23.02.2013 Views

Update on ESP Operation at BP Wytch Farm Oilfield - SPE

Update on ESP Operation at BP Wytch Farm Oilfield - SPE

Update on ESP Operation at BP Wytch Farm Oilfield - SPE

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Upd<strong>at</strong>e</str<strong>on</strong>g> <strong>on</strong> <strong>ESP</strong> Oper<strong>at</strong>i<strong>on</strong> <strong>at</strong> <strong>BP</strong><br />

<strong>Wytch</strong> <strong>Farm</strong> <strong>Oilfield</strong><br />

By Erwin Wahidiy<strong>at</strong><br />

Presented <strong>at</strong> the European Artificial Lift Forum<br />

17-18 February 2010


Present<strong>at</strong>i<strong>on</strong> Agenda<br />

� Introducti<strong>on</strong> to <strong>Wytch</strong> <strong>Farm</strong> <strong>Oilfield</strong>:<br />

� Loc<strong>at</strong>i<strong>on</strong><br />

� Sherwood Reservoir Summary<br />

� Role of <strong>ESP</strong> in Sherwood Reservoir Development<br />

� <strong>ESP</strong> Run-Life Progressi<strong>on</strong>: 1985 2009<br />

� Summary of Run-Life Measurements<br />

� Failures by Comp<strong>on</strong>ents<br />

� High HP <strong>ESP</strong> System MTTF<br />

� Shift in Depleti<strong>on</strong> Plan & Impact <strong>on</strong> <strong>ESP</strong> Str<strong>at</strong>egy<br />

� Summary of Current <strong>ESP</strong> Systems<br />

� Past-Present Comparis<strong>on</strong>s M11 & M15 Examples<br />

� Applic<strong>at</strong>i<strong>on</strong> of Dual <strong>ESP</strong> to Extend Life Cycle<br />

� Applic<strong>at</strong>i<strong>on</strong> of Dual <strong>ESP</strong> to Manage Productivity Uncertainties<br />

� Closing Remarks<br />

2


<strong>Wytch</strong> <strong>Farm</strong> <strong>Oilfield</strong> - Loc<strong>at</strong>i<strong>on</strong><br />

