti i<<strong>br</strong> />

<strong>za</strong>vršetka projekta u celini ili pojednih njegovih<<strong>br</strong> />

delova (fa<strong>za</strong>), važno je, takođe da se<<strong>br</strong> />

odredi i mogućnost izvršioca (izvođača<<strong>br</strong> />

radova) da <strong>za</strong>vrši predviđene aktivnosti,<<strong>br</strong> />

delove projekta ili projekat u celini u predviđenom<<strong>br</strong> />

ili ugovorenom roku. Pojam<<strong>br</strong> />

Sl. 1. Standardne funkcije pripadnosti fuzzy skupa<<strong>br</strong> />

su izražene matematičkim funkcijama. Kako<<strong>br</strong> />

sistemi postaju komplikovaniji postaje<<strong>br</strong> />

otežano primenjivati matematičko modelovanje,<<strong>br</strong> />

pa se <strong>za</strong> ove situacije koriste rasplinuti<<strong>br</strong> />

fuzzy modeli.<<strong>br</strong> />

Za <strong>za</strong>dati skup T čiji su elementi t realni<<strong>br</strong> />

<strong>br</strong>ojevi, postoji podskup Ti ∈ T , kojima se<<strong>br</strong> />

pridružuju vrednosti neke funkcije μ( ti)<<strong>br</strong> />

čije<<strong>br</strong> />

su vrednosti realni <strong>br</strong>ojevi u intervalu (0,1).<<strong>br</strong> />

Podskup Ti predstavlja rasplinuti skup ili<<strong>br</strong> />

takozvanu rasplinutu restrikciju (fuzzy restriction)<<strong>br</strong> />

na skupu T. Funkcija μ ( ti)<<strong>br</strong> />

se naziva<<strong>br</strong> />

funkcija pripadnosti (membership function)<<strong>br</strong> />

elemenata ti na skupu Ti. Oblik funkcije<<strong>br</strong> />

pripadnosti može biti potpuno proizvoljan.<<strong>br</strong> />

Na slici 1. prika<strong>za</strong>ne su standardne funkcije<<strong>br</strong> />

pripadnosti. Na osnovu eksperimentalnih<<strong>br</strong> />

istraživanja došlo se do <strong>za</strong>ključka da se standardne<<strong>br</strong> />

funkcije pripadnosti mogu koristiti <strong>za</strong><<strong>br</strong> />

rešavanje većine <strong>za</strong>dataka.<<strong>br</strong> />

mogućnosti vezuje se <strong>za</strong> sposobnost i spremnost<<strong>br</strong> />

subjekta (reali<strong>za</strong>tora projekta) da u<<strong>br</strong> />

datim uslovima i u predviđenom vremenu<<strong>br</strong> />

izvrši preduzete obaveze ili <strong>za</strong>datke, i razlikuje<<strong>br</strong> />

se od pojma verovatnoće koji se vezuje<<strong>br</strong> />

<strong>za</strong> statističke podatke [3].<<strong>br</strong> />

Dalje se definiše funkcija distibucije<<strong>br</strong> />

mogućnosti πi <strong>za</strong> koju važi:<<strong>br</strong> />

π ( t ) =<<strong>br</strong> />

Poss{<<strong>br</strong> />

T = t } = μ ( t )<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 148<<strong>br</strong> />

RUDARSKI RADOVI<<strong>br</strong> />

i<<strong>br</strong> />

i<<strong>br</strong> />

i<<strong>br</strong> />

i<<strong>br</strong> />

i


i izražava mogućnost da element ti ∈ Ti<<strong>br</strong> />

.<<strong>br</strong> />

Za projekat koji se sastoji od m aktivnosti<<strong>br</strong> />

čija su trajanja ti elementi nekog rasplinutog<<strong>br</strong> />

skupa Ti funkcija pripadnosti μi<<strong>br</strong> />

predstavlja mogućnost nekog izvršioca da<<strong>br</strong> />

tu aktivnost uradi u toku nekog vremena<<strong>br</strong> />

ti. Funkcija πi izražava stepen mogućnosti<<strong>br</strong> />

izvršioca i kada je πi(ti)=0 onda ne postoji<<strong>br</strong> />

mogućnost da se aktivnost i obavi u toku<<strong>br</strong> />

vremena. Ako je πi(ti) = 1, onda je ta mogućnost<<strong>br</strong> />

maksimalna.<<strong>br</strong> />

U determinističkom postupku CPM<<strong>br</strong> />

metode vrednost ove funkcije je:<<strong>br</strong> />

⎧1<<strong>br</strong> />

<strong>za</strong> ti<<strong>br</strong> />

= ai<<strong>br</strong> />

⎫<<strong>br</strong> />

π i ( ti<<strong>br</strong> />

) = ⎨ ⎬<<strong>br</strong> />

⎩0<<strong>br</strong> />

<strong>za</strong> ti<<strong>br</strong> />

≠ ai<<strong>br</strong> />

⎭<<strong>br</strong> />

gde je:<<strong>br</strong> />

ai - neka <strong>za</strong>data ili utvrđena vrednost<<strong>br</strong> />

trajanja aktivnosti i.<<strong>br</strong> />

Trajanje aktivnosti ti kao rasplinute<<strong>br</strong> />

varijable i stepeni mogućnosti izvršenja πi<<strong>br</strong> />

procenjuje se na osnovu iskustva.<<strong>br</strong> />

PRORAČUN TRAJANJA<<strong>br</strong> />

PROJEKTA KADA SU TRAJANJA<<strong>br</strong> />

AKTIVNOSTI FUZZY BROJEVI<<strong>br</strong> />

Neka su dati fuzzy <strong>br</strong>ojevi:<<strong>br</strong> />

{ , μ ( ) } i<<strong>br</strong> />

A<<strong>br</strong> />

{ , μ ( ) } .<<strong>br</strong> />

A<<strong>br</strong> />

A = x x x∈R B = y y y∈R Funkcija pripadnosti razmatranih<<strong>br</strong> />

fuzzy <strong>br</strong>ojeva su neprekidne i njihove<<strong>br</strong> />

vrednosti pripadaju intervalu (0,1).<<strong>br</strong> />

Neka je sa * označena operacija na fuzzy<<strong>br</strong> />

<strong>br</strong>ojevima. Tada je: A * B takođe fuzzy<<strong>br</strong> />

<strong>br</strong>oj koji je označen kao C = A* B,<<strong>br</strong> />

tako da<<strong>br</strong> />

{ , μ ( ) }<<strong>br</strong> />

c<<strong>br</strong> />

C = z z z∈R gde je:<<strong>br</strong> />

z=x*y - a funkcija pripadnosti se<<strong>br</strong> />

računa prema principu<<strong>br</strong> />

proširenja, tj.<<strong>br</strong> />

μ ( z) = supmin( μ ( x), μ ( y)).<<strong>br</strong> />

C z= x+ y A B<<strong>br</strong> />

U specijalnom slučaju kada su fuzzy<<strong>br</strong> />

<strong>br</strong>ojevi linearni, odnosno kada su funkcije<<strong>br</strong> />

pripadnosti oblika trougla, tada su izrazi<<strong>br</strong> />

pomoću kojih izračunavamo zbir, razliku,<<strong>br</strong> />

proizvod i količnik fuzzy <strong>br</strong>ojeva znatno<<strong>br</strong> />

jednostavniji.<<strong>br</strong> />

Za svaki α presek fuzzy <strong>br</strong>ojevi se<<strong>br</strong> />

predstavljaju sa:<<strong>br</strong> />

α α α α<<strong>br</strong> />

A = ⎡<<strong>br</strong> />

⎣ xL, x ⎤ D ⎦ and B = ⎡<<strong>br</strong> />

⎣yL , y ⎤ D ⎦<<strong>br</strong> />

Tada se operacije sa trougaonim fuzzy<<strong>br</strong> />

<strong>br</strong>ojevima definišu izrazima [5]:<<strong>br</strong> />

{ , μ ( ) , }<<strong>br</strong> />

C<<strong>br</strong> />

C = A+ B= z z z∈R ⎡ α α α α⎤<<strong>br</strong> />

z= ⎢xL + yL , xR + yR⎥; μ ( z)<<strong>br</strong> />

= α; α = 0,1<<strong>br</strong> />

C<<strong>br</strong> />

⎣ ⎦<<strong>br</strong> />

{ , μ ( ) , }<<strong>br</strong> />

C<<strong>br</strong> />

C = A− B= z z z∈ R<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 149<<strong>br</strong> />

RUDARSKI RADOVI<<strong>br</strong> />

[ ]<<strong>br</strong> />

⎡ α α α α⎤ z= ⎢xL − yR, xR − yL⎥; μ ( z)<<strong>br</strong> />

= α; α = 0,1<<strong>br</strong> />

⎣ ⎦ C<<strong>br</strong> />

{ , μ ( ) , }<<strong>br</strong> />

C<<strong>br</strong> />

C = A⋅ B= z z z∈R [ ]<<strong>br</strong> />

⎡ α α α α⎤ z= ⎢xL ⋅yL, xR⋅ yR⎥; μ ( z)<<strong>br</strong> />

= α; α = 0,1<<strong>br</strong> />

⎣ ⎦ C<<strong>br</strong> />

{ μ }<<strong>br</strong> />

C<<strong>br</strong> />

C = A: B= z, ( z) z∈ R,<<strong>br</strong> />

[ ]<<strong>br</strong> />

⎡ α α α α⎤<<strong>br</strong> />

z= ⎢xL / yR, xR / yL⎥; μ ( z)<<strong>br</strong> />

= α; α = 0,1<<strong>br</strong> />

⎣ ⎦ C<<strong>br</strong> />

Primer:<<strong>br</strong> />

[ ]<<strong>br</strong> />

Dati su strogo pozitivni fuzzy <strong>br</strong>ojevi<<strong>br</strong> />

A = { x, μ ( x) x∈<<strong>br</strong> />

[ 6,10 ] } i<<strong>br</strong> />

A<<strong>br</strong> />

B = { y, μ ( y) A<<strong>br</strong> />

y ∈ [ 8,10 ] } .<<strong>br</strong> />

μ ( x)<<strong>br</strong> />

=<<strong>br</strong> />

A<<strong>br</strong> />

⎧ 1<<strong>br</strong> />

⎫<<strong>br</strong> />

x −3, 6 ≤ x ≤8 ⎪ 2<<strong>br</strong> />

⎪<<strong>br</strong> />

⎨ ⎬<<strong>br</strong> />

⎪ 1<<strong>br</strong> />

− x + 5, 8 ≤ x ≤10⎪<<strong>br</strong> />

⎪⎩ 2<<strong>br</strong> />

⎪⎭


μ ( x)<<strong>br</strong> />

=<<strong>br</strong> />

B<<strong>br</strong> />

⎧ y − 8, 8 ≤ y ≤ 9 ⎫<<strong>br</strong> />

⎨ ⎬<<strong>br</strong> />

⎩ − y + 10, 9 ≤ x ≤ 10 ⎭<<strong>br</strong> />

Odrediti: C = A+ B<<strong>br</strong> />

Da bi izvršili naznačene operacije nad<<strong>br</strong> />

datim trougaonim fuzzy <strong>br</strong>ojevima potrebno<<strong>br</strong> />

je odrediti levu i desnu granicu intervala<<strong>br</strong> />

poverenja <strong>za</strong> svaki nivo uverenja<<strong>br</strong> />

α ∈[<<strong>br</strong> />

0,<<strong>br</strong> />

1]<<strong>br</strong> />

. Drugim rečima potrebno je<<strong>br</strong> />

odrediti ekstremne vrednosti u α preseku<<strong>br</strong> />

fuzzy <strong>br</strong>ojeva A i B.<<strong>br</strong> />

Leva granična vrednost fuzzy <strong>br</strong>oja<<strong>br</strong> />

A <strong>za</strong> nivo uverenja α ∈[<<strong>br</strong> />

0,<<strong>br</strong> />

1]<<strong>br</strong> />

dobija se<<strong>br</strong> />

prema izrazu α x L :<<strong>br</strong> />

1<<strong>br</strong> />

x α α α<<strong>br</strong> />

L − 3 = → xL<<strong>br</strong> />

= 6 + 2α<<strong>br</strong> />

2<<strong>br</strong> />

Desna granična vrednost fuzzy <strong>br</strong>oja<<strong>br</strong> />

A <strong>za</strong> nivo uverenja [ ] α α ∈ 0 , 1 ⋅ xR<<strong>br</strong> />

dobija<<strong>br</strong> />

se prema izrazu :<<strong>br</strong> />

1 α<<strong>br</strong> />

α<<strong>br</strong> />

− x R + 5 = α → xR<<strong>br</strong> />

= 10 − 2α<<strong>br</strong> />

2<<strong>br</strong> />

α presek fazi <strong>br</strong>oja je :<<strong>br</strong> />

1 [ α α<<strong>br</strong> />

α = L , R ] = [ 6 + 2α<<strong>br</strong> />

, 10 − 2α<<strong>br</strong> />

]<<strong>br</strong> />

2<<strong>br</strong> />

x x A<<strong>br</strong> />

Analogno prethodnom dobijamo <strong>za</strong> α<<strong>br</strong> />

presek fuzzy <strong>br</strong>oja B :<<strong>br</strong> />

Na sličan način se računa i razlika,<<strong>br</strong> />

proizvod i količnik fuzzy <strong>br</strong>ojeva.<<strong>br</strong> />

Ako su aktivnosti Ai, čije je trajanje ti<<strong>br</strong> />

fuzzy <strong>br</strong>oj, prika<strong>za</strong>ne pomoću krugova ili<<strong>br</strong> />

Sl. 2. Fuzzy <strong>br</strong>ojevi A, B, C<<strong>br</strong> />

[ α α<<strong>br</strong> />

y ] = [ 8 + α,<<strong>br</strong> />

− α ]<<strong>br</strong> />

B α = L , yR<<strong>br</strong> />

10<<strong>br</strong> />

Izračunajmo zbir fuzzy <strong>br</strong>ojeva A i B<<strong>br</strong> />

koji je označen sa C . Fuzzy <strong>br</strong>oj C se<<strong>br</strong> />

formalno <strong>za</strong>pisuje C = { z, μ ( z)<<strong>br</strong> />

} .<<strong>br</strong> />

C<<strong>br</strong> />

Prema pravilu o sabiranju trouglastih<<strong>br</strong> />

fuzzy <strong>br</strong>ojeva sledi:<<strong>br</strong> />

C = [ (6 + 2 α) + (8 + α),(10- α) + (10 − 2α]<<strong>br</strong> />

=<<strong>br</strong> />

= [ 14 + 3 α,20 −3α]<<strong>br</strong> />

Jednačine koje predstavljaju levu i<<strong>br</strong> />

desnu stranu fuzzy <strong>br</strong>oja C:<<strong>br</strong> />

α 1 α 14<<strong>br</strong> />

14 + 3α<<strong>br</strong> />

= z → α = z −<<strong>br</strong> />

3 3<<strong>br</strong> />

α 1 α 20<<strong>br</strong> />

20 − 3α<<strong>br</strong> />

= z → α = − z −<<strong>br</strong> />

3 3<<strong>br</strong> />

Funkcija pripadnosti fuzzy <strong>br</strong>oja C je<<strong>br</strong> />

takođe oblika trougla i formalno se predstavlja<<strong>br</strong> />

analitičkim izrazom:<<strong>br</strong> />

⎧ 1 14 ⎫<<strong>br</strong> />

z − , 14 ≤ z ≤ 17<<strong>br</strong> />

⎪ 3 3<<strong>br</strong> />

⎪<<strong>br</strong> />

μ ( z ) =<<strong>br</strong> />

C ⎨ ⎬<<strong>br</strong> />

⎪ 1 20<<strong>br</strong> />

− z + , 17 ≤ z ≤ 20 ⎪<<strong>br</strong> />

⎪⎩ 3 3<<strong>br</strong> />

⎪⎭<<strong>br</strong> />

A i B Fuzzy <strong>br</strong>ojevi kao i njihov zbir, tj.<<strong>br</strong> />

fuzzy <strong>br</strong>oj C prika<strong>za</strong>ni su na slici 2.<<strong>br</strong> />

pravougaonika (precedence dijagram),<<strong>br</strong> />

onda se vremena njihovih najranijih i najkasnijih<<strong>br</strong> />

<strong>za</strong>vršetaka RZi I RKi izračunavaju<<strong>br</strong> />

pomoću sledećih izra<strong>za</strong>:<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 150<<strong>br</strong> />

RUDARSKI RADOVI


i<<strong>br</strong> />

p<<strong>br</strong> />

( RZ t )<<strong>br</strong> />

RZ = max +<<strong>br</strong> />

p<<strong>br</strong> />

( RZ ) = sup{<<strong>br</strong> />

min[<<strong>br</strong> />

π ( RZ ) π ( t ) ] }<<strong>br</strong> />

π ,<<strong>br</strong> />

i<<strong>br</strong> />

KZ = min(<<strong>br</strong> />

KZ − t )<<strong>br</strong> />

i<<strong>br</strong> />

n<<strong>br</strong> />

p<<strong>br</strong> />

n<<strong>br</strong> />

π ( KZ ) = sup min[<<strong>br</strong> />

π ( KZ ) , π ( t ) ]<<strong>br</strong> />

i<<strong>br</strong> />

i<<strong>br</strong> />

i<<strong>br</strong> />

{ }<<strong>br</strong> />

i = 1 , 2,...,<<strong>br</strong> />

m;<<strong>br</strong> />

p = 1,<<strong>br</strong> />

2,..,<<strong>br</strong> />

m −1;<<strong>br</strong> />

n = 2,<<strong>br</strong> />

3,...,<<strong>br</strong> />

m<<strong>br</strong> />

Ako se vremena trajanja aktivnosti<<strong>br</strong> />

razmatraju kao kontinualne konvkesne<<strong>br</strong> />

fuzzy promenljive, onda se početak i<<strong>br</strong> />

<strong>za</strong>vršetak aktivnosti koja je takođe<<strong>br</strong> />

kontinualna lako određuju.<<strong>br</strong> />

POREĐENJE FUZZY BROJEVA<<strong>br</strong> />

Problem poređenja fuzzy <strong>br</strong>ojeva je<<strong>br</strong> />

<strong>za</strong>datak koji se javlja u problemima<<strong>br</strong> />

odlučivanja vrlo često. Na primer, kada su<<strong>br</strong> />

alternative opisane fuzzy <strong>br</strong>ojevima,<<strong>br</strong> />

postavlja se pitanja kako da odredimo koja<<strong>br</strong> />

je alternativa bolja od druge. Ovom<<strong>br</strong> />

problemu posvećen je veći <strong>br</strong>oj radova u<<strong>br</strong> />

literaturi [4].<<strong>br</strong> />

U slučaju određivanje vremena (roka)<<strong>br</strong> />

reali<strong>za</strong>cije projekta kod svake aktivnosti<<strong>br</strong> />

koja ima više prethodnih aktivnosti susreli bi<<strong>br</strong> />

se sa problemom poređenja fuzzy <strong>br</strong>ojeva,<<strong>br</strong> />

jer su trajanja aktivnosti kao i njihovi rani i<<strong>br</strong> />

kasni <strong>za</strong>vršeci takođe fuzzy <strong>br</strong>ojevi. Jedna<<strong>br</strong> />

od metoda kojom se možemo poslužiti u<<strong>br</strong> />

tom slučaju je metoda Kaufmanna i Gupte<<strong>br</strong> />

[4] <strong>za</strong> poređenje fuzzy <strong>br</strong>ojeva. Ovo je<<strong>br</strong> />

jednostavna metoda <strong>za</strong> poređenje fuzzy<<strong>br</strong> />

<strong>br</strong>ojeva koja se realizuje u tri koraka.<<strong>br</strong> />

Korak 1<<strong>br</strong> />

U ovom koraku vrši se poređenje "pomerenosti"<<strong>br</strong> />

fuzzy <strong>br</strong>ojeva. Neka je dat fuzzy <strong>br</strong>oj<<strong>br</strong> />

{ , μ ( ), }<<strong>br</strong> />

M<<strong>br</strong> />

M = x x tako da je x vrednost<<strong>br</strong> />

u domenu fuzzy <strong>br</strong>oja M i x ∈ X.<<strong>br</strong> />

Donja, odnosna gornja granica u<<strong>br</strong> />

domenu X neka je označena kao x ,<<strong>br</strong> />

−<<strong>br</strong> />

−<<strong>br</strong> />

x ,<<strong>br</strong> />

p<<strong>br</strong> />

n<<strong>br</strong> />

i<<strong>br</strong> />

i<<strong>br</strong> />

respektivno μ ( x ) je funkcija raspodele<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 151<<strong>br</strong> />

RUDARSKI RADOVI<<strong>br</strong> />

M<<strong>br</strong> />

mogućnosti fuzzy <strong>br</strong>oja M .<<strong>br</strong> />

Da bi odredili "pomerenost" fuzzy<<strong>br</strong> />

<strong>br</strong>oja M u odnosnu na realnu vrednost k<<strong>br</strong> />

treba prvo da definišemo termine:<<strong>br</strong> />

• "leva pomerenost ", RL( M ,k), i<<strong>br</strong> />

• "desna pomerenost ", RD ( M , k).<<strong>br</strong> />

"Leva pomerenost" RL ( M , k) se izračunava<<strong>br</strong> />

kao površina ispod krive funkcije pripadnosti<<strong>br</strong> />

fuzzy <strong>br</strong>oja M ~ od donje granice domena<<strong>br</strong> />

fuzzy <strong>br</strong>oja M i skalara k, što se<<strong>br</strong> />

predstavlja izrazom:<<strong>br</strong> />

k<<strong>br</strong> />

RL( M, k) = ∫ μ ( x)<<strong>br</strong> />

<strong>za</strong> kontinualne fazi<<strong>br</strong> />

M<<strong>br</strong> />

x<<strong>br</strong> />

−<<strong>br</strong> />

<strong>br</strong>ojeve.<<strong>br</strong> />

k μ ( xi−1) + μ ( xi)<<strong>br</strong> />

M M<<strong>br</strong> />

RL( Mk , ) = ∑<<strong>br</strong> />

⋅( xi−xi−1) i=<<strong>br</strong> />

2 2<<strong>br</strong> />

<strong>za</strong> diskretne fazi <strong>br</strong>ojeve<<strong>br</strong> />

"Desna pomerenost", RD( M , k) se<<strong>br</strong> />

izračunava kao površina ispod krive<<strong>br</strong> />

funkcije pripadnosti fazi <strong>br</strong>oja M ~ od<<strong>br</strong> />

skalara k do gonje granice domena fazi<<strong>br</strong> />

<strong>br</strong>oja M, što se predstavlja izrazom:<<strong>br</strong> />

R ( M , k) = ∫ μ ( x)<<strong>br</strong> />

<strong>za</strong> kontinualne<<strong>br</strong> />

D<<strong>br</strong> />

fazi <strong>br</strong>ojeve. ib j<<strong>br</strong> />

−<<strong>br</strong> />

x<<strong>br</strong> />

k<<strong>br</strong> />

M<<strong>br</strong> />

−<<strong>br</strong> />

x μ ( xi−1) + μ ( xi)<<strong>br</strong> />

M M<<strong>br</strong> />

RD ( M, k)<<strong>br</strong> />

= ∑<<strong>br</strong> />

i= k+<<strong>br</strong> />

1 2<<strong>br</strong> />

<strong>za</strong> diskretne fazi <strong>br</strong>ojeve<<strong>br</strong> />

Ukupna ”pomerenost” fuzzy <strong>br</strong>oja M ~<<strong>br</strong> />

u odnosu na realni <strong>br</strong>oj k se izračunava<<strong>br</strong> />

prema izrazu:<<strong>br</strong> />

RL ( M , k) + RD ( M , k)<<strong>br</strong> />

R ( M , k)<<strong>br</strong> />

=<<strong>br</strong> />

2


Za slučaj da fuzzy <strong>br</strong>oj M ~ ima funkciju<<strong>br</strong> />

pripadnosti oblika trougla (k=0), tada se<<strong>br</strong> />

koristi pola Hamingove distance:<<strong>br</strong> />

−<<strong>br</strong> />

x + 2 x′ + x<<strong>br</strong> />

−<<strong>br</strong> />

R ( M , k)<<strong>br</strong> />

=<<strong>br</strong> />

4<<strong>br</strong> />

gde su:<<strong>br</strong> />

−<<strong>br</strong> />

x x , x<<strong>br</strong> />

−<<strong>br</strong> />

, ' - apscise odgovarajućih te-<<strong>br</strong> />

mena trougaonog fuzzy <strong>br</strong>oja.<<strong>br</strong> />

Neka su sada data dva fuzzy <strong>br</strong>oja<<strong>br</strong> />

{ , μ ( ), }<<strong>br</strong> />

M<<strong>br</strong> />

{ , μ ( ) } N<<strong>br</strong> />

M = x x i<<strong>br</strong> />

N = y y<<strong>br</strong> />

Smatra se da je fuzzy <strong>br</strong>oj M manji od<<strong>br</strong> />

fuzzy <strong>br</strong>oja N ako i samo ako<<strong>br</strong> />

R ( M , k) < R ( N, k)<<strong>br</strong> />

važi: i o<strong>br</strong>nuto.<<strong>br</strong> />

Korak 2<<strong>br</strong> />

Ukoliko nije moguće u prvom koraku<<strong>br</strong> />

odrediti meru da je jedan fuzzy <strong>br</strong>oj manji<<strong>br</strong> />

ili veći od drugog tada se prelazi na drugi<<strong>br</strong> />

korak. U ovom koraku se vrši poređenje<<strong>br</strong> />

vrednosti domena oba fuzzy <strong>br</strong>oja kojima<<strong>br</strong> />

su pridružene najveće vrednosti funkcija<<strong>br</strong> />

raspodele mogućnosti.<<strong>br</strong> />

Formalno, drugi korak se predstavlja:<<strong>br</strong> />

• max ( ( x ) )<<strong>br</strong> />

μ je pridružena<<strong>br</strong> />

M<<strong>br</strong> />

vrednost domena fuzzy <strong>br</strong>oja M<<strong>br</strong> />

*<<strong>br</strong> />

koja je označena kao x<<strong>br</strong> />

Tabela 1. Spisak aktivnosti sa trajanjem u danima<<strong>br</strong> />

M<<strong>br</strong> />

• max ( ( y ) )<<strong>br</strong> />

μ je pridružena<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 152<<strong>br</strong> />

