22.02.2013 Views

Geological Survey of Finland Current Research 2003-2004

Geological Survey of Finland Current Research 2003-2004

Geological Survey of Finland Current Research 2003-2004

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong><br />

Espoo 2005<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong><br />

<strong>Current</strong> <strong>Research</strong> <strong>2003</strong>-<strong>2004</strong><br />

Edited by Sini Autio


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong><br />

<strong>Current</strong> <strong>Research</strong> <strong>2003</strong>-<strong>2004</strong><br />

edited by Sini Autio<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong><br />

Espoo 2005


Autio, Sini 2005. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, <strong>Current</strong> <strong>Research</strong> <strong>2003</strong>–<strong>2004</strong>.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38, 100 pages, 72 figures and 6<br />

tables.<br />

The publication contains 9 articles outlining the current research at the <strong>Geological</strong><br />

<strong>Survey</strong> <strong>of</strong> <strong>Finland</strong> (GTK). The articles are divided into four categories.<br />

Petrological investigations, economicgeology and mineral exploration, Environmental<br />

studies, Geophysical applications andAnalytical methods. At the end<br />

<strong>of</strong> the publication there is a list <strong>of</strong> publications by GTK staff in <strong>2003</strong> and <strong>2004</strong>.<br />

From now on the current research <strong>of</strong> the GTK will be published in electronic<br />

form at the GTK’s internet pages, so this issue will be the last printed version<br />

on this subject so far.<br />

An article in alvikite vein-dykes presents a new carbonatite in southwestern<br />

<strong>Finland</strong>. The vein-dykes intrude Palaeoproterozoic (1.88. Ga) pyroxene tona- tona-<br />

lite. The Svec<strong>of</strong>ennian orogeny in <strong>Finland</strong> produced a aseries series <strong>of</strong> 1.9 Ga nickel<br />

bearing mafic and ultramafic intrusions mainly found within migmatitic mica<br />

gneisses.Anintrusionmodelispresentedfortheseindifferenttectonicconditions<br />

produced intrusions with pronounced variation in size, shape and lithology. An<br />

article on gold prospectivity <strong>of</strong> highly metamorphosed gneisses and migmatites<br />

in southwestern <strong>Finland</strong> is presented. The mineralization is characterized by<br />

rusty, strongly foliated sillimanite-cordierite gneisses and mica schists. Ore<br />

prospecting in the ribbed moraine area <strong>of</strong> Misi, northern <strong>Finland</strong> has carried out<br />

as a part <strong>of</strong> the detailed investigation <strong>of</strong> the iron oxide-copper-gold deposits.<br />

Observations made have shown the area to be potential for ore prospecting. In<br />

the search for abundant and high quality kaolin resources more than 20 kaolin<br />

deposits has been investigated in northern <strong>Finland</strong>. This research has focussed<br />

on Palaeoproterozoic metasedimentary rocks using a variety <strong>of</strong> airborne and<br />

ground geophysical techniques supplemented by drilling.<br />

In the Ostrobothnian region <strong>of</strong> western <strong>Finland</strong> extensive parts are covered by<br />

sulphide rich clay and silt sediments which alter to harmful sulphate soils when<br />

exposed to the air. Ageophysical characterizing <strong>of</strong> the fine-grained sediments<br />

has been made and the results gathered are not directly applicable to another area<br />

without new referencedrilling, sampling and chemicalanalysis. The preliminary<br />

results <strong>of</strong> a project to test and develop geophysical techniques for mapping<br />

sulphide tailings impundments. The study site Hammaslahti Cu-Zn mine has<br />

a tailings area <strong>of</strong> 30 hectares with average height <strong>of</strong> 9 metres. Four different<br />

field-based portable fluorescence (OXRF) instruments for the determination <strong>of</strong><br />

heavy-metal contents in contaminated soils were evaluated. The results were<br />

compared with results obtained by inductively coupled plasma-atomic emission<br />

spectrometry (ICP-AES) and X-ray fluorescence spectrometry (XRF).<br />

Key words (GeoRef Thesaurus, AGI): <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, current<br />

research, programs, bibliography, <strong>Finland</strong><br />

Sini Autio<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong><br />

P.O. Box 96<br />

FI-02151 ESPOO, FINLAND<br />

ISBN 951-690-916-7<br />

ISSN 0782-8535<br />

Vammalan Kirjapaino Oy 2005


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, <strong>Current</strong> <strong>Research</strong> <strong>2003</strong>–<strong>2004</strong><br />

Edited by Sini Autio<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38, 3, 2005<br />

CONTENTS<br />

Petrological investigations, economic geology and mineral exploration<br />

The Naantali alvikite vein-dykes: a new carbonatite in southwestern <strong>Finland</strong>,<br />

Jeremy Woodard and Pentti Hölttä ............................................................................ 5<br />

Intrusion model for Svec<strong>of</strong>ennian (1.9 Ga) mafic-ultramafic intrusions in <strong>Finland</strong>,<br />

Hannu V. Makkonen .................................................................................................. 11<br />

The Halikko Kultanummi prospect - a new type <strong>of</strong> gold mineralization in the<br />

high-grade gneiss terrain<strong>of</strong>southwestern<strong>Finland</strong>, SariGrönholm,NiiloKärkkäinen<br />

and Jonas Wiik ........................................................................................................... 15<br />

Ore prospecting in the ribbed moraine area <strong>of</strong> Misi, northern <strong>Finland</strong>, Pertti Sarala<br />

and Jari Nenonen ........................................................................................................ 25<br />

Exploration results and mineralogical studies on the Lumikangas apatite-ilmenite<br />

gabbro,Kauhajoki,western<strong>Finland</strong>, Olli Sarapää,NiiloKärkkäinen,Tegist Chernet,<br />

Jaana Lohva and Timo Ahtola .................................................................................... 31<br />

Vittajänkä kaolin deposit, Salla, Finnish Lapland, Panu Lintinen and Thair Al-Ani 40<br />

Environmental studies<br />

Geophysical characterizing <strong>of</strong> tailings impoundment – a case from the closed<br />

Hammaslahti Cu-Zn mine, eastern <strong>Finland</strong>, Heikki Vanhala, Marja Liisa Räisänen,<br />

Ilkka Suppala, Tarja Huotari, Tuire Valjus and Jukka Lehtimäki .............................. 49<br />

Geophysical applications<br />

Geophysicalcharacterising <strong>of</strong> sulphide rich fine-grained sedimentsinSeinäjoki area,<br />

western <strong>Finland</strong>, Ilkka Suppala, Petri Lintinen and Heikki Vanhala ......................... 61<br />

Analytical methods<br />

Evaluation <strong>of</strong> portable X-ray fluorescence (PXRF) sample preparation methods,<br />

Jussi V-P. Laihoand Laiho and Paavo Perämäki ........................................................................ 73<br />

Publications<br />

Papers published by <strong>Geological</strong> <strong>Survey</strong> staff in <strong>2003</strong>–<strong>2004</strong> ..................................... 83


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, <strong>Current</strong> <strong>Research</strong> <strong>2003</strong>–<strong>2004</strong>,<br />

Edited by Sini Autio.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38, 5– 10 , 2005.<br />

ThE NAANTAli AlvikiTEvEiN-dykES: ANEwCARbONATiTE iNSOuThw ESTERN<br />

FiNlANd<br />

introduction<br />

Asmall swarm <strong>of</strong> carbonate vein-dykes has been<br />

identified in the town <strong>of</strong> Naantali in southwest<br />

<strong>Finland</strong>. The vein-dykes range in width from 1-60<br />

centimetres, with the majority between 3-20 cm. The<br />

vein-dykes intrude Svec<strong>of</strong>ennian pyroxene tonalite.<br />

The vein-dykes are surrounded by a narrow band <strong>of</strong><br />

feniticalterationcharacterisedchemically by removal<br />

<strong>of</strong> silicon and addition <strong>of</strong> potassium. In a wide area<br />

around the vein-dykes, the host rocks show signs <strong>of</strong><br />

hydrothermal alteration, including widespread randomly<br />

oriented calcite + epidote + prehnite veinlets as<br />

well as pervasive staining from iron oxides. Chemical<br />

and textural evidence suggest that the carbonate veindykes<br />

are <strong>of</strong> magmatic origin.<br />

<strong>Geological</strong> setting<br />

The study area is extending for approximately two<br />

kilometres in length and one kilometre in width in<br />

the town centre area <strong>of</strong> Naantali. The majority <strong>of</strong> the<br />

vein-dykes follow the same general NW-SE trend<br />

and dip to the northeast at an average angle <strong>of</strong> 45º.<br />

The vein-dykes cut the existing schistosity <strong>of</strong> the<br />

surrounding rocks, the difference in strike being 60-<br />

90º and in dip 45–50º. Figure 1 is a map <strong>of</strong> the study<br />

area, showing the zones <strong>of</strong> alteration. Good quality<br />

outcrops are found along the steep western slopes <strong>of</strong><br />

the Kuparivuori hill and along shorelines. Elsewhere,<br />

by<br />

Jeremy Woodard 1) and Pentti Hölttä 2)<br />

1) Department <strong>of</strong> Geology, University <strong>of</strong> Turku, FI-20014 Turku, <strong>Finland</strong><br />

2) <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, P.O. Box 96, FI-02151 Espoo, <strong>Finland</strong><br />

jdwood@utu.fi, pentti.holtta@gtk.fi<br />

Key words (GeoRef Thesaurus, AGI): carbonatites, alvikite, dikes, geochemistry, host rocks, alteration, fenite, Naantali, <strong>Finland</strong><br />

outcrops are limited to occasional roadcuts. Extreme<br />

sensitivity to weathering, soil or water cover, and the<br />

presence <strong>of</strong> man-made structures inhibits the search<br />

for additional vein-dykes.<br />

Carbonate rocks are light grey to pink in colour,<br />

and <strong>of</strong>ten show a banded or layered texture. The veindykesarecomposed<strong>of</strong>mediumt<strong>of</strong>inegrainedcalcite,<br />

with repetitions <strong>of</strong> grain size variation parallel to the<br />

margins. Accordingly, the rock type could be called<br />

alvikite. Iron oxides are common as an interstitial<br />

dusting in streaks also parallel to the strike. Similar<br />

texture from the Wasaki complex <strong>of</strong> Kenya is taken<br />

as evidence by Le Bas (1977) <strong>of</strong> flow parallel to the<br />

margins and crystallisation from molten magma.<br />

Figure 2 shows the appearance <strong>of</strong> the vein-dykes in<br />

outcrop.Inadditiontotheironoxides,darkred-brown<br />

apatite is also easily visible in hand specimen. Other<br />

accessorymineralsoccasionallyvisibleincludequartz,<br />

allanite, and chlorite. Andersen (1984) describes a<br />

similar paragenesis from the Rødberg portion <strong>of</strong> the<br />

Fen complex. In one outcrop, fragments <strong>of</strong> the wall<br />

rock appear within the vein-dyke and appear to have<br />

been plucked from the sides. Given the low viscosity<br />

<strong>of</strong>carbonatemelts(e.g.Dobsonetal.1996),thiswould<br />

require a forceful intrusion and rapid cooling.<br />

The vein-dykes intrude dark grey Palaeoproterozoic<br />

(1.88 Ga, Väisänen et al. 2002) Svec<strong>of</strong>ennian<br />

pyroxene tonalite. A petrography <strong>of</strong> these rocks is<br />

given by Helenius (<strong>2003</strong>). Alteration surrounding<br />

the vein-dykes can be divided into three zones. Zone<br />

5


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Jeremy Woodard and Pentti Hölttä<br />

6<br />

Fig. 1. Map <strong>of</strong> the study area showing zones <strong>of</strong> alteration.<br />

Fig. 2. Field photograph <strong>of</strong> a vein-dyke and contact fenite. Diameter <strong>of</strong><br />

coin 2,5 cm.<br />

I is in immediate contact with the vein-dykes and<br />

rarely exceeds 30 cm in width. It is a potassic contact<br />

fenite, dark red in colour, with a normative syenite<br />

composition.<br />

Zones II and III are aureole fenites showing a gradationinalterationintensity.Ran<br />

domlyorientedcalcite+<br />

epidote+prehniteveinletsareabundantinbothzones.<br />

Zone II is approximately 200–300 metres in width,<br />

pink to red in colour, and has a normative granodiorite<br />

composition. Zone III extends an additional 200–300<br />

metres from the vein-dykes, and is a pyroxene bearing<br />

grey granodiorite, with narrow bands (≤1cm) <strong>of</strong> Zone<br />

II type alterations around the veinlets. The border<br />

between Zones II and III is arbitrarily placed at the<br />

limit <strong>of</strong> grey rocks. The original foliation <strong>of</strong> the rocks<br />

is preserved in Zone III, but is no longer evident in<br />

Zone II. Grain size is noticeably increased to 3–5 mm<br />

in the Zone I contact fenites, compared to 0.5–1.5 mm<br />

in the aureole fenites, Zones II and III.<br />

Petrography<br />

Thin section study reveals that the texture <strong>of</strong> the<br />

carbonate rock (alvikite) is hypidiomorphic. Calcite<br />

is subhedral and comprises approximately 90% <strong>of</strong> the<br />

rock.Quartzoccursasfine-grainedaggregatesandappears<br />

limited to areas near the contact. Fine grains <strong>of</strong><br />

apatite, allanite, chlorite, fluorite, and titanite occur as


accessory minerals. In some samples calcite has been<br />

altered to prehnite at the contact. Opaque minerals<br />

occur generally in bands, and some mineral grains,<br />

particularly apatite, are stained with iron oxides. SEM<br />

examination has revealed monazite and members <strong>of</strong><br />

the bastnäsite series as inclusions in apatite.<br />

Allanite is non-metamict, strongly pleochroic, and<br />

commonly forms haloes around aggregates <strong>of</strong> apatite<br />

and quartz. Woolley Woolleyetal.(1991)describethistexture<br />

et al. (1991) (1991)describethistexture<br />

describe this texture<br />

from extrusive carbonatites in the Uyaynah area <strong>of</strong><br />

the United Arab Emirates. Allanite is not a common<br />

mineral in carbonatites, but it has been reported from<br />

variouslocationsincludingBayanObo,China(Yang&<br />

LeBas<strong>2004</strong>),MountainPass,CaliforniaandUyaynah,<br />

UAE (Woolley et al. 1991).<br />

Zone I altered rocks one I contain K-feldspar,<br />

plagioclase, chlorite, and actinolite. Some samples<br />

have a thin (>5mm) band <strong>of</strong> actinolite + diopside at<br />

the contact. Silica in the form <strong>of</strong> free quartz has been<br />

almost completely removed from the rock. Feldspars<br />

are heavily altered and pervasively stained with iron<br />

oxides.Chessboardalbite,asdescribedbyKrestenand<br />

Morogan (1986) from the Fen complex also occurs.<br />

Calcite, apatite, clinopyroxene, epidote and opaque<br />

minerals occur as accessory phases.<br />

Zone II rocks are similar, however, plagioclase is<br />

more abundant than K-feldspar. Zone II rocks also<br />

contain more quartz and less actinolite than Zone I.<br />

Alteration is less pronounced in feldspars, but iron<br />

oxide staining is still present throughout. Epidote,<br />

clinopyroxene and opaque minerals also occur as<br />

accessories. Apatite is no longer an important phase,<br />

and calcite only occurs in the calcite + epidote +<br />

prehnite veinlets.<br />

In Zone III, alteration <strong>of</strong> the same type as in Zone II<br />

occurs only in bands (≤1cm) around veinlets. Biotite<br />

can be seen reacting to chlorite in the outer areas <strong>of</strong><br />

these bands. Outside <strong>of</strong> these bands, the rock contains<br />

plagioclase, quartz, K-feldspar, biotite, and orthopyroxene.<br />

It should be noted that although the grey rocks<br />

<strong>of</strong> this zone appear unaltered, K-feldspar is present,<br />

while it is not present in the unaltered rocks examined<br />

byHelenius(<strong>2003</strong>).Microscopic-scalequartzveinlets<br />

also occur in this zone.<br />

Geochemistry<br />

Whole-rockgeochemicalanalysiswasconductedat<br />

the <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong> (GTK). Major and<br />

trace elements were determined using X-ray Fluorescence<br />

(XRF) and rare earth elements were determined<br />

using ICP-MS. Table 1 shows the analytical results as<br />

average concentrations <strong>of</strong> selected elements for the<br />

vein-dykes and each <strong>of</strong> the alteration zones. Average<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

The Naantali alvikite vein-dykes: a new carbonatite in southwestern <strong>Finland</strong><br />

continental alvikite values are from Le Bas (1999).<br />

Pyroxene tonalite analyses represent unaltered host<br />

rocks and are taken from Helenius (<strong>2003</strong>).<br />

Samples from Naantali plot on the CaO-MgO-FeO<br />

diagram <strong>of</strong> Le Maitre et al. (1989) in the calciocarbonatite<br />

field (Fig. 3). Both sövite and alvikite are<br />

calciocarbonatites, sövite being coarse grained and<br />

alvikite medium to fine grained. The Naantali carbonatites<br />

fall into the latter category. Le Bas (1999)<br />

proposed a chemical distinction between sövite and<br />

alvikitebasedontraceelementchemistry.Onaverage,<br />

alvikites are less enriched in Sr and more enriched in<br />

REE than sövites. The Naantali alvikite is enriched<br />

in Sr, REE and Y. Trace element concentrations from<br />

Naantali are very close to the average for alvikite.<br />

The carbonatitemagma was enriched in K, Sr, Ba, P,<br />

REE, and to some extent Na and Y. Rollinson (1993)<br />

describes elements including K, Sr, Rb, and Ba as<br />

mobile, while P, REE, V, Y, Ti and Zr are immobile<br />

during hydrothermal alteration. Mobile element enrichment,<br />

particularly Sr, is disseminated throughout<br />

all the alteration zones. Immobile elements from the<br />

carbonatite magma, such as Y and REE, were only<br />

able to enter the Zone I fenites. Immobile elements not<br />

present in the magma, but present in the host rocks,<br />

including V, Ti, and Zr, remain at constant levels in all<br />

the alteration zones. This shows that Zone I fenites are<br />

the product <strong>of</strong> contact metasomatism while the Zone<br />

II and III aureole fenitization was caused by a hydrous<br />

fluid. Whether the fluid source was degassing <strong>of</strong> the<br />

carbonatite or a later event is not known.<br />

Figure 4 shows chondrite normalized REE abundances<br />

for the Naantali rocks. LREE is heavily enriched<br />

relative to HREE, a pattern common to partial<br />

Fig. 3. Naantali alvikites plotted on the CaO-MgO-FeO diagram <strong>of</strong> Le<br />

Maitre et al. (1989).<br />

7


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Jeremy Woodard and Pentti Hölttä<br />

Table 1. Whole rock chemical analyses <strong>of</strong> selected samples in the study area. XRF detection limits (ppm) for trace elements: S and Cl = 60; V, Cr,<br />

and Pb = 30; Ni, Cu, Zn, Ga, and Ba = 20; Rb, Sr, Zr and Nb = 10. ICP-MS detection limits (ppm): Sc and Th = 0.5; Sm, Nd and U = 0.2; Gd and Er<br />

= 0.15; Ce, Eu, La, Lu, Pr, Tb, Dy, Ho, Tm and Y=0.1. x = below detection; - = no data. Average continental alvikite from Le Bas (1999). Pyroxene<br />

tonalite is from Helenius (<strong>2003</strong>).<br />

8<br />

Average<br />

continental<br />

alvikite<br />

JW0407<br />

alvikite<br />

JW0427<br />

alvikite<br />

JW0432<br />

alvikite<br />

JW0406<br />

Zone I<br />

JW0436<br />

Zone I<br />

JW0401<br />

Zone II<br />

JW0422<br />

Zone II<br />

JW0402<br />

Zone III<br />

Naantali<br />

pyroxene<br />

tonalite<br />

SiO 2 1.5 4.35 7.06 15.1 56.8 60.5 67.7 67.4 66.2 63.36<br />

TiO 2 0.07


Fig. 4. Chondrite normalized REE abundances for the Naantali rocks.<br />

Symbols are as follows: filled squares = Alvikite vein-dykes; filled circles<br />

= Zone I; open circles = Zone II; open squares = Zone III; crosses<br />

= Pyroxene tonalite.<br />

melting in mantle sources (e.g. Rollinson 1993). A<br />

high LREE/HREE ratio is typical to carbonatites (e.g.<br />

Woolley et al. 1991), while Ekambaram et al. (1986)<br />

have shown that hydrothermal carbonates will have<br />

low LREE concentrations and relative enrichment in<br />

MREE and HREE.<br />

Three samples were analysed for stable carbon and<br />

oxygen isotopes. Sample JW0404 is alvikite and was<br />

analysed at the University <strong>of</strong> Helsinki; samples PSH-<br />

04–01.1 (alvikite) and PSH-04–01.2 (Zone II calcite<br />

+ epidote + prehnite veinlet) were analysed at the<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>. Results are given in<br />

Table 2. δ 18 O values from alvikite samples fall within<br />

thenormalrangeforcarbonatites,whilethevaluefrom<br />

the veinlet is only slightly heavier. Combined with<br />

the δ 13 C values, the alvikite samples fall just below<br />

(lighter C) the field for carbonatites given by Deines<br />

and Gold (1973) whereas values from the veinlets fall<br />

to the right (heavier O).<br />

discussion<br />

Carbonatitesareigneousrockscomprised<strong>of</strong>greater<br />

than 50% carbonate minerals (e.g. Le Bas 1977).<br />

Many different criteria have been proposed for the<br />

identification <strong>of</strong> carbonatites, unfortunately no single<br />

piece <strong>of</strong> evidence is truly diagnostic. Evidence from<br />

multiple sources including textures, mineral assemblages,<br />

geochemistry, alteration, and stable isotopes<br />

must be considered.<br />

Carbonatites are characterised by high levels <strong>of</strong><br />

Sr, Ba, REE and Y(e.g. Puustinen & Karhu 1999).<br />

The vein-dykes in Naantali are enriched in Sr, Y, and<br />

REE, particularly LREE. Ba, though virtually absent<br />

in the vein-dykes, is highly enriched in altered rocks,<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

The Naantali alvikite vein-dykes: a new carbonatite in southwestern <strong>Finland</strong><br />

Table 2. Carbon and Oxygen isotope ratios. Samples are<br />

described in text.<br />

JW0404 PSH-04-01.1 PSH-04-01.2<br />

δ 13 CPDB -11,48 -11,29 -5,99<br />

δ 18 OSMOW 9,96 11,76 17,11<br />

particularly in Zone I. Although carbonatite melts are<br />

typically high in K and Na, this is not universally true.<br />

For example, Barker and Nixon (1989) report K- and<br />

Na-poor carbonatite magma at Fort Portal, Uganda.<br />

The Naantali vein-dykes lack alkalis, but the enrichment<br />

patternin the fenites suggests that the carbonatite<br />

magma was rich in K but relatively poor in Na.<br />

Fenitization is a metasomatic process occurring<br />

aroundcarbonatiteandalkalineigneousintrusionstypically<br />

involving the removal <strong>of</strong> silica and the addition<br />

<strong>of</strong> alkali elements (e.g. Le Bas 1977). Fenites show a<br />

great deal <strong>of</strong> variation in chemical composition, based<br />

on variations in the compositions <strong>of</strong> the fenitizing<br />

fluid, degree <strong>of</strong> fenitization, and original composition<br />

<strong>of</strong> the rock.Vartiainen andWoolley (1976) distinguish<br />

between sodic and potassic fenitization, while Kresten<br />

(1988) makes divisions <strong>of</strong> contact, aureole, and veintype<br />

fenites. In Naantali, addition <strong>of</strong> K and removal <strong>of</strong><br />

Sicorrespondstopotassicfenitization.ZoneIalteration<br />

in Naantali represents contact fenitization; Zones II<br />

and III are aureole fenites <strong>of</strong> decreasing intensity.<br />

Aδ 13 C–δ 18 O isotope comparison is <strong>of</strong>ten used to<br />

trace the origins <strong>of</strong> limestones. Isotope values are<br />

within the range <strong>of</strong> -2 to –12 δ 13 C PDB and +10 to +26<br />

δ 18 O SMOW given by Barker and Nixon (1989) for<br />

the Fort Portal carbonatite in Uganda. Values are also<br />

close to those given by Puustinen and Karhu (1999)<br />

for the Halpanen carbonatite in southeastern <strong>Finland</strong>.<br />

The δ 13 C values also differ markedly from the range<br />

<strong>of</strong> -3 to 3 δ 13 C given by Karhu (1993) for sedimentary<br />

carbonates in the Svec<strong>of</strong>ennian domain.<br />

Carbonate vein-dykes in Naantali show magmatic<br />

textures including flow banding and incorporation <strong>of</strong><br />

wall-rock fragments on an outcrop scale. Chemical<br />

evidence is consistent with established normal values<br />

for carbonatite. Isotopic evidence is also consistent<br />

with other carbonatites. Chemical and isotopic data<br />

alsodifferfromnormalsedimentaryandhydrothermal<br />

carbonates. The combined body <strong>of</strong> evidence shows<br />

that the carbonate vein-dykes in Naantali formed by<br />

the intrusion <strong>of</strong> carbonatite magma.<br />

9


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Jeremy Woodard and Pentti Hölttä<br />

10<br />

REFERENCES<br />

Andersen, T. 1984. Secondary processes in carbonatites: petrology<br />

<strong>of</strong> “rødberg” (hematite-calcite-dolomite carbonatite) in<br />

the Fen central complex, Telemark (South Norway). Lithos<br />

17, 227–245.<br />

barker,d.S.&Nixon,P.h.1989. High-Ca,lowalka licarbonatite<br />

volcanism at Fort Portal, Uganda. Contributions to Mineralogy<br />

and Petrology 103, 166–177.<br />

deines, P. & Gold, d.P. 1973. The isotopic composition <strong>of</strong><br />

carbonatite and kimberlite carbonates and their bearing on the<br />

isotopic composition <strong>of</strong> deep-seated carbon. Geochimica et<br />

Cosmochemica Acta 37, 1709–1733.<br />

dobson, d.P., Jones, A.P., Rabe, R., Sekine, T., kurita, k.,<br />

Taniguchi, T., kondo, T., kato, T., Shimomura, O. & Sa-<br />

toru urakawa, S. 1996. In-situmeasurement<strong>of</strong>viscosityand<br />

In-situ measurement <strong>of</strong> viscosity and<br />

density <strong>of</strong> carbonate melts at high pressure. Earth and Planetary<br />

Science Letters 143, 207–215.<br />

Ekambaram,v.,brookins,d.G.,Rosenberg,P.E.,&Emanuel,<br />

k.M. 1986. Rare-earth element geochemistry <strong>of</strong> fluorite-carbonatedepositsinwesternMontana,U.S.A.ChemicalGeology<br />

54, 319–331.<br />

helenius, E.M. <strong>2003</strong>. Turun alueen charnockiittien petrogenesis.<br />

Unpublished master’s thesis, University <strong>of</strong> Turku. (In<br />

Finnish) 72 p.<br />

karhu, J.A. 1993. Paleoproterozoic evolution <strong>of</strong> the carbon<br />

isotope ratios <strong>of</strong> sedimentary carbonates in the Fennoscandian<br />

Shield. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Bulletin 371. 87 87p. p.<br />

kresten, P. 1988. The chemistry <strong>of</strong> fenitization: Examples from<br />

Fen, Norway. Chemical Geology 68, 329–349.<br />

kresten,P.&Morogan,v.1986.FenitizationattheFencomplex,<br />

southern Norway. Lithos 19, 27–42.<br />

le bas, M.J. 1977. Carbonatite-Nephelinite Volcanism . Bristol:<br />

John Wiley & Sons, Ltd. 347 p.<br />

le bas, M.J. 1999. Sövite and alvikite: two chemically distinct<br />

calciocarbonatites C1 and C2. South African Journal <strong>of</strong> Geology<br />

102, 109–121.<br />

le Maitre, R.w., bateman, P., dudek, A., keller, J., lameyre,<br />

J., le bas, M.J., Sabine, P.A., Schmid, R., Sorensen,<br />

h., Streckeisen, A., woolley, A.R. & Zanettin, b. 1989.<br />

AClassification <strong>of</strong> the Igneous Rocks and Glossary <strong>of</strong> Terms:<br />

Recommendations <strong>of</strong> the International Union <strong>of</strong> <strong>Geological</strong><br />

Sciences Subcomission on the Systematics <strong>of</strong> Igneous Rocks.<br />

Oxford: Blackwell Scientific Publications. 193 p.<br />

Puustinen, k. & karhu, J. 1999. Halpanen calcite carbonatite<br />

dike, Southeastern <strong>Finland</strong>. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>,<br />

Special Paper 27, 39-41.<br />

Rollinson, h. 1993. Using Geochemical Data: evaluation, presentation,<br />

interpretation. Harlow: Pearson Education Limited.<br />

352 p.<br />

väisänen, M., Mänttäri, i. & hölttä, P. 2002. Svec<strong>of</strong>ennian<br />

magmatic and metamorphic evolution in southwestern <strong>Finland</strong><br />

as revealed by U-Pb zircon SIMS geochronology. Precambrian<br />

<strong>Research</strong> 116, 111–127.<br />

vartiainen, h. & woolley,A.R. 1976. The petrography, mineralogyandchemistry<strong>of</strong>thefenites<strong>of</strong>theSoklicarbonatiteintrusion,<br />

<strong>Finland</strong>. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Bulletin 280. 87 p.<br />

woolley, A.R., barr, M.w.C., din, v.k., Jones, G.C., wall,<br />

F., & williams, C.T. 1991. Extrusive Carbonatites from the<br />

Uyaynah Area, United Arab Emirates. Journal <strong>of</strong> Petrology<br />

32, 1143–1167.<br />

yang, X.M. & le bas, M.J. <strong>2004</strong>. Chemical compositions <strong>of</strong><br />

carbonate minerals from Bayan Obo, Inner Mongolia, China:<br />

implications for petrogenesis. Lithos 72 , 97–116.


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, <strong>Current</strong> <strong>Research</strong> <strong>2003</strong>–<strong>2004</strong>,<br />

Edited by Sini Autio.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38, 11– 14 , 2005.<br />

iNTRuSiON MOdEl FOR SvECOFENNiAN (1.9 GA) MAFiC-ulTRAMAFiC iNTRuSiONS<br />

iN FiNlANd<br />

introduction<br />

by<br />

Hannu V. Makkonen<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, P.O. Box 1237, FI-70211 Kuopio, <strong>Finland</strong><br />

E-mail: hannu.makkonen@gtk.fi<br />

Key words (GeoRef Thesaurus, AGI): intrusions, models, magmatism, shear zones, Paleoproterozoic, Svec<strong>of</strong>ennian, <strong>Finland</strong><br />

The Svec<strong>of</strong>ennian orogeny in <strong>Finland</strong> produced a<br />

series <strong>of</strong> 1.9 Ga mafic-ultramafic intrusions in which,<br />

according to Nironen (1997) and Peltonen (2005),<br />

the mafic magma intruded in tensional structures<br />

above the subduction zone. Most <strong>of</strong> the nickel bearing<br />

intrusions occur within the Kotalahti and Vammala<br />

Nickel Belts around the Central <strong>Finland</strong> Granitoid<br />

Complex (Fig. 1). The country rocks surrounding<br />

the intrusions were in most cases extensively metamorphosed<br />

and deformed during the early stage <strong>of</strong><br />

the Svec<strong>of</strong>ennian orogeny (Gaál 1980, Kilpeläinen<br />

1998, Koistinen 1981, Mäkinen & Makkonen <strong>2004</strong>).<br />

Metamorphic conditions reached upper amphibolite<br />

facies, and overthrusting and faulting resulted in<br />

fragmentation <strong>of</strong> both the intrusions and the country<br />

rocks. Different tectonic conditions produced intrusions<br />

with pronounced variations in size, shape and<br />

lithology (cf. Papunen & Gorbunov 1985). Owing to<br />

the synorogenic timing <strong>of</strong> the magmatism the related<br />

intrusions have very complicated tectonomagmatic<br />

history. This makes the Svec<strong>of</strong>ennian intrusions quite<br />

differentwhencomparedtoanorogenicnickelsulphide<br />

bearing intrusions like Sudbury, Voisey’s Bay and<br />

Norilsk (Mäkinen & Makkonen <strong>2004</strong>).<br />

The Svec<strong>of</strong>ennian nickel bearing mafic and ultramafic<br />

intrusions are mainly found within migmatitic<br />

mica gneisses, although in the Kotalahti Nickel Belt<br />

Fig. 1. Location <strong>of</strong> the Kotalahti and Vammala Nickel Belts (modified<br />

after Mäkinen and Makkonen <strong>2004</strong>). Bedrock geology simplified after<br />

Korsman et al. (1997).<br />

11


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Hannu V. Makkonen<br />

some occur within or at the contact <strong>of</strong> the Archaean<br />

gneisses. In the surface section they <strong>of</strong>ten form oval<br />

shaped bodies <strong>of</strong> varying dimensions, the largest ones<br />

upto10km.Theintrusionbodiesincludegabbro-only,<br />

peridotite-only and gabbro-peridotite types. According<br />

to Mäkinen (1987), two types can be separated<br />

mineralogically: 1) Vammala type w ith abundant<br />

clinopyroxene and 2) Kotalahti type with abundant<br />

orthopyroxene, the former occurring mainly in the<br />

Vammala Nickel Belt and the latter in the Kotalahti<br />

Nickel Belt. The mineralogical differences are largely<br />

due to differences in country rock contamination<br />

(Makkonen 1996).<br />

In Finnish nickel mining history the Svec<strong>of</strong>ennian<br />

deposits have played a major role. Altogether nine<br />

depositshavebeenminedbeginningin1941atMakola<br />

(Puustinenetal. 1995)andmining stillatHitura, which<br />

has become the largest nickel mine in <strong>Finland</strong> (12.4<br />

Mt at 0.60 % Ni and 0.22 % Cu, Isomäki <strong>2004</strong>). The<br />

total production <strong>of</strong> the Svec<strong>of</strong>ennian nickel mines is<br />

at present about 41 Mt at 0.6 % Ni.<br />

intrusion Model<br />

The 1.9 Ga tholeiitic magma has been described<br />

forming both extrusions and intrusions in <strong>Finland</strong>.<br />

In the Juva area extrusions are represented by the<br />

mafic and ultramafic volcanics (Makkonen 1996) and<br />

in the Tampere-Vammala area by the Takamaa-type<br />

mafic volcanics (Kilpeläinen 1998). In both areas it<br />

is proposed that intrusion bodies were formed at different<br />

levels during magma ascent, as also suggested<br />

by Peltonen (1995) in the Vammala area.<br />

Some important facts for an intrusion model are<br />

available: 1) intrusion took place near the maximum<br />

intensity <strong>of</strong> D 2 and peak <strong>of</strong> the metamorphism (Kilpeläinen<br />