miles<br />

Poole<br />

Poole Harbour<br />

Purbeck<br />

Bournemouth<br />

Sherwood reservoir<br />

Well sites<br />

Bottom hole loc<strong>at</strong>i<strong>on</strong>s<br />

Loc<strong>at</strong>ed in a sensitive<br />

envir<strong>on</strong>mental area <strong>on</strong> the<br />

southern coast of England,<br />

about 120 miles from L<strong>on</strong>d<strong>on</strong><br />

Oil export via 90km 16<br />

Purbeck-Southampt<strong>on</strong> pipeline,<br />

LPG via road tanker, gas by<br />

Purbeck-Sopley pipeline<br />

11 wellsites, total active wells<br />

(producers & injectors): 65.<br />

Active <strong>ESP</strong> wells: 31<br />

Reservoirs: Sherwood,<br />

Bridport, Frome, Kimmeridge,<br />

Wareham, Arne, &<br />

Stoborough.<br />

Current field producti<strong>on</strong>: 20+<br />

MBDO <strong>at</strong> 93% w<strong>at</strong>er cut.<br />

3


Sherwood Reservoir: Summary & PVT Properties<br />

Distal (further away)<br />

fro m s e d im e n t s o u rc e<br />

All z<strong>on</strong>es in western areas have<br />

Lower Net to G ross – this lim its<br />

Vertical c<strong>on</strong>nectivity to<br />

upper reservoir<br />

X02 Area – Z70 is<br />

v. poor quality – lim its<br />

Vertical c<strong>on</strong>nectivity<br />

Inje c tivity o f u p p er re se rvo ir<br />

In o n s h o re a re a h a s<br />

not yet been tested<br />

PVT Properties<br />

Oil Gravity (API) <strong>at</strong> 60<br />

deg. F<br />

Soluti<strong>on</strong> GOR,<br />

SCF/STB<br />

Bubble Point Pressure,<br />

psig<br />

Initial Reservoir<br />

Pressure <strong>at</strong> d<strong>at</strong>um,<br />

psig<br />

Reservoir Temper<strong>at</strong>ure<br />

<strong>at</strong> d<strong>at</strong>um, deg. F<br />

Current pressure, <strong>at</strong><br />

d<strong>at</strong>um, psig<br />

CO 2 % mol<br />

H 2S, % mol<br />

Base of Z10 in both west<br />

And east appears sandier<br />

From core observ<strong>at</strong>i<strong>on</strong>s<br />

Value<br />

Dense faults<br />

and fractures<br />

Faults/fractures can be<br />

C<strong>on</strong>ductive and n<strong>on</strong>-c<strong>on</strong>ductive:<br />

*F ault orient<strong>at</strong>i<strong>on</strong><br />

* N et: G ross<br />

* P roxim ity to floodfr<strong>on</strong>t<br />

38.3<br />

357<br />

1070<br />

2420<br />

150<br />

1600-2200<br />

0.09<br />

0<br />

Base of Z10: isol<strong>at</strong>ed fluvial<br />

channels observed in core<br />

Dense faults<br />

and fractures<br />

Rhizocreti<strong>on</strong> sands present mostly<br />

In Z 5 0 (lo c a lly in Z 3 0 in o ffs h o re a re a )<br />

-C ould be m ore poorly c<strong>on</strong>nected than<br />

-F luvia l sa n ds d u e to m u dd ie r ove rb a nk<br />

-deposits<br />

Z50/Z70 stranded Attic<br />

Targets possible<br />

Sherwood Reservoir Summary:<br />

Base Z10 appears<br />

sandier field w ide<br />

Mid Z<strong>on</strong>e 30 siltst<strong>on</strong>e/sabkha<br />

Appears field wide in core<br />

Z70: perm eability can be<br />

Up to 4 Darcies<br />

Triassic sandst<strong>on</strong>e reservoir, with top reservoir <strong>at</strong> ca. 1585 m-TVDSS with a maximum 110-m column of oil bearing<br />

sand above the oil/w<strong>at</strong>er c<strong>on</strong>tact<br />

Upper reservoir: Z<strong>on</strong>es 10-40, Lower reservoir: Z<strong>on</strong>es 50-100. Z<strong>on</strong>es 20, 40, & 60 (muddier intervals) act as barriers<br />

Three main oil bearing z<strong>on</strong>es: Z<strong>on</strong>es 30, 50, & 70 (decreasing permeability and net-to-gross in the upper z<strong>on</strong>es). PI<br />

ranges from 1 to 100+ <strong>BP</strong>D/psi<br />

The western part of the field lies <strong>on</strong>shore (below Poole harbour & surrounding area) & the eastern part of the<br />

reservoir lies offshore<br />

Over half of the Sherwood reserves lies in the offshore area, which necessit<strong>at</strong>ed the drilling of ERD wells<br />

beginning 1993<br />

Producti<strong>on</strong> from Sherwood reservoir accounts for 85% of total WYF producti<strong>on</strong><br />

Z40/Z60 (and locally Z20)<br />

are disc<strong>on</strong>tinuous in the<br />

offshore area so are baffles r<strong>at</strong>her<br />

th a n b a rrie rs to flu id flo w<br />

Reservoir c<strong>on</strong>diti<strong>on</strong>s rel<strong>at</strong>ively benign for oper<strong>at</strong>ing <strong>ESP</strong>s (See tabul<strong>at</strong>ed PVT properties)<br />