RUDARSKI RADOVI<<strong>br</strong> />

N<<strong>br</strong> />

vrednost domena fuzzy <strong>br</strong>oja N koja<<strong>br</strong> />

*<<strong>br</strong> />

je označena kao x<<strong>br</strong> />

Neka su sada data dva fuzzy <strong>br</strong>oja<<strong>br</strong> />

M = x, μ ( x),<<strong>br</strong> />

i N = { y, μ ( y)<<strong>br</strong> />

} N<<strong>br</strong> />

{ }<<strong>br</strong> />

M<<strong>br</strong> />

Smatra se da je fuzzy <strong>br</strong>oj M ~ manji<<strong>br</strong> />

od fuzzy <strong>br</strong>oja N ~ ako i samo ako važi:<<strong>br</strong> />

x < x<<strong>br</strong> />

* *<<strong>br</strong> />

M N<<strong>br</strong> />

Korak 3<<strong>br</strong> />

Ovaj korak se realizuje onda kada u prva<<strong>br</strong> />

dva koraka nismo u mogućnosti da odredimo<<strong>br</strong> />

koliko je jedan fuzzy <strong>br</strong>oj veći ili manji od<<strong>br</strong> />

drugog. U ovom koraku se vrši poređenje<<strong>br</strong> />

“ba<strong>za</strong>” fuzzy <strong>br</strong>ojeva. Termin “ba<strong>za</strong>” označava<<strong>br</strong> />

dužinu osnovice fuzzy <strong>br</strong>oja.<<strong>br</strong> />

PRIMENA METODE ZA<<strong>br</strong> />

POREĐENJE FUZZY BROJEVA NA<<strong>br</strong> />

PRIMERU IZ PRAKSE<<strong>br</strong> />

Za jednu industrijsku halu dat je spisak<<strong>br</strong> />

generalnih aktivnosti sa trajanjem u<<strong>br</strong> />

danima (tabela 1.), kojim su obuhvaćeni<<strong>br</strong> />

<strong>radovi</strong> na gradilištu kao i <strong>radovi</strong> na prefa<strong>br</strong>ikaciji<<strong>br</strong> />

montažnih elemenata.<<strong>br</strong> />

Broj aktivnosti u<<strong>br</strong> />

mreznom planu<<strong>br</strong> />

Opis aktivnosti l m r<<strong>br</strong> />

1. Ispunjenje ugovornih obave<strong>za</strong> prema izvođaču 2 3 4<<strong>br</strong> />

2. Pripremni <strong>radovi</strong> (izgradnja privrednog gradilišta) 5 7 9<<strong>br</strong> />

3. Prefa<strong>br</strong>ikacija betonskih fasadnih elemenata 24 30 35<<strong>br</strong> />

4. Prefa<strong>br</strong>ikacija betonskih stubova i olučnih greda 14 16 18<<strong>br</strong> />

5. Skidanje sloja humusa i nivelisanje lokacije 3 4 5<<strong>br</strong> />

6. Izrada glavnih krovnih nosača (rešetke) 7 10 12<<strong>br</strong> />

7. Izrada sao<strong>br</strong>aćajnica oko objekta 9 12 14<<strong>br</strong> />

N


8. Iskop jama <strong>za</strong> temeije samce 1 2 3<<strong>br</strong> />

9. Izrada sekundarnih krovnih nosača (rožnjače, spregovi) 13 15 17<<strong>br</strong> />

10. Izrada podloge <strong>za</strong> podnu ploču hale 3 4 5<<strong>br</strong> />

11. Iskop kanala <strong>za</strong> spoljne instalacije 3 4 5<<strong>br</strong> />

12. Izrada habajućeg sloja sao<strong>br</strong>ačajnica 1 2 3<<strong>br</strong> />

13. Betoniranje temelja samaca i temeljnih greda 8 10 12<<strong>br</strong> />

14. Transport i deponovanje čelične konstrukcije 1 3 4<<strong>br</strong> />

15. Montaža betonskih stubova i olučnih greda 2 3 4<<strong>br</strong> />

16. Izrada podne ploče hale sa hidroizolacijom 4 6 7<<strong>br</strong> />

17. Povezivanje delova režetke u celinu 1 2 3<<strong>br</strong> />

18. Postavljanje spoljnih instalacija 13 15 18<<strong>br</strong> />

19. Montaža glavnih krovnih nosača (rešetke) 1 2 3<<strong>br</strong> />

20. Montaža betonskih fasadnih elemenata 4 5 7<<strong>br</strong> />

21. Montaža sekundarnih krovnih nosača 4 5 7<<strong>br</strong> />

22. Ugrađivanje ostakljene fasadne <strong>br</strong>avarije 6 8 10<<strong>br</strong> />

23. Montaža kranskih sta<strong>za</strong> <strong>za</strong> mostni kran 3 4 5<<strong>br</strong> />

24. Postavljanje krovnog pokrivača i oluka hale 7 10 12<<strong>br</strong> />

25. Ugradivanje krovnih svetlosnih traka 2 3 4<<strong>br</strong> />

26. Postavljanje unutrašnjih instaiacija hale 10 11 12<<strong>br</strong> />

27. Montaža mostnih kranova 8 10 13<<strong>br</strong> />

28. Molersko - farbarski <strong>radovi</strong> u hali 6 7 9<<strong>br</strong> />

29. Tehnički prijem objekta 2 3 4<<strong>br</strong> />

30. Puštanje u probni rad 8 10 12<<strong>br</strong> />

Sl. 3. Anali<strong>za</strong> strukture mrežnog plana<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 153<<strong>br</strong> />

RUDARSKI RADOVI


Rz1 = t1<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz1 = α + 2;4−α<<strong>br</strong> />

Rz2 = Rz1+ t2<<strong>br</strong> />

[ ]<<strong>br</strong> />

t 2 = 2 α + 5;9 − 2α<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz2 = α + 2+ 2α + 5;4− α + 9−2α [ ]<<strong>br</strong> />

Rz2 = 3α + 7;13−3α Rz3 = Rz2+ t3<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz3 = 3 α + 7 + 6α+ 24;13 − 3α+ 35−5α [ ]<<strong>br</strong> />

Rz3 = 9α + 31;48−8α Rz4 = Rz2+ t4<<strong>br</strong> />

[ ] [ ]<<strong>br</strong> />

Rz4 = 3 α + 7;13− 3α + 2α + 14;18 −2α<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz4 = 5α + 21;31−5α Rz5 = Rz2+ t5<<strong>br</strong> />

[ ] [ ]<<strong>br</strong> />

Rz5 = 3 α + 7;13− 3α + α + 3;5 −α<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz5 = 4α + 10;18−4α Rz6 = Rz2+ t6<<strong>br</strong> />

[ ] [ ]<<strong>br</strong> />

Rz6 = 3 α + 7;13− 3α + 3α + 7;12 −2α<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz6 = 6 α + 14;25−5α R z1 = t1<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz1 = α + 2;4−α<<strong>br</strong> />

Rz2 = Rz1+ t2<<strong>br</strong> />

[ ]<<strong>br</strong> />

t2= 2 α + 5;9−2α [ ]<<strong>br</strong> />

Rz2 = α + 2+ 2α + 5;4− α + 9− 2α<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz2 = 3α + 7;13−3α Rz3 = Rz2+ t3<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz3 = 3 α + 7 + 6α + 24;13− 3α + 35 −5α<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz3 = 9α + 31;48−8α Rz4 = Rz2+ t4<<strong>br</strong> />

[ ] [ ]<<strong>br</strong> />

Rz4 = 3 α + 7;13 − 3α + 2α + 14;18 −2α<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz4 = 5α + 21;31−5α Rz5 = Rz2+ t5<<strong>br</strong> />

[ ] [ ]<<strong>br</strong> />

Rz5 = 3 α + 7;13− 3α + α + 3;5−α<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz5 = 4α + 10;18−4α Rz6 = Rz2+ t6<<strong>br</strong> />

[ ] [ ]<<strong>br</strong> />

Rz6 = 3 α + 7;13 − 3α + 3α + 7;12 −2α<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz6 = 6 α + 14;25−5α Rz7 = Rz5+ t7<<strong>br</strong> />

[ ] [ ]<<strong>br</strong> />

Rz7 = 4 α + 10;18− 4α + 3α + 9;14−2α [ ]<<strong>br</strong> />

Rz7 = 7 α + 19;32−6α Rz8 = Rz5+ t8<<strong>br</strong> />

[ ] [ ]<<strong>br</strong> />

Rz8 = 4 α + 10;18− 4α + α + 1;3−α<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz8 = 5 α + 11;21−5α ⎡ ⎤<<strong>br</strong> />

Rz9 = max⎢Rz5+ t9; Rz6+ t9⎥<<strong>br</strong> />

⎢ ⎥<<strong>br</strong> />

⎣ ⎦<<strong>br</strong> />

Ovde primenjujemo postupak <strong>za</strong> poređenje<<strong>br</strong> />

fuzzy <strong>br</strong>ojeva, odnosno nalazimo<<strong>br</strong> />

najveću vrednost fuzzy <strong>br</strong>ojeva:<<strong>br</strong> />

Rz5+ t9= [ 4 α + 10;18− 4α]<<strong>br</strong> />

+<<strong>br</strong> />

[ 2α+ 13;17− 2α] = [ 6 α + 23;35−6α] Rz6+ t9= [ 6 α + 14;25− 5α]<<strong>br</strong> />

+<<strong>br</strong> />

[ 2α + 13;17 − 2α] = [ 8 α + 27;42 −7α]<<strong>br</strong> />

23 + 2 ⋅ 29 + 35<<strong>br</strong> />

RRz ( 5+ t9)<<strong>br</strong> />

= = 29,0<<strong>br</strong> />

4<<strong>br</strong> />

27 + 2 ⋅ 35 + 42<<strong>br</strong> />

RRz ( 6+ t9)<<strong>br</strong> />

= = 34,75<<strong>br</strong> />

4<<strong>br</strong> />

RRz ( 6+ t9) f RRz ( 6+ t9)<<strong>br</strong> />

Iz <strong>za</strong>dnje relacije sledi da je rani<<strong>br</strong> />

<strong>za</strong>vršetak <strong>za</strong> aktivnost 9 sledeći fuzzy<<strong>br</strong> />

Rz9 = 8 α + 27;42− 7α<<strong>br</strong> />

<strong>br</strong>oj: [ ]<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 154<<strong>br</strong> />

RUDARSKI RADOVI


Poka<strong>za</strong>ni postupak <strong>za</strong>tim analogno<<strong>br</strong> />

primenjujemo na sve aktivnosti uvažavajući<<strong>br</strong> />

strukturu (slika 3.) datog mrežnog<<strong>br</strong> />

plana. Na taj način dolazimo do predposlednje<<strong>br</strong> />

i poslednje aktivnosti datog<<strong>br</strong> />

mrežnog plana koje se proračunavaju:<<strong>br</strong> />

⎡ ⎤<<strong>br</strong> />

⎢ ⎥<<strong>br</strong> />

Rz29 = max ⎢Rz27+ t29; Rz28+ t29; Rz26+ t29⎥<<strong>br</strong> />

⎢ ⎥<<strong>br</strong> />

⎣ ⎦<<strong>br</strong> />

27+ 29 = [ 17 + 57;92 − 18 ] +<<strong>br</strong> />

[ α 2; 4 α] [ 18α 59;96 19α]<<strong>br</strong> />

Rz t α α<<strong>br</strong> />

+ + − = + −<<strong>br</strong> />

28+ 29 = [ 19 + 61;99 − 19 ] +<<strong>br</strong> />

[ α 2;4 α] [ 20α 63;103 20α]<<strong>br</strong> />

Rz t α α<<strong>br</strong> />

+ + − = + −<<strong>br</strong> />

26+ 29 = [ 18 + 63;98 − 17 ] +<<strong>br</strong> />

[ α 2;4 α] [ 19α 65;102 18α]<<strong>br</strong> />

Rz t α α<<strong>br</strong> />

+ + − = + −<<strong>br</strong> />

59 + 2 ⋅ 77 + 96<<strong>br</strong> />

RRz ( 27+ t29)<<strong>br</strong> />

= = 77,25<<strong>br</strong> />

4<<strong>br</strong> />

63 + 2 ⋅ 83 + 103<<strong>br</strong> />

RRz ( 28+ t29)<<strong>br</strong> />

= = 83,0<<strong>br</strong> />

4<<strong>br</strong> />

65 + 2 ⋅ 84 + 102<<strong>br</strong> />

RRz ( 26+ t29)<<strong>br</strong> />

= = 83,75<<strong>br</strong> />

4<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz29 = 19α + 65;102 − 18α<<strong>br</strong> />

Rz30 = Rz29+ t30<<strong>br</strong> />

30 = [ 19 + 65;102 − 18 ] +<<strong>br</strong> />

[ 2α 8;12 2α] [ 21α 73;114 20α]<<strong>br</strong> />

Rz α α<<strong>br</strong> />

+ + − = + −<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz30 = 21α + 73;114 − 20α<<strong>br</strong> />

Fuzzy <strong>br</strong>oj koji prestavlja poslednju<<strong>br</strong> />

aktivnost projekta Rz30 definiše nam<<strong>br</strong> />

funkciju mogućnosti <strong>za</strong>vršetka projekta. U<<strong>br</strong> />

prethodnom izrazu je fuzzy <strong>br</strong>oj koji<<strong>br</strong> />

prestavlja poslednju aktivnost definisan<<strong>br</strong> />

preko svojih α preseka.<<strong>br</strong> />

Analitički oblik funkcije mogućnosti<<strong>br</strong> />

dobijamo na sledeći način:<<strong>br</strong> />

−<<strong>br</strong> />

R z30<<strong>br</strong> />

= L xR<<strong>br</strong> />

α<<strong>br</strong> />

α<<strong>br</strong> />

α x − 73<<strong>br</strong> />

x = 21α<<strong>br</strong> />

+ 73 → α = L<<strong>br</strong> />

L<<strong>br</strong> />

21<<strong>br</strong> />

[ α α<<strong>br</strong> />

x , ] = [ 21α<<strong>br</strong> />

+ 73,<<strong>br</strong> />

114 − 20 ]<<strong>br</strong> />

114 α<<strong>br</strong> />

α − x<<strong>br</strong> />

x 114 20α<<strong>br</strong> />

α<<strong>br</strong> />

D<<strong>br</strong> />

D = + → =<<strong>br</strong> />

20<<strong>br</strong> />

Odakle dobijamo analitički izraz <strong>za</strong><<strong>br</strong> />

funkciju mogućnosti:<<strong>br</strong> />

()<<strong>br</strong> />

[ ] ⎪<<strong>br</strong> />

⎪ ⎪<<strong>br</strong> />

⎧ t − 73<<strong>br</strong> />

⎫<<strong>br</strong> />

⎪<<strong>br</strong> />

= 0,<<strong>br</strong> />

0476t<<strong>br</strong> />

− 3,<<strong>br</strong> />

4762,<<strong>br</strong> />

73 ≤ t ≤ 94<<strong>br</strong> />

21<<strong>br</strong> />

⎪<<strong>br</strong> />

⎪114<<strong>br</strong> />

− t<<strong>br</strong> />

⎪<<strong>br</strong> />

π t = ⎨ = 5,<<strong>br</strong> />

7 − 0,<<strong>br</strong> />

05t,<<strong>br</strong> />

94 ≤ t ≤ 114⎬<<strong>br</strong> />

⎪ 20<<strong>br</strong> />

⎪ 0,<<strong>br</strong> />

t ∉ 73,<<strong>br</strong> />

114<<strong>br</strong> />

⎪⎩<<strong>br</strong> />

⎭<<strong>br</strong> />

Grafička prestava ovog izra<strong>za</strong> data je na<<strong>br</strong> />

slici 4.<<strong>br</strong> />

Razlika u proračunu između proračuna<<strong>br</strong> />

<strong>za</strong> različite konkretne vrednosti α i proračuna<<strong>br</strong> />

gde se α javlja kao parametar javila<<strong>br</strong> />

se samo kod računjanja ranog <strong>za</strong>vršetka<<strong>br</strong> />

Rz29. (kod upoređenja Hamingove distance<<strong>br</strong> />

<strong>za</strong>: Rz28+ t29<<strong>br</strong> />

i Rz26+ t29).<<strong>br</strong> />

Zbog toga se javila neznatna razlika<<strong>br</strong> />

kod <strong>za</strong>vršetka projekta.<<strong>br</strong> />

Sličan proračun bi se izveo i <strong>za</strong> proračun<<strong>br</strong> />

kasnog <strong>za</strong>vršetka pojedinih aktivnosti, kod<<strong>br</strong> />

proračuna vremenske rezerve, itd.<<strong>br</strong> />

Sl. 4. Prikaz funkcije mogućnosti π(t)<<strong>br</strong> />

Završetak projekta dobijen preko α preseka<<strong>br</strong> />

gde nisu <strong>za</strong>menjivane konkretne vrednosti<<strong>br</strong> />

Autori ovog rada su <strong>za</strong> dati primer<<strong>br</strong> />

odredili vreme reali<strong>za</strong>cije projekta i probabilističko-posibilističkim<<strong>br</strong> />

postupkom prema<<strong>br</strong> />

[1]. Razlika jednog i drugog proračuna sastoji<<strong>br</strong> />

se u tome što je primenom metode <strong>za</strong><<strong>br</strong> />

poređenje fuzzy <strong>br</strong>ojeva potrebno proračunati<<strong>br</strong> />

mrežni plan samo jednom, nakon čega<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 155<<strong>br</strong> />

RUDARSKI RADOVI


možemo da definišemo funkciju mogućnosti<<strong>br</strong> />

(slika 4.).<<strong>br</strong> />

Kod proračuna fukcije mogućnosti preko<<strong>br</strong> />

probabilističko-posibilističkog postupka,<<strong>br</strong> />

potrebno je proračunati ceo mrežni plan vise<<strong>br</strong> />

puta <strong>za</strong> konkretne vrednosti α parametra<<strong>br</strong> />

(α=0; 0,25; 0,50; 0,75; 1,0). Drugim rečima.<<strong>br</strong> />

neophodno je proračunati mrežni plan <strong>za</strong><<strong>br</strong> />

svaku vrednost parametra po dva puta osim<<strong>br</strong> />

<strong>za</strong> parametar α=1 kada je potrebno jednom<<strong>br</strong> />

proračunati mrežni plan (slika 5).<<strong>br</strong> />

Sl. 5. Prikaz funkcije mogućnosti π(t)<<strong>br</strong> />

Završetak projekta<<strong>br</strong> />

(dobijen višestrukim proračunom mrežnog<<strong>br</strong> />

plana preko konkretnih vrednosti α<<strong>br</strong> />

(α=0; α=0,25; α= 0,50; α= 0,75; α=1,0)<<strong>br</strong> />

ZAKLJUČAK<<strong>br</strong> />

Postupkom prika<strong>za</strong>nim u radu i kroz<<strong>br</strong> />

konkretan primer ilustrovana je primena<<strong>br</strong> />

teorije mogućnosti kod planiranja vremena<<strong>br</strong> />

građenja investicionog objekta. Za pojedinačne<<strong>br</strong> />

aktivnosti čija je funkcija mogućnosti<<strong>br</strong> />

poznata i predstavljena odgovarajućim αpresecima<<strong>br</strong> />

određena je funkcija mogućnosti<<strong>br</strong> />

<strong>za</strong>vršetka projekta. Ovim postupkom se mogu<<strong>br</strong> />

odrediti i funkcije mogućnosti izvršenja<<strong>br</strong> />

pojedinih fa<strong>za</strong> projekta. Prilikom definisanja<<strong>br</strong> />

fukcije mogućnosti <strong>za</strong>vršetka projekta korišćena<<strong>br</strong> />

je metoda <strong>za</strong> poređenje fuzzy <strong>br</strong>ojeva<<strong>br</strong> />

koja je i detaljnije o<strong>br</strong>azložena. Primer koji je<<strong>br</strong> />

ilustrovan sadržao je ukupno 30 generalnih<<strong>br</strong> />

aktivnosti i krajni rezultat je uka<strong>za</strong>o da u<<strong>br</strong> />

odnosu na druge metode, koje su autori<<strong>br</strong> />

primenjivali, ovaj postupak pruža lakši put do<<strong>br</strong> />

rezultata, naročito u realnim slučajevima kada<<strong>br</strong> />

je <strong>br</strong>oj aktivnosti znatno veći od 30.<<strong>br</strong> />

Formiranjem ba<strong>za</strong> podataka i njihovim ažuriranjem<<strong>br</strong> />

omogućava se pun doprinosovog<<strong>br</strong> />

postupka kod planiranja <strong>za</strong>vršetka projekta i<<strong>br</strong> />

eliminiše se moguća subjektivnost u proceni<<strong>br</strong> />

trajanja pojedinih aktivnosti.<<strong>br</strong> />

LITERATURA<<strong>br</strong> />

[1] Zadeh L. A, – Fuzzy Sets,<<strong>br</strong> />

Information and Control, 8(1965),<<strong>br</strong> />

pp. 338-353.<<strong>br</strong> />

[2] Knežević M., - Upravljanje rizikom pri<<strong>br</strong> />

reali<strong>za</strong>ciji građevinskih projekata,<<strong>br</strong> />

Doktorska disertacija, Građevinski<<strong>br</strong> />

fakultet Univerziteta u Beogradu, 2004.<<strong>br</strong> />

[3] Praščević Ž., – Primena teorije mogućnosti<<strong>br</strong> />

u planiranju reali<strong>za</strong>cije projekata,<<strong>br</strong> />

Izgradnja 1/89 (1989.), pp. 9-13.<<strong>br</strong> />

[4] Kaufmann, A, and Gupta, M,<<strong>br</strong> />

Introduction to Fuzzy Arithmetic.<<strong>br</strong> />

Theory and applications, Van<<strong>br</strong> />

nostrand Reinhold, 1988.<<strong>br</strong> />

[5] Teodorović, D, Kikuchi, S, Fuzzy<<strong>br</strong> />

skupovi i primene u sao<strong>br</strong>aćaju,<<strong>br</strong> />

sao<strong>br</strong>aćajni fakultet Univerziteta u<<strong>br</strong> />

Beogradu, 1994.<<strong>br</strong> />

[6] Zadeh L. A, – Fuzzy Sets as a Basic<<strong>br</strong> />

for a Theory of Posibility, Fuzzy Sets<<strong>br</strong> />

and Systems, 1(1978.), pp. 3-28.<<strong>br</strong> />

[7] Zadeh L. A, – Probability Measures of<<strong>br</strong> />

Fuzzy Events, Journal of Mathematical<<strong>br</strong> />

Analysis and Applications, 23, (1968.),<<strong>br</strong> />

pp. 421-427.<<strong>br</strong> />

[8] Tadić D., Stanojević P., Aleksić M.,<<strong>br</strong> />

Mišković V., Bukvić V., - Teorija fuzzy<<strong>br</strong> />

skupova i primene u rešavanju menadžment<<strong>br</strong> />

problema, Mašinski fakultet u<<strong>br</strong> />

Kragujevcu, Kragujevac, 2006.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 156<<strong>br</strong> />

RUDARSKI RADOVI


MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162<<strong>br</strong> />

COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622<<strong>br</strong> />

UDK: 519.21:330.322(045)=20<<strong>br</strong> />

Velimir Dutina * , Ljubo Marković * , Miljan Kovačević *<<strong>br</strong> />

PLANNING THE TIME OF INVESTMENT PROJECT REALIZATION<<strong>br</strong> />

USING THE FUZZY NUMBER COMPARISON METHOD<<strong>br</strong> />

Abstract<<strong>br</strong> />

Planning is one of the most important functions of a construction company management. The<<strong>br</strong> />

planning effectiveness will depend on how accurate the assumptions of the future plan are, in<<strong>br</strong> />

other words to what extent the understanding of previous experiences has been used. In order for<<strong>br</strong> />

the planning to be carried out successfully, it is necessary to constantly monitor and analyze the<<strong>br</strong> />

implementation process, as well as to carry out permanent improvements. A large number of factors<<strong>br</strong> />

influence the fact that a certain degree of uncertainty and imprecision must be taken into account<<strong>br</strong> />

in the process of planning. The most important alternative approach is based on the fuzzy set<<strong>br</strong> />

concept.<<strong>br</strong> />

Key words: planning, Possibility Theory, fuzzy sets, probability<<strong>br</strong> />

INTRODUCTION<<strong>br</strong> />

Investment project completion time<<strong>br</strong> />

planning is one of the most important functions<<strong>br</strong> />

of a construction company management.<<strong>br</strong> />

Without planning, the reali<strong>za</strong>tion is<<strong>br</strong> />

left to disorganized events which in some<<strong>br</strong> />

cases may lead to the interruption in project<<strong>br</strong> />

reali<strong>za</strong>tion and termination of contracts. In<<strong>br</strong> />

order for the planning to be realistic, rational<<strong>br</strong> />

and economical, it should conform to<<strong>br</strong> />

production capabilities of a company, it<<strong>br</strong> />

should use updated data bases (of projects<<strong>br</strong> />

already completed and market research)<<strong>br</strong> />

and to rely upon contemporary mathematical<<strong>br</strong> />

theory.<<strong>br</strong> />

Planning effects depend on both accuracy<<strong>br</strong> />

and precision of the assumptions on<<strong>br</strong> />

which the plan should be based, in other<<strong>br</strong> />

words on how the gathered information and<<strong>br</strong> />

acquired experiences are used. In order for<<strong>br</strong> />

the planning to be successful, it is necessary<<strong>br</strong> />

to constantly monitor and analyse the<<strong>br</strong> />

process of reali<strong>za</strong>tion, to permanently<<strong>br</strong> />

moni-tor and apply new technological solutions<<strong>br</strong> />

and innovations, as well as to carry<<strong>br</strong> />

out improvement, training and education of<<strong>br</strong> />

the personnel. The mistakes that have been<<strong>br</strong> />

noted in planning and organi<strong>za</strong>tion on one<<strong>br</strong> />

facility should be gathered, systematized<<strong>br</strong> />

and analyzed, so that the adequate solutions<<strong>br</strong> />

would be found and in accordance with<<strong>br</strong> />

them the measures taken to prevent the<<strong>br</strong> />

mistakes from happening again. This is a<<strong>br</strong> />

rational way towards production improvement.<<strong>br</strong> />

* University in Pristina, Faculty of Technical Sciences, Kosovska Mitrovica<<strong>br</strong> />