1998, Koistinen et al. 1996, Mäkinen &<br />

Makkonen <strong>2004</strong>, Marshall et al. 1995, Peltonen 1995,<br />

2005), 2) most <strong>of</strong> the intrusions occur within a highly<br />

deformed/high metamorphic zone but there are intrusions<br />

also at higher levels within lower metamorphic<br />

grade rocks, and 3) comagmatic volcanics usually<br />

occur within lower metamorphic grade areas relative<br />

to the intrusions, but in some places they are in contact<br />

with an intrusion.<br />

D 2 deformationphaseischaracterisedbyrecumbent<br />

foldsandoverthrustingduetocompressionfromsouth<br />

to north (Koistinen 1981, Koistinen et al. 1996). This<br />

isindicatedbytheProterozoicsequencesoverthrusted<br />

onto the Archaean craton. Overthrusting also caused<br />

fragmentation <strong>of</strong> the Archaean/Proterozoic boundary<br />

andthusblocks<strong>of</strong>Archaeangneissareenclosedwithin<br />

Proterozoic supracrustals. D 2 tectonic activity generated<br />

variable migmatite structures in supracrustals<br />

12<br />

including stromatic, schollen, schlieren and nebulitic<br />

structures. The neosome composition is tonalitic and a<br />

widerange<strong>of</strong>mafic-ultramaficrockfragmentsisfound<br />

within migmatites (Mäkinen & Makkonen <strong>2004</strong>). The<br />

occurrence <strong>of</strong> these migmatite zones together with the<br />

intrusion bodies and fragments has been described<br />

by many researchers (e.g. Gaál & Rauhamäki 1971,<br />

Gaál 1972, Gaál 1985, Grundström 1980, Häkli et al.<br />

1979, Mäkinen 1987, Papunen 1980), but the genetic<br />

link between the migmatite zones and the intrusions<br />

has remained in many cases indistinct. Korsman Korsmanetal. et al.<br />

(1999),however, proposedthatthe low-P/high-Tmeta -<br />

morphism and the generation <strong>of</strong> tonalite-trondhjemite<br />

migmatites in the Svec<strong>of</strong>ennian crust were caused by<br />

extensive magma under/intraplating during and soon<br />

after subduction and crustal thickening (1885 Ma).<br />

Mafic magmatic underplating after tectonic thickening<br />

<strong>of</strong> the Svec<strong>of</strong>ennian crust has also been proposed<br />

by Korja et al. (1993), (1993),Lahtinen(1994)andLahtinen<br />

Lahtinen (1994) and Lahtinen<br />

and Huhma (1997).<br />

Figure 2 shows a model, in which magma is intruding<br />

during D 2 within the Svec<strong>of</strong>ennian collisionzone.<br />

The basic idea in the model is the generation <strong>of</strong> a<br />

high temperature shear zone (HTSZ) between a large<br />

midcrustalmantlemagmareservoirandanimbrication<br />

zone <strong>of</strong> thrust folds, probably above the subduction<br />

(after rifting in a collision zone). The shear zone developed<br />

at the level <strong>of</strong> 15 – 20 km as indicated by the<br />

PT–calculationsfromspinel-bear ingsymplectitesand<br />

reaction rims formed between cumulus olivine and<br />

intercumulus plagioclase during cooling <strong>of</strong> the intrusion<br />

(Tuisku & Makkonen 1999). Similar shear zones<br />

have been described, e.g., in the southernAlps (Ivrea-<br />

Verbano zone, Snoke et al. 1999). HTSZ corresponds<br />

to the Svec<strong>of</strong>ennian nickel belt migmatites described<br />

earlier (especially to the schollen migmatites). When<br />

the mafic magma intruded the mobile shear zone, it<br />

formed bodies <strong>of</strong> various shape and size. The bodies<br />

were not deformed strongly and only in rare cases S 2<br />

schistosity was formed within. Because many intrusion<br />

bodies are found in F 2 folds, magma possibly<br />

favoured such an extensional place in the shorter limb<br />

<strong>of</strong> a sheared F 2 fold (Mäkinen & Makkonen <strong>2004</strong>).<br />

After crystallisation, the competent intrusion bodies<br />

also controlled fold formation (1 in Fig. 2a). Some <strong>of</strong><br />

the bodies were overturned after crystallisation due to<br />

continuous thrusting and many <strong>of</strong> them fragmented.<br />

In larger intrusion bodies thrusting is represented by<br />

faults separating the intrusion body into blocks (3 in<br />

Fig. 2a). More sill-like bodies were folded.<br />

Most <strong>of</strong> the magma intruded into the HTSZ, but<br />

because <strong>of</strong> local extension caused by the uplift <strong>of</strong><br />

imbrication blocks, as described similarly e.g. in the<br />

eastern Alps by Ratschbacher (1989), some intrusion


odies (2 in Fig. 2a) were formed above the HTSZ<br />

withinthelowermetamorphicgraderocks(e.g.metaturbidites<br />

showing primary structures).<br />

The heat <strong>of</strong> the mafic magma, together with the<br />

latent heat produced by the crystallisation <strong>of</strong> the<br />

magma, enabled migmatite neosome formation. In<br />

extensional places neosome formation was promoted<br />

by pressure release and the melt concentrated as tonalitic<br />

bodies.<br />

The true thickness <strong>of</strong> the HTSZ is difficult to esti -<br />

mate. Probably it varied along the zone being largest<br />

in places where magmatic activity was strong. In the<br />

Kotalahti Nickel Belt schollen migmatite zones are up<br />

to 2 km wide (Gaál 1985), although the total width <strong>of</strong><br />

the migmatite zone is wider. The Ivrea-Verbano zone<br />

with stromatic migmatites in the southern Alps is 1<br />

to 1.5 km thick (Snoke et al. 1999). From above, it<br />

can be assumed that the thickness <strong>of</strong> the HTSZ was<br />

less than 5 km.<br />

The mafic magma probably reached the surface<br />

slightly before the main intrusion event. This volcanic<br />

event thus took place during the rifting stage in the<br />

collisionzone.Thevolcanicrocksarenowrepresented<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Intrusion model for svec<strong>of</strong>ennian (1.9 ga) mafic-ultramafic intrusions in <strong>Finland</strong><br />

Fig. 2. Intrusion <strong>of</strong> Svec<strong>of</strong>ennian 1.9 Ga<br />

mafic magma and related structural history.<br />

A) Intrusion took place during the maximum<br />

intensity <strong>of</strong> D 2 when the high temperature<br />

shear zone (HTSZ, marked by broken line)<br />

was active. Above the HTSZ continuous<br />

thrusting formed an imbrication zone in<br />

whichtheprimarystratigraphywasobscured.<br />

B) During D 3 sub horizontal rock units were<br />

folded vertical to sub-vertical. For more<br />

explanation see text.<br />

within the Finnish Svec<strong>of</strong>ennian by the 1.9 Ga amphibolites<br />

and picrites (cf. Gaál & Rauhamäki 1971,<br />

Häkli et al. 1979, Kousa 1985, Lahtinen 1996 and<br />

references therein, Makkonen 1996, Peltonen 1990,<br />

Schreursetal.1986).Because<strong>of</strong>thesubsequentthrust<br />

folding the volcanic rocks were buried down to the<br />

same levels where comagmatic intrusion took place.<br />

This, together with the possibility that the intrusion<br />

bodies are lifted up during thrusting (3 in Fig. 2a), may<br />

explain the close spatial association <strong>of</strong> the volcanic<br />

and comagmatic intrusive rocks seen in places within<br />

the Svec<strong>of</strong>ennian. In addition, later, during the D 3<br />

phase (Fig. 2b) the earlier sub-horizontal rock units<br />

were folded in many places sub-vertical to vertical,<br />

which brought rock units to the present erosion level<br />

from various levels (Gaál 1980, Koistinen et al. 1996,<br />

Kilpeläinen 1998, Makkonen 2002, Mäkinen & Makkonen<br />

<strong>2004</strong>). It is important to note that, according<br />

to the model the volcanics do not necessarily occur<br />

just above their plutonic counterparts. Rather, it is<br />

more probable that there is always a degree <strong>of</strong> lateral<br />

movement between them. This makes the correlation<br />

difficult at a local scale.<br />

13


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Hannu V. Makkonen<br />

14<br />

REFERENCES<br />

Gaál,G.1972. Tectoniccontrol<strong>of</strong>someNi-Cudepositsin<strong>Finland</strong>.<br />

In: Gill, J. E. (ed.) International <strong>Geological</strong> Congress, 24th session,<br />

Montreal 1972: Section 4, Mineral deposits, 215–224.<br />

Gaál, G. 1980. <strong>Geological</strong> setting and intrusion tectonics <strong>of</strong><br />

the Kotalahti nickel-copper deposit, <strong>Finland</strong>, Bulletin <strong>of</strong> the<br />

<strong>Geological</strong> Society <strong>of</strong> <strong>Finland</strong> 52 (1), 101–128.<br />

Gaál, G. 1985. Nickel metallogeny related to tectonics. In: Papunen,<br />

H. & Gorbunov, G. I. (eds.) Nickel-copper deposits <strong>of</strong><br />

the Baltic Shield and Scandinavian Caledonides. <strong>Geological</strong><br />

<strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Bulletin Bulletin333, 333, 143–155.<br />

Gaál, G. & Rauhamäki, E. 1971. Petrological and structural<br />

analysis <strong>of</strong> the Haukivesi area between Varkaus and Savonlinna,<br />

<strong>Finland</strong>. Bulletin <strong>of</strong> the <strong>Geological</strong> Society <strong>of</strong> <strong>Finland</strong><br />

43 (2), 265–337.<br />

Grundström, l. 1980. The Laukunkangas nickel-copper occurrence<br />

in southeastern <strong>Finland</strong>. Bulletin <strong>of</strong> the <strong>Geological</strong><br />

Society <strong>of</strong> <strong>Finland</strong> 52 (1), 23–53.<br />

häkli, T. A., vormisto, k. & hänninen, E. 1979. Vammala,<br />

a nickel deposit in layered ultramafite, Southwest <strong>Finland</strong>.<br />

Economic Geology 74 (5), 1166–1182.<br />

isomäki, O.P. <strong>2004</strong>. NivalanHiturannikkelikaivoksenmalmin-<br />

Nivalan Hituran nikkelikaivoksen malminnosto<br />

ylitti 12 miljoonaa tonnia – esiintymän löytämisestä 40<br />

vuotta.Summary:In40yearsafterthediscoveryover12million<br />

Summary:In40yearsafterthediscoveryover12million<br />

tons <strong>of</strong> nickel ore has been hoisted from Hitura mine, western<br />

<strong>Finland</strong>. Geologi 56 (3), 76–79.<br />

kilpeläinen, T. 1998. Evolution and and3Dmodelling<strong>of</strong>structural<br />

3D modelling <strong>of</strong> structural<br />

and metamorphic patterns <strong>of</strong> the Palaeoproterozoic crust in the<br />

Tampere-Vammala area, southern <strong>Finland</strong>. <strong>Geological</strong> <strong>Survey</strong><br />

Karelian domains during 2.1 – 1.79 Ga, with special emphasis<br />

on the geochemistry and origin <strong>of</strong> 1.93 – 1.91 Ga gneissic<br />

tonalites and associated supracrustal rocks in the Rautalampi<br />

area, central <strong>Finland</strong>. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>. Bulletin<br />

378. 128 p.<br />

lahtinen,R.1996.Geochemistry<strong>of</strong>Palaeoproterozoicsupracrus-<br />

Geochemistry<strong>of</strong>PalaeoproterozoicsupracrustalandplutonicrocksintheTampere-Hämeenlinnaarea,southern<br />

<strong>Finland</strong>. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Bulletin 389. 113 p.<br />

lahtinen, R. & huhma, h. 1997. Isotopic and geochemical<br />

constraints on the evolution <strong>of</strong> the 1.93–1.79 Ga Svec<strong>of</strong>ennian<br />

crust and mantle in <strong>Finland</strong>. Precambrian <strong>Research</strong> 82<br />

(1–2), 13–34.<br />

Mäkinen,J. 1987. Geochemicalcharacteristics <strong>of</strong>Svecokarelidic<br />

mafic-ultramaficintrusionsassociatedwithNi-Cuoccurrencesin<br />

<strong>Finland</strong>. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Bulletin 342. 109 109p. p.<br />

Mäkinen, J. & Makkonen, h. v. <strong>2004</strong>. Petrology Petrologyandstructure<br />

and structure<br />

<strong>of</strong>thePalaeoproterozoic(1.9Ga)Rytkynickelsulphidedeposit,<br />

Central<strong>Finland</strong>:acomparison withtheKotalahtinickeldeposit.<br />

Mineralium Deposita 39, 405–421.<br />

Makkonen, h. v. 1996. 1.9Gatholeiiticmagmatismandrelated<br />

1.9 Ga tholeiitic magmatism and related<br />

Ni-CudepositionintheJuvaarea,SE<strong>Finland</strong>.<strong>Geological</strong><strong>Survey</strong><br />

<strong>of</strong> <strong>Finland</strong>, Bulletin 397. 124 124p. p. +2app. + 2 app.<br />

<strong>of</strong> <strong>Finland</strong>, Bulletin 386. 101 p.+3app., p. + 3 app., 1app. 1 app. map.<br />

Makkonen, h. v. 2002. Raahe-Laatokka –vyöhykkeen nikkelimalmien<br />

kehityksestä. In: Korsman, Kalevi & Lestinen, Pekka<br />

(eds.) Raahe-Laatokka – symposio. Kuopio 20.–21.3.2001.<br />

Laajat abstraktit. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, unpublished<br />

report K 21.42/2002/1. 121 p.<br />

Marshall, b., Smith, J. v. & Mancini, F. 1995. Emplacement and<br />

implications <strong>of</strong> peridotite-hosted leucocratic dykes, Vammala<br />

Mine, <strong>Finland</strong>. GFF 117 (4), 199–205.<br />

Nironen, M. 1997. The Svec<strong>of</strong>ennian Orogen: a tectonic model.<br />

Precambrian <strong>Research</strong> 86 (1–2), 21–44.<br />

Papunen, h. 1980. The Kylmäkoski nickel-copper deposit in<br />

south-western <strong>Finland</strong>. Bulletin <strong>of</strong> the <strong>Geological</strong> Society <strong>of</strong><br />

<strong>Finland</strong> 52 (1), 129–145.<br />

Papunen, h. (ed.) &Gorbunov,G.i.(ed.) & Gorbunov, G. i. (ed.) 1985 1985. Nickel-copper<br />

koistinen,T. J. 1981. Structural evolution <strong>of</strong> an early Proterozoic deposits <strong>of</strong> the Baltic Shield and Scandinavian Caledonides.<br />

stratabound Cu-Co-Zn deposit, Outokumpu, <strong>Finland</strong>. Transac- <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>. Bulletin 333. 394 p. + 2 app.<br />

tions <strong>of</strong> the Royal Society <strong>of</strong> Edinburgh: earth sciences 72 (2), maps.<br />

115–158.<br />

Peltonen, P. 1990. Metamorphic olivine in picritic metavolcanics<br />

koistinen,T.,klein,v.,koppelmaa,h.,korsman,k.,lahtinen, from southern <strong>Finland</strong>. Bulletin <strong>of</strong> the <strong>Geological</strong> Society <strong>of</strong><br />

R., Nironen, M., Puura, v., Saltykova, T., Tikhomirov, S. & <strong>Finland</strong> 62 (2), 99–114.<br />

yanovskiy, A. 1996. PaleoproterozoicSvec<strong>of</strong>ennianorogenic<br />

Paleoproterozoic Svec<strong>of</strong>ennian orogenic Peltonen,P.1995. Petrogenesis<strong>of</strong>ultramaficrocksintheVammala<br />

belt in the surroundings <strong>of</strong> the Gulf <strong>of</strong> <strong>Finland</strong>. In: Koistinen, Nickel Belt : implications for crustal evolution <strong>of</strong> the early Pro-<br />

T. J. (ed.) Explanation tothemap<strong>of</strong>Precambrianbasement<strong>of</strong><br />

to the map <strong>of</strong> Precambrian basement <strong>of</strong> terozoic Svec<strong>of</strong>ennian arc terrane. Lithos Lithos34 34 (4), (4),253–274. 253–274.<br />

the Gulf <strong>of</strong> <strong>Finland</strong> and surrounding area 1 : 1 mill. <strong>Geological</strong> Peltonen,P.2005. Mafic-UltramaficIntrusions<strong>of</strong>theSvec<strong>of</strong>ennian<br />

<strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 21, 21–57.<br />

Orogen. In: Lehtinen, M., Nurmi, P.A. &&Rämö, Rämö, O.T. O.T.(eds.). (eds.).<br />

korja,A., korja, T., luosto, u. & heikkinen, P. 1993. Seismic Precambrian <strong>of</strong> <strong>Finland</strong> – a Key to the Evolution <strong>of</strong> the Fenno-<br />

and geoelectric evidence for collisional and extensional events scandian Shield . Amsterdam: Elsevier, 413 – 447. (in press)<br />

in the Fennoscandian Shield – implications for Precambrian Puustinen, k., Saltik<strong>of</strong>f, b. & Tontti, M. 1995. Distributionand<br />

Distribution and<br />

crustal evolution. Tectonophysics 219 (1–3), 129–152.<br />

metallogenic types <strong>of</strong> nickel deposits in <strong>Finland</strong>. <strong>Geological</strong><br />

korsman, k. (ed.), , koistinen, T. (ed.), kohonen, J. (ed.), <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Report <strong>of</strong> Investigation 132. 38 38p. p.<br />

wennerström, M. (ed.), Ekdahl, E. (ed.), honkamo, M. Ratschbacher, l., Frisch, w., Neubauer, F., Schmid, S.M. &<br />

(ed.),idman,h.(ed.) , idman, h. (ed.) &Pekkala,y.(ed.) & Pekkala, y. (ed.) 1997. Suomenkal-<br />

Suomen kal- Neugebauer, J. 1989. Extension in compressional orogenic<br />

lioperäkartta=Berggrundskartaöver<strong>Finland</strong>=Bedrockmap<strong>of</strong> belts: The eastern Alps. Geology 17, 404–407.<br />

<strong>Finland</strong> 1:1 000 000. Espoo: Espoo:Geologian Geologian tutkimuskeskus. Schreurs, J., kooperen, P. van & westra, l. 1986. Ultramafic<br />

korsman,k.,korja,T.,Pajunen,M.&virransalo,P.1999. The<br />

metavolcanic rocks <strong>of</strong> early Proterozoic age in West-Uusimaa,<br />

GGT/SVEKAtransect:structureandevolution<strong>of</strong>thecontinental SW <strong>Finland</strong>. Neues Jahrbuch f�r f�r Mineralogie. Mineralogie.Abhandlungen<br />

Abhandlungen<br />

crust in the Paleoproterozoic Svec<strong>of</strong>ennian orogen in <strong>Finland</strong>. 155 (2), 185–201.<br />

International Geology Review 41 (4), 287–333.<br />

Snoke, A. w., kalakay, T. J. & Quick, J. E. & Sinigoi, S.<br />

kousa,J.1985. Rantasalmentholeiittisistajakomatiittisistavulka- 1999. Development <strong>of</strong> a deep-crustal shear zone in response<br />

niiteista.Summary:Thetholeiiticandkomatiiticmetavolcanics<br />

Summary:Thetholeiiticandkomatiiticmetavolcanics to syntectonic intrusion <strong>of</strong> mafic magma into the lower crust,<br />

in Rantasalmi, Southeastern <strong>Finland</strong>. Geologi Geologi37 37 (2),17–22. (2), 17–22. Ivrea–Verbano zone, Italy. Earth and Planetary Science Letters<br />

lahtinen, R. 1994. Crustal evolution <strong>of</strong> the Svec<strong>of</strong>ennian and 166, 31–45.<br />

Tuisku, P. & Makkonen, h. v. 1999. Spinel-bearing symplecsymplectites in Palaeoproterozoic ultramafic rocks from two different<br />

geological settings in <strong>Finland</strong>: thermobarometric and tectonic<br />

implications. GFF 121 (4), 293–300.


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, <strong>Current</strong> <strong>Research</strong> <strong>2003</strong>–<strong>2004</strong>,<br />

Edited by Sini Autio.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38, 15– 23<br />

, 2005.<br />

ThE hAlikkO kulTANuMMi PROSPECT – ANEwTyPE OFGOld MiNERAliZATiON iN<br />

ThE hiGh-GRAdE GNEiSS TERRAiNOFSOuThwESTERN FiNlANd<br />

by<br />

Sari Grönholm 1) , Niilo Kärkkäinen 1) and Jonas Wiik 2)<br />

1) <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, P.O. Box 96, FI-02151 Espoo, <strong>Finland</strong><br />

2) Boliden Mineral AB, S-93681 Boliden, Sverige<br />

E-mail: sari.gronholm@gtk.fi<br />

Key words (GeoRef Thesaurus, AGI): mineral exploration, gold ores, gneisses, sulfides, hydrothermal alteration, Proterozoic, Kulta -<br />

nummi, Halikko, <strong>Finland</strong><br />

introduction<br />

In this article we consider the gold prospectivity <strong>of</strong><br />

the highly metamorphosed gneisses and migmatites<br />

<strong>of</strong> southwestern <strong>Finland</strong>, using the Kultanummi occurrence<br />

at Halikko as a potentially representative<br />

example <strong>of</strong> the type <strong>of</strong> mineralization to expect in this<br />

terrain. In recent years a number <strong>of</strong> gold occurrences<br />

have been found in the region between Paimio and<br />

Halikko in southwestern <strong>Finland</strong>, largely due to the<br />

efforts <strong>of</strong> amateur prospectors, who have submitted<br />

both outcrop samples and mineralized glacial boulders<br />

to the <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong> (GTK) for<br />

further evaluation. The first discovery was the Korvenala-Kaleva<br />

occurrence near Paimio but further<br />

incentive was given in 2001 when Veli-Matti Koivula<br />

recovered gold while panning oxidized regolith<br />

material at Kultanummi, near Halikko. Three short<br />

holes were drilled at this site, with the best intercept<br />

yielding gold grades <strong>of</strong> 0.5–6 ppm over intervals <strong>of</strong><br />

1–6 m. Follow-up exploration during the next field<br />

season delineated a gold-critical sulfide-bearing zone<br />

over a distance <strong>of</strong> 600 m, and with a maximum width<br />

<strong>of</strong> 150 m, to the south <strong>of</strong> Isorahkaneva mineralized<br />

zone (Figs. 1 and 2). The anomalous area was then<br />

sampled for heavy mineral fractions, and systematically<br />

covered by ground magnetic and IPsurveys, and<br />

finally drilled; the results <strong>of</strong> these investigations are<br />

reported below.<br />

<strong>Geological</strong> setting<br />

ThebedrockatKultanummiconsists<strong>of</strong>upperamphibolitefaciesmicagneissesandm<br />

etavolcanics,intruded<br />

by granitic veins. The Korveanala-Kaleva prospect,<br />

which was studied earlier by GTK, is situated some<br />

10 km west <strong>of</strong> Kultanummi (Fig. 1). Interpretations<br />

based on both bedrock maps and airborne magnetic<br />

data indicate that both prospects lie within a discrete<br />

structural domain bounded by shear zones and granitoids<br />

(Fig. 3). Regional structural trends tend to be<br />

nearly E-W, with tight folding. Kultanummi is located<br />

within a magnetic anomaly zone that is stronger in<br />

the southern part. The area immediately to the north<br />

<strong>of</strong> Kultanummi is reminiscent <strong>of</strong> the structural block<br />

defined at Paimio. The Korvenala-Kaleva prospect at<br />

Paimio was located by heavy mineral studies following<br />

discovery <strong>of</strong> a mineralized boulder, and it is also<br />

well expressed in till geochemistry and has a distinct<br />

IP response (Rosenberg 2000). Drill cores analyzed<br />

from the from Korvenala-Kaleva show anomalous<br />

gold values over a relatively wide area, with a mean<br />

<strong>of</strong> 310 ppb for 252 samples. However, in the most<br />

anomalous intervals, grades are usually 0.1–1 ppm,<br />

15


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Sari Grönholm, Niilo Kärkkäinen and Jonas Wiik<br />

with only a few exceptional intersections <strong>of</strong> 5.4 ppm<br />

over 1 meter and 1 ppm over 5.45 m (Rosenberg<br />

2000). Arsenopyrite is also present, but there is the<br />

degree <strong>of</strong> correlation between Au and As is not high<br />

(Rosenberg 2000).<br />

<strong>Geological</strong> setting at kultanummi<br />

Mica schists and gneisses intruded by granitic and<br />

pegmatitic veins predominate at Kultanummi, with<br />

minor intercalations <strong>of</strong> amphibolites and plagioclase<br />

porphyry. However, the most prospective lithology<br />

appears to be a relatively quartz-rich gneiss, occurring<br />

as discrete units 10–30 m thick within the more<br />

typical mica gneisses. They typically contain disseminated<br />

sulfides and are characterized by aggregates <strong>of</strong><br />

sillimanite and sporadic cordierite, alternating with<br />

bands <strong>of</strong> calc-silicate rock.<br />

Mica schists locally display distinct banding, as a<br />

result <strong>of</strong> systematic variations in mica abundance as<br />

well as concentrations <strong>of</strong> presumably metamorphic,<br />

idioblastic magnetite grains (Figs. 4 and 5). Principal<br />

minerals are quartz, plagioclase, potassium feldspar<br />

and biotite, with smaller amounts <strong>of</strong> red garnet, apatite,<br />

zircon, carbonate and tourmaline. Mica schists<br />

occasionally grade into coarser-grained gneisses<br />

and may even display a more granitic appearance<br />

or show extensive epidote alteration. Occasional<br />

16<br />

Fig. 1. Locations <strong>of</strong> the Korvenala-Kaleva and Kultanummi gold occurrences on the bedrock geological map sheets 2021 (Lehijärvi,<br />

1955) and 2022 (Huhma, 1957).<br />

quartzo-feldspathic intercalations also occur, with<br />

distinctly less biotite, forming discrete aggregates,<br />

and correspondingly more potassium feldspar than<br />

in the mica schists.<br />

Quartz-rich sillimanite gneisses and sillimanitecordieritegneissestendtopalegreenishgrayonweathered<br />

surfaces and are somewhat rusty, with complex,<br />

tightly folded quartz veins (Fig. 6). These rocks are<br />

also readily distinguishable in drill core because <strong>of</strong><br />

theirpalecolourandtexturalheterogeneity.Sillimanite<br />

is fibrous, indeed fibrolitic (Fig. 7), while cordierite<br />

occurs as pale blebs 1–5 mm in size; microscopic<br />

inspection shows that they are extensively pinitized.<br />

In addition to sillimanite and cordierite, the gneisses<br />

consist principally <strong>of</strong> quartz, plagioclase, potassium<br />

feldspar and biotite. Compositional variation between<br />

layers is defined by variations in the proportions <strong>of</strong><br />

sillimaniteand cordierite. Accessory minerals include<br />

muscovite, garnet, tourmaline and a range <strong>of</strong> sulfides,<br />

notably chalcopyrite, pyrite, pyrrhotite; arsenopyrite<br />

is also present, and galena has been found in fracture<br />

fillings.<br />

During drilling, a dark green plagioclase porphyry<br />

unit about 10 m thick was intersected. The rock is<br />

foliated, with some silicification and alteration <strong>of</strong><br />

hornblende to biotite and also contains angular fragments<br />

<strong>of</strong> mafic composition several cm in diameter.<br />

Reddish or grey pegmatite dykes, usually less than 5 m


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

The Halikko Kultanummi prospect – a new type <strong>of</strong> gold mineralization in the high-grade gneiss terrain <strong>of</strong> southwestern <strong>Finland</strong><br />

Fig. 2. Detailed map <strong>of</strong> the Kultanummi prospect (Wiik, <strong>2004</strong>), showing drill hole locations. Area <strong>of</strong> map is approximately 8 km 2 .<br />

Gold-critical rusty outcrops are indicated with pale brown colour.<br />

Fig. 3. Korvenala-Kaleva (Paimio) and Kultanummi (Halikko) occurrences shown on airborne magnetic image. Tapio Ruotoistenmäki<br />

(<strong>2004</strong>) has indicated inferred tight fold hinges with E-W trending axial surfaces by yellow crosses. Yellow lines indicate trends <strong>of</strong><br />

proposed Au-critical zones, subparallel to fold limbs.<br />

17


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Sari Grönholm, Niilo Kärkkäinen and Jonas Wiik<br />

thick, are common and contain, in addition to quartz,<br />

feldspar and mica, black tourmaline, magnetite and<br />

occasionally sillimanite. Medium-grained reddish<br />

granitic dykes are also present, sometimes containing<br />

garnet and magnetite.<br />

18<br />

Fig. 4. Banding in mica schists defined by magnetite. Photo: Sari Grönholm<br />

Fig. 5. Photomicrograph <strong>of</strong> magnetite-bearing mica schist. Mgt = magnetite, Bt = biotite, Qz = quartz, Pl = plagioclase.<br />

Photo: Photo:JariVäätäinen<br />

Jari Väätäinen<br />

Gold mineralization<br />

Pyrite is the most typical sulfide phase at Kultanum -<br />

mi, impartinga rusty aspect tooutcrops, and occurring<br />

as disseminations, as solitary grains and aggregates


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

The Halikko Kultanummi prospect – a new type <strong>of</strong> gold mineralization in the high-grade gneiss terrain <strong>of</strong> southwestern <strong>Finland</strong><br />

Fig. 6. Rusty sillimanite-cordiertie gneiss; light-coloured, elongate knobbly aggregates <strong>of</strong> both sillimanite and<br />

cordierite stand out in relief on weathered surfaces. Note also intense folding <strong>of</strong> reddish feldspathic quartz vein.<br />

Photo: Sari Grönholm<br />

Fig. 7. Photomicrograph <strong>of</strong> sillimanite gneiss. Si =sillimanite, = sillimanite, Qz =quartz. = quartz. Photo: Jari Väätäinen<br />

and along joint planes. Disseminated chalcopyrite<br />

and pyrrhotite also occur, and isolated arsenopyrite<br />

grainsorgrainaggregatesarepresent,particularlynear<br />

quartz vein margins. Galena has also been found in a<br />

few narrow veins. Tourmaline is also a characteristic<br />

phase in mineralized rock. Chemical data reveal a<br />

reasonable correlation between Au and S, but only a<br />

weak relation between Au and As (Fig. 8).<br />

Gold at Kultanummi appears to be closely associated<br />

with the relatively silicic, or silicified sillimanite<br />

19


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Sari Grönholm, Niilo Kärkkäinen and Jonas Wiik<br />

gneisses, the highest abundances <strong>of</strong> 6490 ppb and<br />

2100 ppb having been recorded from sillimanite mica<br />

gneiss and sillimanite-cordierite gneiss respectively.<br />

However, this correlation is not so obvious from the<br />

geochemical data, in that results appear to indicate<br />

that other lithologies can be anomalous with respect<br />

to Au. It is likely however, that the gold in the more<br />

typical mica gneisses is associated principally with<br />

quartz<strong>of</strong>eldspathic veins. Altered lithologies (Groups<br />

2 and 3 in Fig. 9) also contain relatively high S, compared<br />

<strong>of</strong> the generally low background values in other<br />

rock types at Kultanummi.<br />

20<br />

Fig. 8. Correlation diagrams for Au and S and Au and As; data from the first three holes drilled at Kultanummi (R379-R381)<br />

are not included.<br />

Fig. 9. Variation in Au (left) and S (right) for different rock types at Kultanummi: 1 = mica schist and gneiss, 2 = sillimanitequartz<br />

rock, 3 = sillimanite-cordierite gneiss, 4 = pegmatite, 5 = plagioclase porphyry, 6 = amphibolite, 7 = quartz<strong>of</strong>eldspathic<br />

schist. Lithologies determined from drill core logging.<br />

Alteration<br />

Hydrothermalalterationinthegold-anomalouszone<br />

at Kultanummi is typically evident from increased<br />

sulfide abundances (pyrite, pyrrhotite, chalcopyrite<br />

and more rarely arsenopyrite), presence <strong>of</strong> sillimanite-cordierite<br />

rocks, silicification and locally from<br />

abundantmagnetiteinadjacentmicaschists.Silicified<br />

rock almost invariably contains black, fine-grained<br />

tourmaline, accompanied by sillimanite, cordierite,<br />

sulfidesandgold.Carbonatemineralsareoccasionally<br />

present in Au-enriched rocks. Intensely foliated lay-


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

The Halikko Kultanummi prospect – a new type <strong>of</strong> gold mineralization in the high-grade gneiss terrain <strong>of</strong> southwestern <strong>Finland</strong><br />

Fig. 10. Selected major element abundances for various rock types at Kultanummi: 1= mica schist and gneiss, 2= sillimanite-quartz<br />

rock and sillimanite-cordierite gneiss, 3= plagioclase porphyry, 4= amphibolite 5= quartz<strong>of</strong>edspathic schist 6=<br />

pegmatite. Rock types defined from drill core logging.<br />

ers also display late metamorphic retrograde mineral<br />

assemblages, notably biotite replacement <strong>of</strong> other<br />

minerals,inparticularhornblende,biotitereplacement<br />

bychloriteandsericitization<strong>of</strong>plagioclase.Withinthe<br />

zone <strong>of</strong> hydrothermal alteration, even the plagioclase<br />

porphyry contains more elevated gold concentrations<br />

(106 ppb over 1 m) compared to values <strong>of</strong> below 5 ppb<br />

when it is associated with unaltered amphibolites.<br />

Major element abundances in altered rocks broadly<br />

mirror those <strong>of</strong> mica schists and mica gneisses; magnesium,<br />

aluminium, potassium and iron contents in<br />

particular suggest that the sillimanite and cordierite<br />

gneisses were originally typical pelitic gneisses in<br />

composition (Fig. 10).<br />

Magnetite is a characteristic accessory mineral<br />

throughout the study area. Nevertheless, the Au-mineralized<br />

sillimanite-cordierite gneisses are generally<br />

only weakly magnetic. Susceptibilities are higher in<br />

associated mica schist intercalations. Magnetite also<br />

occurs as large discrete crystals at the margins <strong>of</strong> the<br />

sillimanite-cordierite gneiss layers, and within crosscutting<br />

granitic and pegmatitic dykes, particularly<br />

withinthehydrothermallyalteredzone.Magnetitecan<br />

also be found in the mica schists as isolated idioblastic<br />

grains, or forming narrow bands.<br />

Susceptibilitymeasurementsindicatesomesystematicrelationshipsbetweenmagnetite,sulfidesandgold,<br />

and these correlation may be related to mineralization<br />

process. For example, in drill core from R391 and<br />

R394, Au and S abundances correlate well (Fig. 11).<br />

21


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Sari Grönholm, Niilo Kärkkäinen and Jonas Wiik<br />

22<br />

Fig. 11. Variations in gold concentration (red), susceptibility (black) ja sulfur (blue) for selected drill core intervals from Kultanummi.<br />

Note the strong positive correlation between Au and S and high susceptibility values, due to the presence <strong>of</strong> magnetite, at the margins <strong>of</strong><br />

the mineralized zone.