Proximal (closer to)<br />

sedim ent source<br />

> Permeability distributi<strong>on</strong> driven<br />

by facies type<br />

> Best quality sands and average sands<br />

are indistinguishable <strong>on</strong> porosity logs<br />

>6-8% porosity sand can have good<br />

perm eability (current porosity cut-off<br />

fo r n e t s a n d is 1 2 % )<br />

All z<strong>on</strong>es show increase in Net to<br />

Gross in offshore area, where<br />

channel sands becom e<br />

more prevalent<br />

Base Z10: localised isol<strong>at</strong>ed<br />

Fluvial channels in eastern areas<br />

(a n d o ccasi<strong>on</strong> a lly in w e st).<br />

Normally Occurring Radioactive M<strong>at</strong>erial (NORM) is present with the produced fluids and causes complic<strong>at</strong>i<strong>on</strong>s<br />

when retrieving downhole completi<strong>on</strong> and the handling of retrieved <strong>ESP</strong>s during teardown.<br />

4


M<strong>BP</strong>D<br />

<strong>ESP</strong> Install<strong>at</strong>i<strong>on</strong> Count<br />

250<br />

200<br />

150<br />

100<br />

Role of <strong>ESP</strong> in The Development of Sherwood Reservoir<br />

50<br />

Sherwood Reservoir Oil Producti<strong>on</strong>: 1978 - 2009<br />

0<br />

0%<br />

1975 1980 1985 1990 1995 2000 2005 2010 2015<br />

Field Oil Producti<strong>on</strong> -Sherwood Field W<strong>at</strong>er Producti<strong>on</strong> - Sherwood<br />

Field W<strong>at</strong>er Cut - Sherwood<br />

Sherwood Reservoir Development & <strong>ESP</strong> Install<strong>at</strong>i<strong>on</strong>s 1978-2009<br />

1974.5<br />

18<br />

1979.5 1984.5 1989.5 1994.5 1999.5 2004.5<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

1975 1978 1981 1984 1987 1990 1993 1996 1999 2002 2005 2008<br />

<strong>ESP</strong> Install<strong>at</strong>i<strong>on</strong> Count Sherwood Field Oil Producti<strong>on</strong><br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

W<strong>at</strong>er Cut<br />

Sherwood Oil Producti<strong>on</strong>, MBOPD<br />

Sherwood Development History<br />

& its rel<strong>at</strong>i<strong>on</strong> to number of <strong>ESP</strong><br />

install<strong>at</strong>i<strong>on</strong>s:<br />

1978 -Discovery of Sherwood Reservoir<br />

1985 1 st <strong>ESP</strong> install<strong>at</strong>i<strong>on</strong> (3 install<strong>at</strong>i<strong>on</strong>s in<br />

1985)<br />

1990 -Start of multi-z<strong>on</strong>e, vertical <strong>on</strong>shore<br />

development wells 16 <strong>ESP</strong> install<strong>at</strong>i<strong>on</strong>s<br />

1993 -Start of ERD wells (offshore<br />

Sherwood development) 9 <strong>ESP</strong><br />

install<strong>at</strong>i<strong>on</strong>s<br />

1996 Field producti<strong>on</strong> peaked <strong>at</strong> 101+<br />

MBOPD (average <strong>ESP</strong> install<strong>at</strong>i<strong>on</strong>s during<br />

the field producti<strong>on</strong> peak, from 1995-1998:<br />

13)<br />

1997 -Start of infill drilling program 14<br />

<strong>ESP</strong> install<strong>at</strong>i<strong>on</strong>s<br />

1998 Over 100 <strong>ESP</strong> install<strong>at</strong>i<strong>on</strong>s to d<strong>at</strong>e.<br />

1999 -Producti<strong>on</strong> came off pl<strong>at</strong>eau<br />

2009 -Average Sherwood Oil R<strong>at</strong>e: 17.2<br />

MBOPD, w<strong>at</strong>er cut: 93%. Average <strong>ESP</strong><br />

Install<strong>at</strong>i<strong>on</strong>s 1999 2009: 8. Cumul<strong>at</strong>ive<br />

<strong>ESP</strong> install<strong>at</strong>i<strong>on</strong> count to d<strong>at</strong>e: 193.<br />

5


Days<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

1985<br />

1600<br />

1400<br />

1200<br />

1000<br />

<strong>Wytch</strong> <strong>Farm</strong> <strong>ESP</strong> Run-life Progressi<strong>on</strong><br />