No 4, <strong>2011</strong>. 157<<strong>br</strong> />

MINING ENGINEERING


A large number of factors influence that<<strong>br</strong> />

planning process must take into accountuncertainty<<strong>br</strong> />

or imprecision. This is why deterministic<<strong>br</strong> />

model, which is used most frequently<<strong>br</strong> />

(CPM) becomes quite inappropriate<<strong>br</strong> />

and inapplicable. The classical approach with<<strong>br</strong> />

quantitative treatment of uncertainty uses<<strong>br</strong> />

mathematical tools of Probability Theory (the<<strong>br</strong> />

relationship of favourable and total number of<<strong>br</strong> />

possible outcomes). The Probability Theory<<strong>br</strong> />

approach is of limited application possibilities<<strong>br</strong> />

and there are certain weaknesses in considering<<strong>br</strong> />

the problem where types of uncertainties<<strong>br</strong> />

are different from those calculated as a ratio<<strong>br</strong> />

of the number of favourable and the number<<strong>br</strong> />

of possible outcomes.<<strong>br</strong> />

The most significant alternative approach<<strong>br</strong> />

was developed by the Californian<<strong>br</strong> />

Professor L. Zadeh [1]. This approach<<strong>br</strong> />

allows for the description of fuzzy events<<strong>br</strong> />

and knowledge, operations over them and<<strong>br</strong> />

drawing conclusions and also represents<<strong>br</strong> />

the basis for the development of the fuzzy<<strong>br</strong> />

set mathematical theory. Fuzzy management<<strong>br</strong> />

is useful in cases when technological<<strong>br</strong> />

processes are complex for the analysis by<<strong>br</strong> />

means of the known methods or when the<<strong>br</strong> />

information available are interpreted<<strong>br</strong> />

qualitatively but uncertainly [2].<<strong>br</strong> />

FUZZY SET THEORY AND THE<<strong>br</strong> />

NOTION OF POSSIBILITY<<strong>br</strong> />

Fuzzy set theory provides for the formal<<strong>br</strong> />

system of representation and comprehension<<strong>br</strong> />

of situations when unsecure, subjective and<<strong>br</strong> />

imprecise information appear. In classical<<strong>br</strong> />

modelling the relations are expressed by<<strong>br</strong> />

mathematical functions. As the systems become<<strong>br</strong> />

more complex, it becomes more difficult<<strong>br</strong> />

to apply mathematical modelling, and<<strong>br</strong> />

therefore fuzzy models are used in these<<strong>br</strong> />

situations.<<strong>br</strong> />

For any given set T whose elements<<strong>br</strong> />

are t real numbers there is a sub-set<<strong>br</strong> />

Ti ∈ T , whose elements are assigned the<<strong>br</strong> />

values of a function μ( ti)<<strong>br</strong> />

the values of<<strong>br</strong> />

which are real numbers in the interval (0,<<strong>br</strong> />

1). The sub-set Ti represents a fuzzy set or<<strong>br</strong> />

the so-called fuzzy restriction on the set T.<<strong>br</strong> />

The function μ( ti)<<strong>br</strong> />

is called the membership<<strong>br</strong> />

function of ti elements on the set Ti.<<strong>br</strong> />

The membership function shape can be<<strong>br</strong> />

entirely arbitrary. Figure 1. represents<<strong>br</strong> />

standard membership functions. Based on<<strong>br</strong> />

the experimental research, the conclusion<<strong>br</strong> />

has been drawn that the standard membership<<strong>br</strong> />

functions can be used to solve the<<strong>br</strong> />

majority of tasks<<strong>br</strong> />

Fig. 1. Standard membership functions of a fuzzy set<<strong>br</strong> />

No 4, <strong>2011</strong>. 158<<strong>br</strong> />

MINING ENGINEERING


In the course of construction project<<strong>br</strong> />

reali<strong>za</strong>tion, in addition to the assessment<<strong>br</strong> />

of its duration as well as the probability of<<strong>br</strong> />

duration of individual activities and the<<strong>br</strong> />

completion of the project entirely or<<strong>br</strong> />

someof its stages, it is also important to<<strong>br</strong> />

determine the possibility of the contractor<<strong>br</strong> />

to complete the foreseen activities, parts of<<strong>br</strong> />

the project or the entire project within the<<strong>br</strong> />

set or contract deadline. The notion of possibility<<strong>br</strong> />

is connected to the capability and<<strong>br</strong> />

readiness of a subject (project contractor)<<strong>br</strong> />

to complete under the set conditions and<<strong>br</strong> />

within the foreseen time the obligations or<<strong>br</strong> />

tasks undertaken and it is different from<<strong>br</strong> />

the notion of probability which is connected<<strong>br</strong> />

to statistical data [3].<<strong>br</strong> />

The possibility distribution function πi<<strong>br</strong> />

is further defined, for which the following<<strong>br</strong> />

applies:<<strong>br</strong> />

π i ( ti ) = Poss{<<strong>br</strong> />

Ti<<strong>br</strong> />

= ti}<<strong>br</strong> />

μ ( ti<<strong>br</strong> />

)<<strong>br</strong> />

and it expresses the possibility that the<<strong>br</strong> />

element Ti ∈ Ti<<strong>br</strong> />

.<<strong>br</strong> />

For the project consisting of m activities<<strong>br</strong> />

the ti durations of which are the elements<<strong>br</strong> />

of a Ti fuzzy set, the membership<<strong>br</strong> />

function μi represents the possibility of a<<strong>br</strong> />

contractor to complete this activity within<<strong>br</strong> />

some time limit ti. The function πi represents<<strong>br</strong> />

a degree of possibility of a contractor<<strong>br</strong> />

and when πi(ti)=0, it is not possible to<<strong>br</strong> />

complete the activity within a time limit. If<<strong>br</strong> />

πi(ti)=1, then the possibility is maximum.<<strong>br</strong> />

Within the deterministic procedure of<<strong>br</strong> />

the CPM method, the value of this function<<strong>br</strong> />

is:<<strong>br</strong> />

⎧1<<strong>br</strong> />

<strong>za</strong> ti<<strong>br</strong> />

= ai<<strong>br</strong> />

⎫<<strong>br</strong> />

π i ( ti<<strong>br</strong> />

) = ⎨ ⎬<<strong>br</strong> />

⎩0<<strong>br</strong> />

<strong>za</strong> t ≠ a ⎭<<strong>br</strong> />

i<<strong>br</strong> />

i<<strong>br</strong> />

where ai is a set or determined value of i<<strong>br</strong> />

activity duration.<<strong>br</strong> />

The duration of activity ti as a fuzzy<<strong>br</strong> />

variable and the degree of completion<<strong>br</strong> />

possibility πi are estimated based on experience.<<strong>br</strong> />

CALCULATION OF PROJECT<<strong>br</strong> />

DURATION WHEN ACTIVITY<<strong>br</strong> />

DURATIONS ARE FUZZY<<strong>br</strong> />

NUMBERS<<strong>br</strong> />

Let the given fuzzy numbers be<<strong>br</strong> />

{ , μ ( )<<strong>br</strong> />

A }<<strong>br</strong> />

{ μ<<strong>br</strong> />

A }<<strong>br</strong> />

A = x x x∈ R and<<strong>br</strong> />

B = y, ( y) y∈ R . The membership<<strong>br</strong> />

functions of the considered fuzzy numbers<<strong>br</strong> />

are continuous and their values belong to<<strong>br</strong> />

the interval (0, 1).<<strong>br</strong> />

Let ∗ denote the operation over fuzzy<<strong>br</strong> />

numbers. Then A * B is also a fuzzy number<<strong>br</strong> />

denoted as C = A* B,<<strong>br</strong> />

so that<<strong>br</strong> />

{ , μ ( ) }<<strong>br</strong> />

c<<strong>br</strong> />

C = z z z∈R where:<<strong>br</strong> />

z=x*y and the membership function is<<strong>br</strong> />

calculated according to the expansion<<strong>br</strong> />

principle, i.e.<<strong>br</strong> />

μ ( z) = supmin( μ ( x), μ ( y)).<<strong>br</strong> />

C z= x+ y A B<<strong>br</strong> />

In a special case when fuzzy numbers<<strong>br</strong> />

are linear, in other words when the membership<<strong>br</strong> />

functions are triangular in shape,<<strong>br</strong> />

then the expressions by which we calculate<<strong>br</strong> />

the sum, the difference, the product<<strong>br</strong> />

and the quotient of fuzzy numbers are<<strong>br</strong> />

considerably simpler.<<strong>br</strong> />

No 4, <strong>2011</strong>. 159<<strong>br</strong> />

MINING ENGINEERING


For every α intersection the fuzzy<<strong>br</strong> />

numbers are represented by :<<strong>br</strong> />

α α α α<<strong>br</strong> />

A = ⎡<<strong>br</strong> />

⎣xL, x ⎤ D ⎦ and B = ⎡<<strong>br</strong> />

⎣ yL , y ⎤ D ⎦<<strong>br</strong> />

Then the operations with triangular<<strong>br</strong> />

fuzzy numbers are defined by the following<<strong>br</strong> />

expressions [5].<<strong>br</strong> />

{ , μ ( ) , }<<strong>br</strong> />

C<<strong>br</strong> />

C = A+ B= z z z∈ R<<strong>br</strong> />

⎡ α α α α⎤<<strong>br</strong> />

z= ⎢xL + yL , xR + yR⎥; μ ( z)<<strong>br</strong> />

= α; α = 0,1<<strong>br</strong> />

⎣ ⎦ C<<strong>br</strong> />

{ , μ ( ) , }<<strong>br</strong> />

C<<strong>br</strong> />

C = A− B= z z z∈R [ ]<<strong>br</strong> />

⎡ α α α α⎤ z= ⎢xL − yR, xR − yL⎥; μ ( z)<<strong>br</strong> />

= α; α = 0,1<<strong>br</strong> />

⎣ ⎦ C<<strong>br</strong> />

{ , μ ( ) , }<<strong>br</strong> />

C<<strong>br</strong> />

C = A⋅ B= z z z∈R [ ]<<strong>br</strong> />

⎡ α α α α⎤<<strong>br</strong> />

z= ⎢xL ⋅yL , xR ⋅ yR⎥; μ ( z)<<strong>br</strong> />

= α; α = 0,1<<strong>br</strong> />

⎣ ⎦ C<<strong>br</strong> />

{ μ }<<strong>br</strong> />

C<<strong>br</strong> />

C = A: B= z, ( z) z∈ R,<<strong>br</strong> />

[ ]<<strong>br</strong> />

⎡ α α α α⎤<<strong>br</strong> />

z= ⎢xL / yR, xR / yL⎥; μ ( z)<<strong>br</strong> />

= α; α = 0,1<<strong>br</strong> />

⎣ ⎦ C<<strong>br</strong> />

Example:<<strong>br</strong> />

[ ]<<strong>br</strong> />

There are strictly positive fuzzy numbers<<strong>br</strong> />

given A = x, μ ( x) x∈<<strong>br</strong> />

[ 6,10]<<strong>br</strong> />

and<<strong>br</strong> />

{ }<<strong>br</strong> />

A<<strong>br</strong> />

{ , μ ( ) [ 8,10 ] } .<<strong>br</strong> />

A<<strong>br</strong> />

B = y y y ∈<<strong>br</strong> />

μ ( x)<<strong>br</strong> />

=<<strong>br</strong> />

A<<strong>br</strong> />

⎧ 1<<strong>br</strong> />

⎫<<strong>br</strong> />

x −3, 6 ≤ x ≤8 ⎪ 2<<strong>br</strong> />

⎪<<strong>br</strong> />

⎨ ⎬<<strong>br</strong> />

⎪ 1<<strong>br</strong> />

− x + 5, 8 ≤ x ≤10⎪<<strong>br</strong> />

⎩⎪ 2<<strong>br</strong> />

⎭⎪<<strong>br</strong> />

( x)<<strong>br</strong> />

=<<strong>br</strong> />

⎧ y − 8, 8 ≤ y ≤ 9 ⎫<<strong>br</strong> />

⎨ ⎬<<strong>br</strong> />

⎩− y + 10, 9 ≤ x ≤ 10 ⎭<<strong>br</strong> />

No 4, <strong>2011</strong>. 160<<strong>br</strong> />

MINING ENGINEERING<<strong>br</strong> />

μ<<strong>br</strong> />

B<<strong>br</strong> />

Determine: C = A+ B<<strong>br</strong> />

In order to make the marked operations<<strong>br</strong> />

over the given triangular fuzzy numbers,<<strong>br</strong> />

it is necessary to determine the left<<strong>br</strong> />

and right confidence limit for every confidence<<strong>br</strong> />

level α ∈[<<strong>br</strong> />

0,<<strong>br</strong> />

1]<<strong>br</strong> />

. In other words, it is<<strong>br</strong> />

necessary to determine the extreme values<<strong>br</strong> />

in α intersection of A and B fuzzy numbers.<<strong>br</strong> />

The left limit value of A fuzzy number<<strong>br</strong> />

for the α ∈[<<strong>br</strong> />

0,<<strong>br</strong> />

1]<<strong>br</strong> />

confidence level α x L<<strong>br</strong> />

is obtained according to the expression:<<strong>br</strong> />

1 α<<strong>br</strong> />

α<<strong>br</strong> />

xL<<strong>br</strong> />

− 3 = α → xL<<strong>br</strong> />

= 6 + 2α<<strong>br</strong> />

2<<strong>br</strong> />

The right limit value of A fuzzy number<<strong>br</strong> />

for the α ∈[<<strong>br</strong> />

0,<<strong>br</strong> />

1]<<strong>br</strong> />

confidence level α x R is<<strong>br</strong> />

obtained according to the expression:<<strong>br</strong> />

1<<strong>br</strong> />

− xα<<strong>br</strong> />

5 α α<<strong>br</strong> />

R + = → xR<<strong>br</strong> />

= 10 − 2α<<strong>br</strong> />

2<<strong>br</strong> />

α intersection of a fuzzy number is:<<strong>br</strong> />

[ α , α ] = [ 6 + 2α<<strong>br</strong> />

, 10 − 2α<<strong>br</strong> />

]<<strong>br</strong> />

x<<strong>br</strong> />

1<<strong>br</strong> />

α = L R<<strong>br</strong> />

2<<strong>br</strong> />

x A<<strong>br</strong> />

Analogue to the previous expression<<strong>br</strong> />

we obtain for α intersection of B fuzzy<<strong>br</strong> />

number:<<strong>br</strong> />

[ α α<<strong>br</strong> />

y ] = [ 8 + α,<<strong>br</strong> />

−α<<strong>br</strong> />

]<<strong>br</strong> />

B α = L , yR<<strong>br</strong> />

10<<strong>br</strong> />

Let us calculate the sum of A and B<<strong>br</strong> />

fuzzy numbers which is marked as C . C<<strong>br</strong> />

fuzzy number is formally written down as<<strong>br</strong> />

{ , μ ( ) } .<<strong>br</strong> />

C<<strong>br</strong> />

C = z z<<strong>br</strong> />

According to the rule of addition of<<strong>br</strong> />

triangular fuzzy numbers, it follows that:<<strong>br</strong> />

[ (6 2 ) (8 ),(10 - ) (10 2 ]<<strong>br</strong> />

[ 14 3 α,203α] C = + α + + α α + − α =<<strong>br</strong> />

= + −


The equations representing the left and<<strong>br</strong> />

right side of the fuzzy number C :<<strong>br</strong> />

α 1 α 14<<strong>br</strong> />

14 + 3α<<strong>br</strong> />

= z → α = z −<<strong>br</strong> />

3 3<<strong>br</strong> />

α 1 α 20<<strong>br</strong> />

20 − 3α<<strong>br</strong> />

= z → α = − z −<<strong>br</strong> />

3 3<<strong>br</strong> />

The membership function of the fuzzy<<strong>br</strong> />

number C is also triangular in shape and<<strong>br</strong> />

The difference, the product and the<<strong>br</strong> />

quotient of fuzzy numbers are calculated<<strong>br</strong> />

similarly.<<strong>br</strong> />

If the activities Ai, the ti duration of<<strong>br</strong> />

which is a fuzzy number, are represented<<strong>br</strong> />

by circles or rectangles (precedence diagram),<<strong>br</strong> />

then the time of their earliest and<<strong>br</strong> />

latest completions RZi and RKi are calculated<<strong>br</strong> />

by the following expressions:<<strong>br</strong> />

i<<strong>br</strong> />

p<<strong>br</strong> />

( RZ t )<<strong>br</strong> />

RZ = max +<<strong>br</strong> />

p<<strong>br</strong> />

( RZ ) = sup{<<strong>br</strong> />

min[<<strong>br</strong> />

π ( RZ ) π ( t ) ] }<<strong>br</strong> />

π ,<<strong>br</strong> />

i<<strong>br</strong> />

KZ = min(<<strong>br</strong> />

KZ − t )<<strong>br</strong> />

i<<strong>br</strong> />

n<<strong>br</strong> />

p<<strong>br</strong> />

n<<strong>br</strong> />

π ( KZ ) = sup min[<<strong>br</strong> />

π ( KZ ) , π ( t ) ]<<strong>br</strong> />

i<<strong>br</strong> />

i<<strong>br</strong> />

i<<strong>br</strong> />

{ }<<strong>br</strong> />

i = 1 , 2,...,<<strong>br</strong> />

m;<<strong>br</strong> />

p = 1,<<strong>br</strong> />

2,..,<<strong>br</strong> />

m −1;<<strong>br</strong> />

n = 2,<<strong>br</strong> />

3,...,<<strong>br</strong> />

m<<strong>br</strong> />

Fig. 2. Fuzzy numbers A, BC ,<<strong>br</strong> />

p<<strong>br</strong> />

n<<strong>br</strong> />

i<<strong>br</strong> />

i<<strong>br</strong> />

it is formally represented by the following<<strong>br</strong> />

analytical expression:<<strong>br</strong> />

⎧ 1 14 ⎫<<strong>br</strong> />

z − , 14≤ z ≤ 17<<strong>br</strong> />

⎪ 3 3<<strong>br</strong> />

⎪<<strong>br</strong> />

μ ( z ) =<<strong>br</strong> />

C ⎨ ⎬<<strong>br</strong> />

⎪ 1 20<<strong>br</strong> />

− z + , 17 ≤ z ≤ 20 ⎪<<strong>br</strong> />

⎪⎩ 3 3<<strong>br</strong> />

⎪⎭<<strong>br</strong> />

A and B fuzzy numbers as well as<<strong>br</strong> />

their sum C i.e. fuzzy number are presented<<strong>br</strong> />

in figure 2.<<strong>br</strong> />

If the times of activity durations are<<strong>br</strong> />

considered as continuous convex fuzzy<<strong>br</strong> />

variables, then the beginning and ending<<strong>br</strong> />

of the activity which is also continuous are<<strong>br</strong> />

also determined easily.<<strong>br</strong> />

FUZZY NUMBER COMPARISON<<strong>br</strong> />

The problem of fuzzy number comparison<<strong>br</strong> />

is the task which is rather frequent<<strong>br</strong> />

in decision-making. For instance, when<<strong>br</strong> />

the alternatives are described by fuzzy<<strong>br</strong> />

numbers, there is a question of how we<<strong>br</strong> />

shall determine which alternative is better<<strong>br</strong> />

than the other. Many works in the literature<<strong>br</strong> />

are dedicated to this problem [4].<<strong>br</strong> />

In case of determining the time (deadline)<<strong>br</strong> />

of project completion for every activity<<strong>br</strong> />

which is preceded by many other activities,<<strong>br</strong> />

No 4, <strong>2011</strong>. 161<<strong>br</strong> />

MINING ENGINEERING


we are faced with the problem of fuzzy number<<strong>br</strong> />

comparison, because the activity durations<<strong>br</strong> />

as well as their early and late completions<<strong>br</strong> />

are also fuzzy numbers. One of the<<strong>br</strong> />

methods we could use in this case is Kaufmann<<strong>br</strong> />

and Gupta’s method [4] for fuzzy<<strong>br</strong> />

number comparison. This is a simple method<<strong>br</strong> />

of fuzzy number comparison which is performed<<strong>br</strong> />

in three steps.<<strong>br</strong> />

Step 1<<strong>br</strong> />

In this step, we comparet, the „removal”<<strong>br</strong> />

of fuzzy numbers. It the given fuzzy number<<strong>br</strong> />

is M = { x, μ ( x),<<strong>br</strong> />

} so that the x value is<<strong>br</strong> />

M<<strong>br</strong> />

within the scope of fuzzy number M and<<strong>br</strong> />

x ∈ X .<<strong>br</strong> />

It the lower or upper limit within the X<<strong>br</strong> />

domain is marked as x ,<<strong>br</strong> />

−<<strong>br</strong> />

−<<strong>br</strong> />

x , respectively<<strong>br</strong> />

μ ( x ) is the possibility distribution<<strong>br</strong> />

M<<strong>br</strong> />

function of the fuzzy number M .<<strong>br</strong> />

In order to determine „the “removal“<<strong>br</strong> />

of the fuzzy number M in comparison<<strong>br</strong> />

with the real value k, we should first define<<strong>br</strong> />

the terms:<<strong>br</strong> />

• "left removal", RL( M ,k), and<<strong>br</strong> />

• "right removal", RD ( M , k).<<strong>br</strong> />

"Left removal" RL ( M ~ , k) is calculated<<strong>br</strong> />

as a surface below the curve of the membership<<strong>br</strong> />

function of the M ~ fuzzy number<<strong>br</strong> />

between the lower limit of the M fuzzy<<strong>br</strong> />

number scope and scalar K, which is represented<<strong>br</strong> />

by the following expressions:<<strong>br</strong> />

k<<strong>br</strong> />

RL( M, k) = ∫ μ ( x)<<strong>br</strong> />

for continuous fuzzy<<strong>br</strong> />

M<<strong>br</strong> />

x<<strong>br</strong> />

−<<strong>br</strong> />

numbers.<<strong>br</strong> />

k μ ( xi−1) + μ ( xi)<<strong>br</strong> />

M M<<strong>br</strong> />

RL( Mk , ) = ∑<<strong>br</strong> />

⋅( xi−xi−1) for<<strong>br</strong> />

i=<<strong>br</strong> />

2 2<<strong>br</strong> />

discreet fuzzy numbers.<<strong>br</strong> />

"Right removal", RD (M ~ , k) is calculated<<strong>br</strong> />

as a surface below the curve of the<<strong>br</strong> />

membership function of the M ~ fuzzy<<strong>br</strong> />

number between the scalar k to the upper<<strong>br</strong> />

limit of M fuzzy number scope, which is<<strong>br</strong> />

represented by the following expressions:<<strong>br</strong> />

No 4, <strong>2011</strong>. 162<<strong>br</strong> />

MINING ENGINEERING<<strong>br</strong> />

−<<strong>br</strong> />

x<<strong>br</strong> />

RD( M , k) = ∫ μ ( x)<<strong>br</strong> />

for continuous<<strong>br</strong> />

k<<strong>br</strong> />

M<<strong>br</strong> />

fuzzy numbers.<<strong>br</strong> />

−<<strong>br</strong> />

x μ ( xi−1) + μ ( xi)<<strong>br</strong> />

M M<<strong>br</strong> />

RD ( M, k)<<strong>br</strong> />

= for<<strong>br</strong> />

∑<<strong>br</strong> />

i= k+<<strong>br</strong> />

1 2<<strong>br</strong> />

discreet fuzzy numbers.<<strong>br</strong> />

The total “removal” of M fuzzy number<<strong>br</strong> />

in comparasion to the real number k is<<strong>br</strong> />

calculated according to the expression:<<strong>br</strong> />

RL ( M , k) + RD ( M , k)<<strong>br</strong> />

R ( M , k)<<strong>br</strong> />

=<<strong>br</strong> />

2<<strong>br</strong> />

In case that M fuzzy number has a<<strong>br</strong> />

triangular membership function (k=0),<<strong>br</strong> />

then a half Hamming distance is used:<<strong>br</strong> />

R ( M , k)<<strong>br</strong> />

=<<strong>br</strong> />

x + 2 x′ + x<<strong>br</strong> />

−<<strong>br</strong> />

4<<strong>br</strong> />

where:<<strong>br</strong> />

−<<strong>br</strong> />

x , x , x<<strong>br</strong> />

−<<strong>br</strong> />

−<<strong>br</strong> />

' - are abscises of the corre-<<strong>br</strong> />

sponding vertices of a triangular fuzzy<<strong>br</strong> />

number.<<strong>br</strong> />

Now it the two fuzzy numbers are<<strong>br</strong> />

given be M = { x, μ ( x),<<strong>br</strong> />

} and<<strong>br</strong> />

M<<strong>br</strong> />

N = y, μ ( y)<<strong>br</strong> />

. It is considered that the<<strong>br</strong> />

{ } N<<strong>br</strong> />

fuzzy number M is smaller than the<<strong>br</strong> />

fuzzy number N if and only if the following<<strong>br</strong> />

is valid:<<strong>br</strong> />

R ( M , k) < R ( N, k)<<strong>br</strong> />

and vice versa.