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

The Halikko Kultanummi prospect – a new type <strong>of</strong> gold mineralization in the high-grade gneiss terrain <strong>of</strong> southwestern <strong>Finland</strong><br />

Whilst in general Au and S abundances fall markedly<br />

as magnetite content – and hence susceptibility – increase,<br />

in some cases (R388), a positive association<br />

between S abundance and susceptibility is observed,<br />

related to the presence <strong>of</strong> pyrrhotite.<br />

discussion<br />

GTK has been studying the Paimio Korvenala-<br />

Kaleva and Halikko Kultanummi gold occurrences<br />

sporadically since 1995. The geological environment<br />

<strong>of</strong> these prospects differs from that <strong>of</strong> the Tampere<br />

and Häme schist belts, which are at lower metamorphic<br />

grade and have been the main focus <strong>of</strong> GTK<br />

activity for many years (Kärkkäinen et al. <strong>2003</strong>). The<br />

Korvenala-Kaleva and Halikko prospects both occur<br />

within similar rock types, within a distinct structural<br />

zone bounded by shear zones and relatively late orogenic<br />

granitoids. The mineralization at the Halikko<br />

Kultanummi occurrence is characterized by rusty,<br />

strongly foliated sillimanite-cordierite gneisses and<br />

mica schists.<br />

This Au-critical association <strong>of</strong> s illimanite- and<br />

cordierite-bearing gneisses is considered to represent<br />

hydrothermal alteration accompanying the gold<br />

mineralization, and the sillimanite and cordierite is<br />

attributed to a younger prograde metamorphic event<br />

superimposed on pre-existing sericitic and chlorite<br />

schists. On the basis <strong>of</strong> currently available data it is<br />

however, difficult to determine whether or not the<br />

sericitic/chloritic alteration would have been formed<br />

within a shear zone developed during early stages <strong>of</strong><br />

the regional metamorphic event, rather than predating<br />

the metamorphism. Geochemical data suggest that the<br />

protoliths to the altered rocks were mica schists and<br />

the unaltered mica gneisses adjacent to the mineralized<br />

zone also appear to represent the more strongly<br />

recrystallized derivatives <strong>of</strong> mica schists.<br />

The Kultanummi gold mineralization is characterized<br />

by strong geochemical correlation between gold<br />

andsulfur,therelativelylowAsandaprominentenrichment<br />

<strong>of</strong> magnetite in wall rocks. Sulfidation reactions<br />

are suggested as a mechanism for gold precipitation,<br />

because the highly sulfidized zone and elevated Au<br />

abundances occur within a restricted part <strong>of</strong> the hydrothermalalterationzone,whilethecordierite-sillimanite<br />

rocks in the western part <strong>of</strong> the Kultanummi zone are<br />

less mineralized when compared to the main zone.<br />

The altered rocks and accompanying quartz veins are<br />

also tightly folded, indicated that gold mineralization<br />

predates at least some <strong>of</strong> the deformation.<br />

According to Rosenberg (2000), the predominant<br />

rock type at the Korvenala-Kaleva prospect is<br />

plagioclase porphyry, which has somewhat higher<br />

As abundances than at Halikko. At both prospects<br />

however, free gold must be present, as deduced from<br />

gold grains in heavy mineral separates recoveredfrom<br />

till and weathered bedrock. Athird Au occurrence in<br />

relatively high grade terrain is at Stenmo, near Kemiö,<br />

where gold is present in sillimanite gneisses within a<br />

metavolcanic sequence (Nordbäck <strong>2003</strong>).<br />

Summary<br />

Recent studies in the relatively high grade metamorphic<br />

terrain <strong>of</strong> southwestern <strong>Finland</strong> have delineated<br />

several gold occurrences, including the Halikko<br />

Kultanummi prospect. Mineralization at Halikko is<br />

associatedwiths ilicicalterationinsillimanite-co rdier -<br />

ite gneisses and a strong association between silicification,<br />

sulfidation and gold has been recognized. In<br />

addition,rockssurroundingthemineralizedzoneshow<br />

a prominent enrichment in magnetite. The alteration<br />

zone and associated quartz veins carrying anomalous<br />

gold values (>10 ppb) are also strongly folded. The<br />

distribution <strong>of</strong> gold is relatively well constrained by<br />

drilling within the alteration zone and correlates well<br />

with sulfide abundance.<br />

Both the Halikko Kultanummi prospect and the<br />

Paimio Korvenala-Kaleva occurrence previously discovered<br />

by GTK attest to the mineralization potential<br />

<strong>of</strong> this previously neglected metamorphic terrain in<br />

southwestern <strong>Finland</strong>.<br />

REFERENCES<br />

huhma, A. 1957. Marttila. <strong>Geological</strong> Map <strong>of</strong> <strong>Finland</strong> 1 1: :<br />

100 000, Pre-Quaternary Rocks, Sheet 2022. <strong>Geological</strong> <strong>Survey</strong><br />

<strong>of</strong> <strong>Finland</strong>.<br />

kärkkäinen, N. , lehto, T., Tiainen, M., Jokinen T., Nironen<br />

M., Peltonen, P. & valli, T. <strong>2003</strong>. Etelä- ja Länsi-Suomen<br />

kaarikompleksi, kullan ja nikkelin etsintä vuosina 1998<br />

– 2002. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, unpublished report<br />

M19/21,12/<strong>2003</strong>/1/10. 118 p. + 4 app.<br />

lehijärvi, M. 1955. Salo. <strong>Geological</strong>Map<strong>of</strong><strong>Finland</strong>1:100 <strong>Geological</strong> Map <strong>of</strong> <strong>Finland</strong> 1 : 100 000,<br />

Pre-Quaternary Rocks, Sheet 2021. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong><br />

<strong>Finland</strong>.<br />

Nordbäck, N. <strong>2003</strong>. Malmgeologiska studier över en guldmineralisering<br />

i Stenmo, Kimito, SV-<strong>Finland</strong>. Unpublished master´s<br />

thesis, Åbo Akademi. 62 p.<br />

Rosenberg, P. 2000. Paimion Korvenalan alueella vuosina 1996<br />

– 1998 suoritetut kultatutkimukset. <strong>Geological</strong> <strong>Geological</strong><strong>Survey</strong><strong>of</strong>Fin-<br />

<strong>Survey</strong> <strong>of</strong> Fin-<br />

land, unpublished report M19/2021/2000/1/10. 9 p. + 18 app.<br />

Ruotoistenmäki, T. <strong>2004</strong>. Kultanummi ja Korvenala-Kalevaalueen<br />

ge<strong>of</strong>ysiikan kartoista, rakennetulkintaa ja niiden asso-<br />

sioitumisesta kultakriittisiin kohteisiin. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong><br />

<strong>Finland</strong>, unpublished report. 4 p.<br />

wiik, J. <strong>2004</strong>. Beskrivning av en guldmineralisering i Kultanummi,HalikkoSV-<strong>Finland</strong>.Unpublishedmaster´sthesis,Åbo<br />

Akademi. 50 p. + 21 app.<br />

23


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Sari Grönholm, Niilo Kärkkäinen and Jonas Wiik<br />

24


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, <strong>Current</strong> <strong>Research</strong> <strong>2003</strong>–<strong>2004</strong>,<br />

Edited by Sini Autio.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38, 25– 29 , 2005.<br />

ORE PROSPECTiNG iNThE RibbEd MORAiNEAREAOF MiSi, NORThERN FiNlANd<br />

introduction<br />

1) <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, P.O. Box 77, FI-96101 Rovaniemi, <strong>Finland</strong><br />

2) <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, P.O. Box 1237, FI-70211 Kuopio, <strong>Finland</strong><br />

E-mail: pertti.sarala@gtk.fi<br />

Key words (GeoRef Thesaurus, AGI): mineral exploration, moraines, ribbed moraines, till, boulders, glacial transport, Misi, Kemijärvi,<br />

<strong>Finland</strong><br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong> (GTK) has carried<br />

out intensive ore prospecting in the area <strong>of</strong> Misi since<br />

the 1990s. The studies have been a part <strong>of</strong> the detailed<br />

investigation<strong>of</strong>theironoxide-copper-golddepositsin<br />

northern <strong>Finland</strong>. At the same time, bedrock mapping<br />

has been undertaken in the area and the map sheet<br />

<strong>of</strong> Vikajärvi (map sheet 3614) at a scale 1:100 000<br />

was published at the end <strong>of</strong> 2002 (Hanski 2002). The<br />

area is known for its iron formations, <strong>of</strong> which the<br />

occurrences <strong>of</strong> Kärväsvaara, Raajärviand Leveäselkä<br />

were mined during 1959-1975. The total volume <strong>of</strong><br />

the quarried ore is over 8 million tons, <strong>of</strong> which 3.5<br />

million tons is Fe concentrate. Observations made<br />

by local people and geologists during mapping have<br />

shown the Misi area to be once again potential for<br />

ore prospecting.<br />

The village <strong>of</strong> Misi is situated about 50 km NE <strong>of</strong><br />

the city <strong>of</strong> Rovaniemi, in the direction <strong>of</strong> Kemijärvi<br />

(Fig. 1). The area lies in the middle <strong>of</strong> the ribbed<br />

moraine area <strong>of</strong> Peräpohjola, northern <strong>Finland</strong>. Ore<br />

boulder observations made <strong>of</strong> the different landform<br />

types have focused on the areas <strong>of</strong> Köyry, Tuorevaara<br />

and Venejärvi (Fig. 2). The boulders are mainly composed<br />

<strong>of</strong> hydrothermally altered amphibolites with<br />

anomalous contents <strong>of</strong> Zn (ca. 5% in Köyry and ca.<br />

3% in other areas), Cu and Au. In the present study,<br />

by<br />

Pertti Sarala 1) and Jari Nenonen 2)<br />

carried out in <strong>2004</strong>, the transport distances and the<br />

most potential source areas <strong>of</strong> the boulders have been<br />

estimated. The methods we have used have been field<br />

studies and tractor excavations together with interpretation<br />

<strong>of</strong> glacial morphology. Glacial flow directions,<br />

tillstructuresandstratigraphy,pebblelithology,heavy<br />

mineral composition and geochemical features have<br />

been studied in the 23 test pits, <strong>of</strong> which the mean<br />

depth was about 3.5 m. Till samples have been left<br />

at the GTK’s laboratory in Rovaniemi for chemical<br />

analysis (ICP-AES method).<br />

<strong>Geological</strong> setting<br />

Bedrock<strong>of</strong>thestudyareaiscomposed<strong>of</strong>therocks<strong>of</strong><br />

the Peräpohja Schist Belt (2.0-2.3 Ga) and the Central<br />

Lapland Granites (1.8 Ga) (Fig. 2). The southern part<br />

<strong>of</strong> the area consists <strong>of</strong> mica gneiss while the central<br />

area consists <strong>of</strong> the large NW-SE-oriented zone <strong>of</strong><br />

arkosic gneiss. Anarrow zone <strong>of</strong> mafic tuffites and<br />

mica schists cuts the whole area in the same direction<br />

as the arkosic gneiss. By contrast, the assemblage<br />

<strong>of</strong> mafic metalavas and basalt magmas (gabbros) is<br />

dominant on the eastern side <strong>of</strong> the village <strong>of</strong> Misi.<br />

The schist belt is bordered by granites in the north.<br />

The massive Fe-ore occurrences are closely related to<br />

thedolomite-skarnrock-serpentiniteassemblageinthe<br />

east. The schists with hydrothermal alteration in the<br />

25


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Pertti Sarala and Jari Nenonen<br />

26<br />

Fig. 1. Alocation <strong>of</strong> the study area in the village <strong>of</strong> Misi, NE <strong>of</strong> the city <strong>of</strong> Rovaniemi.<br />

The area is located in the middle <strong>of</strong> the ribbed moraine area in Peräpohjola, southern<br />

Lapland.<br />

Fig. 2. Generalized bedrock map <strong>of</strong> the study area and the location <strong>of</strong> the most potential ore boulders<br />

in the case study areas.


volcanic environment seem to be the most critical for<br />

a new type <strong>of</strong> ore occurrences in the central area.<br />

Theproportion<strong>of</strong>bedrockoutcropsisestimatedtobe<br />

only 1 % <strong>of</strong> the land area. The outcrops occur mainly<br />

as groups near the high hill areas. The surface <strong>of</strong> the<br />

bedrockismostly coveredbythegl aciogenicdeposit s,<br />

which include different types <strong>of</strong> active-ice formations<br />

and one esker-system (Fig. 3). In topographic expression<br />

and lowland areas, ribbed moraines are the most<br />

commonformationtype.Theribbedmoraineisagroup<br />

<strong>of</strong> moraine formations that have the same kind <strong>of</strong> morphologyandsimilarsubglacialorigin(cf.Hätterstrand<br />

1997). They are formed <strong>of</strong> ridges perpendicular to the<br />

most recent glacial flow direction, which is, according<br />

to striae and fabric analyses from the direction about<br />

270°-290° in the Misi area. The transition to the longitudinal<br />

formations is seen as a streamline element<br />

related to the unique ribbed moraine ridges and as a<br />

transitional series from ribbed moraines to drumlins<br />

and flutings (cf. Aario 1990). For that reason, these<br />

moraine ridges can also be called Rogen moraines,<br />

according to Lundqvist (1969).<br />

The ridges are composed <strong>of</strong> two till units representing<br />

different glacial phases (Fig. 4). The lower unit is<br />

compact and homogenous in its structure and sandy in<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Ore prospecting in the ribbed moraine area <strong>of</strong> Misi, northern <strong>Finland</strong><br />

itsmatrix.Itfo rmedsubglacially duringtheadvanc ing<br />

stage<strong>of</strong>theglacierunderlodgementprocesses.Glacial<br />

flow direction was from NW to SE. By contrast, the<br />

upper till unit consists partly <strong>of</strong> re-deposited material<br />

due to the quarrying activity during the formation<br />

<strong>of</strong> the ridges and also melt-out till deposited at the<br />

latest stage <strong>of</strong> deglaciation, while the edge <strong>of</strong> the<br />

glacier melted away after the movement stopped. The<br />

structures are sandy lenses and layers together with<br />

fine-grain laminae in the former case and homogeneity<br />

and occasional flow or consolidation structures in<br />

the latter case. The uppermost part <strong>of</strong> the ridges was<br />

washed during the later stages <strong>of</strong> the Ancylus Lake,<br />

after which the water level decreased due to isostatic<br />

uplift <strong>of</strong> the ground.<br />

The ribbed moraine ridges in the Misi area are characteristically<br />

strewn with boulders. The abundance <strong>of</strong><br />

bouldersatthesurfaceismainlyduetothedepositional<br />

processesoccurringduringtheformation<strong>of</strong>ridges,but<br />

partlyinconsequence<strong>of</strong>thepost-glacialwashing.The<br />

rock types <strong>of</strong> the boulders correlate well with the rock<br />

types found in the underlying bedrock, and this is a<br />

typical feature for the ribbed moraines in other parts <strong>of</strong><br />

thePeräpohjolaarea,too(cf.Aa rio&Peuraniemi1992,<br />

Sarala & Rossi 1998, 2000). The transport distances<br />

Fig. 3. A relief map based on the elevation model and glacial morphology <strong>of</strong> the study area.<br />

27


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Pertti Sarala and Jari Nenonen<br />

are estimated to be only from some tens <strong>of</strong> metres to<br />

a few hundreds <strong>of</strong> metres for local rock material but<br />

several kilometres for granites. The same feature is<br />

also reflected in the geochemistry <strong>of</strong> the upper till<br />

(cf. Sarala & Rossi 1998). Field observations have<br />

proven this phenomenon is <strong>of</strong> use in prospecting. In<br />

the case <strong>of</strong> drumlins and flutings, transport distances<br />

are many times greater and the direct control between<br />

till material or surficial boulders and bedrock is hard<br />

to determine.<br />

Conclusion<br />

The ore potentiality <strong>of</strong> the Misi area, northern <strong>Finland</strong><br />

seems to be high, because <strong>of</strong> the great number <strong>of</strong><br />

ore boulders found at the surface <strong>of</strong> different moraine<br />

formations in the area. The transitional series <strong>of</strong> active-ice<br />

moraine formations from transversal ribbed<br />

moraines to longitudinal drumlins and flutings have<br />

been observed. Ribbed moraine ridges are composed<br />

<strong>of</strong> Rogen moraine and hummocky ribbed moraine<br />

types in the area. Formation <strong>of</strong> the ridges seems to be<br />

a result <strong>of</strong> a two-step process (Fig. 5), where frozen<br />

subglacial sediments were fragmented and moved<br />

under compressive glacial flow in the first stage.<br />

Secondly, the dominant freezing conditions caused<br />

the freeze-thaw process to prevail under the moving<br />

ice leading to the quarrying activity that reached the<br />

bedrocksurfacebetweenthenewlybornridges.These<br />

28<br />

Fig. 4. Generalized stratigraphy <strong>of</strong> ribbed moraines and drumlins in the Misi area.<br />

kinds <strong>of</strong> conditions seem to have existed under the ice<br />

sheetinthetransitionzonebetw eenfrozenandthawed<br />

beds during deglaciation (cf. Hättesstrand 1997).<br />

Ribbed moraines are ideal for prospecting work,<br />

because <strong>of</strong> the short transport distance <strong>of</strong> rock material<br />

in the uppermost till. Particularly, boulders within<br />

the till and at the surface reflect the variation <strong>of</strong> local<br />

bedrock composition. This phenomenon is common<br />

for all ribbed moraine types if the pre-existing<br />

sediments have been thin enough for the quarrying<br />

to have reached the bedrock surface. Due to formation<br />

processes, prospecting work differs quite a lot<br />

in the areas <strong>of</strong> ribbed moraines compared to areas <strong>of</strong><br />

drumlins and flutings. For example, the boulders in<br />

the uppermost parts <strong>of</strong> ridges must be taken account<br />

when choosing the equipment for geochemical sampling.<br />

The observations and the results presented here<br />

will be clarified in the near future when the chemical<br />

analyses <strong>of</strong> till samples and some planned deep drillings<br />

have been done.<br />

Acknowledgements<br />

We thank Jorma Isomaa for discussions and Antti<br />

Pakonen and Jorma Valkama for assistance during the<br />

field works. Dr Keijo Nenonen <strong>of</strong> GTK gave valuable<br />

comments and Mr Christopher Cunliffe checked the<br />

English <strong>of</strong> the manuscript.


REFERENCES<br />

Aario, R. (ed.) 1990. Glacial heritage <strong>of</strong> northern <strong>Finland</strong>; an<br />

excursion guide. Nordia tiedonantoja, Sarja A: 1.96p. 1. 96 p.<br />

Aario, R. & Peuraniemi, v. 1992. Glacial dispersal <strong>of</strong> till con- constituents<br />

in morainic landforms <strong>of</strong> different types. In: In:Aario,R. Aario, R.<br />

& Heikkinen, O. (eds.) Proceedings <strong>of</strong> the third international<br />

drumlin symposium. Geomorphology 6 (1), 9-25.<br />

hanski, E. 2002. Vikajärvi. <strong>Geological</strong> Map <strong>of</strong> <strong>Finland</strong> 1:100<br />

000, Pre-Quaternary Rocks, Sheet 3614. <strong>Geological</strong> <strong>Survey</strong><br />

<strong>of</strong> <strong>Finland</strong>.<br />

hättestrand, C. 1997 . Ribbed moraines in Sweden – distribution<br />

pattern and paleoglaciological implications. In: Piotrowski, J.<br />

A. (ed.) Subglacial environments. Sedimentary geology 111,<br />

41-56.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Ore prospecting in the ribbed moraine area <strong>of</strong> Misi, northern <strong>Finland</strong><br />

Fig. 5. Difference between the transportation <strong>of</strong> till material and till geochemistry in ribbed moraine<br />

ridges and drumlins. Aformation <strong>of</strong> ribbed moraines is two-step process, where fragmented subglacial<br />

sediments are moved under compressive glacial flow in the first stage and the following freeze-thaw<br />

conditions lead up to the quarrying <strong>of</strong> bedrock surface between the ridges during the second stage.<br />

lundqvist, J. 1969. Problems <strong>of</strong> the so-called Rogen moraine.<br />

Sveriges riges Geologiska Undersökning C648, C 648, 1-32.<br />

Sarala, P. & Rossi, S. 1998. Kupari- ja kultapitoisen hiertovyöhykkeen<br />

paikantaminen moreenigeokemiallisin tutkimuksin<br />

Peräpohjan liuskealueelta Pohjois-Suomessa. Summary:<br />

Discovery <strong>of</strong> a copper- and gold-bearing shear zone as a result<br />

<strong>of</strong> research into the geochemistry <strong>of</strong> Peräpohja Schist Belt,<br />

northern <strong>Finland</strong>. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Report <strong>of</strong><br />

Investigations 119. 44 p.<br />

Sarala, P. & Rossi, S. 2000. The Theapplication application <strong>of</strong> <strong>of</strong>till till geochemistry<br />

inexplorationintheRogenmoraineareaatPetäjävaara,northern<br />

<strong>Finland</strong>. Journal <strong>of</strong> Geochemical Exploration 68, 87-104.<br />

29


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 36<br />

Matti Tyni, Kauko Puustinen, Juha Karhu and Matti Vaasjoki<br />

30


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, <strong>Current</strong> <strong>Research</strong> <strong>2003</strong>–<strong>2004</strong>,<br />

Edited by Sini Autio.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38, 31– 41 , 2005.<br />

EXPlORATiON RESulTS ANd MiNERAlOGiCAlSTudiESON ThE luMikANGASAPA-<br />

TiTE-ilMENiTE GAbbRO, kAuhAJOki, wESTERN FiNlANd<br />

introduction<br />

by<br />

Olli Sarapää , Niilo Kärkkäinen, Tegist Chernet, Jaana Lohva and Timo Ahtola<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, P.O. Box 96, FI-02151 Espoo, <strong>Finland</strong><br />

E-mail: olli.sarapaa@gtk.fi<br />

Key words (GeoRef Thesaurus, AGI): mineral exploration, titanium ores, ilmenite, magnetite, apatite, gabbros, geochemistry, Proterozoic,<br />

Lumikangas, <strong>Finland</strong><br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong> (GTK) has explored<br />

the Lumikangas gabbro since 2002 as a potential<br />

source for titanium and phosphorous. Lumikangas<br />

is situated 15km south <strong>of</strong> the town <strong>of</strong> Kauhajoki in<br />

South Pohjanmaa (Fig. 1). The landscape is a flat divide<br />

area, 170m above sea level, consisting <strong>of</strong> eskers<br />

bordered by marshes. According to previous seismic<br />

measurements,theoverburdenis30-70mthick.Recent<br />

drillings intersected a 35-50 m soil cover composed<br />

<strong>of</strong> sand-silt-gravel layers with a till interbed.<br />

The Lumikangas area was selected as a target for<br />

exploration on the basis <strong>of</strong> an outstanding regional<br />

geophysical anomaly (Fig. 2). There are magnetic and<br />

gravity highs on the low-altitude aeromagnetic and on<br />

the regionalgravitymaps, respectively. Theeconomic<br />

interest <strong>of</strong> Lumikangas is in titanium and phosphorous<br />

because this geophysical anomaly belongs to<br />

the Kauhajoki gabbro province, which is generally<br />

characterised by high content <strong>of</strong> ilmenite, magnetite<br />

and apatite (Kärkkäinen et al. 1997).<br />

The first exploration stage, carried out in 2002, was<br />

relatedtoGTK’s bedrockmappingandoreexploration<br />

at Pohjanmaa. The first drill hole (R396) was focused<br />

on the magnetic and gravity maxima, where the overburdenisthelowest,accordingtoseismicpr<strong>of</strong>ileacross<br />

the Lumikangas regional anomaly (Lehtimäki 1984).<br />

This drill hole penetrated a layered gabbro containing<br />

15-20 wt% <strong>of</strong> magnetite, apatite and ilmenite in total.<br />

The Lumikangas gabbro was found to be a potential<br />

exploration target on the basis <strong>of</strong> chemical analyses<br />

and mineralogical studies.<br />

In the second stage, carried out in <strong>2004</strong>, systematic<br />

groundmagneticandgravitymeasu rementsweremade<br />

for the area <strong>of</strong> 5 km 2 . After geophysical interpretation<br />

five drill holes in two pr<strong>of</strong>iles were drilled, totalling<br />

1308 m (R396-401), and geophysically logged. Mate -<br />

rial for this study includes 446 XRF-analyses, mass<br />

susceptibility measurements (magnetite wt %) along<br />

the drill core samples, microprobe analyses from<br />

polished thin sections and ICP-MS analysis from<br />

apatite concentrate. This paper presents the results <strong>of</strong><br />

preliminary exploration and mineralogical studies on<br />

the Lumikangas apatite-ilmenite gabbro.<br />

Regional geology<br />

The Kauhajoki gabbro province is situated in the<br />

western part <strong>of</strong> Central <strong>Finland</strong> Granitoid Complex<br />

(1870-1890 Ma), between the synorogenic granitoids<br />

andthelateorogenicLauhanvuorigranite(Fig.1).The<br />

mafic-ultramafic intrusions at Honkajoki (Pääkkönen<br />

1962, Pakarinen 1984, Rämö 1986), Kauhajärvi<br />

(Kärkkäinen&Appelqvist1999),Hyyppä(Huuskonen<br />

& Kärkkäinen 1994) and Lumikangas are layered,<br />

mainly gabbroic in composition, and are variably<br />

differentiated from peridotite to anorthosite. They all<br />

31


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Olli Sarapää , Niilo Kärkkäinen, Tegist Chernet, Jaana Lohva and Timo Ahtola<br />

Fig. 1. Location <strong>of</strong> Lumikangas at Kauhajoki on a road map and a generalised geological map.<br />

Fig. 2. Aeromagnetic and residual gravity high (curves) indicating potential ilmenite targets.<br />

32


Fig. 3. Ground magnetic map <strong>of</strong> the southern part <strong>of</strong> the Lumikangas intrusion.<br />

contain considerable amounts <strong>of</strong> ilmenite, apatite and<br />

magnetite, averaging 18–22 wt% together.<br />

Exploration geophysics<br />

All known ilmenite gabbros <strong>of</strong> the Kauhajoki<br />

province are visible as magnetic and gravity highs<br />

on the predicted map compiled from aeromagnetic<br />

and residual gravity data (4-6 points /km 2 , Fig. 2.)<br />

The Lumikangas gabbro is situated in an areal gravity<br />

gradient, where the regional level increases 3 mGal<br />

over a distance <strong>of</strong> 1.5 km. The maximum gravity<br />

anomaly caused by the Lumikangas intrusion is 3.5<br />

mGal as measured from the estimated base level <strong>of</strong><br />

the regional gravity field.<br />

The area <strong>of</strong> 5 km 2 was studied by using magnetic,<br />

gravity and horizontal loop EM measurements over<br />

the Lumikangas gabbro. According to the seismic<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Exploraton results and mineralogical studies on the lumikangas apatite-ilmenite gabbro ...<br />

pr<strong>of</strong>ile, the overburden is 30-70m thick over the intru -<br />

sion. The magnetic anomaly, at its highest 4 000 nT,<br />

is caused by magnetite and remanent magnetism (Fig.<br />

3). Magnetic and gravity interpretations indicate that<br />

the deposit extends to a depth <strong>of</strong> 300–500 m.<br />

lumikangas apatite-ilmenite gabbro<br />

General description, stratigraphy and resources<br />

This study focuses on the southern part <strong>of</strong> the Lumikangas<br />

positive magnetic anomaly, where, according<br />

to the ground geophysics, the gabbro body is 1.5 km<br />

long and a half kilometre wide, while the total length<br />

<strong>of</strong> the magnetic anomaly is five kilometres (Figs. 2<br />

and 3). Drilling results show that the apatite-ilmenite<br />

gabbro dips to the east at an angle <strong>of</strong> 30 degrees (Fig.<br />

4). Based on the drilling, the thickness <strong>of</strong> this oxide<br />

33


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Olli Sarapää , Niilo Kärkkäinen, Tegist Chernet, Jaana Lohva and Timo Ahtola<br />

Fig. 4. A drilling section <strong>of</strong> the Lumikangas gabbro.<br />

gabbro, with a total amount <strong>of</strong> ilmenite and magnetite<br />

over10 %, is at least 200 m and, according to the<br />

geophysics, reaches 500 m. The gabbro is dissected<br />

into two blocks by reverse faulting, so that the western<br />

block (hanging wall) (R396 and R401) has been<br />

upliftedandtheeasternblock(f ootwall)(R400,R399)<br />

has descended (Fig. 4). As a result <strong>of</strong> this movement,<br />

the oxide content decreases downwards in the western<br />

block and increases in the eastern block.<br />

The structure <strong>of</strong> the intrusion is clearly layered and<br />

the compositional variation ranges from Fe-Ti-rich<br />

dark gabbros to apatite-rich leucogabbros. The intrusion<br />

can be divided into two main sections. The basal<br />

part is composed <strong>of</strong> dark medium-grained gabbro or<br />

gabbronorite, hornblende gabbro and olivine gabbro,<br />

and the upper part is medium to coarse-grained leucogabbro<br />

or monzogabbro within a few metres thick<br />

layers <strong>of</strong> gabbro-pegmatoid and metadiabase dikes.<br />

The inferred and possible resources based on geophysics<br />

and two drilling sections include 230 million<br />

tons <strong>of</strong> oxide gabbro, which are 1200 m long, 300<br />

m wide and 200 m thick. Almost the whole drilling<br />

section is composed <strong>of</strong> oxide gabbro, which contains<br />

34<br />

an average <strong>of</strong> 19 % ore minerals: 8.7 % (max. 21 %)<br />

ilmenite, 4.8 % (max. 17 %) magnetite and 5.4 %<br />

(max. 17 %) apatite (Table 1).<br />

Petrography<br />

The alternate layering <strong>of</strong> the various rock types<br />

in drill hole R400 is as follows: subhedral mediumgrained<br />

monzogabbro, olivine monzogabbro, gabbronorite,<br />

hornblende gabbro, olivine gabbronorite<br />

and gabbro. The primary texture <strong>of</strong> the rock generally<br />

is subophitic, which is still preserved. The rock-forming<br />

minerals are pyroxenes, uralite and hornblende,<br />

cummingtonite, albite and K-feldspar, plagioclase,<br />

biotite, Fe-Ti oxides, apatite, olivine, chlorite, quartz<br />

and rarely sphene. Silicate minerals constitute 75–95<br />

vol% <strong>of</strong> the rock.<br />

Igneous clinopyroxene, orthopyroxene and olivine<br />

are partially metamorphosed and replaced mainly by<br />

uralites and biotite (Fig. 5a). Prismatic to granular<br />

plagioclase and alkali feldspar are the major rockforming<br />

minerals (Fig. 5b, 6f) up to 2 mm in length<br />

and commonly affected by sericitization. Plagioclase


composition is mainly labradorite (Table 2) and occasionally<br />

ranges from oligoclase to labradorite. In<br />

places, plagioclase is partially transformed into albite<br />

(analysis no.7, Table 2). Alkali feldspar is represented<br />

bythetypicaltexture<strong>of</strong>micrope rthiteexsolutioninter -<br />

growth <strong>of</strong> sodium-rich and potassium rich feldspar,<br />

andantiperthiteintergrowth<strong>of</strong>potassium-richfeldspar<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Exploraton results and mineralogical studies on the lumikangas apatite-ilmenite gabbro ...<br />

Table 1. Chemical compositions <strong>of</strong> Lumikangas gabbro ; 1. Average oxide-gabbro (ilmenite+magnetite<br />

>10 %), 2. Oxide-monzogabbro (R400, 50–120 m), 3. Oxide-gabbronorite (R400, 132–178), 4. Oxide-monzogabbro<br />

(R400, 63.3-65.3), 5. Ilmenite-apatitegabbro (R400, 138–140), 6. Ilmenite-magnetitegabbro (R400,<br />

148–150), 7. Gabbro (R400 190–192).<br />

1 2 3 4 5 6 7<br />

SiO 2 40.34 42.45 38.64 40.40 36.90 38.70 45.60<br />

TiO 2 4.36 4.25 4.61 4.70 5.18 5.56 2.63<br />

Al 2 O 3 12.39 12.27 12.6 11.60 10.20 11.40 16.20<br />

Fe 2 O 3 21.96 19.77 22.92 21.46 21.75 26.73 15.16<br />

MnO 0.28 0.29 0.27 0.31 0.28 0.29 0.20<br />

MgO 5.40 4.60 5.82 4.85 6.37 5.08 4.29<br />

CaO 9.32 9.39 9.6 9.94 11.75 7.415 9.57<br />

Na 2 O 2.38 2.52 2.28 2.34 2.00 2.31 3.16<br />

K 2 O 0.76 1.27 0.54 0.98 0.71 0.50 0.75<br />

P 2 O 5 2.12 2.53 2.11 2.87 4.26 1.42 1.06<br />

S 0.232 0.219 0.29 0.233 0.423 0.277 0.229<br />

V 0.041 0.028 0.052 0.029 0.038 0.069 0.034<br />

Cr 0.004 0.003 0.004 0.003 0.003 0.011 0.006<br />

Ni 0.003 0.002 0.004 0.002 0.003 0.002 0.003<br />

Cu 0.006 0.006 0.009 0.0068 0.011 0.007 0.008<br />

magnetite% 4.86 3.36 5.35 3.83 3.39 8.65 1.59<br />

Valid N 313 34 23 1 1 1 1<br />

in sodium-rich (albite) matrix. Equal proportions <strong>of</strong><br />

albite and K-feldspar intergrowth (mesoperthite) and<br />

microcline feldspar with crossed hatched twinning<br />

structure are also observed. Biotite (both primary and<br />

secondary) is another common silicate mineral that<br />

together with uralite <strong>of</strong>ten rim ilmenite and magnetite<br />

(Fig. 5a).<br />

Table 2. Selected electron microprobe (Cameca Camebax SX100) analyses <strong>of</strong> ilmenite, magnetite, apatite and some silicate minerals<br />

(operating conditions: 15-20KeV, 10-15nA, 1-10μm beam diameter; analysed by Bo Johanson and Lassi Pakkanen)<br />

1 2 3 4 5 6 7 8 9 10 11 12 13<br />

SiO 2 0.01 0.02 0.17 0.09 0.14 0.14 67.65 64.48 59.64 62.67 54.92 50.92 53.43<br />

TiO 2 50.05 50.77 0.06 1.28 0.00 0.00 0.04 0.02 0.03 0.00 0.05 0.65 0.06<br />

Al 2 O 3 0.00 0.00 0.47 0.59 0.01 0.01 19.93 18.41 19.45 22.48 27.92 1.94 0.72<br />

Cr 2 O 3 0.01 0.01 0.14 0.15 0.00 0.03 0.00 0.02 0.03 0.02 0.01<br />

V 2 O 3 0.03 0.01 1.25 1.09<br />

FeO 47.10 46.64 90.93 90.79 0.09 0.09 0.00 0.04 0.04 0.09 0.16 14.42 24.06<br />

MnO 1.02 1.06 0.02 0.04 0.05 0.05 0.01 0.00 0.00 0.03 0.04 0.34 0.89<br />

MgO 0.04 0.24 0.02 0.02 0.00 0.00 0.02 0.01 0.00 0.00 0.01 11.77 17.38<br />

CaO 0.00 0.00 0.01 0.01 54.66 54.03 0.74 0.02 0.03 3.81 10.06 18.30 0.57<br />

Na 2 O 0.00 0.00 0.00 0.00 0.00 0.00 10.28 0.75 1.03 8.63 5.28 0.22 0.05<br />

K 2 O 0.01 0.01 0.00 0.01 0.01 0.00 0.21 15.24 12.77 0.12 0.08 0.01 0.06<br />

P 2 O 5 40.46 41.88<br />

BaO 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.32 5.74 0.04 0.15 0.05 0.03<br />

SrO 0.06 0.06 0.04 0.02 0.09 0.30 0.18 0.05 0.05<br />

NiO 0.01 0.01 0.01 0.02 0.02 0.04 0.03 0.02 0.01 0.02 0.02<br />

ZnO 0.03 0.03 0.03 0.03<br />

F 3.60 2.61 0.02 0.00 0.00 0.00 0.00 0.00 0.00<br />

Cl 0.00 0.00 0.00 0.00 0.05 0.12 0.02 0.01 0.01 0.00 0.00 0.01 0.03<br />

SO 2 0.01 0.01<br />

Total 98.31 98.80 93.11 94.12 99.14 99.00 99.06 99.39 98.85 98.21 98.87 98.71 97.37<br />

Note: Ilmenite (1,2), magnetite (3,4), apatite (5,6), albite (7), k-feldspar (8), Ba-feldspar (9), plagioclase (10,11), augite (12), cummingtonite (13)<br />

35


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Olli Sarapää , Niilo Kärkkäinen, Tegist Chernet, Jaana Lohva and Timo Ahtola<br />

Geochemistry<br />

The mafic rocks <strong>of</strong> the Lumikangas intrusion are<br />

characterisedbyuniformlyhighP 2 O 5 andTiO 2 contents,<br />

rather high K 2 O, variable but usually high Fe 2 O 3 and<br />

rather low Cr content (Table 1). There is very small<br />

36<br />

Fig 5a. Pyroxene, uralite and mica; Ilmenite rimmed by biotite and<br />

uralite (R398/57,5m)<br />

Fig 5 c. Free ilmenite grain; large pyrrhotite grain associated with<br />

ilmenite and magnetite (R400/149,2m).<br />

Fig 5e. Ilmenite lamellae in magnetite, up to 40microns thick and 300<br />

microns long; note spinel granules along the border <strong>of</strong> the lamellae<br />

(R400/149,2m)<br />

Fig 5b. Alkali-feldspar and plagioclase as major rock forming minerals<br />

(R400/81m).<br />

Fig 5d. Ilmenite commonly occurs as a separate anhedral to subherdal<br />

grains (R400/192m)<br />

Fig 5f. Magnified exsolved structure <strong>of</strong> fine ilmenite and spinel in<br />

magnetite (R398/57,5m)<br />

variation in the Fe/Mg ratio as shown in the AFM<br />

diagram (Fig. 7), and the distribution falls within the<br />

tholeitic field. Because <strong>of</strong> high Fe-Ti oxide and apatite<br />

contents the Lumikangas gabbroic rocks are not classified<br />

in the subalkaline field. In fact, many samples<br />

from Lumikangas show increased alumina saturation


Fig 6a. Myrmekitic intergrowth <strong>of</strong> ilmenite and magnetite with py -<br />

roxene, uralite and biotite (R400/149,2m)<br />

Fig 6c. Coarse grained apatite associated uralites and pyroxene; note<br />

apatite is euhedral, up to 3mm long (R400/63,9m).<br />

Fig 6e.Apatite up to 5mm in length, and clusters <strong>of</strong> subrounded grains<br />

<strong>of</strong> apatite (R400/138,7m) ^PLev. 7,7 cm<br />

and the whole rock was metaluminous (Al 2 O 3 > Na 2 O<br />

+ K 2 O < CaO + Na 2 O + K 2 O) (Table 1). This is partly<br />

related to the high K 2 O (> 1 %) content <strong>of</strong> the gabbro.<br />

Based on chemical analyses the normative orthoclase<br />

content is 5 – 10 %, and may be up to 25% in gabbropegmatoids.<br />

In the Streckeisen-type triangular<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Exploraton results and mineralogical studies on the lumikangas apatite-ilmenite gabbro ...<br />

Fig 6b. Apatite inclusions in the ore minerals.<br />

Fig 6d. Coarse grained apatite associated with iron ore, uralites and<br />

biotite note apatite is subhedral (R400/149,2m).<br />

Fig 6f. Apatite as major mineral and reaches up to 4mm in size; finegrained<br />

and needle like apatite mainly embedded in alkali feldspar<br />

(R400/141,6m)<br />

classification diagram most samples group within the<br />

monzogabbro field, which means that they contain at<br />

least 10 % alkali feldspar component (Fig. 8).<br />

The special feature <strong>of</strong> the Lumikangas gabbro is<br />

that Ti, Pand Mg correlate very closely as shown in<br />

drill hole R400 (Fig. 9). This could be explained by<br />

37


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Olli Sarapää , Niilo Kärkkäinen, Tegist Chernet, Jaana Lohva and Timo Ahtola<br />

Fig 7. Distribution <strong>of</strong>Lumikangasgabbro <strong>of</strong> Lumikangas gabbro inAFM-diagram.<br />

in AFM-diagram.<br />

a simultaneous crystallisation <strong>of</strong> iron-oxide, apatite<br />

and Mg-rich silicates (see Fig. 5 and Fig. 6).<br />

Ore mineralogy<br />

Ilmenite and magnetite<br />

Based on microscope observation the rocks contain<br />

about 3–20 vol% ilmenite and magnetite. They occur<br />

38<br />

Fig. 8. Lumikangas samples in normative (quartz-orthoclase-plagioclase)<br />

triangular diagram. Most samples contain more than 10 % normative<br />

orthoclase and have the composition <strong>of</strong> monzogabbro.<br />

asseparatecrystals,anhedraltosubhedralgranularaggregatesandrangeinsizefrom0<br />

.1to1.5mm.Ilmenite<br />

occursaswell-developedsinglecrystals(Figs.5c,5d),<br />

and as latticed oxyexsolution textures in and along<br />

the boundaries <strong>of</strong> magnetite grains (Fig. 5e), where<br />

the boundaries are <strong>of</strong>ten delinated by spinel granules.<br />

The ilmenite grains are commonly monomineralic,<br />

except for occasional magnetite lamellae, rare rutile<br />

inclusions and spinel needles.<br />

Fig. 9. Variation <strong>of</strong> magnesium, titanium and phosphorous in two drill holes R400 and R399 from Lumikangas.