1987<br />

<strong>Wytch</strong> <strong>Farm</strong> <strong>ESP</strong> Run-Life Measurements: 1985-2009<br />

1989<br />

<strong>Wytch</strong> <strong>Farm</strong> <strong>ESP</strong> Install<strong>at</strong>i<strong>on</strong>, Failure Counts & MTTF:<br />

1985-2009<br />

1991<br />

1993<br />

1995<br />

Install<strong>at</strong>i<strong>on</strong> Period<br />

1997<br />

1999<br />

2001<br />

2003<br />

2005<br />

2007<br />

2009 0<br />

Failure Count Prem<strong>at</strong>ure Failure Install<strong>at</strong>i<strong>on</strong> Count <strong>ESP</strong> MTTF<br />

180<br />

160<br />

140<br />

120<br />

800<br />

100<br />

600<br />

80<br />

400<br />

60<br />

40<br />

200<br />

20<br />

0<br />

0<br />

1985 1990 1995 2000 2005 2010<br />

Mean Time To Failure, Days Runtime to Failure, Days <strong>ESP</strong> Install<strong>at</strong>i<strong>on</strong> Count<br />

200<br />

1500<br />

1250<br />

1000<br />

750<br />

500<br />

250<br />

Cumul<strong>at</strong>ive <strong>ESP</strong><br />

Install<strong>at</strong>i<strong>on</strong> Count<br />

<strong>ESP</strong> MTTF, days<br />

1985 1 st <strong>ESP</strong> install<strong>at</strong>i<strong>on</strong>:<br />

Three install<strong>at</strong>i<strong>on</strong>s, with two prem<strong>at</strong>ure failures**<br />

1 st <strong>ESP</strong> installed had a zero run life.<br />

MTTF*: 68 days, Runtime to Failure*: 1 day<br />

2009 As of 25 th of November:<br />

Total <strong>ESP</strong>s installed to d<strong>at</strong>e: 193<br />

Total prem<strong>at</strong>ure failures** to d<strong>at</strong>e: 23<br />

Total failed <strong>ESP</strong>s to d<strong>at</strong>e: 113<br />

MTTF*: 1,415 days, Runtime to Failure*: 805 days<br />

Notes:<br />

*Per day, runtime is calcul<strong>at</strong>ed as follows: If runtime , or equal<br />

to 12 hours = 1<br />

** Prem<strong>at</strong>ure failure:


<strong>Wytch</strong> <strong>Farm</strong> <strong>ESP</strong> Failures By Comp<strong>on</strong>ents*<br />

External - <strong>ESP</strong> Not <strong>at</strong> fault<br />

4%<br />

Seal<br />

2%<br />

Motor<br />

44%<br />

<strong>Wytch</strong> <strong>Farm</strong> <strong>ESP</strong> Failure Modes<br />

Unknown<br />

8%<br />

Penetr<strong>at</strong>ors (Wellhead &<br />

Packer):<br />

6%<br />

* Estim<strong>at</strong>ed, comp<strong>on</strong>ent failure does not transl<strong>at</strong>e to it being the root cause of failure<br />

"Cable" including main cable,<br />

MLE, pigtail, splice, surface<br />

cable, etc.<br />

22%<br />

Penetr<strong>at</strong>ors (Wellhead & Packer): "Cable" including main cable, MLE, pigtail, splice, surface cable, etc.<br />

Pump Motor<br />

Seal External - <strong>ESP</strong> Not <strong>at</strong> fault<br />

Unknown<br />

Pump<br />

14%<br />

7


Experiences with High HP Motor <strong>ESP</strong> Systems<br />

� The drilling of prolific Sherwood wells, particularly in the offshore area,<br />

necessit<strong>at</strong>ed the use of high flow r<strong>at</strong>e <strong>ESP</strong> with high HP motor system<br />

(defined arbitrarily as gre<strong>at</strong>er than, or equal to 800 HP).<br />

� The 1 st high HP <strong>ESP</strong> motor system installed in October 1997<br />