Step 2<<strong>br</strong> />

If it is not possible to determine by<<strong>br</strong> />

step 1 if one fuzzy number is smaller or<<strong>br</strong> />

larger than the other, then we proceed to<<strong>br</strong> />

step 2. This step compares the scope values<<strong>br</strong> />

of both fuzzy numbers which are assigned<<strong>br</strong> />

the highest values of possibility<<strong>br</strong> />

distribution functions.<<strong>br</strong> />

Formally, step 2 is represented as follows:<<strong>br</strong> />

• max ( μ ( x ) )<<strong>br</strong> />

is the assigned<<strong>br</strong> />

M<<strong>br</strong> />

value of the fuzzy number<<strong>br</strong> />

*<<strong>br</strong> />

M scope which is denoted as x<<strong>br</strong> />

• assigned value of the fuzzy number<<strong>br</strong> />

*<<strong>br</strong> />

N scope which is denoted as x<<strong>br</strong> />

Now, it the two fuzzy numbers are given<<strong>br</strong> />

be M = { x, μ ( x),<<strong>br</strong> />

} and N = { y, μ ( y)<<strong>br</strong> />

} .<<strong>br</strong> />

M<<strong>br</strong> />

N<<strong>br</strong> />

Table 1. List of general activities with duration in days<<strong>br</strong> />

No. of activities in<<strong>br</strong> />

network layout<<strong>br</strong> />

M<<strong>br</strong> />

N<<strong>br</strong> />

It is considered that the fuzzy number M is<<strong>br</strong> />

smaller than the fuzzy number N if and<<strong>br</strong> />

* *<<strong>br</strong> />

only if the following is valid: x < x<<strong>br</strong> />

M N<<strong>br</strong> />

Step 3<<strong>br</strong> />

This step is performed when it is not<<strong>br</strong> />

possible to determine in the first two steps<<strong>br</strong> />

how much one fuzzy number is bigger or<<strong>br</strong> />

smaller than the other. In this step we<<strong>br</strong> />

compare the “bases” of fuzzy numbers.<<strong>br</strong> />

The term “base” determines a length of<<strong>br</strong> />

the fuzzy number basis.<<strong>br</strong> />

PRACTICAL USE THE FUZZY<<strong>br</strong> />

NUMBER COMPARISON METHOD<<strong>br</strong> />

There is a list of general activities with<<strong>br</strong> />

duration in days for an industrial hall (Table<<strong>br</strong> />

1) which includes the works on the<<strong>br</strong> />

construction site as well as the works on<<strong>br</strong> />

prefa<strong>br</strong>ication the assembling elements.<<strong>br</strong> />

Description of activities l m r<<strong>br</strong> />

1. Fulfilling the contract obligations towards the contractor 2 3 4<<strong>br</strong> />

2. Preliminary works (building of commercial construction site) 5 7 9<<strong>br</strong> />

3. Prefa<strong>br</strong>ication of concrete facade elements 24 30 35<<strong>br</strong> />

4. Prefa<strong>br</strong>ication of concrete columns and rain-water girders 14 16 18<<strong>br</strong> />

5. Removal of humus topsoil and location levelling 3 4 5<<strong>br</strong> />

6. Fa<strong>br</strong>ication of the main roof beams (truss) 7 10 12<<strong>br</strong> />

7. Construction of transport routes around the facility 9 12 14<<strong>br</strong> />

8. Spot footing pits excavation 1 2 3<<strong>br</strong> />

9. Fa<strong>br</strong>ication of secondary roof beams (purlins, <strong>br</strong>acings) 13 15 17<<strong>br</strong> />

10. Construction the base for hall floor plate 3 4 5<<strong>br</strong> />

11. Excavation of external installation ducts 3 4 5<<strong>br</strong> />

12. Making of transport route wearing course 1 2 3<<strong>br</strong> />

13. Concreting of spot footings and ground beams 8 10 12<<strong>br</strong> />

14. Transport and stockpiling of steel structure 1 3 4<<strong>br</strong> />

15. Erection of concrete columns and rain-water girders 2 3 4<<strong>br</strong> />

16. Construction of the hall floor slab with waterproofing 4 6 7<<strong>br</strong> />

17. Connecting the truss parts into a whole 1 2 3<<strong>br</strong> />

No 4, <strong>2011</strong>. 163<<strong>br</strong> />

MINING ENGINEERING


18. Laying of external installations 13 15 18<<strong>br</strong> />

19. Assembly of the main roof beams (truss) 1 2 3<<strong>br</strong> />

20. Assembly of concrete facade elements 4 5 7<<strong>br</strong> />

21. Assembly of secondary roof beams 4 5 7<<strong>br</strong> />

22. Installation of vitrified facade joinery 6 8 10<<strong>br</strong> />

23. Assembly of crane-track support for <strong>br</strong>idge crane 3 4 5<<strong>br</strong> />

24. Assembly of roof covering and hall rain gutters 7 10 12<<strong>br</strong> />

25. Installation of skylights 2 3 4<<strong>br</strong> />

26. Laying of internal hall installations 10 11 12<<strong>br</strong> />

27. Assembly of <strong>br</strong>idge cranes 8 10 13<<strong>br</strong> />

28. Painting and decorating works in the hall 6 7 9<<strong>br</strong> />

29. Acceptance of the finished works on the facility 2 3 4<<strong>br</strong> />

30. Trial run 8 10 12<<strong>br</strong> />

Rz1 = t1<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz1 = α + 2;4−α<<strong>br</strong> />

Rz2 = Rz1+ t2<<strong>br</strong> />

Fig. 3. Network layout structure analysis<<strong>br</strong> />

[ ]<<strong>br</strong> />

t 2 = 2 α + 5;9 − 2α<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz2 = α + 2+ 2α + 5;4− α + 9−2α [ ]<<strong>br</strong> />

Rz2 = 3α + 7;13−3α No 4, <strong>2011</strong>. 164<<strong>br</strong> />

MINING ENGINEERING


Rz3 = Rz2+ t3<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz3 = 3 α + 7 + 6α+ 24;13 − 3α+ 35−5α [ ]<<strong>br</strong> />

Rz3 = 9α + 31;48−8α Rz4 = Rz2+ t4<<strong>br</strong> />

[ ] [ ]<<strong>br</strong> />

Rz4 = 3 α + 7;13− 3α + 2α + 14;18 −2α<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz4 = 5α + 21;31−5α Rz5 = Rz2+ t5<<strong>br</strong> />

[ ] [ ]<<strong>br</strong> />

Rz5 = 3 α + 7;13− 3α + α + 3;5 −α<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz5 = 4α + 10;18−4α Rz6 = Rz2+ t6<<strong>br</strong> />

[ ] [ ]<<strong>br</strong> />

Rz6 = 3 α + 7;13− 3α + 3α + 7;12 −2α<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz6 = 6 α + 14;25−5α R z1 = t1<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz1 = α + 2;4−α<<strong>br</strong> />

Rz2 = Rz1+ t2<<strong>br</strong> />

[ ]<<strong>br</strong> />

t2= 2 α + 5;9−2α [ ]<<strong>br</strong> />

Rz2 = α + 2+ 2α + 5;4− α + 9− 2α<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz2 = 3α + 7;13−3α Rz3 = Rz2+ t3<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz3 = 3 α + 7 + 6α + 24;13− 3α + 35 −5α<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz3 = 9α + 31;48−8α Rz4 = Rz2+ t4<<strong>br</strong> />

[ ] [ ]<<strong>br</strong> />

Rz4 = 3 α + 7;13 − 3α + 2α + 14;18 −2α<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz4 = 5α + 21;31−5α Rz5 = Rz2+ t5<<strong>br</strong> />

[ ] [ ]<<strong>br</strong> />

Rz5 = 3 α + 7;13− 3α + α + 3;5−α<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz5 = 4α + 10;18−4α Rz6 = Rz2+ t6<<strong>br</strong> />

[ ] [ ]<<strong>br</strong> />

Rz6 = 3 α + 7;13 − 3α + 3α + 7;12 −2α<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz6 = 6 α + 14;25−5α Rz7 = Rz5+ t7<<strong>br</strong> />

[ ] [ ]<<strong>br</strong> />

Rz7 = 4 α + 10;18− 4α + 3α + 9;14−2α [ ]<<strong>br</strong> />

Rz7 = 7 α + 19;32−6α Rz8 = Rz5+ t8<<strong>br</strong> />

[ ] [ ]<<strong>br</strong> />

Rz8 = 4 α + 10;18− 4α + α + 1;3−α<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz8 = 5 α + 11;21−5α ⎡ ⎤<<strong>br</strong> />

Rz9 = max⎢Rz5+ t9; Rz6+ t9⎥<<strong>br</strong> />

⎢ ⎥<<strong>br</strong> />

⎣ ⎦<<strong>br</strong> />

Here we apply the procedure of fuzzy<<strong>br</strong> />

number comparison, in other words we<<strong>br</strong> />

find the largest value of fuzzy numbers:<<strong>br</strong> />

Rz5+ t9= [ 4 α + 10;18− 4α]<<strong>br</strong> />

+<<strong>br</strong> />

[ 2α+ 13;17− 2α] = [ 6 α + 23;35−6α] No 4, <strong>2011</strong>. 165<<strong>br</strong> />

MINING ENGINEERING


Rz6+ t9= [ 6 α + 14;25− 5α]<<strong>br</strong> />

+<<strong>br</strong> />

[ 2α + 13;17 − 2α] = [ 8 α + 27;42 −7α]<<strong>br</strong> />

23 + 2 ⋅ 29 + 35<<strong>br</strong> />

RRz ( 5+ t9)<<strong>br</strong> />

= = 29,0<<strong>br</strong> />

4<<strong>br</strong> />

27 + 2 ⋅ 35 + 42<<strong>br</strong> />

RRz ( 6+ t9)<<strong>br</strong> />

= = 34,75<<strong>br</strong> />

4<<strong>br</strong> />

RRz ( 6+ t9) f RRz ( 6+ t9)<<strong>br</strong> />

It follows from the last relation for<<strong>br</strong> />

early completion for activity no. 9 is the<<strong>br</strong> />

following fuzzy number:<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz9 = 8 α + 27;42− 7α<<strong>br</strong> />

The presented procedure is then analogously<<strong>br</strong> />

applied to all activities taking into<<strong>br</strong> />

account the structure of the given network<<strong>br</strong> />

layout. By this way, we come to the last<<strong>br</strong> />

two activities of the given network layout<<strong>br</strong> />

which are calculated as follows:<<strong>br</strong> />

⎡ ⎤<<strong>br</strong> />

⎢ ⎥<<strong>br</strong> />

Rz29 = max ⎢Rz27+ t29; Rz28+ t29; Rz26+ t29⎥<<strong>br</strong> />

⎢ ⎥<<strong>br</strong> />

⎣ ⎦<<strong>br</strong> />

27+ 29 = [ 17 + 57;92 − 18 ] +<<strong>br</strong> />

[ α 2; 4 α] [ 18α 59;96 19α]<<strong>br</strong> />

Rz t α α<<strong>br</strong> />

+ + − = + −<<strong>br</strong> />

28+ 29 = [ 19 + 61;99 − 19 ] +<<strong>br</strong> />

[ α 2;4 α] [ 20α 63;103 20α]<<strong>br</strong> />

Rz t α α<<strong>br</strong> />

+ + − = + −<<strong>br</strong> />

26+ 29 = [ 18 + 63;98 − 17 ] +<<strong>br</strong> />

[ α 2;4 α] [ 19α 65;102 18α]<<strong>br</strong> />

Rz t α α<<strong>br</strong> />

+ + − = + −<<strong>br</strong> />

59 + 2 ⋅ 77 + 96<<strong>br</strong> />

RRz ( 27+ t29)<<strong>br</strong> />

= = 77,25<<strong>br</strong> />

4<<strong>br</strong> />

63 + 2 ⋅ 83 + 103<<strong>br</strong> />

RRz ( 28+ t29)<<strong>br</strong> />

= = 83,0<<strong>br</strong> />

4<<strong>br</strong> />

65 + 2 ⋅ 84 + 102<<strong>br</strong> />

RRz ( 26+ t29)<<strong>br</strong> />

= = 83,75<<strong>br</strong> />

4<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz29 = 19α + 65;102 − 18α<<strong>br</strong> />

Rz30 = Rz29+ t30<<strong>br</strong> />

30 = [ 19 + 65;102 − 18 ] +<<strong>br</strong> />

[ 2α 8;12 2α] [ 21α 73;114 20α]<<strong>br</strong> />

Rz α α<<strong>br</strong> />

+ + − = + −<<strong>br</strong> />

[ ]<<strong>br</strong> />

Rz30 = 21α + 73;114 − 20α<<strong>br</strong> />

The fuzzy number, representing the<<strong>br</strong> />

last activity of Rz30 project, defines the<<strong>br</strong> />

project completion possibility function. In<<strong>br</strong> />

the previous expression, the fuzzy number,<<strong>br</strong> />

representing the last activity, is defined<<strong>br</strong> />

by its α intersections.<<strong>br</strong> />

Analytical shape of the possibility<<strong>br</strong> />

function is obtained by the following<<strong>br</strong> />

manner:<<strong>br</strong> />

−<<strong>br</strong> />

R z30<<strong>br</strong> />

= L xR<<strong>br</strong> />

α<<strong>br</strong> />

[ α α<<strong>br</strong> />

x , ] = [ 21α<<strong>br</strong> />

+ 73,<<strong>br</strong> />

114 − 20 ]<<strong>br</strong> />

α<<strong>br</strong> />

α x − 73<<strong>br</strong> />

x = 21α<<strong>br</strong> />

+ 73 → α = L<<strong>br</strong> />

L<<strong>br</strong> />

21<<strong>br</strong> />

α<<strong>br</strong> />

α 114 − x<<strong>br</strong> />

x 114 20α<<strong>br</strong> />

α<<strong>br</strong> />

D<<strong>br</strong> />

D = + → =<<strong>br</strong> />

20<<strong>br</strong> />

whence we get the analytical expression<<strong>br</strong> />

for possibility function:<<strong>br</strong> />

()<<strong>br</strong> />

[ ] ⎪<<strong>br</strong> />

⎪ ⎪<<strong>br</strong> />

⎧ t − 73<<strong>br</strong> />

⎫<<strong>br</strong> />

⎪<<strong>br</strong> />

= 0,<<strong>br</strong> />

0476t<<strong>br</strong> />

− 3,<<strong>br</strong> />

4762,<<strong>br</strong> />

73 ≤ t ≤ 94<<strong>br</strong> />

21<<strong>br</strong> />

⎪<<strong>br</strong> />

⎪114<<strong>br</strong> />

− t<<strong>br</strong> />

⎪<<strong>br</strong> />

π t = ⎨ = 5,<<strong>br</strong> />

7 − 0,<<strong>br</strong> />

05t,<<strong>br</strong> />

94 ≤ t ≤ 114⎬<<strong>br</strong> />

⎪ 20<<strong>br</strong> />

⎪ 0,<<strong>br</strong> />

t ∉ 73,<<strong>br</strong> />

114<<strong>br</strong> />

⎪⎩<<strong>br</strong> />

⎭<<strong>br</strong> />

Graphic representation of this expression<<strong>br</strong> />

is given in Figure 4.<<strong>br</strong> />

No 4, <strong>2011</strong>. 166<<strong>br</strong> />

MINING ENGINEERING


The difference in computation between<<strong>br</strong> />

the calculation for various specific α values<<strong>br</strong> />

and the calculation where α appears as<<strong>br</strong> />

parameter occurring only in the calculation<<strong>br</strong> />

of Rz29 early completion.<<strong>br</strong> />

(in comparison the Hamming distance for:<<strong>br</strong> />

Rz28+ t29<<strong>br</strong> />

and Rz26 t29<<strong>br</strong> />

This is why a slight difference occurred<<strong>br</strong> />

for the project completion.<<strong>br</strong> />

Similar calculation will be deduced for<<strong>br</strong> />

the calculation of late completion of some<<strong>br</strong> />

activities, for calculation of time reserve,<<strong>br</strong> />

etc.<<strong>br</strong> />

+ )<<strong>br</strong> />

Fig. 4. Representation of possibility function π(t)<<strong>br</strong> />

Project completion obtained by means of α<<strong>br</strong> />

intersection where concrete values were<<strong>br</strong> />

not replaced<<strong>br</strong> />

The authors of the paper have determined<<strong>br</strong> />

the time of project reali<strong>za</strong>tion for<<strong>br</strong> />

the given example by probabilisticpossibilistic<<strong>br</strong> />

procedure according to [3].<<strong>br</strong> />

The difference of the two calculations is<<strong>br</strong> />

that when we apply the fuzzy number<<strong>br</strong> />

comparison method it is necessary to calculate<<strong>br</strong> />

the network layout only once after<<strong>br</strong> />

which the possibility function can be defined<<strong>br</strong> />

(Figure 4).<<strong>br</strong> />

When we calculate the possibility<<strong>br</strong> />

function using the probability-possibility<<strong>br</strong> />

probabilistic-possibilistic procedure, it is<<strong>br</strong> />

necessary to calculate the entire network<<strong>br</strong> />

layout several times for concrete α parameter<<strong>br</strong> />

values (α=0; 0,25; 0,50;<<strong>br</strong> />

0,75; 1,0). In other words, it is<<strong>br</strong> />

necessary to calculate the network layout<<strong>br</strong> />

for each α value twice, except for the value<<strong>br</strong> />

α=1, when it is necessary to calculate the<<strong>br</strong> />

network layout only once (Figure 5).<<strong>br</strong> />

Fig. 5 .Representation of possibiltiy function π(t)<<strong>br</strong> />

Project completion obtained by multiple<<strong>br</strong> />

calculation of network layout by means of α<<strong>br</strong> />

concrete values<<strong>br</strong> />

(α=0; α=0,25; α= 0,50; α= 0,75 ;α=1,0)<<strong>br</strong> />

CONCLUSION<<strong>br</strong> />

The procedure presented in the paper<<strong>br</strong> />

and the specific examples have illustrated<<strong>br</strong> />

the use of Possibility Theory in planning<<strong>br</strong> />

the time of facility completion. The possibility<<strong>br</strong> />

function of the project completion<<strong>br</strong> />

was determined for those respective activities<<strong>br</strong> />

of possibility function, which is known<<strong>br</strong> />

and represented by the appropriate αsections.<<strong>br</strong> />

This procedure can determine the<<strong>br</strong> />

possibility functions of execution the individual<<strong>br</strong> />

stages of the project. The fuzzy<<strong>br</strong> />

number comparison method, described in<<strong>br</strong> />

detail, was used in order to define the project<<strong>br</strong> />

completion possibility function. The<<strong>br</strong> />

illustrated example contained the total of<<strong>br</strong> />

30 general activities and the end result suggested<<strong>br</strong> />

that, compared with other methods,<<strong>br</strong> />

the authors used to apply, this procedure<<strong>br</strong> />

which offers the easiest way to the end result,<<strong>br</strong> />

particularly in the real cases<<strong>br</strong> />

when the number of activities exceeds considerably<<strong>br</strong> />

30. Establishing the data bases<<strong>br</strong> />

and their updating provides the full<<strong>br</strong> />

No 4, <strong>2011</strong>. 167<<strong>br</strong> />

MINING ENGINEERING


contribution of this procedure to the project<<strong>br</strong> />

completion planning and eliminates the subjectivity<<strong>br</strong> />

in assessing the possible duration of<<strong>br</strong> />

individual activities.<<strong>br</strong> />

REFERENCES<<strong>br</strong> />

[1] Zadeh L. A, – Fuzzy Sets,<<strong>br</strong> />

Information and Control, 8, (1965.),<<strong>br</strong> />

pp. 338-353.<<strong>br</strong> />

[2] Knežević M., - Upravljanje rizikom<<strong>br</strong> />

pri reali<strong>za</strong>ciji građevinskih projekata,<<strong>br</strong> />

Doktorska disertacija, Građevinski<<strong>br</strong> />

fakultet Univerziteta u Beogradu,<<strong>br</strong> />

2004.<<strong>br</strong> />

[3] Praščević Ž, – Primena teorije<<strong>br</strong> />

mogućnosti u planiranju reali<strong>za</strong>cije<<strong>br</strong> />

projekata, Izgradnja 1/89 (1989.), pp.<<strong>br</strong> />

9-13.<<strong>br</strong> />

[4] Kaufmann A and Gupta M.<<strong>br</strong> />

Introduction to Fuzzy Arithmetic.<<strong>br</strong> />

Theory and applications, Van<<strong>br</strong> />

nostrand Reinhold, 1988.<<strong>br</strong> />

[5] Teodorović D. Kikuchi S. Fuzzy<<strong>br</strong> />

skupovi i primene u sao<strong>br</strong>aćaju,<<strong>br</strong> />

sao<strong>br</strong>aćajni fakultet Univerziteta u<<strong>br</strong> />

Beogradu, 1994.<<strong>br</strong> />

[6] Zadeh L. A, – Fuzzy Sets as a Basic<<strong>br</strong> />

for a Theory of Posibility, Fuzzy Sets<<strong>br</strong> />

and Systems, 1, (1978.), pp. 3-28.<<strong>br</strong> />

[7] Zadeh L. A, – Probability Measures of<<strong>br</strong> />

Fuzzy Events, Journal of Mathematical<<strong>br</strong> />

Analysis and Applications, 23, (1968.),<<strong>br</strong> />

pp. 421-427.<<strong>br</strong> />

[8] Tadić D. Stanojević P. Aleksić M.<<strong>br</strong> />

Mišković V. Bukvić V. - Teorija<<strong>br</strong> />

fuzzy skupova i primene u rešavanju<<strong>br</strong> />

menadžment problema, Mašinski<<strong>br</strong> />

fakultet u Kragujevcu, Kragujevac,<<strong>br</strong> />

2006.<<strong>br</strong> />

No 4, <strong>2011</strong>. 168<<strong>br</strong> />

MINING ENGINEERING


INSTITUT ZA RUDARSTVO I METALURGIJU BOR YU ISSN: 1451-0162<<strong>br</strong> />

KOMITET ZA PODZEMNU EKSPLOATACIJU MINERALNIH SIROVINA UDK: 622<<strong>br</strong> />

UDK: 625.72:681.51(045)=861<<strong>br</strong> />

Izvod<<strong>br</strong> />

Velimir Dutina * , Ljubo Marković * , Miloš Knežević ** , Miljan Kovačević *<<strong>br</strong> />

IZBOR VARIJANTE TRASE PUTA VIŠEKRITERIJUMSKOM<<strong>br</strong> />

OPTIMIZACIJOM<<strong>br</strong> />

Optimi<strong>za</strong>cija složenih sistema je izuzetno kompleksan proces u kome se objedinjuju teorijska i<<strong>br</strong> />

iskustvena znanja stručnjaka iz više disciplina. Da bi se sa svih stanovišta razmotrio problem<<strong>br</strong> />

optimi<strong>za</strong>cije sistema u građevinarstvu, potrebna su raznorodna razmatranja kao što su<<strong>br</strong> />

inženjerska, ekološka, ekonomska, socijalna i institucionalna. Rezultat optimi<strong>za</strong>cije ima veliku<<strong>br</strong> />

šansu da bude prihvaćen kao dobar kompromis između različitih interesa učesnika u odlučivanju,<<strong>br</strong> />

a jedan od načina da se to postigne jeste nalaženje kompromisnog rešenja. U radu je <strong>za</strong> izbor<<strong>br</strong> />

optimalne trase autoputa koriščena metoda višekriterijumske optimi<strong>za</strong>cije – metoda<<strong>br</strong> />

kompromisnog programiranja i višekriterijumsko kompromisno rangiranje alternativnih rešenja.<<strong>br</strong> />

Definisani su ciljevi, izvršena je tehno ekonomska anali<strong>za</strong> varijantnih rešenja, formirani<<strong>br</strong> />

kriterijumi i na kraju prika<strong>za</strong>no je dobijeno kompromisno resenje .<<strong>br</strong> />

Ključne reči: optimi<strong>za</strong>cija, kompromisno programiranje, varijante, kriterijumi, kompromisno<<strong>br</strong> />

rešenje.<<strong>br</strong> />

1. UVOD<<strong>br</strong> />

Autoput Beograd – Južni Jadran<<strong>br</strong> />

predstavlja krak Trans-evropske magistrale<<strong>br</strong> />

(TEM) koji na području Srbije i Crne Gore<<strong>br</strong> />

povezuje osnovni pravac TEM-a (od<<strong>br</strong> />

Gdanjska do Atine i Istambula) sa<<strong>br</strong> />

Jadranskim morem. Na teritoriju Crne Gore<<strong>br</strong> />

iz pravca Srbije trasa autoputa ulazi kod<<strong>br</strong> />

mesta Boljare, a <strong>za</strong>tim pravcem Berane –<<strong>br</strong> />

Andrijevica – Mateševo – Podgorica – Tanki<<strong>br</strong> />

rt i već izgrađenim tunelom ispod masiva<<strong>br</strong> />

Sozina izlazi na Jadransku obalu, odnosno<<strong>br</strong> />

Luku Bar. Idejnim projektom urađeno je više<<strong>br</strong> />

varijanti pojedinih deonica na koridoru<<strong>br</strong> />

autoputa Beograd – Južni Jadran.<<strong>br</strong> />

* Univerzitet u Prištini, Fakultet tehničkih nauka-Kosovska Mitrovica<<strong>br</strong> />

** Univerzitet u Podgorici, Građevinski fakultet-Podgorica<<strong>br</strong> />

U tom smislu potrebno je izvršiti<<strong>br</strong> />

analizu izbora varijanti trase <strong>za</strong> dalju<<strong>br</strong> />

razradu u glavnom projektu.<<strong>br</strong> />

U ovom radu razmatrane su i tehno<<strong>br</strong> />

ekonomski vrednovane dve varijante trase<<strong>br</strong> />

koridora autoputa kroz Crnu Goru na<<strong>br</strong> />

potezu Smokovac (Podgorica) - Uvče koje<<strong>br</strong> />

sadrže veliki <strong>br</strong>oj vijadukata, mostova i<<strong>br</strong> />

tunela, što značajno utiče na troškove<<strong>br</strong> />

projekta. Anali<strong>za</strong> varijanti i procena<<strong>br</strong> />

troškova imaju <strong>za</strong> cilj da pomognu<<strong>br</strong> />

investitoru u donošenju odluka o daljim<<strong>br</strong> />

fa<strong>za</strong>ma reali<strong>za</strong>cije projekta.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 169<<strong>br</strong> />