Magnetite contains both ilmenite and spinel as exsolved<br />

inclusions (Figs. 5e, 5f), where the magnetite<br />

herecanberefer redtoasilmenomagnetite.Theilm en -<br />

ite exsolution might represent two generations, with<br />

oriented long lamellae and fine needle like structures<br />

rangingfromsubmicroscopicto100μmacross,andup<br />

to 1.2mm in length. The fine oriented ilmenite needles<br />

aredistributede venlythroughout themagnetitegra ins<br />

along with very fine spinel microcrystals (Fig. 5f).<br />

Ilmenite and magnetite show myrmekitic intergrowth<br />

with silicate minerals, mainly pyroxene, uralite and<br />

apatite (Fig. 6a), which indicate simultaneous crys -<br />

tallisation <strong>of</strong> the ore and the silicate minerals. Pyrite<br />

and pyrrhotite are the common sulphides observed,<br />

occurringmainlyasseparategrainsassociatedwiththe<br />

ore and gangue minerals. Fine grains <strong>of</strong> chalcopyrite<br />

occur <strong>of</strong>ten associated with pyrrhotite and pyrite as<br />

inclusions. Inclusions <strong>of</strong> pentlandite in pyrrhotite and<br />

secondary hematite with pyrrhotite were observed.<br />

Magnetite is less common within the sections where<br />

pyrrhotite is abundant.<br />

Apatite<br />

The Lumikangas gabbroic rock consists <strong>of</strong> about<br />

1–6 vol% <strong>of</strong> apatite (Figs. 6b–6f). Locally elevated<br />

amounts <strong>of</strong> apatite covering nearly 25 vol% the rock<br />

are observed in R400/141.6m, which corresponds<br />

to the highest phosphorous content (5.5% P 2 O 5 ,<br />

R400/140–142m). The apatite crystals occur either<br />

as single crystals or in small clusters associated with<br />

feldspars, pyroxene and Fe-Ti oxides (Figs. 6e, 6f).<br />

Inclusions <strong>of</strong> apatite in the ore minerals (Fig. 6b) and<br />

in silicates (Figs. 6e, 6f) are the most typical textures.<br />

Apatite occurs in various forms: euhedral (Fig. 6c),<br />

subhedral(Fig.6d)andrangesinsizefromabout50μm<br />

to 4–5mm long. Apatite chadacrysts (inclusions in<br />

oikocrysts)occurringasfinesubroundedandelongated<br />

structure are enclosed by feldspar oikocrysts, which<br />

Fig. 10. Apatite REE arrays <strong>of</strong> Lumikangas and Kauhajärvi. ^P<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Exploraton results and mineralogical studies on the lumikangas apatite-ilmenite gabbro ...<br />

is typical <strong>of</strong> poikilophitic texture (Fig. 6f).<br />

Pure apatite concentrate was made using heavy<br />

liquid separations. The concentrate was analysed by<br />

ICP-MS for rare elements. The chondrite normalised<br />

REE-array <strong>of</strong> apatite is rather plain and only gently<br />

decreasing (Fig. 10). Aspecial feature <strong>of</strong> the Lumikangas<br />

apatite is that there is no Eu minimum as<br />

compared to neighbouring elements, which is typical<br />

forapatiteintheKauhajärvigabbro.Thisindicatesthat<br />

plagioclase has not been extracted during magmatic<br />

differentiation.Thesimilarshape<strong>of</strong>theREE-arrays<strong>of</strong><br />

bothLumikangasa ndKauhajärviapa titemayindicate<br />

the same magmatic source for both gabbros.<br />

Electron microprobe analyses<br />

The TiO 2 content <strong>of</strong> ilmenite (49.3–51.2) is<br />

very close to the theoretical ilmenite composition<br />

(TiO 2 =52.65 %) indicating no significant alteration<br />

(Table 2). The MgO and Cr 2 O 3 contents <strong>of</strong> ilmenite<br />

are low as is V 2 O 3 that hardly exceeds 0.15 % in<br />

Lumikangas ilmenite. The MnO cont ent <strong>of</strong> both<br />

ilmenite grains and lamellae in magnetite is constant<br />

but relatively high (0.8–1.3 %).<br />

TheTiO 2 contentinthemagnetitelatticeisconsiderably<br />

low (0.0–1.8 wt%) having been taken up by the<br />

two generations <strong>of</strong> exsolved ilmenite lamellae. The<br />

magnetite lamellae in ilmenite, however, contains<br />

up to 3.2 wt% TiO 2 . Interestingly, the Cr 2 O 3 content<br />

<strong>of</strong> magnetite is insignificant, ranging from 0.03 to<br />

0.22wt%.Vanadiuminmagnetite,ontheotherhand,is<br />

relativelyhigh(V 2 O 3 =0.5–2.35wt%),andvariesfrom<br />

sample to sample, 0.95–1.4 % V 2 O 3 in R398/57.5m<br />

and2.1–2.35wt%V 2 O 3 inR400/63.9m.Thevanadium<br />

content in the Lumikangas magnetite (0.34–1.6 wt%<br />

V) is within the range <strong>of</strong> Koivusaarenneva (0.7 wt%<br />

V; Kärkkäinen et al. <strong>2003</strong>), Mustavaara (0.83 wt% V;<br />

Juopperi1977)andOtanmäki(0.64wt%V;Kerkkonen<br />

1979) but relatively higher than that <strong>of</strong> Kauhajärvi<br />

(0.1–0.4 wt% V; Kärkkäinen & Appelqvist 1999).<br />

Inspite<strong>of</strong>grainmorphologyandsizedifferences,the<br />

apatite composition is relatively uniform but contains<br />

small amounts <strong>of</strong> SiO 2 , MnO, FeO and SrO, as these<br />

minerals are known to substitute Ca in apatite (Table<br />

2). The fluorine content <strong>of</strong> apatite (2.0–4.3 wt%) is<br />

indicative <strong>of</strong> fluor-apatite composition.<br />

Potassium feldspar is occasionally found to contain<br />

extremely high barium content giving a composition<br />

<strong>of</strong> Ba-feldspar (Table 2). The clinopyroxene has a<br />

ferro-augite composition, characterised by low Al 2 O 3<br />

and TiO 2 contents. The clinopyroxene is associated<br />

with primary plagioclase, and according to chemical<br />

analyses and microscope observation, plagioclase is<br />

in part transformed into albite .<br />

39


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Olli Sarapää , Niilo Kärkkäinen, Tegist Chernet, Jaana Lohva and Timo Ahtola<br />

discussion<br />

In almost all igneous rocks, apatite is known as an<br />

accessory mineral. However, apatite enrichment with<br />

ilmenite and magnetite are recorded in a number <strong>of</strong><br />

deposits, for example in mafic intrusions as in Bushveld<br />

(Von Gruenewaldt 1993), in Sept-Iles (Nabil<br />

et al. <strong>2003</strong>), Kauhajärvi (Kärkkäinen 1999), and<br />

in anorthosite complexes as in Bjerkreim-Sokndal<br />

(Duchesne 1972, Kornelliussen et al. 2000) and Lac<br />

Mirepoix (Morisset <strong>2003</strong>).<br />

Apatite-bearing ilmenite-magnetite deposits and<br />

prospects generally contain ilmenite with low MgO<br />

and Cr 2 O 3 and ilmenite poor in hematite (Schiellerup<br />

et al. <strong>2003</strong>). One interesting feature at Lumikangas is<br />

the early crystallisation <strong>of</strong> apatite and coeval crystallisation<br />

<strong>of</strong> apatite, Fe-Ti oxides and mafic silicates<br />

(Fig. 9). In practice this means that the parent mafic<br />

magma was abnormally rich in Pand also Fe and<br />

Ti. This kind <strong>of</strong> Ti-P enriched mafic rocks in crustal<br />

environments are <strong>of</strong>ten called jotunites (Norway),<br />

oxide apatite gabbronorites (Canada) or ferrogabbros<br />

(USA) and they are more or less closely related to the<br />

anorthosite massifs or rapakivi granite-anorthosite<br />

suite. These kinds <strong>of</strong> rocks have lately been studied as<br />

a possible source <strong>of</strong> Ti and P, for instance in Norway<br />

(Kornelliussen et al. 2000).<br />

Conclusion<br />

Lumikangas area was selected as a target for Ti-<br />

P-exploration on the basis <strong>of</strong> a high magnetic and<br />

gravity anomaly and its location in the Kauhajoki<br />

apatite-ilmenite gabbro province. The Lumikangas<br />

apatite ilmenite monzogabbro may be a potential ore<br />

resource in the future, containing an average <strong>of</strong> 19 %<br />

ore minerals: 8.7 % (max. 21 %) ilmenite, 4.8 % (max.<br />

17%)magnetiteand5.4%(max.1 7%)apatite.Apatite,<br />

ilmenite and magnetite were crystallised at the same<br />

time at a very early stage <strong>of</strong> magmatic differentiation,<br />

becausetheyhaveagoodcorrelationwithmagnesium.<br />

The drilling pr<strong>of</strong>iles did not intersect pyroxenites, in<br />

which the highest ore contents could be hiding.<br />

40<br />

REFERENCES<br />

duchesne, J. C. 1972. Fe-Ti oxide minerals in Bjerkreim-Sokndal<br />

massifs, southwestern Norway. Journal <strong>of</strong> Petrology 13,<br />

57–81.<br />

huuskonen, M. & kärkkäinen, N. 1994. TiP-gabrojen etsintäohjelmaLauhavuorengraniitinympäristössä:korkealentomagneettiset<br />

häiriöt ja Kauhajoen Hyypän intruusion tutkimukset.<br />

Geologian tutkimuskeskus, arkistoraportti M 19/1234/94/1/10.<br />

13 p. + 9 apps.<br />

Juopperi, A. 1977. The magnetite gabbro and related Mustavaara<br />

vanadium ore deposit in Porttivaara layered intrusion<br />

northeastern <strong>Finland</strong>. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Bulletin<br />

288. 68 p. + 2 apps.<br />

kärkkäinen, N., Sarapää, O., huuskonen, M., koistinen, E. &<br />

lehtimäki, J. 1997. Ilmenite exploration in western <strong>Finland</strong>,<br />

andthemineralresources<strong>of</strong>theKälviädeposit.In:Autio,S.(ed.)<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, <strong>Current</strong> <strong>Research</strong> 1995–1996.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 23, 15–24.<br />

kärkkäinen, k. & Appelqvist, h. 1999. Genesis<strong>of</strong>alow-grade<br />

Genesis <strong>of</strong> a low-grade<br />

apatite-ilmenite-magnetite deposit in the Kauhajärvi gabbro,<br />

western <strong>Finland</strong>. Mineralium Deposita 34, 754–769.<br />

kärkkäinen, k. & bornhorst, T.J. <strong>2003</strong>. the Svec<strong>of</strong>ennian<br />

gabbro-hosted Koivusaarenneva magmatic ilmenite deposit.<br />

Kälviä, <strong>Finland</strong>. Mineralium Deposita 38, 169–184.<br />

kerkkonen, O. 1979. The magnetite-ilmenite <strong>of</strong> the Otanmäki<br />

titanium iron ore, interpretation <strong>of</strong> the source and development<br />

(in Finnish). PhLic thesis, University <strong>of</strong> Oulu, <strong>Finland</strong>.<br />

korneliussen, A., McEnroe, S., Nilsson, l.P., Schiellerup,<br />

h., Gautneb, h., Meyer, G.b. & Storseth, l.R. 2000. An<br />

overview <strong>of</strong> titanium deposits in Norway. Norges geologiske<br />

undersokelse, Bulletin 436, 27–38.<br />

lehtimäki, J. 1984. Honkajoen ja Kauhajoen alueiden seismiset<br />

luotaukset 1982 ja 1983. Geologian tutkimuskeskus, arkistora-<br />

portti, Q19/1234/84/1/23. 8 8p. p. +17 + 17 apps.<br />

Morisset, C-E. <strong>2003</strong>. A study <strong>of</strong> mineral compositions <strong>of</strong> Lac<br />

Mirepoix layered complex, Lac St-Jean anorthosite complex,<br />

Quebec, Canada. In: Ilmenite deposits and their geological<br />

environment, NGU, Special Pubication 9, 84–85.<br />

Nabil, h., barnes, S. & higgins, M. <strong>2003</strong>. Genesis <strong>of</strong> phosphorous<br />

and titanium deposits in Sept-Iles mafic intrusion. Mining<br />

industry conference and exhibition, Abstract, Montreal May<br />

4–7, <strong>2003</strong>.<br />

Pääkkönen , v. 1962. Tutkimukset Kauhajoella 1961. Geologian<br />

tutkimuskeskus, arkistoraportti, M17/Khj-61/1. 2 s. + 1 app.<br />

Pakarinen,J.1984. RaporttiHonkajoella,KauhajoellajaKarvialla<br />

15.4.1983-29.2.1984suoritetuis tafosfori-titaani-rauta-malmitutkimuksista<br />

(Kemira Oy:n ja Geologian tutkimuskeskuksen<br />

yhteistyöprojekti). Geologian tutkimuskeskus, arkistoraportti<br />

M19/1234/84/1/10. 49 p. + 103 apps.<br />

Rämö, T. 1986. Honkajoen Perämaan emäksinen intruusio - erityisesti<br />

sen gabro-osien petrografia, mineralogia ja petrologia,<br />

104 p.<br />

Schiellerup, h., korneliussen, A., heldal, T., Marker, M.,<br />

bjerkgård, T. & Nilsson, l. P. <strong>2003</strong>. Mineral resources in<br />

RogalandAnorthositeProvince,SouthNorway:Origins,history<br />

andrecentdevelopments.In:Ilmenitedepositsandtheirgeological<br />

environment. NGU, Special Publication 9, 116–133.<br />

vonGruenewalt,G.1993. Ilmenite-apatiteenrichmentintheUpperZone<strong>of</strong>BushveldComplex:amajortitaniumrockphosphate<br />

resource. International <strong>Geological</strong> Review 35, 987–1000.


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, <strong>Current</strong> <strong>Research</strong> <strong>2003</strong>–<strong>2004</strong>,<br />

Edited by Sini Autio.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38, 41– 47 , 2005.<br />

ThE viTTAJÄNkÄ kAOliN dEPOSiT, SAllA, FiNNiSh lAPlANd<br />

by<br />

Panu Lintinen 1) and Thair Al-Ani 2)<br />

1) P.O. Box 77, FI-96101 Rovaniemi, <strong>Finland</strong><br />

2) Kallentie 36 B4, FI-45130 Kouvola, <strong>Finland</strong><br />

E-m ail: panu.lintinen@gtk.fi<br />

Key words (GeoRef Thesaurus, AGI): kaolin deposits, mineral exploration, geophysical methods, weathering, mineral composition,<br />

chemical composition, beneficiation, Vittajänkä, Salla, <strong>Finland</strong><br />

introduction<br />

In the search for abundant and high quality kaolin<br />

resources to satisfy the growing demands <strong>of</strong> the Finnish<br />

paper industry, the <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong><br />

(GTK) has, over the period 1998–<strong>2004</strong>, investigated<br />

morethan20kaolindepositsinthepre-glacialregolith<br />

<strong>of</strong> northern <strong>Finland</strong>. <strong>Research</strong> has focussed on PaleoproterozoicmetasedimentaryrocksincentralLapland,<br />

particularly in areas <strong>of</strong> relatively low metamorphic<br />

grade,usingavariety<strong>of</strong>airborneandgroundgeophysical<br />

techniques, supplemented by drilling. Airborne<br />

geophysical data are particularly useful in identifying<br />

weatheredbedrock,whiledrillingorexcavationduring<br />

earlier bedrock exploration activities has commonly<br />

provided direct confirmation <strong>of</strong> the presence <strong>of</strong> kaolin<br />

and deeply weathered regolith beneath Quaternary<br />

till. In contrast, there is a paucity <strong>of</strong> prior indications<br />

<strong>of</strong> kaolin from terrain dominated by granitoids and<br />

gneisses <strong>of</strong> higher metamorphic grade.<br />

During the course <strong>of</strong> investigations, research has<br />

gradually focussed on two specific regiona, namely<br />

the eastern parts <strong>of</strong> the Sodankylä municipality and<br />

the areas to the east and northeast <strong>of</strong> the tonwhsip <strong>of</strong><br />

Salla. The presence <strong>of</strong> kaolin in the Sodankylä district,<br />

at Siurunmaa, has been known since 1976<br />

(Rask & Lintinen 2001, Pekkala & Sarapää 1989),<br />

while the Suolakaarko deposit was discovered more<br />

recently, in 1998 (Lintinen 2000). The first investigations<br />

in the Salla region were undertaken in 1999, as a<br />

result <strong>of</strong> which white kaolin was found at Vittajänkä.<br />

By the end <strong>of</strong> <strong>2004</strong> three separate drilling programs<br />

had been carried out at Vittajänkä, with a total length<br />

<strong>of</strong> 2000 m. At the same time, exploratory drilling has<br />

been undertaken in surrounding terrain, in the search<br />

for analogous occurrences.<br />

Assessment<strong>of</strong>thequality<strong>of</strong>kaol inatVittajänkähas<br />

also been carried out concurrently with delineation <strong>of</strong><br />

reserves, with particular emphasis on its suitability as<br />

a paper pigment. Preliminary enrichment tests simulating<br />

industrial processing have been conducted at<br />

GTK and also at the former VTT mineral processing<br />

laboratories (now GTK Mineral Processing Laboratories)<br />

and results <strong>of</strong> studies completed prior to <strong>2004</strong><br />

have been reported by Al-Ani et al. (<strong>2004</strong>).<br />

<strong>Geological</strong> setting<br />

The Vittajänkä kaolin deposit is located within the<br />

southeasternextension<strong>of</strong>thePaleoproterozoicCentral<br />

Lapland greenstone belt (Fig. 1). In this area however,<br />

quartz-rich metasediments dominate, bounded to<br />

the east by the extensive metavolcanics <strong>of</strong> the Salla<br />

greenstone area, which continues across the national<br />

41


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Panu Lintinen and Thair Al-Ani<br />

border into adjacent Russia. The central Lapland<br />

granitic complex occurs to the south and southwest <strong>of</strong><br />

Vittajänkä,whereasArcheangrani ticandsupracrustal<br />

terrain lies to the north.<br />

Regionalgeologicalinvestigationshavebeencarried<br />

out during the Lapland Volcanite Project (LVP), by<br />

Manninen (1991), on the basis <strong>of</strong> which the metasedimentary<br />

Matovaara Formation is considered to be the<br />

protolithfromwhichtheVittajänkäkaolinwasderived.<br />

Although the area is covered by extensive wetlands,<br />

with very few bedrock exposures, the metasediments<br />

appear to have been calcareous siltstones, with calcsilicate<br />

and laminated orthoquartzite intercalations.<br />

Geophysical investigations<br />

TheVittajänkäkaolindepositcanbedistinguishedin<br />

regional airborne geophysical data as an electromagnetic<br />

anomaly with an intense imaginary component<br />

and a considerably reduced real component. The<br />

Matovaara Formation metasedimentary host rocks<br />

are non-magnetic, although they are surrounded by<br />

a narrow, conspicuously magnetic zone <strong>of</strong> tholeiitic<br />

volcanics belonging to the Tahkoselkä Formation.<br />

42<br />

Fig. 1. <strong>Geological</strong> map showing the location <strong>of</strong> the Vittajänkä deposit.<br />

The area delineated by the airborne EM anomaly<br />

was surveyed on the ground as well, firstly along<br />

widely spaced pr<strong>of</strong>iles and then on a systematic grid<br />

covering 3.6 km 2 . Both EM VLF-R measurements<br />

and gravity surveys were made. In addition, a regional<br />

scale gravimetric survey was carried out over 300<br />

km 2 in the Salla district during 2000–2001, with a site<br />

density <strong>of</strong> 8 measurements per km 2 . On the basis <strong>of</strong><br />

these gravity surveys, the Vittajänkä kaolin deposit<br />

appears to coincide with a northerly trending elongate<br />

2 mGal gravity minimum, approximately 1.75 km 2<br />

(2.5x0.8km)inextent(Fig.2).Theshape<strong>of</strong>thegravity<br />

anomaly is controlled by both degree <strong>of</strong> weathering<br />

and the structurally defined bedrock geology, with<br />

mafic volcanics surrounding the metasediments.<br />

Sampling strategy<br />

The Vittajänkä deposit was drilled in three stages<br />

in 1999, 2001 and <strong>2003</strong>, using different equipment<br />

and core recovery techniques. Drilling has been both<br />

technicallychallenging and required carefulsampling<br />

in order to maximize the research value <strong>of</strong> recovered<br />

material.


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

The Vittajänkä kaolin deposit, Salla, Finnish Lapland<br />

Fig. 2. Bouguer anomlay map <strong>of</strong> the Vittajänkä kaolin deposit, showing locations <strong>of</strong> drilling pr<strong>of</strong>iles and the distribu -<br />

tion <strong>of</strong> white and coloured kaolin.<br />

The gravity anomaly has been drilled along two<br />

E-W pr<strong>of</strong>iles 700 m apart (Figs. 2 and 3). The more<br />

northerly pr<strong>of</strong>ile intersected white or yellowish kaolin<br />

over a distance <strong>of</strong> 300 m, while the total width <strong>of</strong> the<br />

weathered zone was about 400 m. In the southern<br />

pr<strong>of</strong>ile the weathered zone was about 150 m across,<br />

with 75m<strong>of</strong> light-coloured kaolin. Whitetoye llowish<br />

kaolintendtooccurinthecentralparts<strong>of</strong>theweathered<br />

zone, while marginal parts were considerably darker.<br />

Fig. 3. Simplified cross sections <strong>of</strong> drilling pr<strong>of</strong>iles A and B. For locations, see Figure 2.<br />

Overburden thickness varied from 10–25 m, with a<br />

mean depth <strong>of</strong> 15 m. The thickest kaolin intersections<br />

were nearly 30 m although the average was around<br />

20 m. Sporadic quartz-rich horizons, or weathered<br />

accumulations <strong>of</strong> quartz sand were sporadically found<br />

within the kaolin.<br />

Some diamond drill core was recovered from the<br />

quartz-rich intercalations, and from the bedrock beneath<br />

the kaolin deposit, despite their being intensely<br />

43


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Panu Lintinen and Thair Al-Ani<br />

weathered. Thus, significantly weathered regolith<br />

occurs at depths considerably greater than the main<br />

kaolin deposit.<br />

laboratory analyses and enrichment trials<br />

Methods<br />

Atotal <strong>of</strong> 96 samples <strong>of</strong> kaolin, both white and<br />

coloured, were taken for systematic analysis at GTK,<br />

with an average sample length <strong>of</strong> 3.8 m. Samples were<br />

classified according to grain size distributions using a<br />

combination<strong>of</strong>sievingandsedigraphanalysis.Sample<br />

fractions


Fig. 4. SEM-image <strong>of</strong> refined Vittajänkä kaolin. Kaolinite occurs as euhedral flaky particles.<br />

low samples had brightness values between 70–78 %<br />

and corresponding yellowness values <strong>of</strong> 15–10 %.<br />

Magnetically and chemically refined processed<br />

kaolin in the


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Panu Lintinen and Thair Al-Ani<br />

Chemical composition<br />

White Vittajänkä kaolin tends to have relatively<br />

high SiO 2 - and K 2 O- abundances and low Al 2 O 3 irrespective<br />

<strong>of</strong> grain size. After refining, the


analyzed to date have on average 60 % white kaolin,<br />

<strong>of</strong> which the average proportion <strong>of</strong> kaolinite is about<br />

30 %. Accordingly, the deposit would contain about<br />

13 Mt <strong>of</strong> white kaolin, which could yield about 4 Mt <strong>of</strong><br />

kaolinconcentrate.Itshouldalsobenotedthatalthough<br />

the mean depth <strong>of</strong> the kaolin regolith is only 20 m,<br />

kaolinization is extensive to much greater depths.<br />

After refinement, the Vittajänkä kaolin product still<br />

contained considerable amounts <strong>of</strong> quartz and muscovite,<br />

which is reflected in the higher SiO 2 - and lower<br />

Al 2 O 3 - abundances than in commercially available<br />

kaolin products. Despite all <strong>of</strong> the refining processes<br />

used, the brightness remained below the acceptable<br />

levels for kaolin pigment. One <strong>of</strong> the main reasons for<br />

this is the fine grain size <strong>of</strong> the protoliths, particularly<br />

quartz and muscovite, as a result <strong>of</strong> which mechanical<br />

purification is difficult. Further processing using<br />

flotation is planned, which will hopefully be effective<br />

in removing not only quartz, but also at least some<br />

<strong>of</strong> the mica, resulting in a product with improved<br />

brightness values.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

The Vittajänkä kaolin deposit, Salla, Finnish Lapland<br />

REFERENCES<br />

Al-Ani, T., lintinen, P. & karhunen, J. <strong>2004</strong>. Mineralogical<br />

Description and Preliminary Processing <strong>of</strong> the Vittajänkä<br />

Kaolin Deposit, Salla, Northeastern <strong>Finland</strong>. <strong>Geological</strong> <strong>Survey</strong><br />

<strong>of</strong> <strong>Finland</strong>, unpublished report M19/4621/<strong>2004</strong>/1/82, 33<br />

p. + 36 app.<br />

Aparicio, P. & Galan, E. 1999. Mineralogical interference on<br />

kaolinite crystallinity index measurements. Clays and Clay<br />

Minerals 47 (1), 12–27.<br />

hinckley, d.N. 1963. Variability in “crystallinity” values among<br />

the kaolin deposits <strong>of</strong> the coastal plain <strong>of</strong> Georgia and South<br />

Carolina. Clays and Clay Minerals 11, 229–235.<br />

lintinen, P. 2000. Kaoliinitutkimukset Sodankylän Suolakaarkossa<br />

1998–1999. <strong>Geological</strong><strong>Survey</strong><strong>of</strong><strong>Finland</strong>, <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, unpublished<br />

report M19/3732/2000/1/82, 9 p. + 7 app.<br />

Manninen, T. 1991. Sallan alueen vulkaniitit : Lapin vulka-<br />

niittiprojektin raportti. Summary: Volcanic rocks in the Salla<br />

area, northeastern <strong>Finland</strong>: Areport <strong>of</strong> the Lapland Volcanite<br />

Project. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Report <strong>of</strong> Investigation<br />

104. 97 p. + 5 app.<br />

Pekkala, y.& Sarapää, O. 1989. Kaolinexploration Kaolin exploration in<strong>Finland</strong>. in <strong>Finland</strong>.<br />

In: Autio, S. (ed.) <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, <strong>Current</strong><br />

<strong>Research</strong> 1988. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>. Special Paper<br />

10, 113–118.<br />

Rask, M. & lintinen, P. 2001. Kaoliinitutkimukset Sodankylän<br />

Siurunmaallavuosina1978–1988.<strong>Geological</strong><strong>Survey</strong><strong>of</strong><strong>Finland</strong>,<br />

<strong>Geological</strong><strong>Survey</strong><strong>of</strong><strong>Finland</strong>,<br />

unpublished report M19/3713/2001/1/82, 12 p. + 6 app.<br />

Sarapää, O. 1996. Proterozoic primary kaolin deposits at Virtasalmi,<br />

southeastern <strong>Finland</strong>. Espoo: <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong><br />

<strong>Finland</strong>. 152 p. + 6 app.<br />

47


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 36<br />

Matti Tyni, Kauko Puustinen, Juha Karhu and Matti Vaasjoki<br />

48


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, <strong>Current</strong> <strong>Research</strong> <strong>2003</strong>–<strong>2004</strong>,<br />

Edited by Sini Autio.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38, 49– 60,<br />

2005.<br />

GEOPhySiCAl ChARACTERiZiNG OFTAiliNGS iMPOuNdMENT – A CASE FROM ThE<br />

ClOSEdhAMMASlAhTi Cu-ZN MiNE, EASTERN FiNlANd<br />

by<br />

Heikki Vanhala 1) , Marja Liisa Räisänen 2) , Ilkka Suppala 1) , Taija Huotari 1) , Tuire Valjus 1) and<br />

Jukka Lehtimäki 1)<br />

1) <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, P.O. Box 96, FI-02151 Espoo, <strong>Finland</strong><br />

2) <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, P.O. Box 1237, FI-70211 Kuopio, <strong>Finland</strong><br />

E-mail: heikki.vanhala@gtk.fi<br />

Key words (GeoRef Thesaurus, AGI): geophysical methods, environmental geology, abandoned mines, tailings ponds, tailings, sediments,<br />

chemical composition, Hammaslahti, <strong>Finland</strong><br />

introduction<br />

We present here preliminary results <strong>of</strong> a project in<br />

which we test and develop geophysical techniques<br />

for mapping sulphide tailings impoundments. Our<br />

study site, the small Hammaslahti Cu-Zn mine,<br />

workedin1973–1986.Thetailingsimpoundmenthav -<br />

ing an area <strong>of</strong> 30 hectares and an average height <strong>of</strong><br />

9 metres, has been established on a bog. The interest<br />

in developing geophysical techniques for studying<br />

tailings impoundments arises from the need <strong>of</strong> highresolution<br />

3D structural, chemical and hydrological<br />

data for modelling and understanding the tailings<br />

impoundment systems.<br />

Rehabilitation <strong>of</strong> tailings impoundment for final<br />

closure, as well as assessing the risk <strong>of</strong> old impoundments<br />

require relevant data about the structure and<br />

composition <strong>of</strong> the tailings material and the water<br />

table and its temporal and spatial variation inside the<br />

impoundment. In <strong>Finland</strong>, tailings impoundments <strong>of</strong><br />

several metal sulphide mines have been engineered<br />

in bog basins or the depressions <strong>of</strong> small lakes. In<br />

both cases, the substrata are organic rich sediments<br />

underlying glaciolacustrine silt sediments, which are<br />

compressing under load (Sipilä & Salminen 1995,<br />

Räisänen <strong>2003</strong>). In general, the stratigraphy and<br />

characteristics <strong>of</strong> the impoundment are investigated<br />

by drilling, including the pr<strong>of</strong>ile sampling throughout<br />

the tailings and underlying parent sediments. The fact<br />

that dense drilling, needed for detailed characterising<br />

and 3D modelling <strong>of</strong> an impoundment, is expensive,<br />

led us to start a project to test and develop geophysical<br />

techniques for mapping tailings impoundments. Our<br />

test site is the closed Hammaslahti mine (Fig. 1).<br />

The mine tailings typically exhibit a low electrical<br />

resistivity (i.e., high electrical conductivity). Therefore,<br />

electrical and electromagnetic (EM) methods<br />

are the most commonly used in mine tailings studies<br />

(Campbell et al. 1999, Campbell & Fitterman 2000,<br />

Watson et al. 2001). At the <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong><br />

<strong>Finland</strong>, airborne geophysics has been for few years<br />

successfully applied to mapping both regional and<br />

site-scale environmental impacts <strong>of</strong> mining in different<br />

kind <strong>of</strong> geological environments. Beamish and<br />

Kurimo (2000) used airborne electrical conductivity<br />

data to detect acid leaks from active and closed<br />

coal mines in the United Kingdom, while Lahti et al.<br />

(2000) used airborne radiometric, magnetic and EM<br />

(electromagnetic) and ground geophysical data for<br />

mapping environmental issues related to uranium<br />

mining activities in eastern Germany. Vanhala et al.<br />

(2002) studied the environmental, hydrogeological<br />

and geological issues around an oil shale mining area<br />

in northeast Estonia. Electrical resistivity sounding<br />

49


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Heikki Vanhala, Marja Liisa Räisänen, Ilkka Suppala et al.<br />

results from the Hitura Ni mine tailings have been<br />

presented by Heikkinen et al. (2002).<br />

ThefirstgeophysicaltestsattheclosedHammaslahti<br />

Cu-Zn mine were made in 2000 when a few electrical<br />

resistivity soundings (ERT), aimed at locating subsurface<br />

leakage pathways through the impoundment<br />

dam, were measured (Vanhala & Lahti 2001). More<br />

ERT data were collected in 2001 – <strong>2004</strong>, but most <strong>of</strong><br />

the geophysical measurements (refraction seismic,<br />

gravity, EM and ERT) are from <strong>2003</strong>. Drillings and<br />

sampling for chemical analysis were made in 2000,<br />

<strong>2003</strong> and <strong>2004</strong>. Petrophysical results are from <strong>2004</strong><br />

(Table 1).<br />

The general objective <strong>of</strong> the ongoing study is to developgroundgeophysicalmethods,<br />

gravity,refraction<br />

seismic, EM and ERT, for mapping and monitoring<br />

tailings impoundment and dam constructions and<br />

bedrock and sediment structures under and around<br />

theimpoundment.Petrophysicalproperties(electrical<br />

conductivity and induced polarization (IP), seismic<br />

velocity and density) <strong>of</strong> the tailing material have<br />

been only poorly known and one <strong>of</strong> the key tasks is<br />

to define them. Especially the relationship between<br />

the electrical conductivity and IP and the properties<br />

<strong>of</strong> the tailings material is <strong>of</strong> great importance. The<br />

structural features presumed to be suitable for geophysical<br />

mapping are the follows<br />

(a)water table and the oxidised zone,<br />

(b)variation <strong>of</strong> grain size, mineralogy and chemistry<br />

50<br />

Fig. 1. Location and geology <strong>of</strong> the study area (Loukola-Ruskeeniemi et al. 1992).<br />

inside the impoundment<br />

(c)thickness <strong>of</strong> the tailings bed and the underlying<br />

sediments,<br />

(d)bedrock relief and fracture zones<br />

(e)internal structures (dams, cavities)<br />

In this paper we present the preliminary results <strong>of</strong><br />

the geophysical studies. Furthermore, we discuss on<br />

the relationship between the geochemistry and the<br />

geophysical data <strong>of</strong> tailings and underlying sediments<br />

at some reference sites.<br />

description <strong>of</strong> the study site<br />

TheHammaslahtiCudepositisloc atedattheeastern<br />

margin <strong>of</strong> the Early Proterozoic Svec<strong>of</strong>ennian Orogen<br />

(2.0–1.75 Ga), 12 km west <strong>of</strong> the exposed Archaean-<br />

Proterozoic boundary (Fig. 1). The country rocks are<br />

composed <strong>of</strong> low-grade metamorphosed epiclastic<br />

sediments dominated by graded-bedded feldspathic<br />

graywackes intercalated with black schist layers and<br />

phyllites. Three orebodies (S, N and Z) are located<br />

in hydrothermally altered rocks. Major sulphides are<br />

pyrrhotite, chalcopyrite and pyrite in the S and N<br />

orebodies, and sphalerite in the zinc ore body.<br />

The Hammaslahti Cu-Zn Mine operated in 1973–<br />

1986.OutokumpuOymined7milliontons<strong>of</strong>oregrading<br />

1.16 % Cu and minor amounts <strong>of</strong> Zn and Au.<br />

The tailings impoundment is situated north <strong>of</strong> the<br />

flotation plant. Its surface area is about 30 hectares.