� To d<strong>at</strong>e, a total of 47 high HP <strong>ESP</strong> systems have been installed (27 failures, of<br />

which 3 were prem<strong>at</strong>ure failures).<br />

� Nominal pump flow r<strong>at</strong>es: 8,500 28,000 BFPD<br />

� The largest HP <strong>ESP</strong> motor system: 1,400 HP (2 x 700 HP motors, installed in<br />

2006), with 28 MBD nominal pump flow r<strong>at</strong>e<br />

� Large HP Motor <strong>ESP</strong> System MTTF Comparis<strong>on</strong>:<br />

Install<strong>at</strong>i<strong>on</strong> Period: 1997 - 2009 MTTF, days<br />

All <strong>ESP</strong>s 1919<br />

Large HP Motor <strong>ESP</strong> Systems 1634<br />

8


Factors C<strong>on</strong>tributing to Improvement in <strong>ESP</strong> Run-Life<br />

� C<strong>on</strong>tinuous learning from previous install<strong>at</strong>i<strong>on</strong>s & oper<strong>at</strong>i<strong>on</strong>s (in total 25 years of <strong>ESP</strong> oper<strong>at</strong>i<strong>on</strong> <strong>at</strong><br />

WYF)<br />

� Abundance of local knowledge & experience: Some field oper<strong>at</strong>ors have been around since day 1.<br />

� Onsite presence of <strong>ESP</strong> vendor support<br />

� C<strong>on</strong>tinuous training of field oper<strong>at</strong>ors <strong>on</strong> the day-to-day <strong>ESP</strong> oper<strong>at</strong>i<strong>on</strong>s.<br />

� Rel<strong>at</strong>ively benign downhole (reservoir) c<strong>on</strong>diti<strong>on</strong>s in the Sherwood reservoir (i.e., rel<strong>at</strong>ively low P,<br />

T, c<strong>on</strong>solid<strong>at</strong>ed sandst<strong>on</strong>e).<br />

� High w<strong>at</strong>er cut means less tweaking of <strong>ESP</strong> frequency to optimise producti<strong>on</strong>.<br />

� Upgrade of <strong>ESP</strong> equipment to suit oper<strong>at</strong>ing c<strong>on</strong>diti<strong>on</strong>s:<br />

� Change in <strong>ESP</strong> housing metallurgy al<strong>on</strong>g with upgrade of tubing metallurgy.<br />

� Upgrade & standardis<strong>at</strong>i<strong>on</strong> of <strong>ESP</strong> ancillary equipment (penetr<strong>at</strong>or systems, cable, etc.)<br />

� Upgrade of shaft m<strong>at</strong>erial (higher shaft HP r<strong>at</strong>ing) for high HP motor <strong>ESP</strong> system<br />

� Availability of downhole d<strong>at</strong>a for m<strong>on</strong>itoring and troubleshooting purposes.<br />

� Very stable power supply (very few unplanned shutdowns due power supply interrupti<strong>on</strong>s)<br />

� Layers of autom<strong>at</strong>ed protecti<strong>on</strong> system put in place:<br />

� Drive underload and overload protecti<strong>on</strong><br />

� Surface (wellhead) pressure (high/low) protecti<strong>on</strong> system. This would, for example, protect<br />

<strong>ESP</strong> from deadheading situ<strong>at</strong>i<strong>on</strong> which could arise as a result of blocked/closed surface valve.<br />

� Autom<strong>at</strong>ed trip <strong>on</strong> (high) motor temper<strong>at</strong>ure signal. This system protects <strong>ESP</strong> motors from<br />

being burnt (e.g., in no-flow c<strong>on</strong>diti<strong>on</strong>s). It also provides additi<strong>on</strong>al protecti<strong>on</strong> for those lightly<br />

loaded motors th<strong>at</strong> may not necessarily trip <strong>on</strong> current underload al<strong>on</strong>e.<br />

9


M<strong>at</strong>uring <strong>Wytch</strong> <strong>Farm</strong> <strong>Oilfield</strong> & Its Impact <strong>on</strong> <strong>ESP</strong> Completi<strong>on</strong><br />