RUDARSKI RADOVI


2. TEHNOEKONOMSKA ANALIZA<<strong>br</strong> />

Predmet analize je vrednovanje sa<<strong>br</strong> />

tehničkog i ekonomskog stanovišta<<strong>br</strong> />

varijanti autoputa na potezu od Smokovca<<strong>br</strong> />

(Podgorice) do Uvča i to u varijantama<<strong>br</strong> />

definisanim na sledeći način:<<strong>br</strong> />

1. Varijanta V+V, ide trasom visoke<<strong>br</strong> />

varijante od (km 0+000 - km 9+500)<<strong>br</strong> />

i do Uvča ide takođe varijantom<<strong>br</strong> />

nazvanom Visoka varijanta<<strong>br</strong> />

(L=36,35 km);<<strong>br</strong> />

2. Varijanta V+N, ide trasom visoke<<strong>br</strong> />

varijante od (km 0+000 - km<<strong>br</strong> />

9+500), i dalje do Uvča nastavlja<<strong>br</strong> />

trasom nazvanom Niska varijanta<<strong>br</strong> />

(40,80 km).<<strong>br</strong> />

U okviru ovog rada istražena su varijantna<<strong>br</strong> />

rešenja trase, sa ciljem da se na osnovu<<strong>br</strong> />

upoređenja i vrednovanja i<strong>za</strong>bere povoljnije<<strong>br</strong> />

rešenje trase. Za osnovne kriterijume koje<<strong>br</strong> />

treba da ostvari optimalna varijanta autoputa,<<strong>br</strong> />

a obzirom na kompleksnost tehnoekonomskih<<strong>br</strong> />

Tabela 1. Geometrijske karakteristike varijanti<<strong>br</strong> />

Varijanta<<strong>br</strong> />

Ukupna dužina<<strong>br</strong> />

[km]<<strong>br</strong> />

<strong>za</strong>hteva, usvojeni su sledeći ciljevi:<<strong>br</strong> />

• minimum troškova građenja;<<strong>br</strong> />

• minimum troškova održavanja predmetne<<strong>br</strong> />

deonice;<<strong>br</strong> />

• minimum eksploatacionih troškova<<strong>br</strong> />

korisnika;<<strong>br</strong> />

• maksimum sigurnosti, bezbednosti i<<strong>br</strong> />

udobnosti na predmetnoj deonici;<<strong>br</strong> />

• maksimalni pozitivni uticaj na<<strong>br</strong> />

ukupan razvoj područja;<<strong>br</strong> />

• maksimum u pogledu očuvanja<<strong>br</strong> />

prostora i ekologije na datom području.<<strong>br</strong> />

3. SAOBRAĆAJNI I TEHNIČKI<<strong>br</strong> />

PARAMETRI PO VARIJANTAMA<<strong>br</strong> />

Kvalitet varijantnog rešenja deonice<<strong>br</strong> />

autoputa u velikoj meri može se opisati<<strong>br</strong> />

sao<strong>br</strong>aćajnim i tehničkim parametarima<<strong>br</strong> />

varijante. Neki od najvažnijih parametara<<strong>br</strong> />

dati su u tabelama 1, 2, 3 i 4.<<strong>br</strong> />

Minimalni radijus<<strong>br</strong> />

[m/<strong>br</strong>oj<<strong>br</strong> />

primena]<<strong>br</strong> />

Maksim. Uzdužni<<strong>br</strong> />

nagib [% na km]<<strong>br</strong> />

V+V 40,81 450/2 6% - 1,829 km<<strong>br</strong> />

V+N 36,12 450/2 6% - 0,887 km<<strong>br</strong> />

Tabela 2. Nadmorska visina <strong>za</strong> varijante<<strong>br</strong> />

Kote Nadmorska visina<<strong>br</strong> />

Varijanta max min<<strong>br</strong> />

V+V 40813 1189<<strong>br</strong> />

V+N 36124 1189<<strong>br</strong> />

Tabela 3. Nagibi nivelete<<strong>br</strong> />

0-200<<strong>br</strong> />

[km/%]<<strong>br</strong> />

5385<<strong>br</strong> />

13%<<strong>br</strong> />

5385<<strong>br</strong> />

15%<<strong>br</strong> />

200-400<<strong>br</strong> />

[km/%]<<strong>br</strong> />

4537<<strong>br</strong> />

11%<<strong>br</strong> />

4383<<strong>br</strong> />

12%<<strong>br</strong> />

400-600<<strong>br</strong> />

[km/%]<<strong>br</strong> />

6125<<strong>br</strong> />

15%<<strong>br</strong> />

3962<<strong>br</strong> />

11%<<strong>br</strong> />

600-800<<strong>br</strong> />

[km/%]<<strong>br</strong> />

4743<<strong>br</strong> />

12%<<strong>br</strong> />

4116<<strong>br</strong> />

11%<<strong>br</strong> />

800-<<strong>br</strong> />

1000<<strong>br</strong> />

[km/%]<<strong>br</strong> />

3333<<strong>br</strong> />

1000-<<strong>br</strong> />

1200<<strong>br</strong> />

km/%<<strong>br</strong> />

16690<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 170<<strong>br</strong> />

RUDARSKI RADOVI<<strong>br</strong> />

8%<<strong>br</strong> />

5381<<strong>br</strong> />

15%<<strong>br</strong> />

41%<<strong>br</strong> />

12897<<strong>br</strong> />

36%<<strong>br</strong> />

Varijanta<<strong>br</strong> />

Ukupna dužina trase -<<strong>br</strong> />

m ≤2%<<strong>br</strong> />

Nagibi nivelete<<strong>br</strong> />

2-5% >5%<<strong>br</strong> />

V+V 40.813 13.094 19.054 8.664<<strong>br</strong> />

V+N 36.124 8.689 17.758 9.666


Tabela 4. Zastupljenost objekata na trasi<<strong>br</strong> />

Varijanta<<strong>br</strong> />

Dužina<<strong>br</strong> />

Vijadukti i mostovi na<<strong>br</strong> />

levom i desnom<<strong>br</strong> />

kolovozu<<strong>br</strong> />

Tuneli na levom i desnom<<strong>br</strong> />

kolovozu<<strong>br</strong> />

[km] <strong>br</strong>oj [km] <strong>br</strong>oj [km]<<strong>br</strong> />

V+V 40,81 32 10,09 22 21,96<<strong>br</strong> />

V+N 36,12 38 9,18 26 27,43<<strong>br</strong> />

4. SAOBRAĆAJNO OPTEREĆENJE<<strong>br</strong> />

Sao<strong>br</strong>aćajno opterećenje u baznoj godini<<strong>br</strong> />

odreðeno je na osnovu izveštaja o <strong>br</strong>ojanju<<strong>br</strong> />

sao<strong>br</strong>aćaja Bioče (Luis Berger, oktobar<<strong>br</strong> />

2007.), odnosno empirijskog i modelskog<<strong>br</strong> />

prosečnog godišnjeg dnevnog sao<strong>br</strong>aćaja<<strong>br</strong> />

(PGDS) u 2007. godini <strong>za</strong> put M-2, deonica<<strong>br</strong> />

Podgorica – Bioče i put R-19, deonica Bioče<<strong>br</strong> />

– Mateševo. Struktura sao<strong>br</strong>aćajnog toka na<<strong>br</strong> />

budućem autoputu je određena na osnovu<<strong>br</strong> />

permanentnih sedmodnevnih <strong>br</strong>ojanja sao<strong>br</strong>aćaja<<strong>br</strong> />

(tabela 5) na putu M-2, deonica<<strong>br</strong> />

Podgorica – Bioče u toku meseca okto<strong>br</strong>a<<strong>br</strong> />

2007. godine. Na osnovu navedenih podataka<<strong>br</strong> />

i pretpostavki sračunato je sao<strong>br</strong>aćajno<<strong>br</strong> />

opterećenje (PGDS) <strong>za</strong> buduću deonicu<<strong>br</strong> />

autoputa Smokovac – Uvač (tabela 6.) u<<strong>br</strong> />

periodu 2008 – 2027.<<strong>br</strong> />

Tabela 5. Struktura sao<strong>br</strong>aćajnog toka<<strong>br</strong> />

Kategorija PA BUS LT ST TT AV Ukupno<<strong>br</strong> />

Učesće % 79.7 2.5 4.4 5.0 1.5 6.9 100<<strong>br</strong> />

Tabela 6. Prognoze <strong>za</strong> PGDS<<strong>br</strong> />

Godina PA BUS LT ST TT AV PGDS (voz/dan)<<strong>br</strong> />

2007 4623 143 257 292 86 399 5800<<strong>br</strong> />

2008 5085 157 283 321 95 439 6380<<strong>br</strong> />

2009 5594 173 311 353 104 483 7018<<strong>br</strong> />

2010 6153 190 342 389 115 531 7720<<strong>br</strong> />

<strong>2011</strong> 6769 209 377 427 126 584 8492<<strong>br</strong> />

2012 7073 218 394 447 132 610 8874<<strong>br</strong> />

2013 7391 228 411 467 138 638 9273<<strong>br</strong> />

2014 7724 239 430 488 144 667 9691<<strong>br</strong> />

2015 8072 249 449 510 150 697 10127<<strong>br</strong> />

2016 8378 259 466 529 156 723 10511<<strong>br</strong> />

2017 8697 269 484 549 162 751 10911<<strong>br</strong> />

2018 9027 279 502 570 168 779 11325<<strong>br</strong> />

2019 9370 289 521 592 175 809 11756<<strong>br</strong> />

2020 9726 300 541 614 181 839 12203<<strong>br</strong> />

2021 10096 312 562 637 188 871 12666<<strong>br</strong> />

2022 10479 324 583 662 195 904 13148<<strong>br</strong> />

2023 10878 336 605 687 203 939 13647<<strong>br</strong> />

2024 11291 349 628 713 210 974 14166<<strong>br</strong> />

2025 11720 362 652 740 218 1012 14704<<strong>br</strong> />

2026 12165 376 677 768 227 1050 15263<<strong>br</strong> />

2027 12628 390 703 797 235 1090 15843<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 171<<strong>br</strong> />

RUDARSKI RADOVI


5. TROŠKOVI IZGRADNJE<<strong>br</strong> />

Procena troškova izgradnje urađena je<<strong>br</strong> />

na osnovu strukture trase i objekata<<strong>br</strong> />

(mostova, vijadukata i tunela itd.) i<<strong>br</strong> />

procene cena <strong>za</strong> ove objekte. Procena cena<<strong>br</strong> />

(tabela 7.) urađena je na osnovu do sada<<strong>br</strong> />

urađenih projekata, odnosno tržišnih cena<<strong>br</strong> />

<strong>za</strong> ovu vrstu radova. Jedinične cene <strong>za</strong><<strong>br</strong> />

mostove utvrđene su kao prosečne cene na<<strong>br</strong> />

osnovu pojedinačno utvrđenih cena <strong>za</strong><<strong>br</strong> />

Tabela 7. Ukupni troškovi građenja po varijantama<<strong>br</strong> />

Red. <strong>br</strong>.<<strong>br</strong> />

Oznaka<<strong>br</strong> />

varijante<<strong>br</strong> />

Ukupna dužina<<strong>br</strong> />

[km]<<strong>br</strong> />

svaki most. Procena troškova radova na<<strong>br</strong> />

tunelima izvršena je na osnovu prosečne<<strong>br</strong> />

cene 1 m tunelske cevi (<strong>za</strong> levi, odnosno<<strong>br</strong> />

desni kolovoz u <strong>za</strong>visnosti od dužine i<<strong>br</strong> />

usvojena je ista <strong>za</strong> tunele na visokoj,<<strong>br</strong> />

odnosno niskoj trasi). Na sličan način<<strong>br</strong> />

određeni su i troškovi građenja ostalih<<strong>br</strong> />

objekata, na osnovu tih elemenata su<<strong>br</strong> />

definisani troškovi građenja.<<strong>br</strong> />

Ukupan iznos<<strong>br</strong> />

troškova građenja<<strong>br</strong> />

(€)<<strong>br</strong> />

Prosečna cena po<<strong>br</strong> />

km<<strong>br</strong> />

(€/km)<<strong>br</strong> />

1 V+V 40,80 649.056.603 15.903.182,88<<strong>br</strong> />

2 V+N 36,10 639.725.443 17.709.153,00<<strong>br</strong> />

6. TROŠKOVI ODRŽAVANJA<<strong>br</strong> />

Pod troškovima održavanja podrazumevaju<<strong>br</strong> />

se troškovi:<<strong>br</strong> />

• redovnog održavanja,<<strong>br</strong> />

• investicionog održavanja i<<strong>br</strong> />

• zimskog održavanja.<<strong>br</strong> />

Redovno održavanje obuhvata sanaciju<<strong>br</strong> />

oštećenja: kolovo<strong>za</strong>, rigola, ostalih objekata<<strong>br</strong> />

<strong>za</strong> odvodnjavanje, sao<strong>br</strong>aćajne signali<strong>za</strong>cije i<<strong>br</strong> />

dr. Investiciono održavanje obuhvata obnovu<<strong>br</strong> />

habajućeg sloja asfalta. Zimsko održavanje<<strong>br</strong> />

obuhvata održavanje puteva u <strong>za</strong>dovoljavajućem<<strong>br</strong> />

stanju u toku zimskog perioda.<<strong>br</strong> />

Ukupni troškovi održavanja po varijantama<<strong>br</strong> />

sračunati su prema [3] i dati u tabeli 8.<<strong>br</strong> />

Tabela 8. Ukupni troškovi održavanja po varijantama<<strong>br</strong> />

Redni<<strong>br</strong> />

<strong>br</strong>oj<<strong>br</strong> />

Naziv varijante<<strong>br</strong> />

Ukupna dužina<<strong>br</strong> />

[km]<<strong>br</strong> />

Ukupni troškovi održavanja<<strong>br</strong> />

(€/god)<<strong>br</strong> />

1 V+V 40,80 1.403.036,00<<strong>br</strong> />

2 V+N 36,10 1.246.085,00<<strong>br</strong> />

7. EKSPLOATACIONI<<strong>br</strong> />

TROŠKOVI<<strong>br</strong> />

Troškovi eksploatacije koji su razmatrani<<strong>br</strong> />

u ovim radu obuhvataju sledeće<<strong>br</strong> />

troškove:<<strong>br</strong> />

� troškove goriva<<strong>br</strong> />

� troškove maziva,<<strong>br</strong> />

� troškove pneumatika,<<strong>br</strong> />

� troškove održavanja i popravke<<strong>br</strong> />

vozila.<<strong>br</strong> />

Troškovi goriva, maziva, pneumatika,<<strong>br</strong> />

održavanja i popravki vozila izračunati su<<strong>br</strong> />

prema izrazima [3] i oni iznose (Vrednosti<<strong>br</strong> />

u tabeli 9.)<<strong>br</strong> />

Tabela 9. Prosečni eksploatacioni troškovi<<strong>br</strong> />

po varijantama<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 172<<strong>br</strong> />

RUDARSKI RADOVI<<strong>br</strong> />

Red.<<strong>br</strong> />

<strong>br</strong>oj<<strong>br</strong> />

Naziv<<strong>br</strong> />

varijante<<strong>br</strong> />

Ukupna<<strong>br</strong> />

dužina<<strong>br</strong> />

[km]<<strong>br</strong> />

Ukupni prosečni<<strong>br</strong> />

ekspl. troškovi<<strong>br</strong> />

(€/god)<<strong>br</strong> />

1 V+V 40,80 28.869.724<<strong>br</strong> />

2 V+N 36,10 26.139.172


8. TROŠKOVI SAOBRAĆAJNIH<<strong>br</strong> />

NEZGODA<<strong>br</strong> />

Ukupni ekonomski troškovi koje<<strong>br</strong> />

i<strong>za</strong>zovu sve sao<strong>br</strong>aćajne nesreće na potezu<<strong>br</strong> />

puta u toku jedne godine, određuju se<<strong>br</strong> />

prema formuli prema [3] :<<strong>br</strong> />

T = L×<<strong>br</strong> />

∑ N × C (€/god)<<strong>br</strong> />

su<<strong>br</strong> />

k<<strong>br</strong> />

k<<strong>br</strong> />

gde je:<<strong>br</strong> />

k - oznaka vrste nezgode (1 - nezgode sa<<strong>br</strong> />

smrtonosnim povredama;<<strong>br</strong> />

2 - nezgode sa teškim telesnim<<strong>br</strong> />

povredama; 3 - nezgode bez teških<<strong>br</strong> />

telesnih posledica)<<strong>br</strong> />

Tabela 10. Troškovi sao<strong>br</strong>aćajnih nezgoda<<strong>br</strong> />

Redni<<strong>br</strong> />

Naziv varijante<<strong>br</strong> />

<strong>br</strong>oj<<strong>br</strong> />

[km]<<strong>br</strong> />

k<<strong>br</strong> />

Ukupna dužina<<strong>br</strong> />

Nk - prosečan <strong>br</strong>oj sao<strong>br</strong>aćajnih nezgoda<<strong>br</strong> />

po kilometru godišnje, <strong>za</strong> određenu<<strong>br</strong> />

vrstu nezgode k (nezgoda/km.god).<<strong>br</strong> />

Ova vrednost <strong>za</strong>visi od tipa puta i<<strong>br</strong> />

PGDS.<<strong>br</strong> />

L - dužina dela varijante (km),<<strong>br</strong> />

Ck - prosečni ekonomski troškovi po<<strong>br</strong> />

jednoj nezgodi <strong>za</strong> k - tu vrstu<<strong>br</strong> />

nezgode (€)<<strong>br</strong> />

Pregled ovih troškova dat je u tabeli 10.<<strong>br</strong> />

Prosečni troškovi sao<strong>br</strong>aćajnih<<strong>br</strong> />

nezgoda (€/god)<<strong>br</strong> />

1 V+V 40,80 261.692,00<<strong>br</strong> />

2 V+N 36,10 231.627,00<<strong>br</strong> />

9. UTICAJ NA UKUPAN RAZVOJ<<strong>br</strong> />

PODRUČJA<<strong>br</strong> />

Parametri koji utiču na ukupan razvoj<<strong>br</strong> />

područja vrednovani su kroz sledeće stavke:<<strong>br</strong> />

a) trasa u prostornom sukobu (sukob sa<<strong>br</strong> />

prostornim planovima vrednuje se<<strong>br</strong> />

kroz dužinu takve trase ili bodovima);<<strong>br</strong> />

b) očuvanje postojećih naselja i podsticanje<<strong>br</strong> />

buduće urbani<strong>za</strong>cije<<strong>br</strong> />

Tabela 11.<<strong>br</strong> />

Red.<<strong>br</strong> />

<strong>br</strong>oj<<strong>br</strong> />

1<<strong>br</strong> />

2<<strong>br</strong> />

Varijante<<strong>br</strong> />

Visoka varijanta od 0,0 km<<strong>br</strong> />

do 9,5 km + Visoka do Uvča<<strong>br</strong> />

Visoka varijanta od 0,0 km<<strong>br</strong> />

do 9,5 km + Niska do Uvča<<strong>br</strong> />

Trasa u prostornom<<strong>br</strong> />

sukobu<<strong>br</strong> />

sa usvojenim<<strong>br</strong> />

PP<<strong>br</strong> />

(vrednovanje bodovima);<<strong>br</strong> />

c) očuvanje poljoprivrednih i šumskih<<strong>br</strong> />

površina (vrednuje se bodovima);<<strong>br</strong> />

d) realnost izvođenja, koja se vrednuje<<strong>br</strong> />

na osnovu potrebe <strong>za</strong> raseljavanjem,<<strong>br</strong> />

mogućnosti nabavke potrebnog<<strong>br</strong> />

materijala (<strong>za</strong> nasipe) i sl..<<strong>br</strong> />

Ocene vrednovanja su date u tabeli 11.<<strong>br</strong> />

OCENA POKAZATELJA PO VARIJANTAMA<<strong>br</strong> />

Očuvanje postojećih<<strong>br</strong> />

naselja,<<strong>br</strong> />

podsticanje<<strong>br</strong> />

urbanističkog<<strong>br</strong> />

uređenja<<strong>br</strong> />

Očuvanje poljoprivrednih<<strong>br</strong> />

i<<strong>br</strong> />

šumskih površina<<strong>br</strong> />

Realnost<<strong>br</strong> />

izvođenja<<strong>br</strong> />

1 2 3 4<<strong>br</strong> />

100 100 45 100<<strong>br</strong> />

100 100 100 100<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 173<<strong>br</strong> />

RUDARSKI RADOVI


10. PROSTORNO-EKOLOŠKE<<strong>br</strong> />

POSLEDICE<<strong>br</strong> />

Razmatrano je i analizirano više<<strong>br</strong> />

parametara:<<strong>br</strong> />

• aero<strong>za</strong>gađenje - na osnovu <strong>br</strong>oja<<strong>br</strong> />

objekata u zoni autoputa izloženih<<strong>br</strong> />

aero<strong>za</strong>gađenju, <strong>za</strong>gađenje površinske<<strong>br</strong> />

vode, podzemne vode i izvorišta<<strong>br</strong> />

vode <strong>za</strong> piće - na osnovu blizine trase i<<strong>br</strong> />

vodotoka, presecanja vodotokova<<strong>br</strong> />

trasom autoputa, blizine izvorišta,<<strong>br</strong> />

• gubitak i <strong>za</strong>gađenje poljoprivrednog<<strong>br</strong> />

i šumskog zemljišta - na<<strong>br</strong> />

osnovu površine zemljišta <strong>za</strong>hvaćenog<<strong>br</strong> />

trasom autoputa,<<strong>br</strong> />

• biotički faktor u tokom građenja i<<strong>br</strong> />

u toku eksploatacije - na staništa<<strong>br</strong> />

flore i faune uticaj trase autoputa je<<strong>br</strong> />

vrednovan na osnovu dužine trase na<<strong>br</strong> />

otvorenom (tuneli nemaju uticaja),<<strong>br</strong> />

• zdravlje stanovništva - na delovima<<strong>br</strong> />

gde trasa autoputa prolazi kroz ili<<strong>br</strong> />

pored naseljenih mesta,<<strong>br</strong> />

• sociološke prilike - raseljavanja ili<<strong>br</strong> />

dislociranje stambenih i drugih<<strong>br</strong> />

Tabela 12. Ocene vrednovanja prostorno-ekoloških kriterijuma<<strong>br</strong> />

Red.<<strong>br</strong> />

<strong>br</strong>oj<<strong>br</strong> />

Varijante<<strong>br</strong> />

Min.<<strong>br</strong> />

aero<strong>za</strong>gađenje<<strong>br</strong> />

Min.<strong>za</strong>g<<strong>br</strong> />

ađenja<<strong>br</strong> />

voda<<strong>br</strong> />

Min.<<strong>br</strong> />

gubitak i<<strong>br</strong> />

<strong>za</strong>gađenja<<strong>br</strong> />

zemljišta<<strong>br</strong> />

Min<<strong>br</strong> />

uticaja<<strong>br</strong> />

na<<strong>br</strong> />

biotički<<strong>br</strong> />

faktor<<strong>br</strong> />

objekata; ukidanje, dislociranje ili<<strong>br</strong> />

presecanje postojećih komunikacija;<<strong>br</strong> />

izmenjeni uslovi života usled smeštaja<<strong>br</strong> />

u prostor novih fizičkih struktura,<<strong>br</strong> />

• buka i vi<strong>br</strong>acije - definisane su<<strong>br</strong> />

dužine na kojima su te pojave izražene<<strong>br</strong> />

i izvršeno je njihovo vrednovanje,<<strong>br</strong> />

• <strong>za</strong>štićeno prirodno nasleđe -<<strong>br</strong> />

postojanja kolizionih tačaka trase<<strong>br</strong> />

autoputa sa prirodnim objektima,<<strong>br</strong> />

• razmatrano je postojanje lokaliteta<<strong>br</strong> />

koji su svrstani u <strong>za</strong>štićene kulturnoistorijske<<strong>br</strong> />

spomenike na trasama<<strong>br</strong> />

varijanti autoputa,<<strong>br</strong> />

• promena prirodnog izgleda terena-<<strong>br</strong> />

pej<strong>za</strong>ža javlja se na onim delovima<<strong>br</strong> />

trase koja je vidljiva odnosno na<<strong>br</strong> />

onim deonicama na kojima se put<<strong>br</strong> />

izvodi u useku, nasipu, kao i gde se<<strong>br</strong> />

prepreke savlađuju mostovima,<<strong>br</strong> />

nadvožnjacima i drugim nadzemnim<<strong>br</strong> />

konstrukcijama.<<strong>br</strong> />

Ocene su date u tabeli 12.<<strong>br</strong> />

Min. uticaja<<strong>br</strong> />

na populaciono<<strong>br</strong> />

zdravlje i<<strong>br</strong> />

sociološke<<strong>br</strong> />

faktore<<strong>br</strong> />

Min.<<strong>br</strong> />

buke i<<strong>br</strong> />

vi<strong>br</strong>acija<<strong>br</strong> />

Min. dodir<<strong>br</strong> />

sa <strong>za</strong>štićenimprirodnim<<strong>br</strong> />

područjima<<strong>br</strong> />

Min.<<strong>br</strong> />

negativnih<<strong>br</strong> />

uticaja na<<strong>br</strong> />

kulturnoistorijske<<strong>br</strong> />

spomenike<<strong>br</strong> />

+ + + + + + + + + + +<<strong>br</strong> />

1.<<strong>br</strong> />

2.<<strong>br</strong> />

Visoka<<strong>br</strong> />

varijanta od<<strong>br</strong> />

0,0 km do<<strong>br</strong> />

9,5 km +<<strong>br</strong> />

Visoka do<<strong>br</strong> />

Uvča<<strong>br</strong> />

Visoka<<strong>br</strong> />

varijanta od<<strong>br</strong> />

0,0 km do<<strong>br</strong> />

9,5 km +<<strong>br</strong> />

Niska do<<strong>br</strong> />

Uvča<<strong>br</strong> />

90 85 65 70 85 85 95 100 50<<strong>br</strong> />

90 85 80 80 85 85 95 100 60<<strong>br</strong> />

*povoljnije varijante su ocenjene većom ocenom( bodovima)<<strong>br</strong> />

Min.<<strong>br</strong> />

uticaja<<strong>br</strong> />

na<<strong>br</strong> />

pej<strong>za</strong>ž<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 174<<strong>br</strong> />

RUDARSKI RADOVI


11. KRITERIJUMI VREDNOVANJA I<<strong>br</strong> />

PRIMENJENE METODE<<strong>br</strong> />

Za određivanje optimalne varijante<<strong>br</strong> />

potrebno je uzeti u obzir sve navedene<<strong>br</strong> />

sao<strong>br</strong>aćajne i tehničke parametre i na<<strong>br</strong> />

osnovu njih formirati kriterijume.<<strong>br</strong> />

Mera ostvarenja ciljeva može se<<strong>br</strong> />

iska<strong>za</strong>ti definisanjem sledećih kriterijuma:<<strong>br</strong> />

• minimalni troškovi građenja;<<strong>br</strong> />

• minimalni troškovi održavanja;<<strong>br</strong> />

• minimalni eksploatacioni troškovi;<<strong>br</strong> />

Tabela 13. Raspodela odgovora <strong>za</strong> cilj 1 i cilj 2<<strong>br</strong> />

Red.<<strong>br</strong> />

Kriterijum vrednovanja<<strong>br</strong> />

<strong>br</strong>oj<<strong>br</strong> />

• maksimalna sigurnost, bezbednost i<<strong>br</strong> />

udobnost sao<strong>br</strong>aćaja, (što odgovara<<strong>br</strong> />

minimalnim troškovima sao<strong>br</strong>aćajnih<<strong>br</strong> />

nezgoda);<<strong>br</strong> />

• maksimalan uticaj na razvoj<<strong>br</strong> />

područja;<<strong>br</strong> />

• minimalne prostorno-ekološke posledice<<strong>br</strong> />

(što odgovara maksimalnoj <strong>za</strong>štićenosti<<strong>br</strong> />

od dejstva negativnog uticaja).<<strong>br</strong> />

Oznaka<<strong>br</strong> />

kriterijuma<<strong>br</strong> />

Relativna težina<<strong>br</strong> />

kriterijuma<<strong>br</strong> />

1. Minimum troškova građenja w 1 0.17<<strong>br</strong> />

2. Minimum troškova održavanja w 2 0.16<<strong>br</strong> />

3.<<strong>br</strong> />

4.<<strong>br</strong> />

Maksimum dobiti <strong>za</strong> korisnike puta (minimalni troškovi<<strong>br</strong> />

eksploatacije)<<strong>br</strong> />

Maksimum sigurnosti, bezbednosti i udobnosti sao<strong>br</strong>aćaja<<strong>br</strong> />