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Geophysical characterizing <strong>of</strong> tailings impoundment ...<br />

Fig. 2. Topographic map <strong>of</strong> Hammaslahti before mining (upper left); aerial photograph <strong>of</strong> the tailings impoundment from 1974 (upper right); map <strong>of</strong><br />

Quaternary deposits (brown=peat, yellow=sand and fine sand, red=bedrock, grey=till, magenta=tailings, (lower left); airborne electrical conductivity<br />

map (AEM), out-<strong>of</strong>-phase, 3.1 kHz, 1991 (lower right). Map area is 1.4 x 1.4 km 2 (Pohjakartta © Maanmittauslaitos, lupa nro 13/MYY105).<br />

The tailings impoundment is dammed on the bog (Fig<br />

2). The tailings embankment consists <strong>of</strong> local glacial<br />

till strengthened by country rock stones from the open<br />

pits (Pelkonen et al. 1973). The average height <strong>of</strong> the<br />

heap is 9 metres above the surface <strong>of</strong> the bog. The<br />

impoundment is recovered by a thin basal meltout till<br />

layer (10–60 cm). At present, plants typical for wild<br />

meadows (mainly wild grass), and young birches and<br />

planted pines grow more or less successfully (Fig. 3,<br />

Räisänen et al. <strong>2003</strong>).<br />

investigation methods <strong>of</strong> the tailings<br />

impoundment<br />

Pr<strong>of</strong>ile drilling and sampling<br />

The basement and layer structure <strong>of</strong> the facility, and<br />

its hydrological conditions were studied by drilling<br />

with a non-rotated percussion drill equipped with a<br />

soil core sampler at 22 sites (Fig. 4). Drilling work<br />

was done firstly in November 2000, then in May <strong>2003</strong><br />

51


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Heikki Vanhala, Marja Liisa Räisänen, Ilkka Suppala et al.<br />

and May <strong>2004</strong>. In 2000, pr<strong>of</strong>ile samples from tailings<br />

materials and underlying Quaternary sediments were<br />

continuously collected into non-contaminated plastic<br />

(high dense polyethene, HDPE) tubes with a piston<br />

and in <strong>2003</strong> with a special soil core sampler during<br />

the drilling. The sampling technique is developed by<br />

the GTK. In <strong>2004</strong>, the tube sampling was used, since<br />

it allows the making <strong>of</strong> petrophysical core sample<br />

measurements. The sampling was done in a set <strong>of</strong> 1<br />

m sample per tube. After the measurements, sample<br />

tubeswerehalfopened,andsamplelayersforchemical<br />

analysis were separated on the basis <strong>of</strong> the oxidation<br />

degree <strong>of</strong> the tailings and physical characteristics<br />

<strong>of</strong> the underlying sediments. In all cases, samples<br />

for chemical analysis were frozen in the field or immediately<br />

after transporting to the Geolaboratory <strong>of</strong><br />

the GTK.<br />

For chemical analysis tailings and underlying peat<br />

and silt sediment samples were freeze-dried and then<br />

sieved to


seismic survey. It can only be seen in the middle <strong>of</strong><br />

upper seismic line (Fig. 4). The second problem in<br />

refraction interpretation is called the “reversal velocity<br />

case” – the velocity in a layer is lower than in the<br />

overlying layer. The low velocity cannot be detected<br />

by refraction survey. If there is no information <strong>of</strong><br />

the low velocity layer the calculated total thickness<br />

<strong>of</strong> overburden is overestimated. A typical reversal<br />

velocity case is a sand layer under gravel.<br />

Six gravity pr<strong>of</strong>iles were measured across the<br />

impoundment. Seismic results and the water table<br />

interpreted from the seismic data were used as reference<br />

data in gravity interpretation. The interpretation<br />

<strong>of</strong> the gravity data was made using a three-layer model<br />

– bedrock, saturated sediment layer and dry sediment<br />

layer. For the sediment material, densities <strong>of</strong> 1500<br />

kg/m 3 (dry) and 1950 kg/m 3 (saturated) were used.<br />

Possible sources <strong>of</strong> error were the density variation<br />

<strong>of</strong> bedrock and the water table.<br />

Ground slingram measurements were carried out<br />

using a multi-frequency horizontal loop EM method<br />

(HLEM), (APEX MaxMin I+8S system). Eight frequencies<br />

(440, 880, 1760, 3520, 7040, 14080, 28160<br />

and 56320 Hz) were measured.<br />

1Dinversionwasusedtointerpre ttheEMdata.First<br />

the quality <strong>of</strong> the HLEM data was assessed with 1D<br />

multi-layer inversion using a few layers with varying<br />

thickness and conductivity, in order to examine<br />

the effects caused by 3D conductivity structures and<br />

Table 1. Hammaslahti geophysical data.<br />

METhOd Time Specifications<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Geophysical characterizing <strong>of</strong> tailings impoundment ...<br />

misalignment <strong>of</strong> the loops. Then the layered-earth<br />

interpretationwa smadewithmodel norm-basedinver -<br />

sion. In the 1D model, the earth is composed <strong>of</strong> a stack<br />

<strong>of</strong> layers, each having a uniform conductivity. The 1D<br />

conductivity structure, i.e., the conductivities <strong>of</strong> each<br />

layer,issoughtbytheregularisedinversion.Thegoalis<br />

t<strong>of</strong>indforeverymeasuringpointaminimum-structure<br />

model,whichcanfitthemeasurementdatasufficientl y<br />

well. The minimisation <strong>of</strong> the objective function (data<br />

misfit + β x model norm ) has been carried out with a<br />

damped Gauss-Newton algorithm.<br />

In HLEM measurements 20 metre and 40 metre<br />

coil spacing were used. The wider c oil spacing<br />

means deeper effective depth <strong>of</strong> investigation. The<br />

EM system with the shorter coil spacing has a higher<br />

spatial resolution. Because here the conductivity <strong>of</strong><br />

the tailings bed is high enough the multi-frequency<br />

slingram system has frequency-dependent sensitivity<br />

to the conductivity variations in that layer. Inversion<br />

results <strong>of</strong> HLEM data measured with coil separation<br />

<strong>of</strong> 20 m and 40 m delineate similar conductivity structures.<br />

However in the results measured with wider coil<br />

separation more 3D effects could be seen, probably<br />

caused by the bedrock conductors.<br />

Inaccuracy in loop spacing and alignment <strong>of</strong> the<br />

loops are likely to be the largest sources <strong>of</strong> error in<br />

the horizontal loop EM measurements. A reference<br />

cable connects the transmitter and receiver loops<br />

and with the help <strong>of</strong> the cable the keeping <strong>of</strong> the coil<br />

Airborne data 1991 radiometric, magnetic & EM (3.1 kHz), 200 m line spacing, 30 m<br />

Gravity <strong>2003</strong>, June 6 lines<br />

nominal flight altitude<br />

Refraction seismic <strong>2003</strong>, June 2 lines (& one short line across PP72)<br />

HLEM <strong>2003</strong>, June slingram (horizontal loop EM) (8 frequencies, 440, 880, 1760, 3520, 7040,<br />

14080 and 28160, 56320 Hz), 10m/reading: 4 lines, coil spacing 20 m<br />

2 lines, coil spacing 20 m & 40 m<br />

TEM <strong>2003</strong>, July single loop (50x50 m 2 ), 7 soundings<br />

ERT 2000 – <strong>2004</strong> wenner & dipole-dipole, ipole, a=1,2,3 or 5m,automatic 5 m, automatic multielectrode system,<br />

28,42 or 56 electrode groundings, most <strong>of</strong> the drilling sites.<br />

IP 2001 1D wenner, a=2 m, 6 soundings<br />

Laboratory resistivity and IP <strong>2004</strong>, May Drilling sites N17, N18, N19, N20, N21, N22 (240 samples)<br />

53


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Heikki Vanhala, Marja Liisa Räisänen, Ilkka Suppala et al.<br />

separation is attempted at the constant value (in this<br />

study 20 or 40 m). The error in coil separation is most<br />

evidently seen in the in-phase component caused by<br />

theincompletelycompensatedprimarymagneticfield<br />

(e.g. Frischnecht et al. 1991). We have also considered<br />

the true coil spacing as an unknown parameter and<br />

estimated it carefully from the field data. At least in<br />

the case <strong>of</strong> 1D conductivity structure the used model<br />

for the layered ground and for measuring system<br />

works better than the inversion assuming constant<br />

coil spacing.<br />

The first resistivity soundings (ERT, electrical<br />

resistivity tomography) at Hammaslahti were made<br />

in 2000 (Vanhala & Lahti 2000) and continued annually<br />

until <strong>2004</strong>. All the soundings have been made<br />

using AGI/Sting multielectrode system, Wenner or<br />

dipole-dipole configuration and electrode spacings<br />

<strong>of</strong> 1, 2, 3 or 5 metres. 2D inversion <strong>of</strong> the 2D field<br />

data has been made using RES2DINVs<strong>of</strong>tware (Loke<br />

& Parker 1996). Presumably because <strong>of</strong> the dry and<br />

high-resistivity top-layer and a low-resistivity deeper<br />

sub-surface, the resistivity data were partly too noisy<br />

for reliable interpretation.<br />

240 samples for laboratory resistivity and IPmeasurements<br />

were collectedin May <strong>2004</strong>from sixdrilling<br />

sites(N17,N18,N19,N20,N21,N22).Thelaboratory<br />

measurements were made within a few hours after the<br />

drilling, directly from the original (nearly undisturbed<br />

54<br />

Fig. 4.Geophysical sounding lines and drilling sites (Pohjakartta © Maanmittauslaitos, lupa nro 13/MYY105).<br />

samples) in one-metre long plastic sample tubes by a<br />

spectral IPsystem described by Vanhala and Soininen<br />

(1995). Small holes were drilled for platinum stick<br />

electrodes at both ends and in the middle <strong>of</strong> the tube<br />

so that (for each sample) three resistivity-IP spectra<br />

could be measured.<br />

Chemical analysis<br />

For chemical analysis tailings and underlying peat<br />

and silt sediment samples were freeze-dried and then<br />

sieved to


Results and discussion<br />

The structure <strong>of</strong> the tailings impoundment<br />

Originally,the tailings impoundment was divided<br />

into two ponds by adam, which cannot be visually<br />

distinguished from the surface topography (Fig. 2,<br />

aerial photo onthe right). The shallow depression is<br />

mainlylocated inthecentralpart <strong>of</strong>theeasternpond.<br />

Theretheelevation <strong>of</strong>thesurface increasesabout2m<br />

towardsthedikeinthenorthandnortheast,whereasit<br />

doesnotchangemuchtowardthesouth. Bycontrast,<br />

thesurfaceelevation <strong>of</strong>thewesternpondvariesalot.<br />

Thedifference inthesurfacetopographybetweenthe<br />

southernandcentralparts isabout4.5mandbetween<br />

the central and northern parts about 1.5 m. Similarly,<br />

the base <strong>of</strong> the eastern pond is more or less flat,whereas<br />

in the western pond itdescends about 6mfrom south<br />

tonorth(Räisänenetal.<strong>2003</strong>).<br />

Accordingtothedrillingdata,tailingsinbothponds<br />

canbedivided intodryoxidised andweaklyoxidised<br />

layers,andunderlyingwater-saturatedandnon-oxidised<br />

layer. Intheeasternpond,thewatertable(water-saturation<br />

zone)hasstayed quiteclosetothesurface, varying<br />

atthedepth<strong>of</strong>0.1–3metresfrom thesurface (lowest at<br />

theedges). Inspringandrainya utumns,thedepression<br />

<strong>of</strong> the eastern pond is water covered. In the western<br />

pond, the base gradient slants toward the north, and<br />

therefore the water table is more changeable than in<br />

the eastern pond.The water table dropped in the mid<br />

1990swhenthenortherndikewasfractured.In2000,<br />

thewater-saturation zonewasatadepth<strong>of</strong>5mbelow<br />

thesurfaceandinMay<strong>2004</strong>,ata bout3mfrom surface.<br />

Similarlytotheeasternpond, thethickness <strong>of</strong>oxidised<br />

layeristhin,beingabout0.7 cmthick.Fortunately,the<br />

accident had only minor consequen ces. Only asmall<br />

amount<strong>of</strong> tailings flowed out tothe bog. Presumably,<br />

thewaterleakagewasmoderate, s ince no deterioration<br />

wasdetected downstreamintheIiksejoki River.<br />

Fig. 5. Seismic interpretation, line L_1.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Geophysical characterizing <strong>of</strong> tailings impoundment ...<br />

Thevariation inthebasegradientbetweenthewestern<br />

and eastern ponds results from the compression<br />

capacity<strong>of</strong>bottom sediments andunderlyingbedrock<br />

topography.The b asement close to the southern dike<br />

<strong>of</strong>thewesternpo ndliespartially on outcrops <strong>of</strong>cr ys -<br />

tallineArcheanbedrockandpartiallyon thesandytill<br />

overlainbyathi npeatlayer. The centralandnorth ern<br />

parts <strong>of</strong>thewesternpondlieon thickpeatsediments,<br />

which are underlain by silt and clayey silt sediments.<br />

The eastern pond lies entirely on peat and silt sedi -<br />

ments. According to drilling data, the peat layer an d<br />

partially the underlying silt have been compressed.<br />

The groundwater table in the bottom sediments lies<br />

variably 0.5–1.5 mbelow the tailings. This indicates<br />

thatthebasement <strong>of</strong>thetailingsi swatertight.<br />

Geophysical results<br />

The airborne data is from 1991. The tailings impoundment<br />

can be seenas alow-resistivityanomalyin<br />

the quadrature (out-<strong>of</strong>-phase) component map. Today<br />

the GTK’s airborne system has a dual-frequency (3.1<br />

kHz and 14.4 kHz) EM-data acquisition and a high<br />

accuracy GPS positioning, giving rise to inversion <strong>of</strong><br />

subsurface conductivity distribution (see for example<br />

Suppala et al. <strong>2003</strong>, Lintinen et al. <strong>2003</strong>). The 1991<br />

EM, radiometric and magnetic data can be used for<br />

regional scale mapping <strong>of</strong> rock units, major fracture<br />

zones, overburden thickness and quality estimates,<br />

but not for detailed mapping <strong>of</strong> targets like the Hammaslahti<br />

tailings impoundment.<br />

Refraction seismic interpretation from line 1 is<br />

illustrated in Figure 5 (see also Fig. 4). Dry and saturated<br />

overburden as well as the bedrock with fracture<br />

zones can be detected from the model. The measured<br />

seismic velocity for the dry tailings in the pr<strong>of</strong>ile was<br />

300–480 m/s (Fig. 5). For natural sand and gravel<br />

formations the seismic velocity is typically 400 – 800<br />

m/sdependingonthegrainsize.Themeasuredseismic<br />

55


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Heikki Vanhala, Marja Liisa Räisänen, Ilkka Suppala et al.<br />

56<br />

Fig. 6. 3D bedrock relief model under the tailings inpoundmennt. The model is based on gravity nad seismic<br />

data.<br />

velocity <strong>of</strong> water-saturated tailings was 800 – 1100<br />

m/s. It is clearly lower than the seismic velocity <strong>of</strong><br />

natural sediments <strong>of</strong> 1400 – 1700 m/s. The measured<br />

seismic velocities <strong>of</strong> the bedrock under the tailing<br />

bed showed that the rock is commonly more or less<br />

fractured (< 4500 m/s). The seismic velocity for fresh<br />

rock is typically > 5000 m/s.<br />

The interpretation results <strong>of</strong> the six gravity lines<br />

together with the seismic results were integrated to a<br />

3D bedrock relief model shown in Figure 6. Together<br />

with the seismic results, which indicate the fracture<br />

zones, the 3D bedrock relief model (or the depth-tobedrock<br />

map) is <strong>of</strong> great importance in modelling the<br />

hydrogeology <strong>of</strong> the area.<br />

Figure 7, which present EM interpretation from line<br />

5, shows that the inverted results are in agreement<br />

with the drill core resistivity data. Constraining with<br />

the minimum structure model, i.e., minimal spatial<br />

derivatives with respect to conductivity, can make<br />

the inverted conductivity sections also too smooth.<br />

Results from multi-layer inversion using 4 or 5 layers<br />

are for the most part equally useful. The smooth<br />

inversion is just more robust if we do not know the<br />

number <strong>of</strong> layers.<br />

Figure 9 shows two examples <strong>of</strong> resistivity sections<br />

(ERT) and their relationship to the drilling results. The<br />

upper section also includes a comparison between<br />

laboratory and ground resistivity (<strong>2004</strong>). The electrical<br />

layering seen in the sections reflect the structure<br />

and composition <strong>of</strong> the tailings material and the water<br />

table.<br />

Figure 10 shows the relationships between the electrical<br />

conductivity and chemistry <strong>of</strong> tailings pr<strong>of</strong>iles<br />

at drilling site N6 (eastern pond). The chemical data<br />

is from samples taken in November 2000 and the<br />

electrical resistivity measurement from field data in<br />

Fig. 7. Line 5, drill core resistivity data (N19 and N20) embedded to electrical resistivity section based on HLEM, i.e., multi-frequency slingram<br />

data (1D inversion, 20m coil spacing). Here slingram measurements with the wider coil spacing bring more frequency-dependent information from<br />

the conductivity <strong>of</strong> the formation. Possibly due the bedrock conductors, the 1D model explains slightly better the results with coil spacing <strong>of</strong> 20 m<br />

than with the coil spacing <strong>of</strong> 40 m. Since the inversion results with both coil separations seem to be consistent with each other, the resolution <strong>of</strong> the<br />

inverted results could be improved using join inversion <strong>of</strong> both measurements.


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Geophysical characterizing <strong>of</strong> tailings impoundment ...<br />

Fig. 8. Line 5, electrical resistivity (HLEM, 1D inversion, 20m coil spacing), embedded to gravity, seismic and drilling results.<br />

The tailings bed can be seen as a low-resistivity layer. The higher-resistivity top-layer refers to dry tailings. Note that the elevation<br />

is exaggerated.<br />

July 2001. The whole resistivity section (July 2001) is<br />

presented in Figure 9. The distributions show similarities,<br />

especially above the water tables. Obviously, the<br />

actualwatertablewasdeeperdur ingthemeasurements<br />

in July 2001 than during drilling in November 2000.<br />

Figure 11 reveals a significant relationship between<br />

the electrical conductivity and distribution <strong>of</strong> Cu and<br />

Zn concentrations at drilling sites N19 (western pond)<br />

and N20 (eastern pond). Asimilar trend can also be<br />

seen for sulphur. The IPdata do not show as detectable<br />

a relationship as the conductivity.<br />

The electrical resistivity values measured for the<br />

tailings in the laboratory and inverted from the field<br />

data, 5–20 Ohmm (200–50 mS/m), are lower than the<br />

resistivity values <strong>of</strong> the natural soils and sediments<br />

in <strong>Finland</strong>. In earlier papers (Campbell et al. 1998,<br />

Campbell & Fitterman 2000, Campbell & Beanland<br />

2001, Campbell 2001, Anderson et al. 2001) IP has<br />

been found tobe a promising method <strong>of</strong> characterising<br />

the tailings. The first results in this study (Fig. 11) are<br />

not, however, promising. The IPvalues are low and no<br />

evident relationship to the chemistry is visible.<br />

Fig. 9. Electrical resistivity (ERT) sections from drilling sites N6 and N20. Note the different distance and depth scales. In both<br />

sections resistivity reflects the structure <strong>of</strong> tailings. In the upper section core resistivity data (N20) is also presented. It is very<br />

similar to the ERT result.<br />

57


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Heikki Vanhala, Marja Liisa Räisänen, Ilkka Suppala et al.<br />

discussion and conclusions<br />

58<br />

Fig. 10. (upper) Comparison between electrical resistivity soundings (ERT, red line) and<br />

the distribution <strong>of</strong> Zn, S and Fe in the tailings and underlying peat and silt sediments at<br />

drilling site N6 (Vanhala et al. <strong>2004</strong>).<br />

Up to present the geophysical results have seemed<br />

promising. Although the tailings impoundment is a<br />

very complicated target consisting <strong>of</strong> material not<br />

having a natural origin, the conventional techniques,<br />

gravity and seismic, provided accurate results <strong>of</strong> the<br />

bedrock relief and fracture zones. Seismic velocities<br />

differ from those <strong>of</strong> natural sediments and more work<br />

has to done to connect the data to the properties <strong>of</strong><br />

the tailings material.<br />

Electricalconductivityseemsto provideinformation<br />

not only on the thickness <strong>of</strong> the tailings bed and the<br />

moisture content and water table in the impoundment,<br />

but also on the chemical composition (metal sulphide<br />

content) <strong>of</strong> the tailings as seen in Figure 11. The fact<br />

that the field conductivity data (both the ERTand EM<br />

results) are very similar to that <strong>of</strong> the core sample<br />

conductivities, suggests that geophysics will be an<br />

effective tool for versatile characterising <strong>of</strong> tailings<br />

impoundments.<br />

In general, the geophysical methods provided relevant<br />

information on the main structural elements <strong>of</strong><br />

the tailings impoundment – relief and structure zones<br />

<strong>of</strong> the underlying bedrock, thickness <strong>of</strong> the tailings<br />

bed, internal embankments and water table. Electrical<br />

conductivity and refraction seismic data refer to<br />

lateral and vertical variation in the properties and/or<br />

composition <strong>of</strong> the tailings. Comparison between the<br />

chemical and electrical data suggests that at least part<br />

<strong>of</strong> the electrical conductivity variations can be related<br />

to the chemical composition <strong>of</strong> the tailings, especially<br />

to variation <strong>of</strong> metal sulphide content.<br />

REFERENCES<br />

Anderson,A.l., Campbell, d.l. & beanland, S. 2001. Laboratory<br />

measurements <strong>of</strong> electrical properties <strong>of</strong> composite mine<br />

dumpsamplesfromColoradoandNewMexico.U.S.<strong>Geological</strong><br />

<strong>Survey</strong>, Open-File Report 01–158. 11 p. + +app. app.<br />

beamish,d.&kurimo,M.2000. Trialairbornesurveystoassess<br />

minewater pollution in the UK. In: 62 nd EAGE Conference and<br />

Technical Exhibition, Glasgow, 29 May-2 June 2000 Extended<br />

Abstracts. Houten: European Association <strong>of</strong> Geoscientists &<br />

Engineers. 4 p.<br />

Campbell,d.l.2001. Spectralinducedpolarizationmeasurements<br />

at the main iron incline mine dump near Leadville, Colorado.<br />

U.S.<strong>Geological</strong><strong>Survey</strong>,Open-FileReport 01–315,9p.<br />

Campbell, d.l., Fitterman, d.v., hein, A.S., & Jones, d.P.<br />

1998 . Spectral induced polarization studies <strong>of</strong> mine dumps near<br />

Silverton, Colorado. Proceedings <strong>of</strong> SAGEEP(Symposium on<br />

the application <strong>of</strong> geophysics to engineering and environmental<br />

problems), March 22–26, 1998, Chicago, Illinois, 761–769.<br />

Campbell,d.l.,horton, R.J.,bisdorf, R.J., Fey,d.l.,Powers,<br />

M.h., & Fitterman, d.v. 1999. Some geophysical methods<br />

tailings/mine waste work. Tailings and mine waste ’99. Proceedings<br />

<strong>of</strong> the sixth international conference, Fort Collins,<br />

Colorado, January, 24–27, 1999.<br />

Campbell,d.l.&Fitterman,d.v.2000. GeoelectricalMethods<br />

for Investigating Mine Dumps. In: Internation Conference on<br />

AdicRockDrainage(ICARD2000),May21–24,2000,Denver,<br />

Colorado. Proceedings from the Fifth International Conference<br />

on Acid Rock Drainage 2. Colorado: The Society for Mining,<br />

Metallurgy, and Exploration Inc., 1513–1523.


(a)<br />

(b)<br />

Fig. 11. Comparison between drill-core electrical conductivity and IPwith chemical data <strong>of</strong><br />

the tailings (Zn, Cu and S), N19 (11a) and N20 (11b). Figure 11b also shows a resistivity<br />

sounding (ERT) result from Figure 9.<br />

Campbell, d. l. & beanland, S. 2001. Spectral induced polarization<br />

measurements at the Carlisle mine dump, New Mexico.<br />

U.S. <strong>Geological</strong> <strong>Survey</strong>, Open-File Report 01–363, 11 p.<br />

Frischknecht, F. C., labson, v. F., Spies, b. R. & Anderson,<br />

w. 1991. Pr<strong>of</strong>iling methods using small sources. In: Nabighian,<br />

M. N. (ed.) Electromagnetic Methods in Applied Geophysics<br />

2, Applications, Part A. Tulsa: Society <strong>of</strong> Exploration Geophysicists,<br />

105–270.<br />

heikkinen, P. M., korkka-Niemi, k., lahti, M. & Salonen,<br />

v.-P.2002 .Groundwaterandsurfacewatercontaminationinthe<br />

Groundwaterandsurfacewatercontaminationinthe<br />

area <strong>of</strong> the Hitura nickel mine, western <strong>Finland</strong>. Environmental<br />

Geology 42 (4), 313–329.<br />

lahti, M., kurimo, M. & vanhala, h. 2000. Assessment <strong>of</strong><br />

environmental risks by airborne geophysical techniques. 62nd<br />

EAGE Conference & Exhibition SECC, Glasgow, 29 May – 2<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Geophysical characterizing <strong>of</strong> tailings impoundment ...<br />

June 2000. ExtendedAbstracts, Volume 1, D20. Houten: European<br />

Association <strong>of</strong> Geoscientists & Engineers. 4 p.<br />

lintinen,P.,Suppala,i.,vanhala,h.&Eklund,M.<strong>2003</strong>. <strong>Survey</strong><br />

<strong>of</strong> a buried ice-marginal deposit by airborne EM measurements<br />

– a case from Kyrönjoki valley plain in southern Ostrobothnia,<br />

<strong>Finland</strong>. In: Autio, S. (ed.) <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>,<br />

<strong>Current</strong> <strong>Research</strong> 2001–2002. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>,<br />

Special Paper 36, 67–75.<br />

loke,M.h&barker,R.d.1996.Rapidleastsquaresinversion<strong>of</strong><br />

apparent resistivity pseudosections by a quasi-Newton method.<br />

Geophysical Prospecting 44, 131–152.<br />

loukola-Ruskeeniemi, k. 1992. Geochemistry <strong>of</strong> Proterozoic<br />

metamorphosed black shales in eastern <strong>Finland</strong>, with implications<br />

for exploration and environmental studies. Espoo:<br />

Geologian tutkimuskeskus. 86 p. (dissertation)<br />

59


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Heikki Vanhala, Marja Liisa Räisänen, Ilkka Suppala et al.<br />

Niskavaara, h. 1995. Acomprehensive scheme <strong>of</strong> analysis for<br />

soils, sediments, humus and plant samples using inductively<br />

coupled plasma atomic emission spectrometry (ICP-AES). In:<br />

Autio, S. (ed.) <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, <strong>Current</strong> <strong>Research</strong><br />

60<br />

1993–1994. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>. Special Paper 20,<br />

167–175.<br />

Pelkonen, k., Alopaeus, E., Penttilä, S. & korhonen, O.1973.<br />

Outokumpu Oy:n Hammaslahden kaivos. Vuoriteollisuus 2,<br />

90–96.<br />

Räisänen,M.l.&Carlson,l.<strong>2003</strong>. Selectiveextractionmethods<br />

applied for secondary precipitates in the mining environment.<br />

Nordic Society for Clay <strong>Research</strong>, Newsletter 14, February<br />

<strong>2003</strong>, 6–7. (Extended abstracts)<br />

Räisänen, M. l., Niemelä, k. & Saarelainen, J. <strong>2003</strong>. Rautasulfidipitoisen<br />

rikastushiekan läjitysalueen rakenne ja ympäristön<br />

pintavesien nykytila. Vuosien 2000 ja 2001 seurantatulokset,<br />

Hammaslahden vanha kuparikaivos. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong><br />

<strong>Finland</strong>, unpublished report S/44/0000/1/<strong>2003</strong>, 27 p. (In<br />

Finnish)<br />

Räisänen,M.l.<strong>2003</strong>. Rehabilitationoptionsfortailingsimpound-<br />

Rehabilitationoptionsfortailingsimpound-<br />

ments – case studies <strong>of</strong> ”wet” cover and wetland treatment. In:<br />

Hebestreit C., Kudełko J. & Kulczycka J. (eds.) Mine Waste<br />

management Best Available Techniques. Kraków: CBPM<br />

Cuprum, Wroclaw and MEERI PAS, 141–150.<br />

Sipilä, P. & Salminen, R. 1995. Environmental Environmentalimpact<strong>of</strong>three<br />

impact <strong>of</strong> three<br />

sulphide mine tailings in <strong>Finland</strong>. In: Autio, S. (ed) <strong>Geological</strong><br />

<strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, <strong>Current</strong> <strong>Research</strong> 1993–1994, <strong>Geological</strong><br />

<strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 20, 107–114.<br />

Suppala, i., vanhala, h. & lintinen, P. <strong>2003</strong> . Comparison be- be-<br />

tween ground and airborne EM data in mapping acid sulphate<br />

soils and sulphide bearing clays in the river Kyrönjoki valley,<br />

western <strong>Finland</strong>. In: Mares, S. & Pospísil, L. (eds.) 9th Meeting<br />

<strong>of</strong> Environmental and Engineering Geophysics, Prague, Czech<br />

Republic, August 31st – September 4th <strong>2003</strong>: proceedings.<br />

Prague: Czech Association <strong>of</strong> the Applied Geophysicists. 4 4p. p.<br />

vanhala, h. & lahti, M. 2001. Test <strong>of</strong> <strong>of</strong>resistivityandIPmethods<br />

resistivity and IPmethods<br />

formappingminetailings–ResultsfromHammaslahti,aclosed<br />

Cu mine in eastern <strong>Finland</strong>. Proceedings <strong>of</strong> 7th EEGS-ES Meeting,<br />

Birmingham, England, September 2nd-6th , 2001. 2p.<br />

vanhala, h,All, T., huotari, T., kattai, v. & lintinen, P. 2002.<br />

Test <strong>of</strong> airborne geophysics for mapping oil shale mining area<br />

in Kohtla-Järve, NE Estonia. 64th EAGE Conference & Ex -<br />

hibition, Florence, Italy, 27–30 May, 2002. Houten: European<br />

Association <strong>of</strong> Geoscientists & Engineers. 4 4p. p.<br />

vanhala,h.,Räisänen,M.l.,huotari,T.,valjus,T.,lehtimäki,<br />

J. & Suppala, i. <strong>2004</strong>. Characterisingtailingsimpoundmentat<br />

Characterising tailings impoundment at<br />

the closed Hammaslahti Cu-Zn mine, <strong>Finland</strong>. In: Near surface<br />

<strong>2004</strong>:10thEuropeanMeeting<strong>of</strong>EnvironmentalandEngineering<br />

Geophysics, Utrecht, The Netherlands, 6–9 September <strong>2004</strong>:<br />

Extended abstracts book. Houten: EAGE. 4 p.<br />

vanhala, h. & lahti, M. 2000. Sähköisten luotausten käyttö<br />

kaivosympäristötutkimuksissa – tuloksia Hiturasta, Hammaslahdesta<br />

ja Otravaarasta. In: Carlson, L., Kuula-Väisänen, P.<br />

& Loukola-Ruskeeniemi, K. (eds.) Ympäristö, terveys ja turvallisuuskaivannaisteollisuudessa:seminaari31.10–1.11.2000<br />

Haikon kartanossa: esitysten lyhennelmät. Vuorimiesyhdistys.<br />

Sarja B 76, 86–88.<br />

vanhala, h. & Soininen, h. 1995. Laboratory technique for<br />

measurement <strong>of</strong> spectral induced polarization response <strong>of</strong> soil<br />

samples. Geophysical Prospecting 43 (5), 655–676.<br />

watson, M. i., locke, C. A. & Cassidy, J. 2001. Imaging <strong>of</strong><br />

mine tailings leachate using ground penetrating radar and<br />

electromagnetic methods at Tui mine, New Zealand. In: 63rd<br />

Conference and Technical Exhibition, Amsterdam, The Netherlands,<br />

11–15 June. 2001. Houten: European Association <strong>of</strong><br />

Geoscientists & Engineers. 4 p.


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, <strong>Current</strong> <strong>Research</strong> <strong>2003</strong>–<strong>2004</strong>,<br />

Edited by Sini Autio.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38, 61– 71, 2005.<br />

GEOPhySiCAlChARACTERiSiNG OFSulPhidE RiCh FiNE-GRAiNEd SEdiMENTS iN<br />

SEiNÄJOki AREA, wESTERN FiNlANd<br />

by<br />

Ilkka Suppala, Petri Lintinen and Heikki Vanhala<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, P.O. Box 96, FI-02151 Espoo, <strong>Finland</strong><br />

E-mail: ilkka.suppala@gtk.fi<br />

Key words (GeoRef Thesaurus, AGI): sediments, acid sulphate soils, geophysical methods, airborne methods, ground methods, electromagnetic<br />

methods, resistivity, electrical conductivity, Seinäjoki, <strong>Finland</strong><br />

introduction<br />

In the Ostrobothnian region <strong>of</strong> western <strong>Finland</strong><br />

extensive parts are covered by sulphide rich clay and<br />

silt sediments, which were deposited during a more<br />

extensive phase <strong>of</strong> the Baltic Sea, mainly during the<br />

Litorina Sea period 7500–1500 years BC. During<br />

the deposition <strong>of</strong> organic rich Litorina sediments in<br />

shallow sea anoxic conditions prevailed resulting in<br />

sulphate reduction to sulphide. The sulphide-bearing<br />

sedimentsaltertoharmfulsulphatesoilswhenexposed<br />

to the air. In central Ostrobothnia the present rate <strong>of</strong><br />

land uplift is 8–9 mm / year (Donner 1995) leading<br />

to continuous exposure <strong>of</strong> new dry land. In addition<br />

to natural processes, human activities related to cultivation<br />

increase the natural oxidation process. Soils<br />

developed on sulphide rich sediments are characterised<br />

by pH values as low as 3–4 and they are <strong>of</strong>ten<br />

called acid sulphate soils (ASS). Steady oxidation <strong>of</strong><br />

sulphides annually releases significant amounts <strong>of</strong> Al<br />

and other harmful elements, such as Ni and Cd, into<br />

river water (Palko & Weppling 1994).<br />

Palko (1994) has estimated that in coastal areas <strong>of</strong><br />

<strong>Finland</strong> the total extent <strong>of</strong> ASS is some 3300 km 2 . In<br />

Sweden the total extent <strong>of</strong>ASS is approximately 1400<br />

km 2 (Öborn 1994). Previous studies related to ASS<br />

soils have mainly focused on the surficial soil layers<br />

to some 3 m in depth, where oxidising and leaching<br />

process operates.<br />

The sulphide clays are characterised by an exceptionally<br />

high electric conductivity (100–500 mS/m<br />

(10–2 Ωm)) compared to other glacial sediments,<br />

whichmakesthemespeciallysuitableforEMmethods.<br />

Peltoniemi (1982) made the first tests <strong>of</strong> using AEM<br />

measurementsforthemapping<strong>of</strong>conductiveoverburden<br />

in the Kyrönjoki river valley. He used apparent<br />

resistivities and depths and conductive horizontal<br />

thin-layer(1D)modelscalculatedfromone-frequency<br />

(3 kHz) AEM data. These results were compared with<br />

ground geophysics and ground truth. Åström (1996)<br />

used AEM maps (the amplitude <strong>of</strong> response and the<br />

ratio<strong>of</strong>in-phasetoquadraturecomponent)todelineate<br />

the fine-grained sulphidic sediments in the Petalax å<br />

catchment area.<br />

Puranen et al. (1999a, b) demonstrated how one- one-<br />

frequency airborne EM data can be used for mapping<br />

the thickness and lateral distribution <strong>of</strong> the western<br />

<strong>Finland</strong> sulphide clays. These papers also presented<br />

new in-situ conductivityprobingmeasurements,which<br />

were made in different fine-grained sediment areas<br />

61


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Ilkka Suppala, Petri Lintinen and Heikki Vanhala<br />

in <strong>Finland</strong>. Puranen Puranenetal.(1999a,b)alsopointed et al. (1999a, (1999a,b)alsopointed b) also pointed out<br />

that AEM data should be combined with ground-truth<br />

data to get a reliable tool for overburden mapping.<br />

In interpretation they used AEM maps <strong>of</strong> apparent<br />

resistivities and the in-phase/quadrature values. PuPuranen et al. (1999a, 1999b) emphasised the role <strong>of</strong><br />

soluble chloride as an important component causing<br />

the high electrical conductivity <strong>of</strong> sulphide-bearing<br />

fine-grained sediments.<br />

InAustraliaBell(20 03) testedgroundEM to pre dict<br />

acidification risk, but found only poor correlation between<br />

the sulphide content and the inverted electrical<br />

conductivity. In that test area saline porewaters are<br />

probably the main factor controlling the electrical<br />

conductivity. His conclusion was that EM is not an<br />

effectivetoolfordirectlymappingtheacidsulphatesoil<br />

hazard <strong>of</strong> saline (and conducting) Australian soils.<br />

Thepresentstudystartedin2002andthemainobjective<br />

was to develop airborne EM method for mapping<br />

and delineating the sulphide clay – sulphate soil areas<br />

(Lintinen et al. <strong>2003</strong>, Suppala et al. <strong>2003</strong>, Vanhala et<br />

al. <strong>2004</strong>). As reference data and for detailed studies<br />

anddevelopment<strong>of</strong>integratedint erpretation,airborne<br />

magnetic and radiometric, ground EM and resistivity,<br />

gravityandrefractionseismicmeasurementswerealso<br />

made. Results are compared to chemical and physical<br />

properties analysed from reference pr<strong>of</strong>ile drilled<br />

through clay and silt sediments.<br />

Geology <strong>of</strong> the study area<br />

Thestudyareaissituatedinthe Kyrönjoki-Seinäjoki<br />

rivervalleyplaininthemunicipalities<strong>of</strong>Seinäjokiand<br />

62<br />

Ilmajoki (Fig.1). The landscape is typical <strong>of</strong> southern<br />

Ostrobothnian with low-lying river valleys filled with<br />

clay and silt sediments <strong>of</strong>ten reaching thickness <strong>of</strong> 20<br />

m. Bedrock outcrops, partly covered by till, delineate<br />

the river valleys. Fine-grained sediments in the river<br />

valleys are manly cultivated and they are situated at<br />

an altitude <strong>of</strong> 40 m a.s.l, whereas the adjacent gently<br />

undulating hills <strong>of</strong>ten reach an altitude <strong>of</strong> 60–90 m<br />

a.s.l. The surface relief <strong>of</strong> Kyrönjoki river valley is<br />

relatively flat with minor topographical differences<br />

mainly caused by recent human activities related to<br />

ditching and the prevention <strong>of</strong> spring flooding. The<br />

bedrock in the study area is mostly composed <strong>of</strong> mica<br />

schists (Mäkitie & Lahti 1991, Mäkitie et al. 1991).<br />

Previousdrillingresultsshowthattheglacioaquatic<br />

and postglacial organic rich clay and silt sediments in<br />

the Kyrönjoki river valley are typically about 20 m<br />

in total thickness (Kukkonen 1990a,b) and they were<br />

deposited during the earlier, more extensive stages <strong>of</strong><br />

the Baltic Sea. According to Kukkonen (1983), the<br />

lowermost 1–2 m <strong>of</strong> fine-grained sediment was deposited<br />

during the Yoldia Sea period, the middle part<br />

during the Ancylus Lake period and the upper part<br />

during the Litorina Sea period. The highest shoreline<br />

<strong>of</strong> the Litorina Sea lies at 60 m a.s.l. The uppermost<br />

sedimentary unit, usually less than 1 m in thickness,<br />

is only found near the Kyrönjoki river, where annual<br />

spring flooding has maintained wetland areas.<br />

Based on 30 studied soil pr<strong>of</strong>iles Österholm (1998)<br />

estimated that two-thirds <strong>of</strong> the soils in the Rintala<br />

reclamation area, situated within the survey area <strong>of</strong><br />

this study, are very acid, having a minimum pH value<br />

in the oxidised layer <strong>of</strong> around 3.5. In soils with very<br />

Fig. 1. Location map <strong>of</strong> the survey area in the Seinäjoki region <strong>of</strong> Ostrobothnia, western <strong>Finland</strong>. The highest shoreline,<br />

which delineates subaquatic and supraquatic land (3), the isobases (4) <strong>of</strong> the highest shoreline, and the shoreline <strong>of</strong><br />

Litorina Sea (2) and the present coast line (1) is marked (after Alalammi 1992).