Str<strong>at</strong>egy<br />

� The drilling of barefoot multil<strong>at</strong>eral wells as a way to maximise well producti<strong>on</strong> in <strong>Wytch</strong><br />

<strong>Farm</strong> started <strong>at</strong> around 1998.<br />

� As the field is m<strong>at</strong>uring, the depleti<strong>on</strong> str<strong>at</strong>egy focus shifted to being able to achieve<br />

maximum drawdown (from all l<strong>at</strong>erals) for maximum liquid (both oil & w<strong>at</strong>er) r<strong>at</strong>e <strong>at</strong><br />

surface.<br />

� The increase in w<strong>at</strong>er cut over time, al<strong>on</strong>g with the desire to keep development cost<br />

down, also led to the phasing out of smart completi<strong>on</strong>s (use of down hole flow c<strong>on</strong>trol,<br />

flow meter, etc.) The rel<strong>at</strong>ively short run-life of the downhole instrument<strong>at</strong>i<strong>on</strong>s coupled<br />

with increasing <strong>ESP</strong> run-life also c<strong>on</strong>tributed to the phasing out of these downhole<br />

instrument<strong>at</strong>i<strong>on</strong>s.<br />

� Effect of corrosi<strong>on</strong> seen as a result of increase in w<strong>at</strong>er cut led to the introducti<strong>on</strong> of<br />

Chrome tubing and the use of corrosi<strong>on</strong> resistant alloys for <strong>ESP</strong> housing (ca. 2000).<br />

� The c<strong>on</strong>tinued increase in w<strong>at</strong>er cut made it possible to move <strong>ESP</strong> setting depth up,<br />

particularly <strong>on</strong> the high PI wells without sacrificing producti<strong>on</strong> or without introducing<br />

excessive amount of free gas <strong>at</strong> pump intake, and generally reduce the power<br />

requirement (per bbl lifted)<br />

� Larger capacity and more efficient medium voltage drives (MVD) up to 2050 KVA (200A)<br />

were introduced in 2001 to enable high r<strong>at</strong>e producti<strong>on</strong> from the prolific Sherwood wells<br />

� The install<strong>at</strong>i<strong>on</strong>s of Dual-<strong>ESP</strong> completi<strong>on</strong>s, beginning in 2004, address two needs <strong>at</strong><br />

<strong>Wytch</strong> <strong>Farm</strong>:<br />

� Extending well life-cycle (i.e., minimising the number of <strong>ESP</strong> replacement workovers)<br />

� Managing uncertainty in productivity in new wells<br />

10


Summary of Current <strong>Wytch</strong> <strong>Farm</strong> <strong>ESP</strong>s<br />

� Number of active (<strong>ESP</strong>) wells: 31<br />

� Number of Dual-<strong>ESP</strong> install<strong>at</strong>i<strong>on</strong>s: 11<br />

� <strong>ESP</strong> Nominal Flow R<strong>at</strong>e Range: 1,000 28,000 <strong>BP</strong>D 4.00 to 6.75 nominal<br />

OD<br />

� Average liquid producti<strong>on</strong> from <strong>ESP</strong> wells: 8,700 BLPD<br />

� Oil producti<strong>on</strong> from <strong>ESP</strong>s represents over 85% of total field oil producti<strong>on</strong> <strong>at</strong><br />

<strong>Wytch</strong> <strong>Farm</strong><br />

� Motor HP Range: 84 to 1,400 HP (average: 550 HP) 4.56 to 7.38 nominal<br />

OD<br />

� Most <strong>ESP</strong>s set in 9-5/8 casing, though some in 7 liner, and some <strong>ESP</strong>s are<br />

shrouded.<br />

� <strong>ESP</strong> Setting depths: 600 m-MD to 4,600 m-MD (average 2,300 m-MD)<br />

� VSDs: 400 KVA to 2,050 KVA<br />

11


Sustaining Producti<strong>on</strong> in High PI, High W<strong>at</strong>er Cut Wells by<br />