(minimalni troškovi sao<strong>br</strong>aćajnih nezgoda)<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 175<<strong>br</strong> />

RUDARSKI RADOVI<<strong>br</strong> />

w 3<<strong>br</strong> />

w 4<<strong>br</strong> />

0.164<<strong>br</strong> />

5. Maksimum uticaja na razvoj područja w 5 0.146<<strong>br</strong> />

6.<<strong>br</strong> />

Minimum uticaj na prostorno – ekološke posledice (maksimalna<<strong>br</strong> />

<strong>za</strong>štićenost od dejstva negativnih uticaja)<<strong>br</strong> />

Težine kriterijumskih (tabela 13.)<<strong>br</strong> />

funkcija mogu se odrediti na više različitih<<strong>br</strong> />

načina. U ovom radu izbor težina baziran je<<strong>br</strong> />

na primeni DELFI metode. S obzirom da se<<strong>br</strong> />

radi o ekspertskoj oceni (slika 1 i 2) jednog<<strong>br</strong> />

multidiscliplinarnog projekta, anketirani<<strong>br</strong> />

učesnici (eksperti) njih 30 su i<strong>za</strong><strong>br</strong>ani tako<<strong>br</strong> />

da svojim znanjem i iskustvom koje su stekli<<strong>br</strong> />

na sličnim problemima, u najvećoj meri<<strong>br</strong> />

mogu odgovoriti <strong>za</strong>htevima analize.<<strong>br</strong> />

Relativne težinske vrednosti kriterijuma Wj<<strong>br</strong> />

određene su ekspertnim anali<strong>za</strong>ma<<strong>br</strong> />

Obzirom na heterogenost poka<strong>za</strong>telja<<strong>br</strong> />

vrednovanja varijanti, primenjena je<<strong>br</strong> />

metoda višekriterijumske optimi<strong>za</strong>cije –<<strong>br</strong> />

metoda kompromisnog programiranja i<<strong>br</strong> />

višekriterijumsko kompromisno rangiranje<<strong>br</strong> />

alternativnih rešenja.<<strong>br</strong> />

w 6<<strong>br</strong> />

0.24<<strong>br</strong> />

0.12<<strong>br</strong> />

Ovom metodom prvo se određuju<<strong>br</strong> />

rešenja koja su optimalna po pojedinim<<strong>br</strong> />

kriterijumima, a <strong>za</strong>tim se određuju kompromisna<<strong>br</strong> />

rešenja, koja se predlažu<<strong>br</strong> />

donosiocu odluke.<<strong>br</strong> />

Sl. 1. Raspodela odgovora <strong>za</strong> cilj 1 i 2


Donosilac odluke usvaja jedno konačno<<strong>br</strong> />

rešenje, a u mogućnosti je da<<strong>br</strong> />

sagleda sve dobiti i ne<strong>za</strong>dovoljenje pojedinih<<strong>br</strong> />

kriterijuma što pruža do<strong>br</strong>u osnovu <strong>za</strong><<strong>br</strong> />

rad.<<strong>br</strong> />

Sl. 2. Raspodela odgovora <strong>za</strong> ciljeve 3,4, 5 i 6<<strong>br</strong> />

Tabela 14. Težine ciljeva i kriterijumskih funkcija<<strong>br</strong> />

Zadavanjem raznih vrednosti težina<<strong>br</strong> />

(značaja) kriterijuma može se analizirati<<strong>br</strong> />

stabilnost pozicije alternative na višekriterijumskoj<<strong>br</strong> />

rang listi u <strong>za</strong>visnosti od<<strong>br</strong> />

konkretnih <strong>za</strong>hteva donosioca odluke.<<strong>br</strong> />

Cilj W Poka<strong>za</strong>telji Wrel Krit.f. Wrel fi Wi<<strong>br</strong> />

Minimalni Ukupni<<strong>br</strong> />

troškovi 0,17<<strong>br</strong> />

troškovi građenja 1 0,17<<strong>br</strong> />

građenja<<strong>br</strong> />

minimalni<<strong>br</strong> />

u €<<strong>br</strong> />

troškovi<<strong>br</strong> />

održavanja<<strong>br</strong> />

minimalni<<strong>br</strong> />

0,16 Troškovi održavanja u €/god 2 0,16<<strong>br</strong> />

eksplotacioni<<strong>br</strong> />

troškovi<<strong>br</strong> />

0,164<<strong>br</strong> />

Eksploatacioni troškovi u €/god 3 0,164<<strong>br</strong> />

Minimalni<<strong>br</strong> />

troškovi Troškovi<<strong>br</strong> />

sao<strong>br</strong>.nezgoda<<strong>br</strong> />

(maksimalna<<strong>br</strong> />

0,24<<strong>br</strong> />

sao<strong>br</strong>aćajnih<<strong>br</strong> />

nezgoda<<strong>br</strong> />

4 0,24<<strong>br</strong> />

sigurnost i<<strong>br</strong> />

bezbednost)<<strong>br</strong> />

u €/god<<strong>br</strong> />

Trasa u prostornom sukobu sa usvojenim PP Usklađenost sa PP * 0,15 5 0,022<<strong>br</strong> />

Maksimalni<<strong>br</strong> />

Očuvanje postojećih naselja i podsticanje<<strong>br</strong> />

Ocena očuvanja i podsticanja budućeg<<strong>br</strong> />

pozitivni<<strong>br</strong> />

0,146<<strong>br</strong> />

uticaj na razvoj<<strong>br</strong> />

urbanističkog uređenja<<strong>br</strong> />

Očuvanje poljop. I šumskih površina<<strong>br</strong> />

urban.uređenja *<<strong>br</strong> />

Površina zemljišta pod nepovolj.uticajem*<<strong>br</strong> />

0,20<<strong>br</strong> />

0,30<<strong>br</strong> />

6<<strong>br</strong> />

7<<strong>br</strong> />

0,029<<strong>br</strong> />

0,044<<strong>br</strong> />

područja Realnost izvođenja<<strong>br</strong> />

Potrebe <strong>za</strong> raseljavanjem, mogućnost nabavke<<strong>br</strong> />

materijala, etapnost gradnje * 0,35 8 0,051<<strong>br</strong> />

Min. aero<strong>za</strong>gađenje<<strong>br</strong> />

Broj objekata izloženih <strong>za</strong>gađenju u zoni<<strong>br</strong> />

autoputa izražena u bodovima**<<strong>br</strong> />

0,12 9 0,014<<strong>br</strong> />

Min.<strong>za</strong>gađenja voda Dužina trase u blizini vodotoka** 0,13 10 0,016<<strong>br</strong> />

Minimalne Min. gubitak i <strong>za</strong>gađenja zemljišta Površina zemljišta pod nepovolj.uticajem** 0,13 11 0,016<<strong>br</strong> />

Prodstorno‐<<strong>br</strong> />

ekološke<<strong>br</strong> />

0,12<<strong>br</strong> />

Min uticaja na biotički faktor<<strong>br</strong> />

Min. uticaja na populac.zdravlje i soc.faktore<<strong>br</strong> />

Dužina trase u usecima i nasipima** 0,10<<strong>br</strong> />

Ocena uticaja na populac.zdravlje i soc.faktore* 0,12<<strong>br</strong> />

12<<strong>br</strong> />

13<<strong>br</strong> />

0,012<<strong>br</strong> />

0,014<<strong>br</strong> />

posledice Min. buke i vi<strong>br</strong>acija Broj objekata u zoni autoputa** 0,10 14 0,012<<strong>br</strong> />

Min. dodir sa <strong>za</strong>štić. prirodnim područjima Dužina trase koja preseca <strong>za</strong>št.prir.područje** 0,10 15 0,012<<strong>br</strong> />

Min. Negat.uticaja na kult.‐istor.spomenike Broj kult.‐istorij.spomenika na trasi autoputa** 0,10 16 0,012<<strong>br</strong> />

Min. uticaja na pej<strong>za</strong>ž Dužina trase u useku,nasipu, nadzem.k‐jama** 0,10 17 0,012<<strong>br</strong> />

*povoljnije varijante su ocenjene većim ocenama (bodovima)<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 176<<strong>br</strong> />

RUDARSKI RADOVI


Tabela 15. Vrednosti kriterijumskih funkcija<<strong>br</strong> />

Kriterijumska funkcija<<strong>br</strong> />

jedinica ekst. varijanta VV Varijanta VN<<strong>br</strong> />

*<<strong>br</strong> />

f i<<strong>br</strong> />

i<<strong>br</strong> />

1. Ukupni troškovi građenja u €<<strong>br</strong> />

€ min 649056603,00 639725443,00 639725443,00 649056603,00<<strong>br</strong> />

2.<<strong>br</strong> />

3.<<strong>br</strong> />

4.<<strong>br</strong> />

Troškovi održavanja<<strong>br</strong> />

Troškovi sao<strong>br</strong>aćajnih nezgoda u €/god<<strong>br</strong> />

€/god min<<strong>br</strong> />

Troškovi eksploatacije €/god min<<strong>br</strong> />

€/god<<strong>br</strong> />

261692,00 231627,00 231627,00<<strong>br</strong> />

261692,00<<strong>br</strong> />

5. Usklađenost sa Prostornim Planom * bod max 100,00 100,00 100,00 100,00<<strong>br</strong> />

6.<<strong>br</strong> />

Ocena očuvanja i podsticanja budućeg<<strong>br</strong> />

urbanističkog uređenja *<<strong>br</strong> />

bod<<strong>br</strong> />

max 100,00 100,00 100,00 100,00<<strong>br</strong> />

7. Površina zemljišta pod nepovoljnim uticajem* bod max 100,00 45,00 100,00 45,00<<strong>br</strong> />

8.<<strong>br</strong> />

Potrebe <strong>za</strong> raseljavanjem, mogućnost nabavke<<strong>br</strong> />

materijala, etapnost gradnje *<<strong>br</strong> />

bod max<<strong>br</strong> />

100,00 100,00 100,00<<strong>br</strong> />

100,00<<strong>br</strong> />

9.<<strong>br</strong> />

Broj objekata izloženih <strong>za</strong>gađenju u zoni<<strong>br</strong> />

autoputa izražena u bodovima**<<strong>br</strong> />

bod max 90,00 90,00 90,00 90,00<<strong>br</strong> />

10. Dužina trase u blizini vodotoka**<<strong>br</strong> />

bod max 85,00 85,00 85,00 85,00<<strong>br</strong> />

11. Površina zemljišta pod nepovolj.uticajem** bod max 80,00 65,00 80,00 65,00<<strong>br</strong> />

12. Dužina trase u usecima i nasipima** bod max 80,00 70,00 80,00 70,00<<strong>br</strong> />

13. Ocena uticaja na populac.zdravlje i soc.faktore** bod max 85,00 85,00 85,00 85,00<<strong>br</strong> />

14 Broj objekata u zoni autoputa**<<strong>br</strong> />

bod max 85,00 85,00 85,00 85,00<<strong>br</strong> />

15. Dužina trase koja preseca <strong>za</strong>št.prir.područje** bod max 95,00 95,00 95,00 95,00<<strong>br</strong> />

16. Broj kult.‐istorij.spomenika na trasi autoputa** bod max 100,00 100,00 100,00 100,00<<strong>br</strong> />

17. Dužina trase u useku,nasipu, nadzem.k‐jama** bod max 60,00 50,00 60,00 50,00<<strong>br</strong> />

**povoljnije varijante su ocenjene većim ocenama (bodovima )<<strong>br</strong> />

Primenom kompjuterskog programa<<strong>br</strong> />

<strong>za</strong>snovanog na metodi VIKOR (Tabela<<strong>br</strong> />

16) dobijamo sledeće:<<strong>br</strong> />

Tabela 16. Rang liste po varijantama<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 177<<strong>br</strong> />

RUDARSKI RADOVI<<strong>br</strong> />

min<<strong>br</strong> />

1403036,00 1246085,00 1246085,00<<strong>br</strong> />

28869724,00 26139172,00 26139172,00<<strong>br</strong> />

f −<<strong>br</strong> />

1403036,00<<strong>br</strong> />

28869724,00<<strong>br</strong> />

Lista alternativa: A 1. VV varijanta, A<<strong>br</strong> />

2. VN varijanta<<strong>br</strong> />

QR – Minimax strategija Q – Kompromis QS – Vecinska korist<<strong>br</strong> />

R.L.QR R.L.Q i Q(J) R.L.QS<<strong>br</strong> />

A 2 0.044 A 2 0.000 A 2 0.084<<strong>br</strong> />

A 1 0.240 A 1 1.000 A 1 0.734<<strong>br</strong> />

Tabela 17. Anali<strong>za</strong> preferentne stabilnosti<<strong>br</strong> />

F(i) WD1 WO(i) WG1 F(i) WD1 WO(i) WG1<<strong>br</strong> />

F 1 0.000 0.170 1,000 F10 0.000 0.016 1,000<<strong>br</strong> />

F 2 0.000 0.160 1,000 F11 0.000 0.016 0.196<<strong>br</strong> />

F 3 0.000 0.164 1,000 F12 0.000 0.012 0.195<<strong>br</strong> />

F 4 0.000 0.240 1,000 F13 0.000 0.014 1,000<<strong>br</strong> />

F 5 0.000 0.022 1,000 F14 0.000 0.012 1,000<<strong>br</strong> />

F 6 0.000 0.029 1,000 F15 0.000 0.012 1,000<<strong>br</strong> />

F 7 0.000 0.044 0.201 F16 0.000 0.012 1,000<<strong>br</strong> />

F 8 0.000 0.051 1,000 F17 0.000 0.012 0.195<<strong>br</strong> />

F 9 0.000 0.014 1,000


W0(i) su normalizovane vrednosti<<strong>br</strong> />

ulaznih-<strong>za</strong>datih težina. WD1 ≤ w ≤<<strong>br</strong> />

WG1 je interval težine u kojem<<strong>br</strong> />

alternativa sa prve pozicije ostaje na<<strong>br</strong> />

njoj (stabilna pozicija). Promena prve<<strong>br</strong> />

pozicije <strong>za</strong> alternativu A 2 može nastati<<strong>br</strong> />

ako dođe do promene težine kriterijuma<<strong>br</strong> />

F7, F11, F12, F17 odnosno ako<<strong>br</strong> />

vrednosti težina <strong>za</strong> te kriterijume (<<strong>br</strong> />

tabela 17.) budu veće od 0,201; 0,196;<<strong>br</strong> />

0,195; 0,195 respektivno.<<strong>br</strong> />

12. ZAKLJUČAK<<strong>br</strong> />

Potreba <strong>za</strong> kompromisnim rešenjem<<strong>br</strong> />

je izraženija <strong>za</strong> rešavanje <strong>za</strong>dataka sa<<strong>br</strong> />

konfliktnim i heterogenim kriterijumima<<strong>br</strong> />

(suprostavljenim i izraženim u različitim<<strong>br</strong> />

jedinicama mere) kao što je slučaj u<<strong>br</strong> />

ovom radu. Rezultat VKO ima veliku<<strong>br</strong> />

šansu da bude prihvaćen kao dobar<<strong>br</strong> />

kompromis izmedju različitih interesa<<strong>br</strong> />

učesnika u odlučivanju ako je ono<<strong>br</strong> />

prihvatljivo od većine u procesu odlučivanja,<<strong>br</strong> />

ali i da nema loše krtiterijumske<<strong>br</strong> />

poka<strong>za</strong>telje zbog kojih bi «oponenti»<<strong>br</strong> />

imali izraziti razlog da ga ne prihvate.<<strong>br</strong> />

LITERATURA:<<strong>br</strong> />

[1] Građevinski fakultet Podgorica,<<strong>br</strong> />

<strong>Institut</strong> sao<strong>br</strong>aćajnog fakulteta<<strong>br</strong> />

Beograd, Studija sao<strong>br</strong>aćajnih tokova<<strong>br</strong> />

i utvrđivanje nastajanja uskih<<strong>br</strong> />

grla na mreži postojećih puteva u<<strong>br</strong> />

koridoru planiranih autoputeva i<<strong>br</strong> />

puteva rezervisanih <strong>za</strong> sao<strong>br</strong>aćaj<<strong>br</strong> />

motornih vozila u Crnoj Gori, 1998.<<strong>br</strong> />

[2] <strong>Institut</strong> Sao<strong>br</strong>aćajnog fakulteta,<<strong>br</strong> />

Vrednovanje projektnih varijanti<<strong>br</strong> />

autoputa Beograd – Južni Jadran na<<strong>br</strong> />

delu od Beograda do Požege,<<strong>br</strong> />

Beograd, novembar 1998<<strong>br</strong> />

[3] Kuzović Lj., Utvrđivanje potreba i<<strong>br</strong> />

opravdanosti izdvajanja tranzitnog<<strong>br</strong> />

sao<strong>br</strong>aćaja sa gradskih arterija<<strong>br</strong> />

izgradnjom obilaznica, Univerzitet<<strong>br</strong> />

u Beogradu, Beograd, 1997.<<strong>br</strong> />

[4] Kuzović Lj., Vrednovanje u<<strong>br</strong> />

upravljanju razvojem i<<strong>br</strong> />

eksploatacijom putne mreže,<<strong>br</strong> />

Univerzitet u Beogradu, Beograd,<<strong>br</strong> />

1994.<<strong>br</strong> />

[5] Kuzović Lj., Vrednovanje u<<strong>br</strong> />

optimiziranju planova i projekata<<strong>br</strong> />

puteva, SIT sao<strong>br</strong>aćaja i ve<strong>za</strong><<strong>br</strong> />

Jugoslavije, Beograd, 1984.<<strong>br</strong> />

[6] Luis Berger, Tehnički memorandum<<strong>br</strong> />

<strong>br</strong>. 14 o sprovedenim <strong>br</strong>ojanjima<<strong>br</strong> />

i anketama sao<strong>br</strong>aćaja na putnoj<<strong>br</strong> />

mreži Crne Gore, oktobar 2007.<<strong>br</strong> />

[7] M. Maletin, i dr., Istraživanje<<strong>br</strong> />

varijantnih rješenja trase spoljne<<strong>br</strong> />

magistralne tangente (SMT),<<strong>br</strong> />

Univerzitet u Beogradu, Građevinski<<strong>br</strong> />

fakultet, <strong>Institut</strong> <strong>za</strong> sao<strong>br</strong>aćajnice<<strong>br</strong> />

i geotehniku,Beograd 1989.<<strong>br</strong> />

[8] Opricović S. Višekriterijumska<<strong>br</strong> />

optimi<strong>za</strong>cija sistema u građevinarstvu,<<strong>br</strong> />

Građevinski fakultet<<strong>br</strong> />

Univerziteta u Beogradu , Beograd,<<strong>br</strong> />

1998.<<strong>br</strong> />

Broj 4,<strong>2011</strong>. 178<<strong>br</strong> />

RUDARSKI RADOVI


MINING AND METALLURGY INSTITUTE BOR YU ISSN: 1451-0162<<strong>br</strong> />

COMMITTEE OF UNDERGROUND EXPLOITATION OF THE MINERAL DEPOSITS UDK: 622<<strong>br</strong> />

UDK: 625.72:681.51(045)=20<<strong>br</strong> />

Abstract<<strong>br</strong> />

Velimir Dutina*, Ljubo Marković*, Miloš Knežević**, Miljan Kovačević*<<strong>br</strong> />

SELECTION OF THE HIGHWAY ROUTE VARIANT BY<<strong>br</strong> />

MULTICRITERION OPTIMIZATION<<strong>br</strong> />

Optimi<strong>za</strong>tion of complex systems is extremely complex which <strong>br</strong>ings together theoretical and<<strong>br</strong> />

experimental knowledge of experts from multiple disciplines. In order to consider from all aspects<<strong>br</strong> />

the optimi<strong>za</strong>tion problem of system in construction, diverse considerations are needed as engineering,<<strong>br</strong> />

environmental, economic, social and institutional. The optimi<strong>za</strong>tion result has a great chance<<strong>br</strong> />

to be accepted as a good compromise between different interests of participants in decision making,<<strong>br</strong> />

and one of the ways to achieve this is to find a compromise solution. The method of multicriterion<<strong>br</strong> />

optimi<strong>za</strong>tion, i.e. the method of compromise programming and multicriterion compromise<<strong>br</strong> />

ranking of alternative solutions, is used in this work for selection the optimum route of highway.<<strong>br</strong> />

The objectives were defined, a techno-economic analysis of variant solutions was carried out, the<<strong>br</strong> />

criteria were established and, at the end, the obtained compromise solution is shown.<<strong>br</strong> />

Key words: optimi<strong>za</strong>tion, compromise programming, variants, criteria, compromise solution<<strong>br</strong> />

1. INTRODUCTION<<strong>br</strong> />

The highway Belgrade – South Adriatic<<strong>br</strong> />

is a <strong>br</strong>anch of the Trans-European highway<<strong>br</strong> />

(TEHW) that, on the territory of Serbia and<<strong>br</strong> />

Montenegro, connects the main line of<<strong>br</strong> />

TEHW (from Gdansk to Athens and<<strong>br</strong> />

Istanbul) to the Adriatic Sea. On the territory<<strong>br</strong> />

of Montenegro, from direction of Serbia, the<<strong>br</strong> />

highway route enters near place of Boljare,<<strong>br</strong> />

and then the route of Berane – Andrijevica –<<strong>br</strong> />

Mateševo – Podgorica – Tanki rt and with<<strong>br</strong> />

already built tunnel under the massif of<<strong>br</strong> />

Sozina gets out to the Adriatic coast,<<strong>br</strong> />

respectively the Port of Bar. The preliminary<<strong>br</strong> />

design has done several versions of the<<strong>br</strong> />

certain sections in the corridor of Beolgrade<<strong>br</strong> />

– South Adriatic highway.<<strong>br</strong> />

In this regard, it is necessary to analyze<<strong>br</strong> />

the choice of route options for further<<strong>br</strong> />

development in the main project.<<strong>br</strong> />

This work also considered the technoeconomically<<strong>br</strong> />

evaluated two route variants of<<strong>br</strong> />

the highway corridor through Montenegro<<strong>br</strong> />

on the move to Smokovac (Podgorica) -<<strong>br</strong> />

Uvče containing a great number of viaducts,<<strong>br</strong> />

<strong>br</strong>idges and tunnels, what significantly<<strong>br</strong> />

affects the project costs. Variant<<strong>br</strong> />

analysis and estimation of costs are intended<<strong>br</strong> />

to assist the investors in decision<<strong>br</strong> />

making on further stages of the project<<strong>br</strong> />

implementation.<<strong>br</strong> />

* University in Pristina, Faculty of Technical Sciences, Kosovska Mitrovica<<strong>br</strong> />

** University of Podgorica, Faculty of Civil Engineering -Podgorica<<strong>br</strong> />

No 4, <strong>2011</strong>. 179<<strong>br</strong> />

MINING ENGINEERING


2. TECHNO-ECONOMIC ANALYSIS<<strong>br</strong> />

The subject of analysis is to evaluate, • Minimum costs of construction;<<strong>br</strong> />

from technical and economical point of • Minimum maintenance costs of the<<strong>br</strong> />

view, the variants of highway on the move relevant section;<<strong>br</strong> />

from Smokovac (Podgorica) to Uvča, in<<strong>br</strong> />

the variants defined as follows:<<strong>br</strong> />

1. Variant V+V, goes through the<<strong>br</strong> />

route of high variant from (km 0+000 -<<strong>br</strong> />

km 9+500) and to Uvča also goes with<<strong>br</strong> />

the variant called the High variant<<strong>br</strong> />

(L=36.35 km);<<strong>br</strong> />

2. Variant V+N, goes through the<<strong>br</strong> />

route of high variant from (km 0+000<<strong>br</strong> />

- km 9+500), and still continues to the<<strong>br</strong> />

route of Uvča, called the Low variant<<strong>br</strong> />

(40.80 km).<<strong>br</strong> />

Within the scope of this work, the alter-<<strong>br</strong> />

• Minimum exploitation costs of the<<strong>br</strong> />

user;<<strong>br</strong> />

• Maximum safety, security and comfort<<strong>br</strong> />

on the relevant section;<<strong>br</strong> />

• Maximum positive impact on overall<<strong>br</strong> />

development of the area;<<strong>br</strong> />

• Maximum in terms of area and environmental<<strong>br</strong> />

protection in the given<<strong>br</strong> />

area.<<strong>br</strong> />

3. TRAFFIC AND TECHNICAL<<strong>br</strong> />

PARAMETERS ACCORDING TO<<strong>br</strong> />

THE VARIANTS<<strong>br</strong> />

native solutions of route were investigated, The quality of variant solution of the<<strong>br</strong> />

in order to select more favorable solution of highway section to a large extent can be<<strong>br</strong> />

the route, based on comparison and evalua- described by traffic and technical parametion.<<strong>br</strong> />