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Geophysical characterising <strong>of</strong> sulphide rich fine-grained sediments...<br />

Fig. 2. Map <strong>of</strong> Quaternary deposits in Senäjoki-Ilmajoki region. The ground geophysical lines and sampling/drilling sites are marked. Soil sampling<br />

locations <strong>of</strong> Österholm (1998) are marked with stars (pH ≤ 4) and triangles (pH > 4) indicating minimum pH value for individual soil pr<strong>of</strong>iles <strong>of</strong> about<br />

3 m deep (Pohjakartta © Maanmittauslaitos, lupa nro 13/MYY105).<br />

low pH values the sulphur concentration was typically<br />

0.25–0.8 % in the reduced layer and the carbon<br />

content 1–3% in the oxidised layer. Whereas in the<br />

rest <strong>of</strong> the soil pr<strong>of</strong>iles the minimum pH was seldom<br />

less than 5, the sulphur content in the reduced layer<br />

was typically 4 %.<br />

Sampling and laboratory analyses<br />

Drilling was conducted by GM 100 drilling rig<br />

applying a piston sampler with a sampling tube 2 m<br />

in length and a 45 mm inner diameter. The drilling<br />

locations are shown in Figure 4. Standard sedimentological<br />

procedures were applied for the logging <strong>of</strong><br />

drilled samples. Continuous piston core samples <strong>of</strong><br />

s<strong>of</strong>t sediments, i.e., clay, silt or fine sand were opened<br />

in the laboratory. Coarse-grained sediments difficult<br />

to penetrate with the piston corer were sampled by<br />

flow-through-bit and only studied in 1 m intervals or<br />

in intervals related to the changes <strong>of</strong> the penetration<br />

rate indicating consistency differences <strong>of</strong> the sediment.<br />

Flow-through-bit samples were studied in the<br />

field and they reveal only scattered information on<br />

major sediment units.<br />

Resistivity and pH values <strong>of</strong> core samples were<br />

immediately performed after piston cores have been<br />

opened in the laboratory. The measurements were<br />

performed through the surface as quickly as possible<br />

in order to obtain measurement from unoxidised sediment.<br />

The laboratory system consists <strong>of</strong> HP 35665A<br />

Signal Analyser and a Wenner-type electrode array<br />

with 1 cm long steel electrodes and 1 cm electrode<br />

spacing. Measurements were conducted at an interval<br />

<strong>of</strong> 10 cm in drilled cores. The pH <strong>of</strong> the samples was<br />

determined by a portable analyser.<br />

After logging, resistivity and pH measurements<br />

piston cores were sampled at approximately 0.5–1 m<br />

intervals. Samples consisted <strong>of</strong> about 0.1 m sequence<br />

<strong>of</strong> piston core. In all, 75 soil samples were chemically<br />

analysed at the Geolaboratory <strong>of</strong> GTK. Prior chemical<br />

analyses the soil samples were lyophilised. Fluoride,<br />

chloride, bromide,nitrateandsulphateconcentrations<br />

were determined from the water leached samples by<br />

ion chromatography (Dionex DX120). Total sulphur<br />

concentration was analysed with LECO equipment.<br />

Geophysical data and interpretation<br />

The airborne data was acquired using the GTK’s<br />

(<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>) Twin Otter aircraft<br />

equipped with magnetic (horizontal gradiometer<br />

63


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Ilkka Suppala, Petri Lintinen and Heikki Vanhala<br />

– two magnetometers at the wingtips), radiometric<br />

(earth’s gamma radiation – total count, Th, K, U<br />

channels), and dual-frequency EM system (3125 Hz<br />

and 14368 Hz). The vertical coplanar coils, mounted<br />

on the wingtips, have a separation <strong>of</strong> 21.36 metres.<br />

Adetailed description <strong>of</strong> the EM system is given by<br />

Poikonen etal. (1998).The nominal flight altitude was<br />

30 m and the line spacing 100 m. Altogether, 89 lines<br />

were measured.<br />

Ground EM measurements were carried out using<br />

the multi-frequency horizontal loop slingram method<br />

(APEX MaxMin I+8S system). Six frequencies (880,<br />

Fig. 3. Airborne geophysical maps <strong>of</strong> the Seinäjoki study area – magnetic map (upper left), Total radiation (upper right), Electromagnetic in-phase<br />

component, 3.1 kHz (lower left) and the apparent depth, 14.4 kHz (lower right).<br />

64<br />

1760, 3520, 7040, 14080 and 28160 Hz) were measured.<br />

Nominal coil spacing <strong>of</strong> 40 m was used in all<br />

ground EM pr<strong>of</strong>iles. Also measurements with terrain<br />

conductivity metres (EM-31 & GEM-300) have been<br />

made along the slingram pr<strong>of</strong>iles.<br />

Airbornemagneticsismostusefulformappingbedrockgeology(Fig.3,upperleft).Anomaliesarecaused<br />

by magnetic remanence and magnetic susceptibility.<br />

Magnetic susceptibility affects the EM responses, but<br />

in this study are there are no signs <strong>of</strong> that. Conductive<br />

overburden dampens the possible contribution <strong>of</strong><br />

anomalous susceptibility <strong>of</strong> bedrock.


The Earth’s measured gamma radiation, through<br />

airborne radiometrics, is highlighted in the uppermost<br />

surface material. Values <strong>of</strong> K, U and Th channels and<br />

their ratios have also been used to assist mapping soil<br />

deposits in <strong>Finland</strong> (Hyvönen et al. <strong>2003</strong>). Radiometrics<br />

gives a measure <strong>of</strong> the radioactive mineral content<br />

<strong>of</strong> the surface, but the intensity <strong>of</strong> radiation is also affected<br />

by the moisture/water content <strong>of</strong> the uppermost<br />

part <strong>of</strong> the surface. Figure 3 (upper right) shows the<br />

map <strong>of</strong> the total count channel. The strongest signal<br />

reflects the exposed bedrock. The lowest values show<br />

the wetlands and mires. Variation in water or moisture<br />

content <strong>of</strong> surface soils is also observable in areas <strong>of</strong><br />

fine-grained sediments.<br />

AEM and EM expose the sub-surface conductivity<br />

structure. Here we are interested in conductive<br />

overburden and that conductivity which is related<br />

to sulphide-bearing fine-grained sediments. Some<br />

<strong>of</strong> the magnetic anomaly zones are also conductive<br />

(Fig. 3 left, magnetic and EM in-phase at 3125 Hz).<br />

In AEM interpretation the contribution these zones<br />

make could only be seen in areas without conductive<br />

overburden. Variation in moisture and water content<br />

<strong>of</strong> surface soils has an effect on the conductivity <strong>of</strong><br />

the uppermost part <strong>of</strong> the sediments. This could be<br />

seen in ground EM measurement, e.g. in the results<br />

<strong>of</strong> the terrain conductivity metres.<br />

The maps <strong>of</strong> apparent resistivity and depth are<br />

useful for first-pass interpretation. These maps are<br />

provided together with the measuring quantities.<br />

Apparent resistivity and apparent distance mean that<br />

the resistivity <strong>of</strong> a homogeneous half-space and that<br />

distance <strong>of</strong> that half-space from the sensor system,<br />

which explain measured in-phase a nd quadrature<br />

responses (Fraser 1978; Peltoniemi 1982). Apparent<br />

depth is then apparent distance minus measured<br />

flight altitude. This transformation is the simplest 1D<br />

interpretation method.<br />

Resistivity mapping is a proper display method for<br />

AEM data, at least in these low resistive clay areas.<br />

Here the conducting homogeneous half-space can be<br />

quite a valid model toexplain the measured responses.<br />

The skin depth is one measure <strong>of</strong> electrical attenuation<br />

(e.g. Peltoniemi 1982). Assuming a resistivity<br />

<strong>of</strong> 7 Ω m, the skin depths are 23.8 and 11.1 m for the<br />

low and high frequency, respectively. In the deeper<br />

parts <strong>of</strong> this clay area the apparent resistivities (at<br />

high frequency at least) are near the spatial average<br />

resistivity <strong>of</strong> these fine-grained sediments.<br />

In this study, 1D layered-earth interpretation <strong>of</strong> the<br />

EM data was made with model norm -based inversion.<br />

In the 1D model, the earth is composed <strong>of</strong> a stack <strong>of</strong><br />

layers, each having a uniform conductivity. The 1D<br />

conductivity structure, i.e., the conductivities <strong>of</strong> each<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Geophysical characterising <strong>of</strong> sulphide rich fine-grained sediments...<br />

layer,issoughtbytheregularizedinversion.Thegoalis<br />

t<strong>of</strong>indforevery measuringpointa minimum-structure<br />

model,whichcanfitthemeasurementdatasufficiently<br />

well. The 1D responses and sensitivity matrices have<br />

beencalculatedbytheAirbeoprogram(Chen&Raiche<br />

1998). The minimization <strong>of</strong> objective function (data<br />

misfit + β x model norm ) has been carried out with<br />

Haber’s (1997) damped Gauss-Newton algorithm.<br />

The EM system <strong>of</strong> Twin Otter (at 3125 and 14368<br />

Hz) is most sensitive to the conductivity <strong>of</strong> a halfspace<br />

in conductivity aperture <strong>of</strong> ~ 0.02 – 1 S/m (50<br />

– 1 Ω m). Achange in conductivity will cause clearly<br />

noticeable changes in at least 3 measured responses<br />

(in both in-phase components and at least in one quadrature<br />

component). So with two-frequency AEMdata<br />

wecanalsogetreasonable results, and the interpreted<br />

variationsinconductivityandthickness <strong>of</strong>theoverlyingconductingsedimentsdepictthetrueconductivity<br />

structure<strong>of</strong>thesediments.<br />

Thevolume<strong>of</strong> theearth contributing to theresponse<br />

<strong>of</strong> an AEM system is said to be the illumination footprint<br />

<strong>of</strong> the system. There are different definitions<br />

<strong>of</strong> the footprint; originally Liu and Becker (1990)<br />

defined it as a side length <strong>of</strong> a square surface, centred<br />

directly below the transmitter coil that contains the<br />

induced currents which accounts for 90% <strong>of</strong> the observed<br />

secondary field. Beamish (<strong>2003</strong>) has defined<br />

a transmitter footprint using only induced current.<br />

We have visualized the illumination footprints <strong>of</strong><br />

used EM systems by using 3D sensitivity functions<br />

(distributions) <strong>of</strong> these coil systems (Suppala et al.<br />

<strong>2003</strong>). Considering the footprint <strong>of</strong> the ground EM<br />

systems the electromagnetic coupling between the<br />

induced current system and the receiver should be<br />

takenintoaccount,asintheLiu-Beckerfootprint(Reid<br />

& Vrbancich <strong>2004</strong>) or in the 3D sensitivity functions<br />

approach. The footprint <strong>of</strong> the EM system is only<br />

one qualitative measure <strong>of</strong> its lateral resolution, and<br />

usually these estimates have been calculated using a<br />

homogeneous half-space.<br />

For the AEM system <strong>of</strong>the Twin Otter the most<br />

sensitiveregion isbelowthecoil systemandelongated<br />

perpendiculartotheflightdirection.Verticalcoilswhose<br />

axes are oriented parallel tothe flightline means agood<br />

spatial resolution along the flightline and an adequate<br />

lateral coverage perpendicular to the flight line. For<br />

the ground horizontal loop system, the most sensitive<br />

region is elongated along the pr<strong>of</strong>ile between the coils.<br />

FortheAEMsystemthefootprintislargerthanforthe<br />

APEX MaxMin ground EM system withthe coil spacing<strong>of</strong>40m.Thefootprint<strong>of</strong>the<br />

terrain conductivity<br />

metres EM-31 with the coil separations <strong>of</strong> 3.66 mis<br />

less than10m.<br />

65


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Ilkka Suppala, Petri Lintinen and Heikki Vanhala<br />

Fig. 4. Airborne electrical conductivity map (apparent resistivity, 14.4 kHz), the ground geophysical lines and drilling sites (D-1, D-2). The lines L2<br />

and L5 and AEM lines 42, 43 and 44 are discussed in Figures 5, 6 and 8.<br />

Results<br />

Figure 3 (lower right) shows the map <strong>of</strong> apparent<br />

depth and Figure 4 shows the map <strong>of</strong> apparent resistivity,transformedfromtheAEMmeasurementsat14368<br />

kHz. With the apparent depths the validity <strong>of</strong> the 1D<br />

homogeneous half-space model can be assessed. In<br />

areas where the apparent depth is negative, the cause<br />

<strong>of</strong> the AEM response is most probably a thin low resistive<br />

overburden and the apparent resistivity value<br />

overestimatestheaverageresistivity<strong>of</strong>theoverburden.<br />

In Figure 3 these negative apparent depths are shown<br />

the bluish colours.<br />

The apparent resistivity and depth maps show that<br />

the main part <strong>of</strong> the low resistive clay and silt sediment<br />

area seems to be thick enough for this kind <strong>of</strong><br />

interpretationwhen theAEM data at 14368 Hz is used.<br />

There the apparent resistivities are spatial averages<br />

<strong>of</strong> true resistivity <strong>of</strong> these sediments. Small positive<br />

apparent depths indicate that the uppermost part <strong>of</strong><br />

the sediment is more resistive than the deeper part.<br />

66<br />

The apparent depth map delineates the Kyrönjoki<br />

riverbank (see the topography in Figure 5), so that<br />

there the uppermost more resistive layer seems to be<br />

thicker than elsewhere in the cultivated area.<br />

One 4 km long gravity pr<strong>of</strong>ile (L-5) and three short<br />

refraction seismic lines (on L-5) were measured in<br />

order to get reference data (i.e., the thickness <strong>of</strong> the<br />

Quaternary sediments) for EM interpretation (Fig. 5).<br />

Seismics provides information also on the water table<br />

as well as the quality <strong>of</strong> the sediments.<br />

Figure 6 shows the inversion result from the pr<strong>of</strong>ile<br />

L-2 (shown in Fig. 4). The slingram pr<strong>of</strong>ile runs over<br />

the low-resistivity sediments and the buried ice-marginal<br />

deposits (at D-2) (Lintinen et al. <strong>2003</strong>). D-1 and<br />

D-2 are drilling sites. In Figure 6 resistivity data from<br />

the drilling site D-1 is presented in the separate box.<br />

Also shown is the measured and modeled slingram<br />

data. Excluding the 3D effect caused by the buried<br />

ice-marginal deposits, the 1D model explains the<br />

measurements well. In the 1D interpretation also the<br />

true coil spacing has been considered as an unknown


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Geophysical characterising <strong>of</strong> sulphide rich fine-grained sediments...<br />

Fig. 5. 2D bedrock relief model based on gravity and refraction seismic data, line L-5. Groundwater table is interpreted<br />

from the refraction seismic data.<br />

parameter. It has been estimated carefully from the<br />

field data. The inverted and measured resistivities are<br />

consistent with each other.<br />

Figure 7 shows the electrical conductivity <strong>of</strong> drillcore<br />

samples from the drilling site D-1 (the same data<br />

asintheboxinFigure6)andtheinversionresultsfrom<br />

theAEM data and from electrical resistivity tomography<br />

(ERT). The ERT data is 80 m to SE <strong>of</strong> the drilling<br />

site (along the line L-2). The inversion results are in<br />

good agreement with the drill-core samples, as well<br />

as the results in Figure 6. According to the inverted<br />

ERT results, the resistivity <strong>of</strong> the uppermost surface<br />

is lower when moving to SE along the line L-2. This<br />

resistivity decrease in the uppermost layer could be<br />

seen approximately in Figure 6 and from the inverted<br />

AEM results.<br />

Figure 8 shows a comparison between airborne and<br />

ground EM inversion results. The ground geophysical<br />

Fig. 6. An example <strong>of</strong> 1D inversion <strong>of</strong> ground EM data, resistivity model (lower) and measured and fitted data. Drillcore<br />

resistivity data from drilling site D-1 is presented in the separate box.<br />

67


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Ilkka Suppala, Petri Lintinen and Heikki Vanhala<br />

measurements along the line L-5 were carried out in<br />

<strong>2003</strong> and the flight in 2002. TheAEM lines 42, 43 and<br />

44 (Fig. 4) cross the ground EM line L-5. The slingram<br />

inversion results are fairly consistent with the gravity<br />

andseismicinterpretationbutalsoshow“higher-resistivity”<br />

layers between the low-resistivity fine-grained<br />

sediments and the high-resistivity bedrock. TheAEM<br />

system cannot detect the contact between the possible<br />

coarse (high-resistivity) sediments and the bedrock,<br />

but resolves only the biggest resistivity contrast (i.e.,<br />

between the low-resistivity fine-grained sediments<br />

and the material below it).<br />

The inversion results <strong>of</strong> theAEM and slingram data<br />

(e.g. from Figs. 6,8,10) show that here the slingram<br />

system operating at 6frequencies has abetter depth<br />

resolution withaslightlydeeperexploration depththan<br />

theAEMdual-frequencysystem.<br />

Drilling at D-1 terminated at a depth <strong>of</strong> 20.1 m. Neither<br />

bedrock nor till was detected. The whole drilled<br />

sequence consists <strong>of</strong> s<strong>of</strong>t clay, silt and sand-sized sediments,<br />

which are divided into three lithostratigraphical<br />

units. The lowermost unit from a depth <strong>of</strong> 20.1 m<br />

to 17 m is composed <strong>of</strong> laminated clay and silt/fine<br />

sand. In each rhythmite coarser layers are from 2 to<br />

10 cm in thickness and finer layers are from 0.3 to<br />

1.0 cm in thickness. Dropstone structures with pebble-size<br />

clasts were observed in this unit. This unit is<br />

also characterised by low sulphate, total sulphur and<br />

68<br />

Fig.7.Comparisonbetweentheelectricalconductivity<strong>of</strong>drill-coresamples<br />

and the inversion results <strong>of</strong> the AEM data and ground resistivity data. The<br />

ground resistivity data is 80 m to SE from the drilling site.<br />

chloride concentration (Fig. 9). The lamina thickness<br />

gradually decreases and dark sulphide rich laminated<br />

clay and silt with 1–3 mm lamina thickness overlies<br />

the lowermost unit. In this unit chloride concentration<br />

is distinctively elevated compared to the unit below.<br />

At a depth <strong>of</strong> 12–11 m the laminated sediment unit<br />

Fig. 8. Comparison between AEM and ground EM inversion results (see Figure 4). Note that AEM lines 42, 43 and 44 crosses line L-5 and the gravity<br />

and seismic data (the inverted bedrock surface) is from line 5.


gradually changes to the upper weakly laminated or<br />

massive sulphide clay and silt unit. This unit is characterised<br />

by total sulphur concentrations <strong>of</strong> 0.3–1.0<br />

%. The Cl 2 concentrations do not correlate with the<br />

totalSconcentrations.Theresultwasexpectedbecause<br />

both results indicate different geochemical regime in<br />

a water body. The overall decrease <strong>of</strong> chloride from<br />

deeper layers to the surficial layers possibly indicates<br />

the natural decrease <strong>of</strong> salinity during the Litorina Sea<br />

period. Subaerial leaching can not totallybe excluded,<br />

but its effect may be minimal. This view is supported<br />

by the fact that the Rintala area was artificially drained<br />

for agricultural purposes by ditching and pumping<br />

only few decades ago. Also the low permeability <strong>of</strong><br />

fine-grainedsediment,andthegroundwatertableatthe<br />

depth <strong>of</strong> about 2 m support the view that the leaching<br />

effect has had a minimal effect on the chloride content<br />

<strong>of</strong> the pr<strong>of</strong>ile studied.<br />

discussion and concluding remarks<br />

Peltoniemi(1982)validatedone-frequencylowaltitudeAEM<br />

data, which was measured by DC-3 aircraft<br />

with a vertical coaxial coils system and showed the<br />

usefulness <strong>of</strong> the simple 1D models in area <strong>of</strong> lowresistivity<br />

fine-grained sediments. He made his test<br />

at a distance <strong>of</strong> less than 10 km from the Rintala area<br />

along the lower course <strong>of</strong> the Kyrönjoki river. The<br />

typical layer-structure <strong>of</strong> the overburden is, according<br />

to the results <strong>of</strong> Peltoniemi (1982): organic soil<br />

in the surface (45–120 Ω m), sulphide clay and gyttja<br />

(7–21 Ω m), and till (> 340 Ω m). Asimilar resistivity<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Geophysical characterising <strong>of</strong> sulphide rich fine-grained sediments...<br />

Fig. 9. Chemical data from drilling site D-1 (a), Comparison between the electrical conductivity <strong>of</strong> drill-core samples and chemistry.<br />

Note the similarity <strong>of</strong> the conductivity-depth curve and the sum <strong>of</strong> the water-soluble chloride and sulphate.<br />

structure is obtained in the Rintala area, where the<br />

resistivity <strong>of</strong> the fine-grained sediment can be still<br />

less than 5 Ω m.<br />

Puranenetal. (1999a,b)and (1999a,b)andÅström(1996)showed<br />

Åström(1996)showed<br />

that by using one-frequency airborne EM data, the occurrence<strong>of</strong>low-resistivitysulphide-bearingsediments<br />

can be delineated. With two-frequency AEMdatawe<br />

canalso interpretvariationsinthe resistivityandthick -<br />

ness <strong>of</strong>theoverlyinglowresistivesediments.<br />

Theslingram system operating at6frequencies has<br />

abetterdepthresolution withslightlydeeperexploration<br />

depth than theAEM dual-frequency system. The<br />

groundEMhasabetterspatialre solutiontoo.Toincrease<br />

the depth resolution <strong>of</strong> theAEM system it should be<br />

upgraded to operate at more than two frequencies. A<br />

frequencyhigher than 14368Hzwould help toresolve<br />

subtle resistivity variations near the surface, while<br />

afrequency lower than 3125 Hz wo uld increase the<br />

exploration depth.Togainthebest possibleresolution<br />

fromanEMsystemthecalibrationandlevellingshould<br />

be done properly.<br />

The thicknesses <strong>of</strong> the fine-grained deposit, inverted<br />

from the AEM data, were in good agreement<br />

with other available data. Furthermore, the resistivity<br />

distributions based on AEM data were very similar to<br />

the drill-core, resistivity soundings and ground EM<br />

results.Thehighelectricalconductivity<strong>of</strong>thesulphide<br />

clay arises from the salinity and sulphate <strong>of</strong> the pore<br />

water. However, the salinity originates from the same<br />

depositional environment as the sulphides, and the<br />

results strongly suggest that the AEM data can be an<br />

economic tool for regional scale sulphide clay maps<br />

69


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Ilkka Suppala, Petri Lintinen and Heikki Vanhala<br />

and acidification predictions. The other geophysical<br />

data played invaluable role not only as reference and<br />

calibration data for AEM interpretation, but also in<br />

characterisation <strong>of</strong> soil types.<br />

The need to resolve conductivity variation near the<br />

surface and at depth over a large area suggested an<br />

airborne EM system as most appropriate. Here we<br />

have usedAEM data tocomplement other information<br />

(with higher resolution), ground EM measurements<br />

and in-situ conductivities,todelineatethe conductivity<br />

structure in the area (Fig. 10). We have not constrained<br />

one inversion using in-situ or inverted conductivities<br />

from other data sets. By comparing the different results<br />

we can validate e.g. the calibration <strong>of</strong> the AEM<br />

measurement.<br />

Duetotopographycontrolleddepositionanderosion<br />

processes, as well as differences in redox conditions<br />

prevailing in the water body and sediment, the results<br />

gathered from one area are not directly applicable to<br />

another research area without new reference drilling,<br />

sampling and chemical analyses. However, when<br />

the basin-related relationship between chemistry<br />

and EM-results are carefully worked out the applied<br />

integrated methodology shows great potential characterising<br />

potentially problematic sulphur-rich clay<br />

and silt deposits.<br />

70<br />

Fig. 10. 3D Model <strong>of</strong> the electrical resistivity based on 1D inversion <strong>of</strong> AEM and ground EM data.<br />

REFERENCES<br />

Alalammi,P.(ed.)1992. Atlas<strong>of</strong><strong>Finland</strong>,Folio123–126.Geology.<br />

5 thedition. Helsinki:National Board <strong>of</strong> <strong>Survey</strong> and Geographical<br />

Society <strong>of</strong> <strong>Finland</strong>. 58 p. 3 app. maps, 29 app. pages.<br />

Åström, M. 1996 . Geochmistry, chemical reactivity and extent <strong>of</strong><br />

leaching<strong>of</strong>sulphide-bearingfine-grainedsedimentsinsouthern<br />

Ostrobothnia, Western <strong>Finland</strong>. Åbo Akademi University. 44<br />

p. (dissertation)<br />

beamish, d. <strong>2003</strong>. Airborne EM footprints. Geophysical Prospecting,<br />

51, 49–60.<br />

bell, b. <strong>2003</strong>. Can electromagnetics directly map the acid sulphate<br />

soil hazard in Australia? Preview, Australian Society <strong>of</strong><br />

Exploration Geophysicists 107, 29–31.<br />

Chen, J. & Raiche, A. 1998. Inverting AEM data using a<br />

damped eigenparameter method. Exploration Geophysics 29,<br />

128–132.<br />

donner, J. 1995. The Quaternary History <strong>of</strong> Scandinavia: World<br />

and Regional Geology 7: Cambridge, United Kingdom: Cambridge<br />

University Press. 199 p.<br />

Fraser,d.C.,1978. Resistivitymappingwithanairbornemulticoil<br />

electromagneticsystem:Geophysics,43,144–172.<br />

haber, E. 1997. Numerical strategies for the solution <strong>of</strong> inverse<br />

problems. Ph.D. thesis, The University <strong>of</strong> British Columbia.<br />

hyvönen, E., lerssi, J. & väänänen, T. <strong>2003</strong>. Airborne geo- geo-<br />

physical surveys assessing the general scale Quaternary mapping<br />

project in <strong>Finland</strong>. In: 9thEEGS Meeting, Prague, Czech<br />

Republic, August 31st – September 4th <strong>2003</strong>: proceedings.<br />

Prague: Czech Association <strong>of</strong> the Applied Geophysicists. 4 4p. p.<br />

kukkonen, M. 1990a. Könni. <strong>Geological</strong> Map <strong>of</strong> <strong>Finland</strong><br />

1:20 000, Quaternary Deposits, Sheet 2222 02. <strong>Geological</strong><br />

<strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>.<br />

kukkonen, M. 1990b. Jouppila. <strong>Geological</strong> Map <strong>of</strong> <strong>Finland</strong><br />

1:20 000, Quaternary Deposits, Sheet 2222 05. <strong>Geological</strong><br />

<strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>.<br />

kukkonen, E., kokko, J. & herola, E. 1983. Seinäjoki, <strong>Geological</strong><br />

Map <strong>of</strong> <strong>Finland</strong> 1:20 000, Quaternary Deposits, Sheet<br />

2222 08. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>.<br />

lintinen,P.,Suppala,i.,vanhala,h.&Eklund,M.<strong>2003</strong>. <strong>Survey</strong><br />

<strong>of</strong> a buried ice-marginal deposit by airborne EM measurements<br />

– a case from Kyrönjoki valley plain in southern Ostrobothnia,<br />

<strong>Finland</strong>. In: Autio, S. (ed.) <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>,<br />

<strong>Current</strong> <strong>Research</strong> 2001–2002. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>,<br />

Special Paper 36, 67–75.<br />

liu, G. & becker, A.1990. Two-dimensional mapping <strong>of</strong> seaice<br />

keels with airborne electromagnetics. Geophysics 55,<br />

239–248.


Mäkitie, h., lahti, S., i., Alviola, R. & huuskonen, M. 1991.<br />

Seinäjoki.<strong>Geological</strong>Map<strong>of</strong><strong>Finland</strong>1:100000,Pre-Quaternary<br />

Rocks, Sheet 2222, <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>.<br />

Mäkitie,h.&lahti,S.i.1991. Seinäjoenkartta-alueenkallioperä.<br />

Summary: Pre-Quaternary rocks <strong>of</strong> the Seinäjoki map-sheet<br />

area. <strong>Geological</strong> Map <strong>of</strong> <strong>Finland</strong> 1:100 000, Explanation to<br />

the Maps <strong>of</strong> Pre-Quaternary Rocks, Sheet 2222. <strong>Geological</strong><br />

<strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>. 60 p.<br />

Öborn, i. 1994 . Morphology, chemistry, mineralogy and fertility<br />

<strong>of</strong> some acid sulfate soils in Sweden. Reports and Dissertations<br />

18, Swedish University <strong>of</strong> Agrocultural Sciences, Uppsala,<br />

Sweden.<br />

Österholm, P. 1998. Geokemisk studie av svavelhaltiga sediment<br />

IRintalatorrläggningsområdeiSyd-Österbotten.ÅboAkademi<br />

University. Unpublished master’s thesis, 57 p. (In Swedish)<br />

Palko, J. 1994. Acid sulphate soils and their agricultural and environmental<br />

problems in <strong>Finland</strong>. Acta ActaUniversitatisOuluensis<br />

Universitatis Ouluensis<br />

C 75. 58 p.<br />

Palko, J. & weppling, k. 1994. Lime requirement experiment<br />

in acid sulphate soils. Acta Agriculturae Scandinavica 44,<br />

149–156.<br />

Peltoniemi, M. 1982. Characteristics and results <strong>of</strong> an airborne<br />

electromagnetic method <strong>of</strong> geophysical surveying: <strong>Geological</strong><br />

<strong>Survey</strong><strong>of</strong><strong>Finland</strong>, Bulletin321.229p. 229p.<br />

Poikonen,A., Sulkanen, k., Oksama, M. &Suppala, i. 1998.<br />

Novel dual frequency fixed wing airborne EM system <strong>of</strong> Geo-<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Geophysical characterising <strong>of</strong> sulphide rich fine-grained sediments...<br />

logical <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong> (GTK). Exploration Geophysics 29<br />

(1–2), 46–51.<br />

Puranen, R., Sahala, l., Säävuori, h. & Suppala, i. 1999a .<br />

Airborne electromagnetic surveys <strong>of</strong> clay areas in <strong>Finland</strong>.<br />

In: Autio, S. (ed.) <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, <strong>Current</strong><br />

<strong>Research</strong>,1997–1998. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special<br />

Paper 27, 159–171.<br />

Puranen, R., Säävuori, h., Sahala, l., Suppala, i., Mäkilä,<br />

M. & lerssi, J. 1999b . Airborne Airborneelectromagneticmapping<strong>of</strong><br />

electromagnetic mapping <strong>of</strong><br />

surficial deposits in <strong>Finland</strong>. First Break 17 (5), 145–154.<br />

Reid, J., E. & vrbancich, J. <strong>2004</strong>. Acomparison <strong>of</strong> the inductive-limitfootprints<strong>of</strong>airborneelectromagneticconfigurations.<br />

Geophysics 69, 1229–1239.<br />

Suppala, i., vanhala, h. & lintinen, P. <strong>2003</strong>. Comparison between<br />

ground and airborne EM data in mapping acid sulphate<br />

soils and sulphide bearing clays in the Kyrönjoki river valley,<br />

western<strong>Finland</strong>.In:9thEEGSMeeting,Prague,CzechRepublic,<br />

August 31st – September 4th <strong>2003</strong>: proceedings. Prague: Czech<br />

Association <strong>of</strong> the Applied Geophysicists. 4 4p. p.<br />

vanhala, h., Suppala, i. & lintinen, P. <strong>2004</strong>. Integrated<br />

geophysical study <strong>of</strong> acid sulphate soil area near Seinäjoki,<br />

southern <strong>Finland</strong> [Electronic resource]. In: Sharing the Earth:<br />

EAGE 66th Conference & Exhibition, Paris, France, 7–10<br />

June <strong>2004</strong>E: extended abstracts. Houten: EAGE. 4 p. Optical<br />

disc (CD-ROM)<br />

71


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 36<br />

Matti Tyni, Kauko Puustinen, Juha Karhu and Matti Vaasjoki<br />

72


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, <strong>Current</strong> <strong>Research</strong> <strong>2003</strong>–<strong>2004</strong>,<br />

Edited by Sini Autio.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38, 73– 82, 2005.<br />

EvAluATiON OF PORTAblE X-RAy FluORESCENCE (PXRF) SAMPlE PREPARATiON<br />

METhOdS<br />

Jussi V-P. Laiho<br />

by<br />

Laiho 1) and Paavo Perämäki 2)<br />

1) <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong> (GTK), Geolaboratory, PO Box 96 FIN-02151 Espoo, <strong>Finland</strong><br />

Present address: AEL, Kaarnatie 4, FI-00410 Helsinki, <strong>Finland</strong><br />

2) University <strong>of</strong> Oulu, Department <strong>of</strong> Chemistry, PO Box 3000 FIN-90014 Oulu, <strong>Finland</strong><br />