Moving <strong>ESP</strong> Up M11 Example<br />

1998:<br />

� <strong>SPE</strong> 50586 discussed <strong>ESP</strong><br />

install<strong>at</strong>i<strong>on</strong> in M11, set <strong>at</strong> a<br />

depth of ca. 8420 m-MD.<br />

� Well trajectory: 10,114 m-MD<br />

L<strong>on</strong>gest well trajectory <strong>at</strong> the<br />

time<br />

� Pump size: 20,000 <strong>BP</strong>D with<br />

900HP tandem motor<br />

� Producti<strong>on</strong> r<strong>at</strong>e: 18,000 <strong>BP</strong>D <strong>at</strong><br />

30% w<strong>at</strong>er cut<br />

� VSD: 1,050 KVA<br />

2009:<br />

� M11 <strong>ESP</strong> setting depth <strong>at</strong> 3400<br />

m-MD<br />

� Pump size: 28,000 <strong>BP</strong>D with<br />

1400 HP tandem motor<br />

� Producti<strong>on</strong> r<strong>at</strong>e: 26,500 <strong>BP</strong>D <strong>at</strong><br />

95% w<strong>at</strong>er cut.<br />

� VSD: 2,050 KVA<br />

12


1999:<br />

Sustaining Producti<strong>on</strong> in High PI, High W<strong>at</strong>er Cut Wells by<br />

Simplifying Downhole Completi<strong>on</strong> M15 Example<br />

Flow meter<br />

E S P<br />

C<strong>on</strong>trol line<br />

fl<strong>at</strong> pack<br />

Shroud<br />

� <strong>SPE</strong> 62951 discussed the use of Down Hole Flow<br />

Meter to measure producti<strong>on</strong> r<strong>at</strong>e & DHFC to<br />

facilit<strong>at</strong>e selective producti<strong>on</strong> from the two well<br />

l<strong>at</strong>erals.<br />

� <strong>ESP</strong> setting depth: 5,150 m-MD (1452 m-TVD)<br />

� Pump size: 21,500 <strong>BP</strong>D with 1170HP (3x390HP)<br />

triple tandem motor<br />

� Initial producti<strong>on</strong> r<strong>at</strong>e: 15,000 <strong>BP</strong>D <strong>at</strong> 50% w<strong>at</strong>er<br />

cut<br />

� VSD: 1,050 KVA<br />

At Workover: add 4th Pressure gauge? (Multiplexed)<br />

Disc<strong>on</strong>nect<br />

Phoenix multi-sensor<br />

4th c<strong>on</strong>trol line - pressure m <strong>on</strong>itor no discharge<br />

Flow c<strong>on</strong>trol valves<br />

Blind<br />

FSV packer<br />

Barefoot for the 8 1/2” hole<br />

2009:<br />

FSV<br />

Sump packer<br />

7” liner<br />

Cased& perfed<br />

� Producti<strong>on</strong> opened to both l<strong>at</strong>erals (simple<br />

packered <strong>ESP</strong> completi<strong>on</strong>, with 5-1/2 tubing)<br />

� M15 <strong>ESP</strong> setting depth: 3,800 m-MD (1323 m-<br />

TVD)<br />

� Pump size: 21,500 <strong>BP</strong>D with 1170 HP (3x390HP)<br />

triple tandem motor<br />

� Producti<strong>on</strong> r<strong>at</strong>e: 18,000 <strong>BP</strong>D <strong>at</strong> 95% w<strong>at</strong>er cut.<br />

� VSD: 2,050 KVA<br />

13


9-5/8"<br />

casing<br />

2-7/8"<br />

bypass<br />

tubing<br />

Applic<strong>at</strong>i<strong>on</strong> of Dual-<strong>ESP</strong> Completi<strong>on</strong> Extending Well Life Cycle<br />

Retrievable<br />

Packer<br />

Primary system: 15000-<br />

<strong>BP</strong>D (89-stg) Nominal <strong>ESP</strong><br />

with 900-HP motor<br />

Sec<strong>on</strong>dary System: 15000-<br />

<strong>BP</strong>D (92-stg) Nominal <strong>ESP</strong><br />

with 900-HP motor<br />

�In this example, remaining oil reserves is sufficient to sustain ec<strong>on</strong>omic producti<strong>on</strong> r<strong>at</strong>e for <strong>at</strong> least 15 years.<br />