For basic criteria that should be ter of variant. Some of the most important<<strong>br</strong> />

achieved by the optimum variant of high- parameters are given in Tables 1, 2, 3 and<<strong>br</strong> />

way, and regarding to the complexity of<<strong>br</strong> />

techno-economic requirements, the following<<strong>br</strong> />

objectives are adopted:<<strong>br</strong> />

4.<<strong>br</strong> />

Table 1. Geometrical characteristics of variants<<strong>br</strong> />

Variant<<strong>br</strong> />

Total length<<strong>br</strong> />

[km]<<strong>br</strong> />

Minimum radius<<strong>br</strong> />

[m/no. of usages]<<strong>br</strong> />

Maximum longitudinal<<strong>br</strong> />

slope<<strong>br</strong> />

[% per km]<<strong>br</strong> />

V+V 40.81 450/2 6% - 1.829 km<<strong>br</strong> />

V+N 36.12 450/2 6% - 0.887 km<<strong>br</strong> />

Table 2. Altitude variations<<strong>br</strong> />

Elevations Altitude<<strong>br</strong> />

Variant<<strong>br</strong> />

max min<<strong>br</strong> />

0-200<<strong>br</strong> />

[km/<<strong>br</strong> />

%]<<strong>br</strong> />

200-<<strong>br</strong> />

400<<strong>br</strong> />

[km/%<<strong>br</strong> />

]<<strong>br</strong> />

400-<<strong>br</strong> />

600<<strong>br</strong> />

[km<<strong>br</strong> />

%]<<strong>br</strong> />

600-<<strong>br</strong> />

800<<strong>br</strong> />

[km/<<strong>br</strong> />

%]<<strong>br</strong> />

V+V<<strong>br</strong> />

408<<strong>br</strong> />

13<<strong>br</strong> />

118<<strong>br</strong> />

9<<strong>br</strong> />

5385<<strong>br</strong> />

13%<<strong>br</strong> />

4537<<strong>br</strong> />

11%<<strong>br</strong> />

6125<<strong>br</strong> />

15%<<strong>br</strong> />

4743<<strong>br</strong> />

12%<<strong>br</strong> />

V+N<<strong>br</strong> />

361<<strong>br</strong> />

24<<strong>br</strong> />

118<<strong>br</strong> />

9<<strong>br</strong> />

5385<<strong>br</strong> />

15%<<strong>br</strong> />

4383<<strong>br</strong> />

12%<<strong>br</strong> />

3962<<strong>br</strong> />

11%<<strong>br</strong> />

4116<<strong>br</strong> />

11%<<strong>br</strong> />

800-<<strong>br</strong> />

1000<<strong>br</strong> />

[km/%]<<strong>br</strong> />

3333<<strong>br</strong> />

8%<<strong>br</strong> />

5381<<strong>br</strong> />

15%<<strong>br</strong> />

1000-<<strong>br</strong> />

1200<<strong>br</strong> />

km/%<<strong>br</strong> />

16690<<strong>br</strong> />

41%<<strong>br</strong> />

12897<<strong>br</strong> />

36%<<strong>br</strong> />

No 4, <strong>2011</strong>. 180<<strong>br</strong> />

MINING ENGINEERING


Table 3. Slopes of level<<strong>br</strong> />

Variant<<strong>br</strong> />

The total length of the<<strong>br</strong> />

route -<<strong>br</strong> />

Slopes of the level<<strong>br</strong> />

m ≤2% 2-5% >5%<<strong>br</strong> />

V+V 40.813 13.094 19.054 8.664<<strong>br</strong> />

V+N 36.124 8.689 17.758 9.666<<strong>br</strong> />

Table 4. Inclusion of facilities along the route<<strong>br</strong> />

Variant<<strong>br</strong> />

Length<<strong>br</strong> />

Viaducts and <strong>br</strong>idges<<strong>br</strong> />

on the left and right<<strong>br</strong> />

roadway<<strong>br</strong> />

Tunnels on the left and<<strong>br</strong> />

right roadway<<strong>br</strong> />

[km] Number [km] Number [km]<<strong>br</strong> />

V+V 40.81 32 10.09 22 21.96<<strong>br</strong> />

V+N 36.12 38 9.18 26 27.43<<strong>br</strong> />

Table 5. Structure of traffic flow<<strong>br</strong> />

Category PA BUS LT ST TT AV TOTAL<<strong>br</strong> />

Participation % 79.7 2.5 4.4 5.0 1.5 6.9 100<<strong>br</strong> />

4. TRAFFIC LOAD<<strong>br</strong> />

Traffic load in the base year is determined<<strong>br</strong> />

on the basis of reports of traffic<<strong>br</strong> />

counting Bioče (Louis Berger, October<<strong>br</strong> />

2007), or empirical and modeling annual<<strong>br</strong> />

average daily traffic (AADT) in 2007 for the<<strong>br</strong> />

road M-2, section Podgorica – Bioče and<<strong>br</strong> />

the road R-19, section Bioče – Mateševo.<<strong>br</strong> />

Structure of traffic flow in the future<<strong>br</strong> />

highway is determined based on permanent<<strong>br</strong> />

seven-day traffic count (Table 5) on<<strong>br</strong> />

the road M-2, section Podgorica – Bioče<<strong>br</strong> />

in October 2007.<<strong>br</strong> />

Based on the mentioned data and assumptions,<<strong>br</strong> />

the traffic load (AADT) for<<strong>br</strong> />

future highway section Smokovac – Uvač<<strong>br</strong> />

(Table 6) was calculated in the period<<strong>br</strong> />

2008 – 2027.<<strong>br</strong> />

5. CONSTRUCTION COSTS<<strong>br</strong> />

Estimation of construction costs was<<strong>br</strong> />

made on the basis of route structures and<<strong>br</strong> />

facilities (<strong>br</strong>idges, viaducts and tunnels,<<strong>br</strong> />

etc.) and price evaluation for these facilities.<<strong>br</strong> />

Price estimation (Table 7) was made<<strong>br</strong> />

on the basis of previously realized projects,<<strong>br</strong> />

respectively the market prices for<<strong>br</strong> />

this type of works. Unit prices for <strong>br</strong>idges<<strong>br</strong> />

are determined as the average prices based<<strong>br</strong> />

on individually determined prices for each<<strong>br</strong> />

<strong>br</strong>idge. Estimation the cost of works on<<strong>br</strong> />

tunnels was carried out on the basis of the<<strong>br</strong> />

average price 1 m of tunnel tube (for the<<strong>br</strong> />

left or right roadway depending on length,<<strong>br</strong> />

and the same was adopted for tunnels at<<strong>br</strong> />

high or low route).<<strong>br</strong> />

No 4, <strong>2011</strong>. 181<<strong>br</strong> />

MINING ENGINEERING


Table 6. Forecasts for AADT<<strong>br</strong> />

Year PA BUS LT ST TT AV<<strong>br</strong> />

PGDS<<strong>br</strong> />

(drive/day)<<strong>br</strong> />

2007 4623 143 257 292 86 399 5800<<strong>br</strong> />

2008 5085 157 283 321 95 439 6380<<strong>br</strong> />

2009 5594 173 311 353 104 483 7018<<strong>br</strong> />

2010 6153 190 342 389 115 531 7720<<strong>br</strong> />

<strong>2011</strong> 6769 209 377 427 126 584 8492<<strong>br</strong> />

2012 7073 218 394 447 132 610 8874<<strong>br</strong> />

2013 7391 228 411 467 138 638 9273<<strong>br</strong> />

2014 7724 239 430 488 144 667 9691<<strong>br</strong> />

2015 8072 249 449 510 150 697 10127<<strong>br</strong> />

2016 8378 259 466 529 156 723 10511<<strong>br</strong> />

2017 8697 269 484 549 162 751 10911<<strong>br</strong> />

2018 9027 279 502 570 168 779 11325<<strong>br</strong> />

2019 9370 289 521 592 175 809 11756<<strong>br</strong> />

2020 9726 300 541 614 181 839 12203<<strong>br</strong> />

2021 10096 312 562 637 188 871 12666<<strong>br</strong> />

2022 10479 324 583 662 195 904 13148<<strong>br</strong> />

2023 10878 336 605 687 203 939 13647<<strong>br</strong> />

2024 11291 349 628 713 210 974 14166<<strong>br</strong> />

2025 11720 362 652 740 218 1012 14704<<strong>br</strong> />

2026 12165 376 677 768 227 1050 15263<<strong>br</strong> />

2027 12628 390 703 797 235 1090 15843<<strong>br</strong> />

Table 7. Total construction costs by variants<<strong>br</strong> />

Ord.No.<<strong>br</strong> />

Designation of<<strong>br</strong> />

variant<<strong>br</strong> />

Total length<<strong>br</strong> />

Total amount of<<strong>br</strong> />

construction costs<<strong>br</strong> />

Average price per<<strong>br</strong> />

km<<strong>br</strong> />

[km] (€) (€/km)<<strong>br</strong> />

1 V+V 40.80 649,056,603 15,903,182.88<<strong>br</strong> />

2 V+N 36.10 639,725,443 17,709,153.00<<strong>br</strong> />

6. MAINTENANCE COSTS<<strong>br</strong> />

The maintenance costs include the<<strong>br</strong> />

costs of:<<strong>br</strong> />

• regular maintenance,<<strong>br</strong> />

• investment maintenance, and<<strong>br</strong> />

• winter maintenance.<<strong>br</strong> />

Regular maintenance includes the repair<<strong>br</strong> />

of damage: the roadway, gutters, other drai<<strong>br</strong> />

age facilities, traffic signals, etc. Investment<<strong>br</strong> />

maintenance includes the restoration of asphalt<<strong>br</strong> />

wearing layer. Winter maintenance<<strong>br</strong> />

includes the maintenance of roads in satisfactory<<strong>br</strong> />

condition during the winter period. Total<<strong>br</strong> />

maintenance costs are calculated by variants<<strong>br</strong> />

in [3] and given in Table 8.<<strong>br</strong> />

Table 8. Total maintenance costs by variants<<strong>br</strong> />

Ord.No.<<strong>br</strong> />

Designation of variant<<strong>br</strong> />

Total length [km]<<strong>br</strong> />

Total costs of maintenance<<strong>br</strong> />

(€/year)<<strong>br</strong> />

1 V+V 40.80 1,403,036.00<<strong>br</strong> />

2 V+N 36.10 1,246,085.00<<strong>br</strong> />

No 4, <strong>2011</strong>. 182<<strong>br</strong> />

MINING ENGINEERING


7. EXPLOITATION COSTS<<strong>br</strong> />

Exploitation costs, discussed in this<<strong>br</strong> />

paper, include the following costs:<<strong>br</strong> />

• fuel costs<<strong>br</strong> />

• costs of lu<strong>br</strong>icants,<<strong>br</strong> />

• costs of pneumatics,<<strong>br</strong> />

• maintenance costs and repair of vehicles.<<strong>br</strong> />

The costs for fuel, lu<strong>br</strong>icants, pneumatics,<<strong>br</strong> />

vehicle maintenance and repair are<<strong>br</strong> />

calculated according to the expressions [3]<<strong>br</strong> />

to the amount of (values in Table 9):<<strong>br</strong> />

Table 9 Average exploitation costs by<<strong>br</strong> />

variants<<strong>br</strong> />

Ord.<<strong>br</strong> />

No.<<strong>br</strong> />

Designation<<strong>br</strong> />

of variant<<strong>br</strong> />

Total<<strong>br</strong> />

length<<strong>br</strong> />

[km]<<strong>br</strong> />

Total averageexploitation<<strong>br</strong> />

costs<<strong>br</strong> />

(€/year)<<strong>br</strong> />

1 V+V 40.80 28.869.724<<strong>br</strong> />

2 V+N 36.10 26.139.172<<strong>br</strong> />

8. COSTS OF TRAFFIC ACCIDENTS<<strong>br</strong> />

Total economic costs caused by all traffic<<strong>br</strong> />

accidents on the move of road in one<<strong>br</strong> />

year, are determined by the formula [3] :<<strong>br</strong> />

T su = L×<<strong>br</strong> />

∑ Nk<<strong>br</strong> />

× Ck<<strong>br</strong> />

(€/god)<<strong>br</strong> />

k<<strong>br</strong> />

where:<<strong>br</strong> />

k – indication of accident type<<strong>br</strong> />

( 1 –accident with deadly injuries;<<strong>br</strong> />

2 – accidents with serious body<<strong>br</strong> />

injuries; 3 – accidents without<<strong>br</strong> />

serious body injuries).<<strong>br</strong> />

Table 10. Average exploitation costs by<<strong>br</strong> />

variants<<strong>br</strong> />

Ord.<<strong>br</strong> />

No.<<strong>br</strong> />

Designation<<strong>br</strong> />

of variant<<strong>br</strong> />

Total<<strong>br</strong> />

length<<strong>br</strong> />

[km]<<strong>br</strong> />

Average<<strong>br</strong> />

costs of traffic<<strong>br</strong> />

accidents<<strong>br</strong> />

(€/year)<<strong>br</strong> />

1 V+V 40.80 261.692,00<<strong>br</strong> />

2 V+N 36.10 231.627,00<<strong>br</strong> />

Nk – average number of accidents per<<strong>br</strong> />

kilometer per year, for the certain<<strong>br</strong> />

types of accidents k (accident/km/year).<<strong>br</strong> />

This value depends<<strong>br</strong> />

on the type of road and<<strong>br</strong> />

AADT.<<strong>br</strong> />

L - length of a part of variant (km),<<strong>br</strong> />

Ck- average economic costs per accident<<strong>br</strong> />

for k – this type of accident<<strong>br</strong> />

(€)<<strong>br</strong> />

Overview of these costs is given in<<strong>br</strong> />

Table 10.<<strong>br</strong> />

9. IMPACT ON THE OVERALL<<strong>br</strong> />

DEVELOPMENT OF AREA<<strong>br</strong> />

Parameters that affect the overall development<<strong>br</strong> />

of the area have been avaluated<<strong>br</strong> />

through the following items:<<strong>br</strong> />

• route in the spatial conflict (conflict<<strong>br</strong> />

with regional plans is evaluated through<<strong>br</strong> />

the length of such track, or points);<<strong>br</strong> />

• preservation of existing settlements<<strong>br</strong> />

and encouragement of future urbani<strong>za</strong>tion<<strong>br</strong> />

(evaluation of points);<<strong>br</strong> />

• preservation of ugricultural and forest<<strong>br</strong> />

areas (is evalued by points);<<strong>br</strong> />

• the reality of performance, which is<<strong>br</strong> />

evaluated based on the need for resettlement,<<strong>br</strong> />

the possibility of obtaining<<strong>br</strong> />

the necessary material (for embankments),<<strong>br</strong> />

etc..<<strong>br</strong> />

Assessments for evaluation are given<<strong>br</strong> />

in Table 11.<<strong>br</strong> />

No 4, <strong>2011</strong>. 183<<strong>br</strong> />

MINING ENGINEERING


Table 11. Ratings of individual criteria evaluation indicators, impact on the overall<<strong>br</strong> />

development of area<<strong>br</strong> />

Ord.<<strong>br</strong> />

No.<<strong>br</strong> />

1<<strong>br</strong> />

2<<strong>br</strong> />

Variants<<strong>br</strong> />

High variant<<strong>br</strong> />

from<<strong>br</strong> />

0.0 km to<<strong>br</strong> />

9.5 km +<<strong>br</strong> />

High to<<strong>br</strong> />

Uvča<<strong>br</strong> />

High variant<<strong>br</strong> />

from<<strong>br</strong> />

0.0 km to<<strong>br</strong> />

9.5 km +<<strong>br</strong> />

Low to<<strong>br</strong> />

Uvča<<strong>br</strong> />

Route in<<strong>br</strong> />

spatial<<strong>br</strong> />

conflict<<strong>br</strong> />

with the<<strong>br</strong> />

adopted<<strong>br</strong> />

PP<<strong>br</strong> />

9. SPATIAL-ECOLOGICAL<<strong>br</strong> />

CONSEQUENCES<<strong>br</strong> />

Several parameters were considered<<strong>br</strong> />

and analyzed:<<strong>br</strong> />

• air pollution – based on the number<<strong>br</strong> />

of facilities in the highway zone exposed<<strong>br</strong> />

to air pollution, pollution of<<strong>br</strong> />

surface water, ground water and<<strong>br</strong> />

sources of drinking water – based<<strong>br</strong> />

on vicinity of route and watercourses,<<strong>br</strong> />

intersection of watercourses<<strong>br</strong> />

by the highway route, vicinity of water<<strong>br</strong> />

sources,<<strong>br</strong> />

• loss and pollution of agricultural<<strong>br</strong> />

and forest land – based on the surface<<strong>br</strong> />

of affected land by the highway<<strong>br</strong> />

route,<<strong>br</strong> />

• biotic factor during construction<<strong>br</strong> />

and exploitation - on living habitat<<strong>br</strong> />

of flora and fauna, impact of the motorway<<strong>br</strong> />

was evaluated on the basis of<<strong>br</strong> />

the highway route length in the open<<strong>br</strong> />

(tunnels have no effect),<<strong>br</strong> />

EVALUATION INDICATORS BY VARIANTS<<strong>br</strong> />

Preservation of the<<strong>br</strong> />

existing settlements,<<strong>br</strong> />

encouragement of<<strong>br</strong> />

urban planning<<strong>br</strong> />

Preservation of<<strong>br</strong> />

agricultural<<strong>br</strong> />

and forest areas<<strong>br</strong> />

Reality of<<strong>br</strong> />

reali<strong>za</strong>tion<<strong>br</strong> />

1 2 3 4<<strong>br</strong> />

100 100 45 100<<strong>br</strong> />

100 100 100 100<<strong>br</strong> />

• health of population – in the parts<<strong>br</strong> />

where the highway route passes<<strong>br</strong> />

through or near settlements,<<strong>br</strong> />

• sociological opportunities – displacement<<strong>br</strong> />

or dislocation of housing<<strong>br</strong> />

and other facilities; suspension, dislocation<<strong>br</strong> />

or interception the existing<<strong>br</strong> />

communication; changed living conditions<<strong>br</strong> />

due to housing in the area of<<strong>br</strong> />

new physical structures,<<strong>br</strong> />

• noise and vi<strong>br</strong>ation – lengths were<<strong>br</strong> />

defined at which this phenomenon is<<strong>br</strong> />

expressed and their evaluation was<<strong>br</strong> />

made,<<strong>br</strong> />

• protected natural heritage – the existence<<strong>br</strong> />

of collision points of the<<strong>br</strong> />

highway route with natural objects,<<strong>br</strong> />

• existence of sites were discussed that<<strong>br</strong> />

are classified as the cultural and<<strong>br</strong> />

historical monuments on the routes<<strong>br</strong> />

of highway variants,<<strong>br</strong> />

No 4, <strong>2011</strong>. 184<<strong>br</strong> />

MINING ENGINEERING


• changes in natural look of terrainlandscape<<strong>br</strong> />

occurs in those parts of<<strong>br</strong> />

the route that is visible, respectively<<strong>br</strong> />

in those sections where the road runs<<strong>br</strong> />

in the cut, embankment, and where<<strong>br</strong> />

Table 12. Ratings of evaluation the spatial-ecological criteria<<strong>br</strong> />

Ord<<strong>br</strong> />

.<<strong>br</strong> />

No.<<strong>br</strong> />

Variants<<strong>br</strong> />

Minimum<<strong>br</strong> />

air<<strong>br</strong> />

pollutin <<strong>br</strong> />

Minimum<<strong>br</strong> />

water<<strong>br</strong> />

pollution <<strong>br</strong> />

Minimum<<strong>br</strong> />

loss<<strong>br</strong> />

and<<strong>br</strong> />

land<<strong>br</strong> />

pollution<<strong>br</strong> />

Minimum<<strong>br</strong> />

impact on<<strong>br</strong> />

biotic<<strong>br</strong> />

factor<<strong>br</strong> />

*favorable variants are rated with higher grade (points)<<strong>br</strong> />

10. EVALUATION CRITERIA AND<<strong>br</strong> />

THE APPLIED METHODS<<strong>br</strong> />

To determine the optimum variant, it is<<strong>br</strong> />

necessary to take into account all traffic<<strong>br</strong> />

and technical parameters and to form the<<strong>br</strong> />

criteria based on them.<<strong>br</strong> />

Measure of achievement the objectives<<strong>br</strong> />

can be expressed by defining the following<<strong>br</strong> />

criteria:<<strong>br</strong> />

• Minimum construction costs;<<strong>br</strong> />

• Minimum maintenance costs;<<strong>br</strong> />

• Minimum exploitation costs;<<strong>br</strong> />

Minimum<<strong>br</strong> />

impact on<<strong>br</strong> />

population<<strong>br</strong> />

health and<<strong>br</strong> />

sociological<<strong>br</strong> />

factors<<strong>br</strong> />

the obstacles are overcome by<<strong>br</strong> />

<strong>br</strong>idges, overpasses and other overhead<<strong>br</strong> />

constructions.<<strong>br</strong> />

Ratings are given in Table 12.<<strong>br</strong> />

Minimum<<strong>br</strong> />

noise<<strong>br</strong> />

and<<strong>br</strong> />

vi<strong>br</strong>ation<<strong>br</strong> />

Minimum<<strong>br</strong> />

contact with<<strong>br</strong> />

protected<<strong>br</strong> />

natural<<strong>br</strong> />

areas<<strong>br</strong> />

Minimum<<strong>br</strong> />

negative<<strong>br</strong> />

impact on<<strong>br</strong> />

culturalhistoricalmonuments <<strong>br</strong> />

Minimum<<strong>br</strong> />

impact<<strong>br</strong> />

on<<strong>br</strong> />

landscape<<strong>br</strong> />

+ +<<strong>br</strong> />

High<<strong>br</strong> />

variant<<strong>br</strong> />

from<<strong>br</strong> />

+ + + + + + + + +<<strong>br</strong> />

1. 0.0 km to<<strong>br</strong> />

9.5 km +<<strong>br</strong> />

High to<<strong>br</strong> />

Uvča<<strong>br</strong> />

High<<strong>br</strong> />

variant<<strong>br</strong> />

from<<strong>br</strong> />

90 85 65 70 85 85 95 100 50<<strong>br</strong> />

2. 0.0 km to<<strong>br</strong> />

9.5 km +<<strong>br</strong> />

Low to<<strong>br</strong> />

Uvča<<strong>br</strong> />

90 85 80 80 85 85 95 100 60<<strong>br</strong> />

• Maximum security, safety and traffic<<strong>br</strong> />

comfort (which corresponds to<<strong>br</strong> />

minimum costs of accidents);<<strong>br</strong> />

• Maximum impact on development of<<strong>br</strong> />

the area;<<strong>br</strong> />

• Minimum spatial-ecological effects<<strong>br</strong> />

(which corresponds to maximum protection<<strong>br</strong> />

against impact of negative effects).<<strong>br</strong> />

No 4, <strong>2011</strong>. 185<<strong>br</strong> />

MINING ENGINEERING


Table 13. Overview of criteria and relative weight of criteria<<strong>br</strong> />

Ord.<<strong>br</strong> />

No.<<strong>br</strong> />

Criterion of evaluation<<strong>br</strong> />

Designation<<strong>br</strong> />

of<<strong>br</strong> />

criteria<<strong>br</strong> />

Relative weight<<strong>br</strong> />

of criteria<<strong>br</strong> />

1. Minimum construction costs w1 0.17<<strong>br</strong> />

2. Minimum maintenance costs w2 0.16<<strong>br</strong> />

3.<<strong>br</strong> />

Maximum profit for road users (minimum of<<strong>br</strong> />

exploitation costs)<<strong>br</strong> />

w3 0.164<<strong>br</strong> />

4.<<strong>br</strong> />

Maximum security, safety and traffic comfort<<strong>br</strong> />

(minimum costs of traffic accidents)<<strong>br</strong> />

w4 0.24<<strong>br</strong> />

5. Maximum impact on development of area<<strong>br</strong> />

Minimum impact on the spatial – ecological<<strong>br</strong> />

w5 0.146<<strong>br</strong> />

6. consequences (maximum protection from the<<strong>br</strong> />

effects of negative impacts)<<strong>br</strong> />

w6 0.12<<strong>br</strong> />

Difficulty of criterion functions (Table<<strong>br</strong> />

13) can be defined by many different<<strong>br</strong> />

ways. In this paper, the choice of difficulty<<strong>br</strong> />

is based on the use of DELFI<<strong>br</strong> />

method. Since it is concerned to an expert<<strong>br</strong> />

assessment (Figures 1 and 2) of the multidisciplinary<<strong>br</strong> />

project, the questioned participants<<strong>br</strong> />

(experts).<<strong>br</strong> />

Figure 1. Distribution of responses for<<strong>br</strong> />

Goal 1 and Goal 2<<strong>br</strong> />

Considering the heterogeneity of indicators<<strong>br</strong> />

for evaluation the variant - the<<strong>br</strong> />

method of several criteria optimi<strong>za</strong>tion,<<strong>br</strong> />

i.e. the method of compromise programming<<strong>br</strong> />

and multicriterion compromise ranking<<strong>br</strong> />

of alternative solutions, is used.<<strong>br</strong> />

This method first determines the optimum<<strong>br</strong> />

solutions for particular criteria and<<strong>br</strong> />

then determines compromise solutions,<<strong>br</strong> />

which are proposed to the decision maker.<<strong>br</strong> />

The decision maker adopts the final<<strong>br</strong> />

solution, and is able to see all profit and<<strong>br</strong> />

unsatisfied criteria what provides a good<<strong>br</strong> />

basis for work.<<strong>br</strong> />

By setting different values to the difficulty<<strong>br</strong> />

(importance) of criteria, the stability<<strong>br</strong> />

of the alternative solutions on multicriterion<<strong>br</strong> />

rankings can be analyzed there depending<<strong>br</strong> />

on the specific requirements of<<strong>br</strong> />

decision-maker.<<strong>br</strong> />

No 4, <strong>2011</strong>. 186<<strong>br</strong> />

MINING ENGINEERING


Fig. 2. Distribution of responses for goals 3,4,5 and 6<<strong>br</strong> />

Table 14. Difficulties of goals and criterion functions<<strong>br</strong> />

Goal W Indicators<<strong>br</strong> />

Minimum costs of construction<<strong>br</strong> />

Minimum costs of maintenance<<strong>br</strong> />

Minimum costs of exploitation<<strong>br</strong> />

Minimum costs of of<<strong>br</strong> />

traffic accidents (maximum<<strong>br</strong> />

security and safety)<<strong>br</strong> />

Maximum positive impact<<strong>br</strong> />

on the development<<strong>br</strong> />

of the area<<strong>br</strong> />

0.17<<strong>br</strong> />

0.16<<strong>br</strong> />

0.164<<strong>br</strong> />

0.24<<strong>br</strong> />

0.146<<strong>br</strong> />

The route in<<strong>br</strong> />

spatial conflict<<strong>br</strong> />

with the adopted<<strong>br</strong> />

SP<<strong>br</strong> />

Preservation of<<strong>br</strong> />

existing settlements<<strong>br</strong> />

and encouragement<<strong>br</strong> />

of<<strong>br</strong> />

urban planning<<strong>br</strong> />

Preservation of<<strong>br</strong> />

agricultural and<<strong>br</strong> />

forest areas<<strong>br</strong> />

The reality of<<strong>br</strong> />

performance<<strong>br</strong> />

No 4, <strong>2011</strong>. 187<<strong>br</strong> />

MINING ENGINEERING<<strong>br</strong> />

W<<strong>br</strong> />

rel<<strong>br</strong> />

Crit. F. Wrel fi Wi<<strong>br</strong> />

Total construction<<strong>br</strong> />

costs in<<strong>br</strong> />

Euro<<strong>br</strong> />

Construction<<strong>br</strong> />

costs in<<strong>br</strong> />

Euro/year<<strong>br</strong> />

Exploitation<<strong>br</strong> />

costs in<<strong>br</strong> />

Euro/year<<strong>br</strong> />

Costs of traffic<<strong>br</strong> />

accidents in<<strong>br</strong> />

Euro/year<<strong>br</strong> />

Compliance<<strong>br</strong> />

with SP<<strong>br</strong> />

Preservation and<<strong>br</strong> />

promotion rating<<strong>br</strong> />

of the future<<strong>br</strong> />

urban planning<<strong>br</strong> />

Land area under<<strong>br</strong> />

unfavorable<<strong>br</strong> />

influence<<strong>br</strong> />

The needs for<<strong>br</strong> />

displacement,<<strong>br</strong> />

possibility of<<strong>br</strong> />

material procurement,construction<<strong>br</strong> />

in<<strong>br</strong> />

stages<<strong>br</strong> />

1 0.17<<strong>br</strong> />

2 0.16<<strong>br</strong> />

3 0.164<<strong>br</strong> />

4 0.24<<strong>br</strong> />

0.15 5 0.022<<strong>br</strong> />

0.20 6 0.029<<strong>br</strong> />

0.30 7 0.044<<strong>br</strong> />

0.35 8 0.051


Minimum spatial ecological<<strong>br</strong> />

consequences<<strong>br</strong> />

0.12<<strong>br</strong> />

Minimum air<<strong>br</strong> />

pollution<<strong>br</strong> />

Minimum water<<strong>br</strong> />

pollution<<strong>br</strong> />

Minimum loss<<strong>br</strong> />

and soil pollution<<strong>br</strong> />

Minimum impact<<strong>br</strong> />

on the biotic<<strong>br</strong> />

factor<<strong>br</strong> />

Minimum impact<<strong>br</strong> />

on population,<<strong>br</strong> />

health and social<<strong>br</strong> />

factors<<strong>br</strong> />

Minimum noise<<strong>br</strong> />

and vi<strong>br</strong>ation<<strong>br</strong> />

Minimum contact<<strong>br</strong> />

with the<<strong>br</strong> />

protected natural<<strong>br</strong> />

areas<<strong>br</strong> />

Minimum negative<<strong>br</strong> />

impact on<<strong>br</strong> />

the cultural and<<strong>br</strong> />

historical monuments<<strong>br</strong> />

Minimum impact<<strong>br</strong> />

on landscape<<strong>br</strong> />

Number of<<strong>br</strong> />

buildings exposed<<strong>br</strong> />

to pollution<<strong>br</strong> />

in the<<strong>br</strong> />

highway area<<strong>br</strong> />

expressed in<<strong>br</strong> />

points<<strong>br</strong> />

Length of the<<strong>br</strong> />

route near the<<strong>br</strong> />

watercourse<<strong>br</strong> />

Land area under<<strong>br</strong> />

unfavorable<<strong>br</strong> />

influence<<strong>br</strong> />

*favorable variants are graded with higher grades (points )<<strong>br</strong> />