E-mail: jussi.laiho@ael.fi<br />

Key words (GeoRef Thesaurus, AGI): environmental geology, soils, pollution, heavy metals, X-ray fluorescence, in situ, measurement,<br />

sample preparation<br />

introduction<br />

The performance <strong>of</strong> four different field-based port -<br />

able X-ray fluorescence (PXRF) instruments for the<br />

determination<strong>of</strong>heavy-metalcontentsincontaminated<br />

soils were evaluated. Instead <strong>of</strong> inter-comparison <strong>of</strong><br />

the instruments, this investigation focused on testing<br />

<strong>of</strong> several different sample preparation methods for<br />

the assessment <strong>of</strong> contaminated soil. The results obtained<br />

by PXRF methods were compared with results<br />

obtained by inductively coupled plasma-atomic emission<br />

spectrometry (ICP-AES) and X-ray fluorescence<br />

spectrometry (XRF).<br />

In this study, the soil moisture and the particle size<br />

<strong>of</strong> the samples were the two factors, which mostly<br />

affected the trueness <strong>of</strong> the results. These effects were<br />

observed with all <strong>of</strong> the tested PXRF instruments.<br />

The work highlighted the importance <strong>of</strong> sample<br />

preparation when analysing soil samples at contaminated<br />

sites by PXRF instruments. As a conclusion <strong>of</strong><br />

the study, a list <strong>of</strong> recommendations was produced<br />

for sampling and measurement <strong>of</strong> contaminated soil<br />

samples by PXRF.<br />

It is desirable for the PXRF measuring method to<br />

be simple, inexpensive and fast, but at the same time<br />

capable <strong>of</strong> producing analytical data <strong>of</strong> low detection<br />

limits and high reliability. This puts several demands<br />

on quality control and sample preparation procedures.<br />

On the other hand, the greater the requirement for accuracy<br />

and precision required, the more difficult the<br />

procedure will be to run.<br />

Field-based portable X-ray fluorescence analysers<br />

operate on the principle <strong>of</strong> energy dispersive X-ray<br />

fluorescencespectrometry,wherebythec haracteristic<br />

X-ray excited spectra are analysed directly taking into<br />

account their energy proportional response in an Xray<br />

detector. Traditionally PXRF analysers have used<br />

sealed radioisotope sources to excite samples with<br />

gamma rays and X-rays <strong>of</strong> the appropriate energy.<br />

During the last two years, however, a few manufacturers<br />

have introduced analysers that utilise a rugged<br />

X-ray tube instead <strong>of</strong> radioactive isotopes.<br />

In situations where the precision, accuracy, and<br />

detection limits <strong>of</strong> the XRF technology are consistent<br />

withthedataqualityobjectives<strong>of</strong>asitecharacterisation<br />

project, PXRF provides a fast, powerful, non-destruc -<br />

tive, and cost effective technology for multielemental<br />

analysis.Inrecentyears,thePXRFanalysershavebeen<br />

appliedincreasinglytoenvironmentalcharacterisation<br />

and remediation measurements, particularly in the<br />

analysis <strong>of</strong> heavy metal contaminants in soils.<br />

In 1995, the U.S. Environmental ProtectionAgency<br />

(EPA) supported a study <strong>of</strong> innovative PXRF technology<br />

at two Superfund sites to characterise the<br />

73


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Jussi V-P. Laiho and Paavo Perämäki<br />

performance <strong>of</strong> the latest models <strong>of</strong> commercially<br />

available PXRF analysers. This study found that the<br />

PXRF analysers were effective tools for field-based<br />

analysis <strong>of</strong> soil samples for metal contamination. The<br />

data from these trials provided background material<br />

for the creation <strong>of</strong> a draft method (EPA1998). This<br />

method provides guidance to users <strong>of</strong> PXRF for environmental<br />

characterisation.<br />

It is well known that accuracy <strong>of</strong> the XRF technique<br />

is dependant on the homogeneity <strong>of</strong> the samples.<br />

PXRF should, therefore, be defined as a screening<br />

method used together with confirmatory analysis <strong>of</strong><br />

laboratory methods. Furthermore, the quality and<br />

precision <strong>of</strong> PXRF results are strongly dependent on<br />

sample collection and sample preparation methods<br />

(including sieving and drying) and calibration <strong>of</strong><br />

instruments. XRF emission <strong>of</strong> a particular element is<br />

usually stronglydependent on the nature <strong>of</strong> the sample<br />

matrix and interfering elements that might be present.<br />

Site-specificreferencesamplesthathavesimilarmatrix<br />

characteristics to the samples to be analysed, are used<br />

in some procedures to optimise calibrations<br />

Several approaches can be used for calibrating XRF<br />

analysers(KalnickyandSinghvi2 001).Onemethodis<br />

based on the fundamental parameter method, another<br />

method is to perform an empirical calibration based<br />

on site-specific calibration standards analysed by an<br />

appropriate reference method.<br />

Measuring soil samples by XRF-based techniques<br />

usually requires multi-step sample preparation procedures<br />

in order to obtain accurate and precise results.<br />

Elementsingeologicalsamplesareusuallydetermined<br />

by XRF using loose powder samples that have been<br />

fused as a glass disk or pressed as powder pellets<br />

(Potts 1987).<br />

<strong>Current</strong>ly PXRF instruments are used to an increasing<br />

extent to provide immediate results at lower costs,<br />

than conventional laboratory techniques, in particular<br />

in connection with the investigation and remediation<br />

<strong>of</strong>contaminatedsoilandgroundwater. On-siteanalysis<br />

is thus performed by the field staff using simple equip -<br />

mentandnon-standardisedmethodsandwithoutcostly<br />

andtime-consumingqualityassurance(QA)schemes.<br />

The major disadvantage <strong>of</strong> any scheme that does not<br />

incorporate an appropriate QAprocedure is that the<br />

analytical quality <strong>of</strong> the data is not then known, i.e.:<br />

it is not possible to know the precision and the bias<br />

associated with the data, or even if the equipment is<br />

functioning properly.<br />

The primary aim <strong>of</strong> this study is to recognise and<br />

minimise systematic errors related to in homogeneity<br />

and matrix effects <strong>of</strong> the sample, which may be<br />

associated with measurements when analysing soil<br />

samplescontaminatedwithheavymetalsbyPXRFand<br />

74<br />

to improve the reliability <strong>of</strong> results, without creating<br />

procedures that are too complicated for routine use.<br />

Site descriptions<br />

The sites selected for field study represent typical<br />

sites contaminated with heavy metals in southern<br />

<strong>Finland</strong> (Table 1).<br />

SiteA:Thefirstsitewasafallowfieldattheoutskirts<br />

<strong>of</strong> the city <strong>of</strong> Lohja about 50 km northwest <strong>of</strong> Helsinki.<br />

Awood impregnation plant had operated at this site,<br />

causing slightly raised As, Cu, and Cr concentrations<br />

(typically 50-1000 mg kg -1 ). Investigations <strong>of</strong> this site<br />

were focused on an area <strong>of</strong> 200 m 2 in order to find the<br />

“hot spots” <strong>of</strong> the site.<br />

Site B:An industrial area <strong>of</strong> about 40 000 m 2 located<br />

in the city <strong>of</strong> Vantaa near Helsinki. Here, the heavy<br />

metal pollution derives from Pb smelting in the 20 th<br />

century. Recent I CP-AES analyses (Laiho <strong>2003</strong>)<br />

revealed Pb concentrations between 100 and 80000<br />

mg kg -1 in the top 0 – 400 mm soil layer.<br />

Site C:Ashooting range in central <strong>Finland</strong>. Several<br />

sand samples were found to be contaminated with Pb.<br />

Samples from this area was primarily used for intercomparison<br />

<strong>of</strong> the four PXRF instruments.<br />

Experimental<br />

Sampling<br />

Several persons from different organisations collected<br />

soil samples, using different techniques. The<br />

uncertainty due to variation in sampling practices is<br />

not taken into consideration, and therefore the term<br />

sample is used here to note for an untreated fresh<br />

sample.<br />

Materials<br />

Samples were collected by traditional methods<br />

usinghandauger(drill)andshovel,afterremoving<br />

the surface vegetation from the sampling point.<br />

Washing all the equipments by water between the<br />

samples eliminated gross contamination. Table 1<br />

describes the sample material used for these investigations.<br />

Sampleswerehomogenised manually<br />

and stored in thin polypropylene bags (Minigrip,<br />

PE-LD04). Non contaminated plasticNylon sieves<br />

(


Sample(s) Sampling<br />

site<br />

Blank Unknown<br />

Reference sample,<br />

GTKREF1<br />

Reference sample,<br />

GTKREF2<br />

Unknown<br />

Soil type Used for following<br />

investigations<br />

Sand Control <strong>of</strong> PXRF<br />

instruments<br />

Sand Control <strong>of</strong> PXRF<br />

instruments<br />

Site B Sand Control <strong>of</strong> PXRF<br />

instruments<br />

Sample A Site A Clay Limit <strong>of</strong> detection,<br />

sample preparation<br />

tests<br />

Sample B Site B Sand Precision <strong>of</strong> PXRF<br />

on high level concentration<br />

<strong>of</strong> Pb<br />

Eleven C samples<br />

(Fig. 5)<br />

Sample preparation methods<br />

Table 1. Sample materials used for the investigations.<br />

NIST CRM 2710 Montana<br />

soil<br />

NIST CRM 2711 Montana<br />

Soil<br />

The typical size <strong>of</strong> samples was 500-1000 g. The<br />

samples were split into sub-samples <strong>of</strong> about 100 g.<br />

These were used for testing varying parameters, such<br />

as grain size (0.5 mm and 2.0 mm), humidity, count<br />

time <strong>of</strong> the measurement (from 30 s to 240 s), and<br />

temperature (between –5 ° C and +25 ° C).<br />

In the study mentioned above, the simplest fieldbased<br />

sample preparation method consisted <strong>of</strong> removing<br />

vegetation and other organic material, as well as<br />

particles larger than 10 mm. The sample (samples<br />

Aand B) was homogenised manually in a plastic<br />

bag. Samples were neither dried nor sieved, and the<br />

measurement was taken directly through the bag on a<br />

small wooden table without replicate measurements,<br />

using a 30 s count time.<br />

Themostcomplicated<strong>of</strong>thetestedfield-basedsample<br />

preparation procedures was similar to the sample<br />

preparation preceding ICP-AES determination in the<br />

laboratory(InternationalOrganization<strong>of</strong>Standardization<br />

1994). In this method, the soil samples (sub-samples<br />

from sites Aand B) were dried at a temperature<br />

< 70 ° C for 24 hours and sieved to < 2.0 mm or


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Jussi V-P. Laiho and Paavo Perämäki Perämäki<br />

• Use 120 seconds count time<br />

• Perform a minimum <strong>of</strong> three replicate measurements<br />

• Report all three results, calculate the average<br />

• Record observations and decisions<br />

• Confirm at least 5 % <strong>of</strong> the results by alternative,<br />

preferably accredited, analytical methods<br />

• Measure control samples, a blank sample and a<br />

reference sample, before and after every sample<br />

set (also after every ten samples or after service<br />

<strong>of</strong> instrument)<br />

• Clean and/or service the instrument if control<br />

sample measurement fall outside approval range<br />

• Service the instrument if drift control measurement<br />

fall outside approval range (if provided by<br />

manufacturer)<br />

To obtain more reliable PXRF measurements, following<br />

should also be considered:<br />

• Compare in situ results to confirmatory laboratory<br />

results to obtain a correlation curve and/or prepare<br />

severalcalibrationsamplestodeterminecorrelation<br />

curve<br />

• Extend the count time to up to 300 seconds<br />

• Use up to 10 replicate measurements instead <strong>of</strong><br />

three<br />

• Prepare duplicate samples<br />

• Carry out measurements on samples prepared as<br />

pressed powder pellets<br />

instrumental analysis<br />

XRF<br />

All the laboratory XRF analyses and measurements<br />

were carried out at the Geolaboratory <strong>of</strong> <strong>Geological</strong><br />

<strong>Survey</strong> <strong>of</strong> <strong>Finland</strong> in Espoo. The in-house reference<br />

material was analysed by Philips PW 1480 XRF spectrometerinthelaboratoryusingpressedpowderpellets.<br />

Pellets were prepared by weighting dried and sieved<br />

soil samples from site B (Table 1) in to a pulverising<br />

swing-mill (Herzog HSM 100P) and pulverised in a<br />

carbonsteelbowl.Forpreparation<strong>of</strong>thepressedpellet,<br />

7.0 g <strong>of</strong> pulverised (< 75 µm) sample was mixed with<br />

0.4 g <strong>of</strong> organic binder and pulverised in a tungsten<br />

carbide bowl to obtain a grain size <strong>of</strong> 95 % < 10 µm.<br />

The pulverised pulp was pressed into a pellet at 20<br />

tons, using a steel piston press. Pellets were stored in<br />

76<br />

a closed polypropylene bag at room temperature, in<br />

order to avoid contamination.<br />

ICP-AES<br />

All the laboratory ICP-AES analyses and measurementswerecarrie<br />

doutattheGeol aboratory<strong>of</strong>Geol ogi -<br />

cal <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong> in Espoo. An ICP-AES Thermo<br />

Jarrel Ash IRIS Advantage instrument was used for<br />

obtaining reference data to compare with the PXRF<br />

results. Sieved soil samples (from sites A, B and C)<br />

were analysed by ICP-AES using an internationally<br />

accepted method for soil analysis, the ISO standard<br />

method 11464. The acid leach was performed as follows:<br />

2.00 (±0.10) g <strong>of</strong> soil sample were digested with<br />

12 ml <strong>of</strong> aqua regia (9.0 ml HCl + 3.0 ml HNO3) at 90<br />

ºC for 8 hours. After addition <strong>of</strong> 50 ml H2O, samples<br />

were centrifuged for 20 minutes at 3000 rpm (Jouan C<br />

412).Theclearsolutionwasusedfor(further)analysis.<br />

An in-house reference material <strong>of</strong> pulverised soil was<br />

used as a control sample.<br />

PXRF<br />

Four PXRF analysers were used for the sample<br />

preparation study for inter-comparison <strong>of</strong> Pb-contaminated<br />

sand samples (Table 2).<br />

The preliminary analyses <strong>of</strong> the study samples were<br />

carriedoutbothinthelaboratoryandunderfieldconditions<br />

for comparing the PXRF instruments. Samples<br />

fortheinter-comparisonstudywerecollectedfromsite<br />

C. The minimum amount <strong>of</strong> sample for measurement<br />

was about 10 g, which formed a layer <strong>of</strong> about 10 mm<br />

in the plastic bag used in the procedure. Further field<br />

measurementsandtestsonsamplepreparationmethods<br />

were undertaken with the INNOV-X analyser.<br />

Calibration and quality control (QC) and quality<br />

assurance (QA) <strong>of</strong> PXRF´s<br />

PXRFinstrumentscanbeusedforseveralpurposes,<br />

each requiring different QC and QA procedures.<br />

Typically, PXRF instruments have been used for<br />

locating contaminated areas, in particular hotspots,<br />

when absolute values are not as important as finding<br />

a variation <strong>of</strong> high and low values.<br />

In this study internal calibration, using fundamental<br />

parameters s<strong>of</strong>tware chosen by individual, was used.<br />

PXRF instruments also require user to make drift<br />

correction, for example with a stainless steel plate,<br />

before starting the measurements.<br />

Asacompromisebetweenideaqualityassuranceand<br />

ease <strong>of</strong> operation, two control samples, one reference<br />

sample and one blank sample <strong>of</strong> uncontaminated sand


Table 2. Technical specifications <strong>of</strong> the PXRF-analysers used for the investigations.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Evaluation <strong>of</strong> portable x-ray fluorescence...<br />

MODEL: INNOV-X X-MET 2000 NITON XLi 700 NITON XLt 700<br />

Manufacturer Innov-X-Sys -<br />

tems, USA<br />

Operation<br />

principle<br />

X-ray source X-ray tube, silver<br />

anode<br />

Detector High resolution<br />

Si-PIN<br />

Cooling system Thermo electrical<br />

Main<br />

components<br />

Metorex Inc.,<br />

<strong>Finland</strong><br />

Niton Corp., USA Niton Corp., USA<br />

EDXRF EDXRF EDXRF EDXRF<br />

Single unit with<br />

integrated PC<br />

55 Fe, 109 Cd,<br />

241 Am-isotopes<br />

High resolution<br />

Si-PIN<br />

Thermo electrical<br />

SIPS-probe and<br />

PC-unit<br />

Weight 1.8 kg 1.6 kg<br />

(5.8 kg with PC)<br />

55 Fe, 109 Cd,<br />

241 Am-isotopes<br />

High performance<br />

Si-PIN<br />

X-ray tube, silver<br />

anode<br />

High Performance<br />

Si-PIN<br />

Thermo electrical Thermo electrical<br />

Single unit with<br />

VGA touch screen<br />

0.72 kg 1.4 kg<br />

Single unit with<br />

VGA touch screen<br />

Table 3. Results <strong>of</strong> the reference samples analysed by INNOV-X PXRF instrument and reference<br />

values by well-established laboratory methods using the XRF and ICP-AES techniques (mg kg -1 ).<br />

Sample name: Elements PXRF<br />

(ppm ±SD)<br />

GTKREF 1 Mn 500±93 * 400 92<br />

GTKREF 1 Cu 550±41 * 170 150<br />

GTKREF 1 Zn 570±67 41 30<br />

GTKREF 1 As 54±16 * 46 46<br />

GTKREF 1 Pb


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Jussi V-P. Laiho and Paavo Perämäki Perämäki<br />

(Table 1), were measured after each ten samples, as<br />

well as at the beginning and in the end <strong>of</strong> each sample<br />

set. The reference materials used in this study were<br />

also analysed in the laboratory by XRF using pressed<br />

powder pellets and by ICP-AES after acid extraction<br />

(Table 3.).<br />

An average <strong>of</strong> 25 replicate measurements by PXRF<br />

were used on field to control the sampling and measuring<br />

conditions, precision and the bias associated<br />

with the data. Only elements described above were<br />

determined from the samples (site Aand site B). The<br />

reference sample and blank sample were chosen to<br />

represent the soil type and elements at the site, even<br />

if some <strong>of</strong> the measurements were close to detection<br />

limits.<br />

Therecanbeseveralreasonsforlowdetectionlimits;<br />

probablyasilveranodetubedoes noteffectivelyexcite<br />

Mn, Cu and Zn. Also the standard deviation (SD) was<br />

varying between the different soil types. The low Mn<br />

result analysed by ICP-AES is thought to be due to<br />

some minerals not completely soluble to acid.<br />

Preliminary tests on different (site-characteristic)<br />

empirical calibration procedures were run with NIST<br />

standard reference materials (Table 3), but those were<br />

found to be too complicated for routine use under field<br />

conditions.However,sitecharacteristiccalibrationcan<br />

be recommended for minimising the systematic error<br />

observed between different analytical methods.<br />

Results and discussion<br />

Preliminarytestswerecarriedoutunderfieldconditions<br />

(sites A, B and C) in order to test the simplest<br />

samplepreparationmethoddescribedabove.Untreated<br />

samples (size 500 - 1000 g) were put in plastic bags<br />

78<br />

Fig. 1. The effect <strong>of</strong> sieving on final results (average <strong>of</strong> ten measurements) <strong>of</strong> the PXRF measurement.<br />

Other elements were not detected in the sample (High concentrations <strong>of</strong> Ti and Fe result divided by 100 an<br />

Mn by 10).<br />

and measured by one PXRF analyser from different<br />

side <strong>of</strong> the sample. Relative difference between the<br />

highest and the lowest result rose up to 1000% with<br />

inhomogeneous samples containing particles <strong>of</strong> various<br />

sizes. Similar results were observed for all PXRF<br />

analysers when the test was repeated with the same<br />

sample. The relative difference was found the most<br />

significant when analysing wet samples, or inhomogeneous<br />

samples such as waste material.<br />

Another preliminary test, an inter-comparison test<br />

between different PXRF analysers, was run on site<br />

C. Eleven air dried sand samples were homogenised<br />

manually in plastic bags and analysed by four different<br />

PXRF analysers (Fig. 5). The yield <strong>of</strong> the PXRF<br />

analysers (ICP-AES = 100%) was measured to be<br />

between 65 % and 160 %. Accordingly it was judged<br />

that this test showed that PXRF analysers are suitable<br />

for analysing Pb from sand samples, as in this case the<br />

differences between results from different analysers<br />

was not significant.<br />

Thesepreliminarytestsshowedclearlythatsoiltype<br />

canstronglyeffecttherepeatability<strong>of</strong>PXRFmeasurements<br />

as well as the comparability <strong>of</strong> PXRF results<br />

to the laboratory analyses. Hence, it was essential to<br />

start developing PXRF measurements by evaluation<br />

<strong>of</strong> sample preparation methods.<br />

The first investigation, dealing with soil sample<br />

preparation procedures, was to evaluate the effect <strong>of</strong><br />

sieving on the subsequently analysed elemental concentration,<br />

since particle size is known to affect the<br />

results <strong>of</strong> XRF analyses (Clark et al.1999). It is clear<br />

that the type <strong>of</strong> sample and the concentration levels<br />

also affect the results. The sample chosen for the first<br />

sievinginvestigationswasasandyclaysample(sample<br />

Afrom site A, Table 1), containing a concentration


Table 4. Comparison <strong>of</strong> Zn concentrations (mg kg -1 )in Finnish<br />

soil by particle size fraction as determined by PXRF during the<br />

sieving tests (n=10).<br />

Particle size Mean Lowest Highest Highest /<br />

lowest, %<br />

Total 81 48 115 240<br />

>2.0 mm 81 39 135 346<br />


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Jussi V-P. Laiho and Paavo Perämäki Perämäki<br />

ered when analysing soil samples by PXRF analysers<br />

from relatively unpolluted sites.<br />

In Figure 4 the detection limits <strong>of</strong> 9 environmentally<br />

important elements are compared with Finnish<br />

guideline values for contaminant concentrations in<br />

soil (Puolanne et al. 1994). It was observed that PXRF<br />

instruments could easily be applied for determination<br />

<strong>of</strong> low concentration levels <strong>of</strong> Pb and Zn, whereas<br />

there were some problems to detect even relatively<br />

high concentrations <strong>of</strong> Cr or Cd. Similar results were<br />

observed with all <strong>of</strong> the PXRF instruments tested.<br />

The effect <strong>of</strong> moisture content on the accuracy <strong>of</strong><br />

PXRF measurement was investigated by adding 5 %<br />

- 40 % <strong>of</strong> distilled water to the dried and sieved sample.<br />

Water content <strong>of</strong> the soil sample was determined<br />

gravimetrically.Theresultsshowedclearlythatoverall<br />

error was minor when moisture content was small<br />

(5 %–15 %), and sample moisture contents above<br />

20 % was leading to significant errors in PXRF measurements<br />

<strong>of</strong> the tested types <strong>of</strong> materials. Moisture<br />

alters the matrix and therefore the penetration depth<br />

<strong>of</strong> the radiation. For example, the concentration <strong>of</strong> Pb<br />

and Zn in a dry sample was about 2.0 times higher<br />

than the concentration obtained for samples with<br />

moisture contents <strong>of</strong> 30 %. These results were similar<br />

to results <strong>of</strong> previous investigations (Kalnicky et al.<br />

1992, Laine-Ylijoki et al. 2002).<br />

Conclusions<br />

In this study it was observed that both different<br />

techniques and sample preparation affected the final<br />

results. According the results, it can be presumed that<br />

sample preparation can lead to more significant errors<br />

than the differences between PXRF instruments. Fur -<br />

80<br />

Fig. 3. Detection limits <strong>of</strong> some environmentally harmful elements determined by different PXRF methods, present study<br />

compared to EPA 6200. EPA = Environmental Protection Agency. GTK = <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>.<br />

thermore, errors due to sample preparation can easily<br />

beminimisedbypropersamplepre parationtechniques.<br />

Thesestudiespointedoutthatso ilmoistureandparticle<br />

size <strong>of</strong> the samples were the two factors, which mostly<br />

affected the trueness <strong>of</strong> the results. As a conclusion<br />

<strong>of</strong> the study, a list <strong>of</strong> recommendations was produced<br />

for sampling and measurement <strong>of</strong> contaminated soil<br />

samples by PXRF.<br />

However, not all the errors can be avoided by more<br />

accurate sample preparation, and differences between<br />

thePXRFinstrumentsincreaseddramaticallywhensoil<br />

samples <strong>of</strong> high concentration levels (>1000 mg kg -1 )<br />

were analysed without soil-characteristic calibration.<br />

This is suspected to be due to different fundamental<br />

calibration given by the instrument manufacturers.<br />

Therefore, it is always recommended to compare in<br />

situ results to confirmatory laboratoryresults to obtain<br />

a correlation curve and/or prepare several calibration<br />

samples to determine correlation curve before starting<br />

any big projects.<br />

During the study it was also observed that further<br />

work is needed for the improvement and harmonisation<br />

<strong>of</strong> the PXRF methods as well as quality control<br />

<strong>of</strong> in situ analyses. Various field methods are being<br />

developed, to an increasing extent, in order to optimise<br />

investigation and remediation <strong>of</strong> soil and ground<br />

water pollution. There is an urgent need to establish<br />

a common methodology for assessing the analytical<br />

quality <strong>of</strong> the data obtained, i.e. a set <strong>of</strong> practical QA<br />

schemes. The QAschemes should be a compromise<br />

betweenthelaboratoryQA(ENISO/IEC17025:2000)<br />

and the current very limited QAused for most field<br />

methods. A guide for environmental administrators<br />

should be provided to enable them to evaluate data<br />

obtained by these field methods properly. Harmonisa-


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Evaluation <strong>of</strong> portable x-ray fluorescence...<br />

Fig. 4. Detection limits <strong>of</strong> some environmentally harmful elements measured in the field and compared with Finnish guideline<br />

values for contaminant concentrations in soil (Puolanne et al.1994).<br />

Fig. 5. An example <strong>of</strong> Inter comparison <strong>of</strong> four PXRF instrument: Pb concentration in sand from shooting range. Laboratory = ICP-<br />

AES.<br />

tion <strong>of</strong> methodologies would provide not only more<br />

reliable results <strong>of</strong> field measurements, but also more<br />

comparable results between all users.<br />

Good planning <strong>of</strong> the survey is needed before using<br />

PXRF for in situ field-based analysis, in order to gain<br />

as much information as possible on estimates <strong>of</strong> both<br />

concentration values and uncertainties, and to permit<br />

a realistic interpretation <strong>of</strong> the extent <strong>of</strong> contamination<br />

at the site.<br />

REFERENCES<br />

Clark,S.,Menrath,w.,Chen,M.,Roda,S.&Succop,P.1999.<br />

Use <strong>of</strong> aField Portable X-rayFluorescence analyser todetermine<br />

theconcentration <strong>of</strong>leadandothermetalsinsoil samples,Ann.<br />

Agric. Environ. Med. 1999, 6,27–32.<br />

ENiSO/iEC170252000. GeneralRequirementsfortheCompetence<br />

<strong>of</strong>TestingandCalibration Laboratories,CENMarch2000.<br />

EPA1998. Method 6200:Field Portable X-rayFluorescence spectrometryforthedetermination<br />

<strong>of</strong>elementalconcentrationsinsoil<br />

andsediment.EnvironmentalProtection Agency,USA.<br />

81


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Jussi V-P. Laiho and Paavo Perämäki Perämäki<br />

international Organisation <strong>of</strong> Standardisation 1994. International<br />

Standard ISO 11464.<br />

kalnicky d.J., Patel J. & Singhvi R. 1992. Factors affecting<br />

comparability <strong>of</strong> field XRF and laboratory analyses <strong>of</strong> soil<br />

contaminants, in: Proceedings <strong>of</strong> the Forty-First Annual Conference<br />

on Applications <strong>of</strong> X-ray Analysis, Colorado Springs,<br />

August 1992.<br />

kalnicky d.J. & Singhvi R. 2001. Field portable XRF analysis<br />

<strong>of</strong> environmental samples, J. <strong>of</strong> Hazardous materials 83 (2001)<br />

93–122.<br />

82<br />

laiho J. v-P. <strong>2003</strong>. Unpublished research data <strong>of</strong> <strong>Geological</strong><br />

<strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>.<br />

laine-ylijoki,J.,Rustad, i.,Syrjä,J-J.&wahlström,M.2002.<br />

Technical report PRO3/23/02: Suitability <strong>of</strong> XRF –methods on<br />

on-site testing <strong>of</strong> waste materials. VTT 42.<br />

Potts, P.J. 1987. Ahandbook <strong>of</strong> Silicate rock Analysis. Blackie<br />

& Son limited, London.<br />

Puolanne, J., Pyy, O. & Jeltsch, u. 1994. Saastuneet maa-alueet<br />

ja niiden käsittely Suomessa, final report. The Finnish Ministry<br />

<strong>of</strong> the Environment.


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Papers published by <strong>Geological</strong> survey <strong>of</strong> <strong>Finland</strong> staff in <strong>2003</strong>–<strong>2004</strong><br />

PAPERS PubliShEd byGEOlOGiCAlSuRvEy OF FiNlANd STAFF iN <strong>2003</strong>–<strong>2004</strong><br />

The following list includes references from the database FIN-<br />

GEO (situation at 31th May 2005) to papers published in <strong>2003</strong><br />

and <strong>2004</strong> (or in 2002, if not reported previous <strong>Current</strong> <strong>Research</strong><br />

publication) with at least one author from GTK staff.<br />

Ahonen, Lasse; Kaija, Juha; Paananen, Markku; Ruskeeniemi,<br />

Timo; Hakkarainen, Veikko <strong>2004</strong>. Palmottu natural analogue analogue:a : a<br />

summary <strong>of</strong> the studies. Tiivistelmä: Tiivistelmä:Palmotunluonnonanalogia-<br />

Palmotun luonnonanalogia-<br />

tutkimus : yhteenveto tutkimuksista. Geologian tutkimuskeskus.<br />

Ydinjätteiden sijoitustutkimukset. Tiedonanto YST-121. 39 p.<br />

+ 1 app.<br />

Ahtola, Timo; Reinikainen, Jukka; Seppänen, Hannu <strong>2004</strong>.<br />

Paleoproterozoic marbles in the Svec<strong>of</strong>ennian Domain, <strong>Finland</strong>.<br />

In: Castor, S. B., Papke, K. G. & Meeuwig, R. O. (eds.) Betting<br />

on industrial minerals : proceedings <strong>of</strong> the 39th Forum on the<br />

Geology <strong>of</strong> Industrial Minerals, Reno/Sparks, Nevada, May<br />

18–24, <strong>2003</strong>. Nevada Bureau <strong>of</strong> Mines and Geology. Special<br />

Publication 33, 11–15.<br />

Airo, Meri-Liisa <strong>2003</strong>. Relation <strong>of</strong>magneticrockpropertiesto<br />

<strong>of</strong> magnetic rock properties to<br />

aeromagnetic characteristics <strong>of</strong> an Archean TTG-migmatite and<br />

gneiss area, the northern Fennoscandian Shield. In: IUGG <strong>2003</strong><br />

: XXIII General Assembly <strong>of</strong> the International Union <strong>of</strong> Geodesy<br />

and Geophysics, June 30 – July 11, <strong>2003</strong>, Sapporo, Japan :<br />

abstracts. Week B. Sapporo: IUGG, 262.<br />

Airo, M.-L.; Loukola-Ruskeeniemi, K. <strong>2004</strong>. Characterization<br />

<strong>of</strong>sulfidedepositsbyairbornemagneticandgamma-rayresponses<br />

in eastern <strong>Finland</strong>. In: Coveney, R. M. & Pasava, J. (eds.) Ores<br />

and organic matter. Ore Geology Reviews 24 (1–2), 67–84.<br />

Alenius, Teija <strong>2004</strong>. Siitepölyanalyysi maankäytön ja kasvillisuushistorian<br />

tutkimusvälineenä. In: Korpela, J. (author) Viipurin<br />

läänin historia. Osa 2: Viipurin linnaläänin synty. Lappeenranta:<br />

Karjalan Kirjapaino, 288–289.<br />

Alenius, Teija; Grönlund, Elisabeth; Simola, Heikki; Saksa,<br />

Aleksandr <strong>2004</strong>. Land-usehistory<strong>of</strong>RiekkalansaariIslandinthe<br />

Land-use history <strong>of</strong> Riekkalansaari Island in the<br />

northern archipelago <strong>of</strong> Lake Ladoga, Karelian Republic, Russia.<br />

Vegetation History and Archaeobotany 13 (1), 23–31.<br />

Alenius, Teija; Haggrén, Georg; Jansson, Henrik; Miettinen,<br />

Arto <strong>2004</strong>. Ulkosaariston asutuksesta autiokyläksi – Inkoon Ors<br />

poikkitieteellisenä tutkimuskohteena. SKAS (1), 4–19.<br />

Alenius, Teija; Ojala, Antti; Tiljander, Mia <strong>2004</strong>. Paleomag- Paleomag-<br />

netic dating <strong>of</strong> pollen stratigraphy from lake sediment based on<br />

PSV master curve from central <strong>Finland</strong>. In: 34th International<br />

Symposium on Archaeometry, 3–7 May <strong>2004</strong>, Zaragoza, (Spain)<br />

: program and abstracts. Zaragoza : Barcelona: University <strong>of</strong><br />

Zaragoza : University <strong>of</strong> Barcelona, 37.<br />

Andrén, T.; Best, G.; Flodén, T.; Harff, J.; Jensen, J. B.; Korja,<br />

A.; Kotilainen, A.; Lemke, W.; Meschede, M.; Puura, V.; Uscinowicz,<br />

S.; Vejbæk, O. <strong>2004</strong>. Towards a Baltic Sea IODP. In:<br />

Puura, I., Tuuling, I. & Hang, T. (eds.) The Baltic : the Eighth<br />

Marine <strong>Geological</strong> Conference, September 23–28, <strong>2004</strong>, Tartu,<br />

Estonia : abstracts, excursion guide. Tartu: University <strong>of</strong> Tartu,<br />

Institute <strong>of</strong> Geology, 7.<br />

Antikainen, Merja; Backman, Birgitta; Rusanen, Kaisa; Finér,<br />

Leena<strong>2003</strong>.Vaikuttaakometsänkäsittelypohjavesialueidenveden<br />

laatuun?. In: Finér, L., Laurén,A. & Karvinen, L. (eds.)Ajankohtaista<br />

metsätalouden ympäristökuormituksesta – tutkimustietoa<br />

ja työkaluja – seminaari Kolin Luontokeskus Ukko 23.9.2002.<br />

Metsäntutkimuslaitoksen tiedonantoja 886, 63–68.<br />

Antikainen, Merja; Lyytikäinen, Ari; Pihlaja, Jouni <strong>2003</strong>.<br />

Pohjavesien suojelun ja kiviaineshuollon yhteensovittaminen :<br />

loppuraporttiOutokummunseudulta.Abstract:Theharmonization<br />

Abstract:Theharmonization<br />

<strong>of</strong>groundwaterprotectionandaggregateservice:finalreportfrom<br />

the surroundings <strong>of</strong> Outokumpu. Alueelliset ympäristöjulkaisut<br />

304. 40 p. + 1 app. map.<br />

Autio, Sini (ed.) <strong>2003</strong>. <strong>Geological</strong> <strong>Geological</strong><strong>Survey</strong><strong>of</strong><strong>Finland</strong>, <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, <strong>Current</strong><br />

<strong>Research</strong> 2001–2002. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>. Special<br />

Paper 36. 97 p.<br />

Backman, Birgitta <strong>2004</strong>. Groundwater quality, acidification,<br />

and recovery trends between 1969 and 2002 in South <strong>Finland</strong>.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>. Bulletin Bulletin401. 401. 110 p. +8app. + 8 app.<br />

Backman,Birgitta;Lahermo,Pertti<strong>2004</strong>.Arseenipohjavesissä.<br />

Arseenipohjavesissä.<br />

Summary:Arsenic in groundwater. In: In:Loukola-Ruskeeniemi,K.<br />

Loukola-Ruskeeniemi, K.<br />

&Lahermo,P.(eds.)ArseeniSuomenluonnossa,ympäristövaikutukset<br />

ja riskit. Espoo: Geologian tutkimuskeskus, 103–112.<br />

Balykin,P.A.;P olyakov,G.V.;H anski,E.;Walker,R.J.;Huhma,<br />

H.; Tran, T. H.; Ngô, T. P.; Hoàng, H. T.; Tran, Q. H.; Glotov,A. I.;<br />

Petrova, T. E. <strong>2004</strong>. The TheLatePermiankomatiite-basaltcomplex<br />

Late Permian komatiite-basalt complex<br />

in the Sông Dà Rift, northwestern Viêt Nam. Journal <strong>of</strong> Geology.<br />

Series B (23), 52–64.<br />

Barkov,Andrei Y.; Fleet, Michael E.; Martin, Robert F.; Halkoaho,<br />

Tapio A. A. <strong>2004</strong>. Apotentially new konderite-like sulfide<br />

<strong>of</strong> Fe, Pb, Cu, Rh, Pd, and Ir from the Penikat layered complex,<br />

<strong>Finland</strong>. In: Mungall, J. E., Meurer, W. P. & Martin, R. F. (eds.)<br />

Platinum-group elements : petrology, geochemistry, mineralogy.<br />

The Canadian Mineralogist 42 (2), 499–513.<br />

Blyth,Alexander;Frape,Shaun;Ruskeeniemi,Timo;Blomqvist,<br />

Runar <strong>2004</strong>. Origins, closed system formation and preservation<br />

<strong>of</strong> calcites in glaciated crystalline bedrock : evidence from the<br />