�Liquid r<strong>at</strong>e decline r<strong>at</strong>e is very small (i.e., liquid r<strong>at</strong>e expected to be more or less c<strong>on</strong>stant over time)<br />

�Present Liquid r<strong>at</strong>e: 17,600 BLPD <strong>at</strong> 95% w<strong>at</strong>er cut<br />

�Pump setting depth: 1,900 m-MD (1295 m-TVD)<br />

�Pump Intake Pressure: 460 psia (4.2% estim<strong>at</strong>ed free gas volume <strong>at</strong> intake c<strong>on</strong>diti<strong>on</strong>s)<br />

�Workover frequency to replace <strong>ESP</strong> is expected to reduce over the 15-year period<br />

14


Applic<strong>at</strong>i<strong>on</strong> of Dual-<strong>ESP</strong> Completi<strong>on</strong> Managing Productivity<br />

Uncertainty in New Wells<br />

Gross Liquids Over Time<br />

2007 2008 2009<br />

9-5/8"<br />

casing<br />

2-7/8"<br />

bypass<br />

tubing<br />

7" liner<br />

hanger<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Gross Liquid [bpd]<br />

Retrievable Packer<br />

Primary system: 6000-<strong>BP</strong>D<br />

Nominal <strong>ESP</strong> with 270-HP<br />

motor<br />

Sec<strong>on</strong>dary System: 2600-<br />

<strong>BP</strong>D Nominal <strong>ESP</strong> with 150-<br />

HP motor<br />

�When drilled, there was a lot of subsurface uncertainties (PI,<br />

SBHP, etc).<br />

�Initial r<strong>at</strong>e estim<strong>at</strong>es: 1,000-6,000 <strong>BP</strong>D � Need 2 <strong>ESP</strong>s to cover<br />

the range.<br />

�Primary <strong>ESP</strong> (3,500-7,800) ran for almost <strong>on</strong>e year before<br />

switching to smaller <strong>ESP</strong>.<br />

�Currently still running <strong>on</strong> the sec<strong>on</strong>dary <strong>ESP</strong> (1,600-3,200 <strong>BP</strong>D)<br />

15


Closing Remarks<br />

� As <strong>Wytch</strong> <strong>Farm</strong> oilfield c<strong>on</strong>tinues to m<strong>at</strong>ure (i.e., declining oil r<strong>at</strong>e &<br />

increasing w<strong>at</strong>er cut) the need to oper<strong>at</strong>e <strong>ESP</strong> more efficiently<br />

becomes more important.<br />

� This involves the use of efficient <strong>ESP</strong> system, coupled with<br />

extended well life cycle (i.e., extending the <strong>ESP</strong> run-life & the<br />

applic<strong>at</strong>i<strong>on</strong> of dual-<strong>ESP</strong>, where applicable).<br />

� It is expected th<strong>at</strong> the c<strong>on</strong>venti<strong>on</strong>al, tubing-deployed <strong>ESP</strong> systems<br />

to c<strong>on</strong>tinue to domin<strong>at</strong>e the <strong>ESP</strong> popul<strong>at</strong>i<strong>on</strong> <strong>at</strong> <strong>Wytch</strong> <strong>Farm</strong>,<br />

especially for those wells producing from the prolific offshore<br />

Sherwood reservoir.<br />

16


Acknowledgments<br />

The presenter would like to thank the following companies for making<br />

this present<strong>at</strong>i<strong>on</strong> possible:<br />

� <strong>BP</strong> Explor<strong>at</strong>i<strong>on</strong> & Oper<strong>at</strong>ing Co Limited<br />

� Premier Oil Explor<strong>at</strong>i<strong>on</strong> Limited<br />

� Summit Petroleum Dorset<br />

� Maersk Oil North Sea UK Limited<br />

� Talisman North Sea Limited<br />

17


Questi<strong>on</strong>s?<br />

18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!