Tabela 15.<<strong>br</strong> />

Length of the<<strong>br</strong> />

route in the cuts<<strong>br</strong> />

and embankments<<strong>br</strong> />

Assessment of<<strong>br</strong> />

impact on population,<<strong>br</strong> />

health<<strong>br</strong> />

and social factors<<strong>br</strong> />

Number of<<strong>br</strong> />

buildings in the<<strong>br</strong> />

highway area<<strong>br</strong> />

Length of route<<strong>br</strong> />

that crosses the<<strong>br</strong> />

protected natural<<strong>br</strong> />

area<<strong>br</strong> />

Number of<<strong>br</strong> />

cultural and<<strong>br</strong> />

historical<<strong>br</strong> />

monuments on<<strong>br</strong> />

the route of the<<strong>br</strong> />

highway<<strong>br</strong> />

Length of route<<strong>br</strong> />

in the cut, embankment,<<strong>br</strong> />

above-ground khole<<strong>br</strong> />

Criterion function Unit Ext Variant W Variant VN * f i<<strong>br</strong> />

0.12 9 0.014<<strong>br</strong> />

0.13 10 0.016<<strong>br</strong> />

0.13 11 0.016<<strong>br</strong> />

0.10 12 0.012<<strong>br</strong> />

0.12 13 0.014<<strong>br</strong> />

0.10 14 0.012<<strong>br</strong> />

0.10 15 0.012<<strong>br</strong> />

0.10 16 0.012<<strong>br</strong> />

0.10 17 0.012<<strong>br</strong> />

1. Total costs of building in Euro € min 649056603.60 639725443.00 639725443.00 649056603.00<<strong>br</strong> />

2. Costs of maintenance €/yr. min 1403036.00 1246085.00 1246085.00 1403036.00<<strong>br</strong> />

3. Costs of exploitation €/yr. min 28869724.00 26139172.00 26139172.00 28869724.00<<strong>br</strong> />

4.<<strong>br</strong> />

5.<<strong>br</strong> />

6.<<strong>br</strong> />

Costs of traffic accidents in<<strong>br</strong> />

Euro/year<<strong>br</strong> />

Compliance with the Spatial<<strong>br</strong> />

Plan*<<strong>br</strong> />

Preservation and promotion<<strong>br</strong> />

rating of the future urban<<strong>br</strong> />

planning*<<strong>br</strong> />

No 4, <strong>2011</strong>. 188<<strong>br</strong> />

MINING ENGINEERING<<strong>br</strong> />

− f i<<strong>br</strong> />

€/yr. min 261692.00 231627.00 231627.00 261692.00<<strong>br</strong> />

point max 100.00 100.00 100.00 100.00<<strong>br</strong> />

point max 100.00 100.00 100.00 100.00


7.<<strong>br</strong> />

8.<<strong>br</strong> />

9.<<strong>br</strong> />

10.<<strong>br</strong> />

11.<<strong>br</strong> />

12.<<strong>br</strong> />

13.<<strong>br</strong> />

14.<<strong>br</strong> />

15.<<strong>br</strong> />

16.<<strong>br</strong> />

17.<<strong>br</strong> />

Land area under the unfavorable<<strong>br</strong> />

influence*<<strong>br</strong> />

The needs for displacement,<<strong>br</strong> />

possibility of material procurement,<<strong>br</strong> />

construction in stages*<<strong>br</strong> />

Number of buildings exposed to<<strong>br</strong> />

pollution in the highway area<<strong>br</strong> />

expressed in points**<<strong>br</strong> />

Length of route near the watercourse**<<strong>br</strong> />

Land are under the unfavorable<<strong>br</strong> />

influence**<<strong>br</strong> />

Length of soil in the cuts and<<strong>br</strong> />

embankments**<<strong>br</strong> />

Assessment of impact on population,<<strong>br</strong> />

health and social factors**<<strong>br</strong> />

Number of buildings in the<<strong>br</strong> />

highway area**<<strong>br</strong> />

Length of route that crosses the<<strong>br</strong> />

protected natural area**<<strong>br</strong> />

Number of cultural and historical<<strong>br</strong> />

monuments on the route of the<<strong>br</strong> />

highway**<<strong>br</strong> />

Length of the route in the cut,<<strong>br</strong> />

embankment and above ground<<strong>br</strong> />

pits**<<strong>br</strong> />

point max 100.00 45.00 100.00 45.00<<strong>br</strong> />

point max 100.00 100.00 100.00 100.00<<strong>br</strong> />

point max 90.00 90.00 90.00 90.00<<strong>br</strong> />

point max 85.00 85.00 85.00 85.00<<strong>br</strong> />

point max 80.00 65.00 80.00 65.00<<strong>br</strong> />

point max 80.00 70.00 80.00 70.00<<strong>br</strong> />

point max 85.00 85.00 85.00 85.00<<strong>br</strong> />

point max 85.00 85.00 85.00 85.00<<strong>br</strong> />

point max 95.00 95.00 95.00 95.00<<strong>br</strong> />

point max 100.00 100.00 100.00 100.00<<strong>br</strong> />

point max 60.00 50.00 60.00 50.00<<strong>br</strong> />

**favorable variants are rated with higher grades (points)<<strong>br</strong> />

Using the computer program, based on<<strong>br</strong> />

the method of VIKOR (Table 16), the<<strong>br</strong> />

following is obtained:<<strong>br</strong> />

List of alternative: A 1. VV variant, A<<strong>br</strong> />

2. VN variant<<strong>br</strong> />

Table 16. Rang liste po varijantama<<strong>br</strong> />

QR – Minimax strategija Q – Kompromis QS – Vecinska korist<<strong>br</strong> />

R.L.QR R.L.Q i Q(J) R.L.QS<<strong>br</strong> />

A 2 0.044 A 2 0.000 A 2 0.084<<strong>br</strong> />

A 1 0.240 A 1 1.000 A 1 0.734<<strong>br</strong> />

Table 17. Analysis of the preferential stability<<strong>br</strong> />

F(i) WD1 WO(i) WG1 F(i) WD1 WO(i) WG1<<strong>br</strong> />

F 1 0.000 0.170 1,000 F10 0.000 0.016 1,000<<strong>br</strong> />

F 2 0.000 0.160 1,000 F11 0.000 0.016 0.196<<strong>br</strong> />

F 3 0.000 0.164 1,000 F12 0.000 0.012 0.195<<strong>br</strong> />

F 4 0.000 0.240 1,000 F13 0.000 0.014 1,000<<strong>br</strong> />

F 5 0.000 0.022 1,000 F14 0.000 0.012 1,000<<strong>br</strong> />

F 6 0.000 0.029 1,000 F15 0.000 0.012 1,000<<strong>br</strong> />

F 7 0.000 0.044 0.201 F16 0.000 0.012 1,000<<strong>br</strong> />

F 8 0.000 0.051 1,000 F17 0.000 0.012 0.195<<strong>br</strong> />

F 9 0.000 0.014 1,000<<strong>br</strong> />

W0(i) are normalized values of the input-given<<strong>br</strong> />

weight. WD1≤w≤WG1 is the<<strong>br</strong> />

interval weight in which the first alternative<<strong>br</strong> />

remains in its position (stable position).<<strong>br</strong> />

No 4, <strong>2011</strong>. 189<<strong>br</strong> />

MINING ENGINEERING


Changing the first position for alternative<<strong>br</strong> />

A 2 can occur if there is a<<strong>br</strong> />

change of weight criteria F7, F11, F12,<<strong>br</strong> />

F17, or if the value of weight to these<<strong>br</strong> />

criteria (Table 17) is respectively<<strong>br</strong> />

higher than 0.201;0.196;0.195;0.195.<<strong>br</strong> />

11. CONCLUSION<<strong>br</strong> />

The need for a compromise solution<<strong>br</strong> />

is more pronounced for solving tasks<<strong>br</strong> />

with conflicting and heterogeneous criteria<<strong>br</strong> />

(opposed and expressed in different<<strong>br</strong> />

units of measure) as it is the case in this<<strong>br</strong> />

paper. The result of VKO has a great<<strong>br</strong> />

chance to be accepted as a good compromise<<strong>br</strong> />

between the different interests<<strong>br</strong> />

of participants in deciding if it is acceptable<<strong>br</strong> />

to the majority in decision-making<<strong>br</strong> />

process, but also that there are no bad<<strong>br</strong> />

criterion indicators that would make<<strong>br</strong> />

«opponents» not to accept it.<<strong>br</strong> />

REFERENCES<<strong>br</strong> />

[1] Faculty of Civil Engineering in<<strong>br</strong> />

Podgorica, <strong>Institut</strong>e of Transport and<<strong>br</strong> />

Traffic Engineering in Belgrade,<<strong>br</strong> />

Study of traffic flows and<<strong>br</strong> />

determining the emergency of<<strong>br</strong> />

bottlenecks in the network of<<strong>br</strong> />

existing roads in the corridor of<<strong>br</strong> />

planned highways and roads<<strong>br</strong> />

reserved for motor vehicles in<<strong>br</strong> />

Montenegro, 1998 (in Serbian)<<strong>br</strong> />

[2] <strong>Institut</strong>e of Transport and Traffic<<strong>br</strong> />

Engineering, Project evaluation<<strong>br</strong> />

version of the highway Belgrade –<<strong>br</strong> />

South Adriatic on the part of<<strong>br</strong> />

Belgrade to Požega, Belgrade,<<strong>br</strong> />

November 1998 (in Serbian)<<strong>br</strong> />

[3] Kuzović Lj., Determining the need<<strong>br</strong> />

and justification for transit traffic<<strong>br</strong> />

separation from city arteries by<<strong>br</strong> />

constructing bypasses, University of<<strong>br</strong> />

Belgrade, Belgrade, 1997 (in<<strong>br</strong> />

Serbian)<<strong>br</strong> />

[4] Kuzović Lj., Evaluation in<<strong>br</strong> />

management with development and<<strong>br</strong> />

exploitation of the road network,<<strong>br</strong> />

University of Belgrade, Belgrade,<<strong>br</strong> />

1994 (in Serbian)<<strong>br</strong> />

[5] Kuzović Lj., Evaluation in<<strong>br</strong> />

optimizing plans and projects of<<strong>br</strong> />

roads, SIT traffic and link of<<strong>br</strong> />

Yugoslavia, Belgrade, 1984 (in<<strong>br</strong> />

Serbian)<<strong>br</strong> />

[6] Louis Berger, Technical<<strong>br</strong> />

Memorandum No. 14 conducted on<<strong>br</strong> />

traffic counts and interviews in the<<strong>br</strong> />

road network of Montenegro,<<strong>br</strong> />

October, 2007<<strong>br</strong> />

[7] M. Maletin, et al., The study of<<strong>br</strong> />

alternative solutions of route of the<<strong>br</strong> />

outside main road tangent (OMRT),<<strong>br</strong> />

University of Belgrade, The Faculty<<strong>br</strong> />

of Civil Engineering, Geotechnical<<strong>br</strong> />

and Roads <strong>Institut</strong>e, Belgrade 1989<<strong>br</strong> />

(in Serbian)<<strong>br</strong> />

[8] Opricović S., Multicriterion<<strong>br</strong> />

optimi<strong>za</strong>tion systems in construction,<<strong>br</strong> />

The Faculty of Civil Engineering,<<strong>br</strong> />

University of Belgrade, Belgrade,<<strong>br</strong> />

1998 (in Serbian)<<strong>br</strong> />

No 4, <strong>2011</strong>. 190<<strong>br</strong> />

MINING ENGINEERING


INSTITUT<<strong>br</strong> />

B<<strong>br</strong> />

O<<strong>br</strong> />

INSTITUT ZA RUDARSTVO I METALURGIJU BOR<<strong>br</strong> />

LABORATORIJA<<strong>br</strong> />

ZA GEOMEHANIKU I ISPITIVANJE MATERIJALA<<strong>br</strong> />

Laboratorija <strong>za</strong><<strong>br</strong> />

geomehaniku i<<strong>br</strong> />

ispitivanje materijala<<strong>br</strong> />

u svom sastavu ima<<strong>br</strong> />

slede}u opremu <strong>za</strong><<strong>br</strong> />

ispitivanja i atestiranja:<<strong>br</strong> />

19210 BOR, Zeleni bulevar 35<<strong>br</strong> />

Tel: +381 30 454-109 Tel/fax: +381 30 435 247<<strong>br</strong> />

E-mail: milenko.ljubojev@irmbor.co.rs<<strong>br</strong> />

R<<strong>br</strong> />

Plasti~ne stene<<strong>br</strong> />

Rastresite ~vrste stene<<strong>br</strong> />

Gra|evinski kamen<<strong>br</strong> />

Arhitektonski kamen<<strong>br</strong> />

Metali


INSTITUT<<strong>br</strong> />

B<<strong>br</strong> />

O<<strong>br</strong> />

INSTITUT ZA RUDARSTVO I METALURGIJU BOR<<strong>br</strong> />

R<<strong>br</strong> />

SONDA MS FI110<<strong>br</strong> />

SONDA MS – Za građevinske objekte<<strong>br</strong> />

19210 BOR, Zeleni bulevar 35<<strong>br</strong> />

Tel: +381 30 454-109 Tel/fax: +381 30 435 247<<strong>br</strong> />

E-mai: milenko.ljubojev@irmbor.co.rs


JP PEU RESAVICA<<strong>br</strong> />

ЈП ПЕУ Ресавица<<strong>br</strong> />

Петра Жалца 2, Ресавица<<strong>br</strong> />

ПИБ: 103084723<<strong>br</strong> />

Матични број: 17507699<<strong>br</strong> />

Tel: 035 627 722 / 627 702<<strong>br</strong> />

Web adresa: jppeu.rs


UPUTSTVO AUTORIMA<<strong>br</strong> />

Časopis RUDARSKI RADOVI izlazi četiri puta godišnje i objavljuje naučne, stručne i pregledne radove. Za<<strong>br</strong> />

objavljivanje u časopisu prihvataju se isključivo originalni <strong>radovi</strong> koji nisu prethodno objavljivani i nisu istovremeno<<strong>br</strong> />

podneti <strong>za</strong> objavljivanje negde drugde. Radovi se dostavljaju i na srpskom i na engleskom jeziku. Radovi se anonimno<<strong>br</strong> />

recenziraju od strane recenzenta posle čega uredništvo donosi odluku o objavljivanju. Rad priložen <strong>za</strong> objavljivanje<<strong>br</strong> />

treba da bude pripremljen prema dole navedenom uputstvu da bi bio uključen u proceduru recenziranja.<<strong>br</strong> />

Neodgovarajuće pripremljeni rukopisi biće vraćeni autoru na doradu.<<strong>br</strong> />

Obim i font. Rad treba da je napisan na papiru A4 formata (210x297 mm), margine (leva, desna, gornja i donja)<<strong>br</strong> />

sa po 25 mm, u Microsoft Wordu novije verzije, fontom Times New Roman, veličine 12, sa razmakom 1,5 reda,<<strong>br</strong> />

obostrano poravnat prema levoj i desnoj margini. Preporučuje se da celokupni rukopis ne bude manji od 5 strana i ne<<strong>br</strong> />

veći od 10 strana.<<strong>br</strong> />

Naslov rada treba da je ispisan velikim slovima, bold. Ispod naslova rada pišu se imena autora i institucija u<<strong>br</strong> />

kojoj rade. Autor rada <strong>za</strong>dužen <strong>za</strong> korespodenciju sa uredništvom mora da navede svoju e-mail adresu <strong>za</strong> kontakt u<<strong>br</strong> />

fusnoti.<<strong>br</strong> />

Izvod se nalazi na početku rada i treba biti dužine do 200 reči, da sadrži cilj rada, primenjene metode, glavne<<strong>br</strong> />

rezultate i <strong>za</strong>ključke. Veličina fonta je 10, italic.<<strong>br</strong> />

Ključne reči se navode ispod izvoda. Treba da ih bude minimalno 3, a maksimalno 6. Veličina fonta je 10,<<strong>br</strong> />

italic.<<strong>br</strong> />

Osnovni tekst. Radove treba pisati jezgrovito, razumljivim stilom i logičkim redom koji, po pravilu, uključuje<<strong>br</strong> />

uvodni deo s određenjem cilja ili problema rada, opis metodologije, prikaz dobijenih rezultata, kao i diskusiju rezultata<<strong>br</strong> />

sa <strong>za</strong>ključcima i implikacijama.<<strong>br</strong> />

Glavni naslovi trebaju biti urađeni sa veličinom fonta 12, bold, sve velika slova i poravnati sa levom marginom.<<strong>br</strong> />

Podnaslovi se pišu sa veličinom fonta 12, bold, poravnato prema levoj margini, velikim i malim slovima.<<strong>br</strong> />

Slike i tabele. Svaka ilustracija i tabela moraju biti razumljive i bez čitanja teksta, odnosno, moraju imati redni<<strong>br</strong> />

<strong>br</strong>oj, naslov i legendu (objašnjenje oznaka, šifara, skraćenica i sl.). Tekst se navodi ispod slike, a iznad tabele. Redni<<strong>br</strong> />

<strong>br</strong>ojevi slika i tabela se daju arapskim <strong>br</strong>ojevima.<<strong>br</strong> />

Reference u tekstu se navode u ugličastim <strong>za</strong>gradama, na pr. [1,3]. Reference se prilažu na kraju rada na sledeći<<strong>br</strong> />

način:<<strong>br</strong> />

[1] B.A. Willis, Mineral Procesing Technology, Oxford, Perganom Press, 1979, str. 35. (<strong>za</strong> poglavlje u knjizi)<<strong>br</strong> />

[2] H. Ernst, Research Policy, 30 (2001) 143–157. (<strong>za</strong> članak u časopisu)<<strong>br</strong> />

[3] www: http://www.vanguard.edu/psychology/apa.pdf (<strong>za</strong> web dokument)<<strong>br</strong> />

Navođenje neobjavljenih radova nije poželjno, a ukoliko je neophodno treba navesti što potpunije podatke o<<strong>br</strong> />

izvoru.<<strong>br</strong> />

Zahvalnost se daje po potrebi, na kraju rada, a treba da sadrži ime institucije koja je finansirala rezultate koji se<<strong>br</strong> />

daju u radu, sa nazivom i <strong>br</strong>ojem projekta; ili ukoliko rad potiče iz magistarske teze ili doktorske disertacije, treba dati<<strong>br</strong> />

naziv teze/disertacije, mesto, godinu i fakultet na kojem je od<strong>br</strong>anjena. Veličina fonta 10, italic.<<strong>br</strong> />

Radovi se šalju prevashodno elektronskom poštom ili u drugom elektronskom obliku.<<strong>br</strong> />

Adresa uredništva je: Časopis RUDARSKI RADOVI<<strong>br</strong> />

<strong>Institut</strong> <strong>za</strong> <strong>rudarstvo</strong> i <strong>metalurgiju</strong><<strong>br</strong> />

Zeleni bulevar 35, 19210 <strong>Bor</strong><<strong>br</strong> />

E-mail: nti@irmbor.co.rs ; milenko.ljubojev@irmbor.co.rs<<strong>br</strong> />

Telefon: 030/435-164; 030/454-110<<strong>br</strong> />

Svim autorima se <strong>za</strong>hvaljujemo na saradnji.


INSTRUCTIONS FOR THE AUTHORS<<strong>br</strong> />

MINING ENGINEERING Journal is published four times per a year and publishes the scientific, technical<<strong>br</strong> />

and review paper works. Only original works, not previously published and not simultaneously submitted for<<strong>br</strong> />

publication elsewhere, are accepted for publication in the journal. The papers should be submitted in both, Serbian and<<strong>br</strong> />

English language. The papers are anonymously reviewed by the reviewers after that the editors decided to publish. The<<strong>br</strong> />

submitted work for publication should be prepared according to the instructions below as to be included in the<<strong>br</strong> />

procedure of reviewing. Inadequate prepared manuscripts will be returned to the author for finishing.<<strong>br</strong> />

Volume and Font size. The work needs to be written on A4 paper (210x297 mm), margins (left, right, upper<<strong>br</strong> />

and bottom) with each 25 mm, in the Microsoft Word later version, font Times New Roman, size 12, with 1.5 line<<strong>br</strong> />

spacing, justified to the left and right margins. It is recommended that the entire manuscript cannot be less than 5 pages<<strong>br</strong> />

and not exceed 10 pages.<<strong>br</strong> />

Title of Work should be written in capital letters, bold, in Serbian and English. Under the title, the names of<<strong>br</strong> />

authors and institutions where they work are written under the title. The author of work, responsible for correspondence<<strong>br</strong> />

with the editorial staff, must provide his/her e-mail address for contact in a footnote.<<strong>br</strong> />

Abstract is at the beginning of work and should be up to 200 words, include the aim of the work, the applied<<strong>br</strong> />

methods, the main results and conclusions. The font size is 10, italic.<<strong>br</strong> />

Key words are listed below abstract. They should be minimum 3 and maximum of 6. The font size is 10, italic.<<strong>br</strong> />

Basic text. The papers should be written concisely, in understandable style and logical order that, as a rule,<<strong>br</strong> />

including the introductory section with a definition of the aim or problem, a description of the methodology,<<strong>br</strong> />

presentation of the results as well as a discussion of the results with conclusions and implications.<<strong>br</strong> />

Main titles should be done with the font size 12, bold, all capital letters and aligned with the left margin.<<strong>br</strong> />

Subtitles are written with the font size 12, bold, aligned to the left margin, large and small letters.<<strong>br</strong> />

Figure and Tables. Each figure and table must be understandable without reading the text, i.e., must have a<<strong>br</strong> />

serial number, title and legend (explanation of marks, codes, ab<strong>br</strong>eviations, etc.). The text is stated below the figure and<<strong>br</strong> />

above the table. Serial numbers of figures and tables are given in Arabic numbers.<<strong>br</strong> />

References in the text are referred to in angle <strong>br</strong>ackets, exp. [1, 3]. References are enclosed at the end in the<<strong>br</strong> />

following way:<<strong>br</strong> />

[1] Willis B. A., Mineral Procesing Technology, Oxford, Pergamon Press, 1979, pg. 35. (for the chapter in a book)<<strong>br</strong> />

[2] Ernst H., Research Policy, 30 (2001) 143–157. (for the article in a journal)<<strong>br</strong> />

[3] www: http://www.vanguard.edu/psychology/apa.pdf (for web document)<<strong>br</strong> />

Specifying the unpublished works is not desirable and, if it is necessary, as much as possible data on the source<<strong>br</strong> />

should be listed.<<strong>br</strong> />

Acknowledgement is given where appropriate, at the end of the work and should include the name of institution<<strong>br</strong> />

that funded the given results in the work, with the name and number of project, or if the work is derived from the<<strong>br</strong> />

master theses or doctoral dissertation, it should give the name of thesis / dissertation, place, year and faculty where it<<strong>br</strong> />

was defended. Font size is 10, italic.<<strong>br</strong> />

The paper works are primarily sent by e-mail or in other electronic form.<<strong>br</strong> />

Editorial address : Journal MINING ENGINEERING<<strong>br</strong> />

Mining and Metallurgy <strong>Institut</strong>e<<strong>br</strong> />

35 Zeleni bulevar, 19210 <strong>Bor</strong><<strong>br</strong> />

E-mail:nti@irmbor.co.rs; milenko.ljubojev@irmbor.co.rs<<strong>br</strong> />

Telephone: +381 (0) 30/435-164; +381 (0) 30/454-110<<strong>br</strong> />

We are thankful for all authors on cooperation

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!