Palmottu natural analogue site, <strong>Finland</strong>. Applied Geochemistry<br />

19 (5), 675–686.<br />

Breilin, Olli; Tikkanen, Jaakko; Kesola, Reino; Leveinen,<br />

Jussi; Mursu, Juha <strong>2003</strong>. Groundwater from crystalline crystallinebedrock bedrock<br />

in municipal <strong>of</strong> Leppävirta in southeast <strong>Finland</strong>. In: Krásny, J.,<br />

Zbynek, H. & Bruthans, J. (eds.) Proceedings <strong>of</strong> the international<br />

conference on Groundwater in fractured rocks, 15–19 September<br />

<strong>2003</strong>, Prague, Czech Republic : extended abstracts. IHP-VI series<br />

on groundwater (7), 31–32.<br />

Breilin, O.; Elhammer, A.; Björk, L.; Edén, P.; Fredén, C.;<br />

Kero, L.; Kotilainen, A.; Nenonen, K.; Ojalainen, J.; Ransed, G.;<br />

Rodhe, L.; Stén, C.-G.; Sigurdson, O.; Sohlenius, G.; Virransalo,<br />

P. <strong>2004</strong>. Geonat – <strong>Geological</strong> information and nature values for<br />

the sustainable development <strong>of</strong> the northern Kvarken area – a<br />

new co-operation project <strong>2003</strong>–2005. In: Mansfeld, J. (ed.) The<br />

26th Nordic <strong>Geological</strong> Winter Meeting, January 6th – 9th <strong>2004</strong>,<br />

Uppsala, Sweden : abstract volume. GFF 126 (1), 142.<br />

Breilin, Olli; Kotilainen, Aarno; Nenonen, Keijo; Räsänen,<br />

Matti; Ollqvist, Sanna <strong>2004</strong>. The unique moraine morphology,<br />

stratotypes and ongoing geological processes at the Kvarken Archipelago<br />

on the land uplift area in the western coast <strong>of</strong> <strong>Finland</strong>.<br />

In:32ndInternational<strong>Geological</strong>Congress,Florence,Italy,August<br />

20–28, <strong>2004</strong> : abstracts. Part Part1, 1, 627.<br />

Breilin, Olli; Kotilainen, Aarno; Nenonen, Keijo; Virransalo,<br />

Petri; Ojalainen, Jukka; Stén, Carl-Göran <strong>2004</strong>. Geology <strong>of</strong> the<br />

Kvarken Archipelago. Espoo: <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>.<br />

47 p.<br />

Britschgi, Ritva;Ahonen, Ismo; Lammila, Jyrki; Lähteenmäki,<br />

Pasi; Sahala, Lauri; Vuokko, Jouko <strong>2003</strong>. Pohjavesien suojelun ja<br />

kiviaineshuollon yhteensovittaminen : Satakunnan loppuraportti.<br />

Satakuntaliitto. Sarja A 267. 91 p. +3app. + 3 app. maps.<br />

Brown,D.;Carbonell,R.;Kukkonen,I.;Ayala,C.;Golovanova,<br />

I. <strong>2003</strong>. Composition <strong>of</strong> the Uralide crust from seismic velocity<br />

(Vp,Vs),heatflow,gravity,andmagneticdata.EarthandPlanetary<br />

Science Letters 210 (1–2), 333–349.<br />

Bruneton, M.; Pedersen, H. A.; Farra, V.; Arndt, N.; Kukkonen,<br />

I.; Vacher, P. <strong>2004</strong>. Evolution <strong>of</strong> Precambrian lithosphere in<br />

<strong>Finland</strong> as inferred from seismic surface and mantle xenoliths<br />

[Electronic resource]. In: EGU General Assembly <strong>2004</strong>, Nice,<br />

83


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Papers published by <strong>Geological</strong> survey <strong>of</strong> <strong>Finland</strong> staff in <strong>2003</strong>-<strong>2004</strong><br />

France, 25–30 April <strong>2004</strong>. Geophysical <strong>Research</strong> Abstracts 6, 1<br />

p.. Optical disc (CD-ROM).<br />

Bruneton, Marianne; Pedersen, Helle A.; Vacher, Pierre; Kuk -<br />

konen, Ilmo T.; Arndt, Nicholas T.; Funke, Sigward; Friederich,<br />

Wolfgang; Farra,Véronique <strong>2004</strong>. Layered lithospheric mantle in<br />

thecentralBalticShieldfromsurfacewaves andxenolithanalysis.<br />

Earth and Planetary Science Letters 226 (1–2), 41–52.<br />

Carlson, Liisa <strong>2004</strong>. Bentonite mineralogy. Part 1 : Methods <strong>of</strong><br />

investigation – a literature review. Part 2 : Mineralogical research<br />

<strong>of</strong> selected bentonites. Posiva. Working report <strong>2004</strong>–02. 105 p.<br />

Cermak, V. (ed.); Kukkonen, I. T. (ed.) <strong>2003</strong>. Heatflowand Heat flow and the<br />

structure <strong>of</strong> the lithosphere. Physics and Chemistry <strong>of</strong> the Earth<br />

28 (9–11), 345–519.<br />

84<br />

Charman, Dan; Mäkilä, Markku <strong>2003</strong>. Climate Climatereconstruction<br />

reconstruction<br />

from peatlands. PAGES Newsletter 11 (2–3), 15–17.<br />

Chernet, T.; Marmo, J. <strong>2003</strong>. Direct comparison on mechanical<br />

and digital size analyses <strong>of</strong> Kemi chromite, <strong>Finland</strong>. In: Applied<br />

mineralogy : papers presented at Applied mineralogy ’03, Helsinki,<br />

<strong>Finland</strong>, 17–18 March <strong>2003</strong>. Minerals Engineering 16 (11<br />

Suppl.), 1245–1249.<br />

Chernet, T.; Marmo, J. <strong>2003</strong>. Direct comparison on mechanical<br />

and digital size analyses <strong>of</strong> Kemi chromite [Electronic resource].<br />

In: Applied mineralogy ’03, Helsinki, <strong>Finland</strong>, March 17–18,<br />

<strong>2003</strong>, 3 p.. Optical disc (CD-ROM).<br />

Chernet, Tegist <strong>2003</strong>. Effect <strong>of</strong> mineralogy and texture <strong>of</strong><br />

sand and hard-rock ilmenite in TiO2 pigment production by the<br />

sulphate process, a case study on Australian ilmenite concentrate<br />

and Tellnes ilmenite concentrate, Norway. In: Duchesne, J.-C.<br />

& Korneliussen, A. (eds.) Ilmenite deposits and their geological<br />

environment with special reference to the Rogaland Anorthosite<br />

Province including a geological map at scale 1:75,000 and a CD<br />

with a guide to the province. Norges geologiske undersøkelse.<br />

Special publication 9, 45–46.<br />

Chernet, Tegist; Marmo, Jukka <strong>2003</strong>. Direct comparison on<br />

mechanical and digital size analyses <strong>of</strong> Kemi chromite, <strong>Finland</strong>.<br />

In: Autio, S. (ed.) <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, <strong>Current</strong> <strong>Research</strong><br />

2001–2002. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>. Special Paper<br />

36, 17–21.<br />

Chernet, Tegist; Pakkanen, Lassi <strong>2003</strong>. Estimation <strong>of</strong> ferric<br />

iron, crystal water and calculation <strong>of</strong> chemical formulae for<br />

altered ilmenite from electron microprobe analyses, based on<br />

stoichiometric criteria. In: Autio, S. (ed.) <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong><br />

<strong>Finland</strong>, <strong>Current</strong> <strong>Research</strong> 2001–2002. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong><br />

<strong>Finland</strong>. Special Paper 36, 23–28.<br />

Chevrel, S.; Kuosmanen, V.; Grösel, K.; Marsh, S.; Tukiainen,<br />

T.; Schäffer, U.; Quental, L.; Vosen, P.; Loudjani, P.; Kuronen, E.;<br />

Aastrup, P. <strong>2003</strong>. Remote-sensing monitoring <strong>of</strong> environmental<br />

impacts. Mining Environmental Management 11 (6), 19–23.<br />

Chevrel, Stéphane; Kuosmanen, Viljo; Grösel, Klemens H.<br />

J.; Marsh, Stuart; Tukiainen, Tapani; Schäffer, Uwe; Quental,<br />

Lidia; Vosen, Peter; Loudjani, Philippe; Aastrup, Peter <strong>2004</strong>.<br />

Hyperspectral remote-sensing assessment <strong>of</strong> mining-related<br />

environmental impacts – examples from the MINEO project. In:<br />

32nd International <strong>Geological</strong> Congress, Florence, Italy, August<br />

20–28, <strong>2004</strong> : abstracts. Part 2, 1116.<br />

Ciobanu, Cristiana L.; Cook, Nigel J.; Sundblad, Krister; Kojonen,<br />

Kari <strong>2004</strong>. Tellurides and selenides in Au ores from the<br />

Fennoscandian Shield : a status report. In: 32nd International<br />

<strong>Geological</strong> Congress, Florence, Italy, August 20–28, <strong>2004</strong> : abstracts.<br />

Part 1, 274.<br />

Cosgrove, John; Jokinen, Jarkko; Siivola, Jaakko; Tirén, Sven<br />

<strong>2003</strong>. IMGS 2002 report : :the the geological and structural charac- charac-<br />

terization <strong>of</strong> the Olkiluoto site in a critical perspective. STUK-<br />

YTO-TR 196. 19 p.<br />

Demidov, Igor N.; Houmark-Nielsen, Michael; Kjær, Kurt H.;<br />

Larsen, Eiliv; Lyså, Astrid; Funder, Svend; Lunkka, Juha Pekka;<br />

Saarnisto,Matti<strong>2004</strong>.ValdaianglacialmaximaintheArkhangelsk<br />

district<strong>of</strong>northwesternRussia.In:Ehlers,J.&Gibbard, P.L.(eds.)<br />

Quaternary glaciations :extent and chronology.Part 1: Europe.<br />

DevelopmentsinQuaternaryScience 2,321–336.<br />

Deutsch, A.;Pesonen,L.J.;Pihlaja, P. <strong>2003</strong>.N<strong>of</strong>ossil N<strong>of</strong>ossil microm- microm-<br />

eteoritesintheJotniansandstone<strong>of</strong><strong>Finland</strong>–criticalre-assessment<br />

<strong>of</strong> the evidence. In: 66thAnnual Meteoritical Society Meeting, July<br />

28–August 1,<strong>2003</strong>,M�nster,Germany:abstracts. Meteoritics&<br />

PlanetaryScience supplement38(7),A102.<br />

Edfelt, Åsa; Eilu, Pasi; Martinsson, Ol<strong>of</strong>; Niiranen,Tero;Wei -<br />

hed, Pär <strong>2004</strong>.The The northern Fennoscandia IOCG-province. SGA<br />

News(18),1,4–9.<br />

Ehlers, Carl;Skiöld, Torbjörn;Vaasjoki, Matti<strong>2004</strong>. Timing <strong>of</strong><br />

Svec<strong>of</strong>ennian crustal growth and collisional tectonics in Åland,<br />

SW <strong>Finland</strong>. Bulletin <strong>of</strong> the <strong>Geological</strong> Society <strong>of</strong> <strong>Finland</strong> 76<br />

(1–2), 63–91.<br />

Eilu,Pasi;Niiranen,Tero<strong>2003</strong>.OnkoSuomessarautaoksidi-kupari-kulta-assosiaation(FeOx-Cu-Au,IOCG)esiintymiä?Summary:<br />

Summary:<br />

ArethereIOCGdeposits in<strong>Finland</strong>?. Geologi55 (1),4–11.<br />

Eilu, Pasi; Sorjonen-Ward, Peter; Nurmi, Pekka; Niiranen,<br />

Tero <strong>2003</strong>.Areview Areview <strong>of</strong> gold mineralization styles in <strong>Finland</strong>. In:<br />

Sundblad, K. &Cook, N. J. (eds.) Agroup <strong>of</strong> papers devoted to<br />

the metallogeny <strong>of</strong> gold in the Fennoscandian Shield. Economic<br />

Geology98(7),1329–1353.<br />

Eilu,Pasi;Lahtinen, Raimo <strong>2004</strong>. Arseeni kallioperässäjamalmiutuneissavyöhykkeissä.Summary:Anomalousarsenicinbedrock<br />

andoresin<strong>Finland</strong>.In:Loukola-Ruskeeniemi,K.&Lahermo,P.<br />

(eds.) Arseeni Suomen luonnossa, ympäristövaikutukset ja riskit.<br />

Espoo:Geologiantutkimuskeskus,29–43.<br />

Ekdahl, Elias; Kukkonen, Ilmo <strong>2003</strong>. Deep seismic reflection<br />

surveyin <strong>Finland</strong> :amajor scientific co-operation between <strong>Finland</strong><br />

andRussia.EuropeanGeologist (15),15–17.<br />

Eklund, Olav (ed.) <strong>2003</strong>. Lapland <strong>2003</strong> :excursion guide to<br />

Finnish and Swedish Lapland 1.–7.9.<strong>2003</strong>. Geocenter tiedottaa.<br />

Report 20.59p.<br />

Elminen, T.;Airo, M.-L.;Mertanen, S.;Pajunen, M. <strong>2003</strong>.Mul- Mul-<br />

tiple reactivations <strong>of</strong> the Porkkala-Mäntsälä shear zone, southern<br />

<strong>Finland</strong>.In:Deformationmechanisms,rheologyandtectonics,St.<br />

Malo, France,14–16April <strong>2003</strong> :abstractvolume, 53.<br />

Elo, Seppo <strong>2003</strong>. Gravity operations <strong>of</strong> the <strong>Geological</strong> <strong>Survey</strong><br />

<strong>of</strong> <strong>Finland</strong>. In: Poutanen, M., Jokela, J. &Ollikainen, M. (eds.)<br />

Geodeticoperationsin<strong>Finland</strong>2000–<strong>2003</strong>.Helsinki:Geodeettinen<br />

Helsinki:Geodeettinen<br />

laitos,31–33.<br />

Elo, Seppo;Uusihakala,Mauri <strong>2004</strong>. GPS-gravity GPS-gravityapplications applications<br />

at awaste treatment centre [Electronic resource]. In: Sharing the<br />

Earth:EAGE 66thConference &Exhibition, Paris, France, 7–10<br />

June<strong>2004</strong>:extended abstracts. Houten:EAGE,4p.. Opticaldisc<br />

(CD-ROM).<br />

Fabbri,Andrea G. (ed.);Gaál,Gabor (ed.);McCammon,Richard<br />

B.(ed.) 2002.Depositandgeoenvironmentalmodelsforresource<br />

exploitation and environmental security.NATO Science Series.<br />

Series2.Environmentalsecurity80.532 p. +CD-ROM.<br />

Frape, S. K.;Blyth,A.;Blomqvist,R.;McNutt,R.H.;Gascoyne,<br />

M. <strong>2003</strong>. Deep fluids in the continents :II. Crystalline rocks. In:<br />

Holland, H. D., Turekian, K. K. &Drever, J. I. (ed.) Treatise on<br />

geochemistry.Vol. 5: Surface and ground water, weathering, and<br />

soils. Oxford: Elsevier,541–580.<br />

Frape, Shaun K.; Shouakar-Stash, Orfan; Blomqvist, Runar;<br />

Blyth, Alec R.; McNutt, Robert H.; Gascoyne, Mel <strong>2004</strong>. Information<br />

gained from isotope geochemistry on evolution <strong>of</strong> brines<br />

in crystalline rocks. In: 32nd International <strong>Geological</strong> Congress,<br />

Florence, Italy,August 20–28,<strong>2004</strong>:abstracts. Part 1,708.<br />

Fredén, Curt; Karis, Lars; Lundqvist, Sven; Ransed, Gunnel;<br />

Suominen, Veli; Johansson, Carl Erik <strong>2004</strong>. GEOSITES in practice<br />

–trans-national comparison and correlation. In: Parkes, M.<br />

(ed.) Naturalandculturallandscapes–thegeologicalfoundation :<br />

proceedings<strong>of</strong>aconference, 9–11 September2002,DublinCastle,<br />

Ireland. Dublin: Royal Irish Academy, 113–116.


Frindt,Stephen;Haapala,Ilmari;Pakkanen,Lassi<strong>2004</strong>.Anoro- Anorogenic<br />

Gross Spitzkoppe granite stock in central western Namibia<br />

: Part I. Petrology and geochemistry. American Mineralogist 89<br />

(5–6), 841–856.<br />

Furnes, H.; Banerjee, N. R.; Muehlenbachs, K.; Staudigel, H.;<br />

De Wit, M.; Kontinen, A. <strong>2003</strong>. Evidence for bioalteration in<br />

pillow lavas <strong>of</strong> Precambrian ophiolites. In: Geoscience horizons,<br />

Seattle <strong>2003</strong> : GSAAnnual Meeting and Exposition, November<br />

2–5, <strong>2003</strong>. <strong>Geological</strong> Society <strong>of</strong> America. Abstracts with Programs<br />

35 (6), 455.<br />

Geologian tutkimuskeskus GTK : vuosikertomus 2002. <strong>2003</strong>.<br />

Espoo: Geologian tutkimuskeskus. 51 51p. p.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong> GTK : annual report 2002. <strong>2003</strong>.<br />

Espoo: <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>. 51 51p. p.<br />

Geologian tutkimuskeskus GTK : vuosikertomus <strong>2003</strong>. <strong>2004</strong>.<br />

Espoo: Geologian tutkimuskeskus. 55 p.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong> GTK : annual report <strong>2003</strong>. <strong>2004</strong>.<br />

Espoo: <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>. 55 55p. p.<br />

Gervilla, F.; Cabri, L. J.; Kojonen, K. K. R.; Oberthür, T.;<br />

Weiser, T.; Johanson, B.; Sie, S. H.; Campbell, J. L.; Teesdale,<br />

W. J.; Laflamme, J. H. G. <strong>2003</strong>. Understanding the distribution<br />

<strong>of</strong> platinum-group elements in some mineral deposits : comparison<br />

<strong>of</strong> trace element analyses obtained by electron microprobe<br />

and micro-PIXE. In: EMAS <strong>2003</strong> : 8th European Workshop on<br />

Modern Developments andApplications in MicrobeamAnalysis,<br />

18 to 22 May <strong>2003</strong>, Chiclana de la Frontera (Cádiz), Spain. [S.l.]:<br />

European Microbeam Analysis Society, 121–135.<br />

Gervilla, F.; Kojonen, K.; Parkkinen, J.; Välimaa, J. <strong>2003</strong>.<br />

Platinum-group element mineralogy, geochemistry and 3-D<br />

modeling <strong>of</strong> the Keivitsa Ni-Cu-PGE sulfide deposit, northern<br />

<strong>Finland</strong>. In: Eliopoulos, D. G. ... [et al.] (eds.) Mineral explora- explora-<br />

tion and sustainable development : proceedings <strong>of</strong> the Seventh<br />

Biennial SGAMeeting,Athens, Greece, 24–28August <strong>2003</strong>. Vol.<br />

1. Rotterdam: Millpress, 583–586.<br />

Gervilla, Fernando; Cabri, Louis J.; Kojonen, Kari; Oberthür,<br />

Thomas; Weiser, Thorolf W.; Johanson, Bo; Sie, Soey H.;<br />

Campbell, John L.; Teesdale, Williams J.; Laflamme, J. H. Gilles<br />

<strong>2004</strong>. Platinum-group element distribution in some ore deposits :<br />

results <strong>of</strong> EPMAand micro-PIXE analyses. Microchimica Acta<br />

147 (3), 167–173.<br />

Gornostayev, S.; Hiltunen, R.; Mutanen, T.; Härkki, J. <strong>2003</strong>.<br />

Mineralogical research on chromitites <strong>of</strong> the Akanvaara deposit,<br />

northern <strong>Finland</strong> and products <strong>of</strong> their reduction [Electronic<br />

resource]. In: Applied mineralogy ’03, Helsinki, <strong>Finland</strong>, March<br />

17–18, <strong>2003</strong>, 2 p. Optical disc (CD-ROM).<br />

Gornostayev, S.; Mutanen, T. <strong>2003</strong>. The platinum-groupmin-<br />

platinum-group min-<br />

erals in chromitites <strong>of</strong> the Akanvaara deposit, northern <strong>Finland</strong><br />

and in their processing products. In: Applied mineralogy : papers<br />

presented at Applied mineralogy ’03, Helsinki, <strong>Finland</strong>, 17–18<br />

March <strong>2003</strong>. Minerals Engineering 16 (11 Suppl.), 1307–1312.<br />

Gornostayev, S. S.; Mutanen,T.; Härkki, J. <strong>2003</strong>.The The platinum- platinum-<br />

group minerals (PGM) in somechromititelayers <strong>of</strong> theAkanvaara<br />

deposit, northern <strong>Finland</strong> [Electronic resource]. In: Vancouver<br />

<strong>2003</strong>. <strong>Geological</strong>Association <strong>of</strong> Canada, MineralogicalAssociation<br />

<strong>of</strong> Canada & Society <strong>of</strong> Economic Geologists joint annual<br />

meeting,Vancouver,B.C.,Canada,May25–28,<strong>2003</strong>.Opticaldisc<br />

(CD-ROM). GAC-MAC program with abstracts 28, 1 p.<br />

Gornostayev, S. S.; Walker, R. J.; Hanski, E. J.; Popovchenko,<br />

S. E. <strong>2004</strong>. Evidence for the emplacement <strong>of</strong> ca. 3.0 Ga mantle-derived<br />

mafic-ultramafic bodies in the Ukrainian Shield.<br />

Precambrian <strong>Research</strong> 132 (4), 349–362.<br />

Grinenko, L. N.; Hanski, E.; Grinenko, V. A. <strong>2003</strong>. Usloviâ<br />

obrazovaniâ Cu-Ni mestorozdeniâ Keivitsa, severnaâ Finlândiâ,<br />

po izotopnym dannym sery i ugleroda. Geohimiâ (2), 181–194.<br />

Grönholm, Sari (ed.);Alviola, Reijo; Kinnunen, KariA.; Kojonen,<br />

Kari; Kärkkäinen, Niilo; Mäkitie, Hannu <strong>2004</strong>. Retkeilijän<br />

kiviopas. Espoo: Geologian tutkimuskeskus. 88 p.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Papers published by <strong>Geological</strong> survey <strong>of</strong> <strong>Finland</strong> staff in <strong>2003</strong>–<strong>2004</strong><br />

Gustafsson, Juhani (ed.); Ahonen, Ismo; Lammila, Jyrki; Lähteenmäki,<br />

Pasi; Lyytikäinen, Ari; Nurmi, Heikki; Salonen, Vesa<br />

2002. Pohjavesien suojelun ja kiviaineshuollon yhteensovittaminen<br />

– loppuraportti Loimaan seudulta. Turku: Varsinais-Suomen<br />

liitto. 70 70p. p. +7app. + 7 app. maps.<br />

Haavisto-Hyvärinen, Maija; Korhonen, Riitta; Mäkilä, Markku<br />

<strong>2004</strong>. Tuovi Kankainen in memoriam. Geologi 56 (7), 165.<br />

Häikiö, Jukka; Herranen, Teuvo <strong>2004</strong>. Merijärvellä tutkitut<br />

suot ja niiden turvevarat. Osa 1. Abstract: The peatlands and<br />

peat reserves <strong>of</strong> Merijärvi. Part 1. Geologian tutkimuskeskus.<br />

Turvetutkimusraportti 349. 45 p. + 4 app.<br />

Halkoaho, Tapio 2002. The Vaara – Kauniinlampi komatiite<br />

cumulate complex. In: Niemelä, M. (ed.) Talc-magnesite Talc-magnesitedeposits deposits<br />

in <strong>Finland</strong>, September 10–15, 2002, <strong>Finland</strong> : third field correlation,<br />

21–26.<br />

Halmemies, Sakari; Gröndahl, Siri; Arffman, Mika; Nenonen,<br />

Keijo; Tuhkanen, Tuula <strong>2003</strong>. Vacuumextraction Vacuum extraction based response<br />

equipment for recovery <strong>of</strong> fresh fuel spills from soil. Journal <strong>of</strong><br />

Hazardous Materials 97 (1–3), 127–143.<br />

Hänninen, Pekka; Sutinen, Raimo; Penttinen, Sari 2002. Maaperän<br />

seuranta-asemat.In: Pietola, L. & Esala, M. (eds.) Maa,<br />

josta elämme : II Maaperätieteiden päivien laajennetut abstraktit.<br />

Pro Terra 15, 123–126.<br />

Hanski, Eero <strong>2003</strong>. Nampa. Suomen geologinen kartta<br />

1:100 000 : kallioperäkartta = <strong>Geological</strong> map <strong>of</strong> <strong>Finland</strong><br />

1:100 000 : pre-Quaternary rocks lehti = sheet 3623.<br />

Hanski, Eero; Walker, Richard J.; Huhma, Hannu; Polyakov,<br />

Gleb V.; Balykin, Pavel A.; Tran, Trong Hoa; Ngô, Thi Phuong<br />

<strong>2004</strong>. Origin <strong>of</strong> the Permian-Triassic komatiites, northwestern<br />

Vietnam. Contributions to Mineralogy and Petrology 147 (4),<br />

453–469.<br />

Härmä, Paavo <strong>2003</strong>. Itä-Uudenmaan rakennuskivivarojen kartoitus,<br />

osa I. Itä-Uudenmaan liitto. Julkaisu 62. 19 p. + 4 app.<br />

Härmä, Paavo <strong>2003</strong>. Itä-Uudenmaan rakennuskivivarojen kartoitus,<br />

osa II. Itä-Uudenmaan liitto. Julkaisu 80. 16 p. + 6 app.<br />

Hartikainen, Aimo; Nikkarinen, Maria 2002. Maaperän ja<br />

perunan alkuainepitoisuuksien vertailua kahdella kohdealueella<br />

Itä-Suomessa. In: Pietola, L. & Esala, M. (eds.) Maa, josta<br />

elämme : II Maaperätieteiden päivien laajennetut abstraktit. Pro<br />

Terra 15, 127–130.<br />

Hattori, K. H.; Cabri, L. J.; Johanson, B.; Zientek, M. L.<br />

<strong>2004</strong>. Origin Origin<strong>of</strong>placerlauritefrom <strong>of</strong> placer laurite from Borneo Borneo:SeandAscontents,<br />

: Se and As contents,<br />

and S isotopic compositions. Mineralogical Magazine 68 (2),<br />

353–368.<br />

Heikkinen, P. M.; Räisänen, M. L. <strong>2003</strong>. Mineralogical and<br />

geochemical evidence <strong>of</strong> nickel mobility and retention in the<br />

Hitura sulphide mine tailings [Electronic resource]. In: Applied<br />

mineralogy ‘03, Helsinki, <strong>Finland</strong>, March 17–18, <strong>2003</strong>, 3 p.<br />

Optical disc (CD-ROM).<br />

Heldal, Tom; Selonen, Olavi <strong>2003</strong>. Environmental impact <strong>of</strong><br />

the natural stone industry. In: In:Selonen,O.&Suominen,V.(eds.)<br />

Selonen, O. & Suominen, V. (eds.)<br />

Nordic stone. Paris: UNESCO : IAEG, 50–51.<br />

Heldal, Tom; Selonen, Olavi <strong>2003</strong>. History and heritage. In:<br />

Selonen, O. & Suominen, V. (eds.) Nordic Nordicstone.Paris:UNESCO<br />

stone. Paris: UNESCO<br />

: IAEG, 13–18.<br />

Hellmuth, Karl-Heinz; Tarvainen, Timo; Backman, Birgitta;<br />

Hatakka, Tarja; Vesterbacka, Pia; Savolainen, Heimo <strong>2003</strong>. IAEA<br />

Coordinated <strong>Research</strong> Project (CRP) ”The use <strong>of</strong> selected safety<br />

indicators(concentrations,fluxes)intheassessment<strong>of</strong>radioactiv e<br />

waste disposal”. Report 4: Natural geochemical concentrations<br />

on the Baltic Shield <strong>of</strong> <strong>Finland</strong> for use as indicators <strong>of</strong> nuclear<br />

wasterepositorysafety.Geologiantutkimuskeskus.Ydinjätteiden<br />

Geologiantutkimuskeskus.Ydinjätteiden<br />

sijoitustutkimukset. Tiedonanto YST-109. 161 p.<br />

Hellstén, Pasi; Nystén, Taina; Salminen, Jani; Granlund, Kirsti;<br />

Huotari, Taija; Vallinkoski, Veli-Matti <strong>2004</strong>. Kaliumformiaatin<br />

hajoaminen maaperässä ja pohjavedessä : MIDAS-loppuraportti.<br />

Abstract:Biodegradation<strong>of</strong>potassiumformiateinsoilandground-<br />

85


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Papers published by <strong>Geological</strong> survey <strong>of</strong> <strong>Finland</strong> staff in <strong>2003</strong>-<strong>2004</strong><br />

water – final report <strong>of</strong> studies on alternative de-icing chemicals.<br />

Suomen ympäristö 675. 53 p.<br />

Helmens, K. F.; Eskola, K. O.; Johansson, P. W.; Räsänen, M.<br />

E. <strong>2004</strong>. TheLast The Last Interglacial/GlacialCyclerecorded Interglacial/Glacial Cycle recorded inanearly in a nearly<br />

continuous sediment sequence from the Sokli Basin in Finnish<br />

Lapland. In: Mansfeld, J. (ed.)The 26th Nordic <strong>Geological</strong>Winter<br />

Meeting, January 6th – 9th <strong>2004</strong>, Uppsala, Sweden : abstract<br />

volume. GFF 126 (1), 135.<br />

Holma, M. J.; Keinänen, V. J.; Ojala, V. J.; Eilu, P. <strong>2003</strong>. The<br />

Levijärvi – LoukinenAu-Ni-Cu occurrence : a Palaeoproterozoic<br />

polymetallic orogenic gold mineralisation in the Sirkka Line tec-<br />

tonic structure, northern <strong>Finland</strong>. In:Eliopoulos,D.G.... In: Eliopoulos, D. G. ... [etal.] [et [etal.] al.]<br />

(eds.)Mineralex plorationandsus tainabledevelopm ent:proceedings<strong>of</strong>theSeventhBiennialSGAMeeting,Athens,Greece,24–28<br />

August <strong>2003</strong>. Vol. 2. Rotterdam: Millpress, 1073–1076.<br />

Hongisto,H.;Jokinen,J.;Jokinen,T.;Säävuori,H .;Oksama,M.<br />

<strong>2004</strong>.FullscaleEMmodellingonseaice[Electronicresource].In:<br />

FullscaleEMmodellingonseaice[Electronicresource].In:<br />

Sharing the Earth : EAGE 66th Conference & Exhibition, Paris,<br />

France, 7–10 June <strong>2004</strong> : extended abstracts. Houten: EAGE, 4<br />

p. Optical disc (CD-ROM).<br />

Hongisto, Hannu; Oksama, Matti; Jokinen, Jarkko; Suppala,<br />

Ilkka <strong>2004</strong>. Field test <strong>of</strong> atransient a transient EM-system on onsea sea ice. In:<br />

Puska, L. (ed.) Sähkömagnetiikka <strong>2004</strong>, 26. elokuuta <strong>2004</strong>.<br />

Espoo: CSC, 8–9.<br />

Hubberten, H. W.; Andreev, A.; Astakhov, V. I.; Demidov, I.;<br />

Dowdeswell, J. A.; Henriksen, M.; Hjort, C.; Houmark-Nielsen,<br />

M.; Jakobsson, M.; Kuzmina, S.; Larsen, E.; Lunkka, J. P.; Lyså,<br />

A.; Mangerud, J.; Möller, P.; Saarnisto, M.; Schirrmeister, L.;<br />

Sher, A. V.; Siegert, C.; Siegert, M. J.; Svendsen, J. I. <strong>2004</strong>. The<br />

periglacial climate and environment in northern Eurasia during<br />

the last glaciation. In: Thiede, J. (ed.) Quaternary environments<br />

<strong>of</strong> the Eurasian North (QUEEN). Quaternary Science Reviews<br />

23 (11–13), 1333–1357.<br />

86<br />

Huhma, H.; Mutanen, T.; Whitehouse, M. <strong>2004</strong>. Oldest rocks<br />

<strong>of</strong> the Fennoscandian Shield : the 3.5 Ga Siurua trondhjemite<br />

gneiss in the Archaean Pudasjärvi Granulite Belt, <strong>Finland</strong>. In:<br />

Mansfeld, J. (ed.) The 26th Nordic <strong>Geological</strong> Winter Meeting,<br />

January 6th – 9th <strong>2004</strong>, Uppsala, Sweden : abstract volume. GFF<br />

126 (1), 10.<br />

Huhma, H.; Mutanen, T.; Whitehouse, M. <strong>2004</strong>. Oldestrocks Oldest rocks <strong>of</strong><br />

the Fennoscandian Shield : the 3.5 Ga Siurua trondhjemite gneiss<br />

in the Archaean Pudasjärvi Granulite Belt, <strong>Finland</strong>. In: Abstracts<br />

<strong>of</strong> the 14th Annual V. M. Goldschmidt Conference, Copenhagen,<br />

Denmark, June 5–11, <strong>2004</strong>. Geochimica et Cosmochimica Acta<br />

68 (11S), A754.<br />

Huhta, Pekka <strong>2003</strong>. Satakunnan kallioperä on vaikuttanut<br />

maaperänerityispiirteisiin. Sarka. Satakunnan Museon vuosikirja<br />

2001–2002, 62–67.<br />

Huhta, Pekka; Korhonen, Riitta; Korsman, Kalevi; Vuorela,<br />

Irmeli <strong>2003</strong>. Ainutlaatuinen Satakunnan maankamara tarjoaa<br />

haasteita tutkijoille ja soveltajille. Sarka. Satakunnan Museon<br />

vuosikirja 2001–2002, 56–81.<br />

Hukka, Juho <strong>2003</strong>. Lyijyhohde. Vuoriteollisuus 61 (2),<br />

54–55.<br />

Hukka, Juho <strong>2003</strong>. Maasälvät. Vuoriteollisuus 61 (1), 50–51.<br />

Huotari, T.; Vanhala, H.; Hellstén, P.; Vaittinen, K. <strong>2004</strong>.<br />

Monitoring an alternative de-icer in salt contaminated aquifer<br />

using ERT. In: Near surface <strong>2004</strong> : 10th European Meeting<br />

<strong>of</strong> Environmental and Engineering Geophysics, Utrecht, The<br />

Netherlands, 6–9 September <strong>2004</strong> : extended abstracts book.<br />

Houten: EAGE, 4 p.<br />

Huotari, Taija; Kukkonen, Ilmo <strong>2004</strong>. Thermal expansion<br />

properties <strong>of</strong> rocks : literature survey and estimation <strong>of</strong> thermal<br />

expansion coefficient for Olkiluoto mica gneiss. Tiivistelmä:<br />

Kivien lämpölaajenemisominaisuudet : kirjallisuustutkimus sekä<br />

Olkiluodon kiillegneissin lämpölaajenemiskertoimen estimointi.<br />

Posiva. Working report <strong>2004</strong>–04. 62 p.<br />

Huttunen, Timo;Saarelainen,Jouko;Väänänen, Tapio;Putkinen,<br />

Seppo;Ikonen, Jorma;Kohonen, Jarmo;Pekkarinen, Lauri;<br />

Vuollo, Jouni;Äikäs, Olli <strong>2003</strong>.Koli Koli :geologinenretkeilykartta<br />

:geologinen retkeilykartta<br />

=geologisk friluftskarta =geological outdoor map 1:20 000.<br />

Kuopio: Geologian tutkimuskeskus.<br />

Huttunen, Timo (ed.); Hytönen, Markku; Kejonen, Aimo;<br />

Rönty, Hannu; Saarelainen, Jouko; Tervo, Tapani; Väänänen,<br />

Tapio; Äikäs, Olli <strong>2003</strong>. Koli :geologinen retkeilykartta ja<br />

opaskirja. Kuopio: Geologian tutkimuskeskus. 73p.<br />

Huttunen, Timo; Johansson, Peter; Putkinen, Satu; Haavisto-Hyvärinen,<br />

Maija <strong>2004</strong> . Maaperäkartan sovelluksia<br />

yhdyskuntasuunnitteluun. In: Kaakinen, A. (ed.) Geologian<br />

3. tutkijapäivät, 10.–11.3.<strong>2004</strong>, Helsinki. Helsinki: Helsingin<br />

yliopisto, geologian laitos, 73.<br />

Hyvönen,Eija;Lerssi, Jouni;Väänänen,Tapio <strong>2003</strong>.Airborne Airborne<br />

geophysical surveys assessing the general scale Quaternary<br />

mapping project in <strong>Finland</strong>. In: Mares, S. &Pospísil, L. (eds.)<br />

9th Meeting <strong>of</strong> Environmental and Engineering Geophysics,<br />

Prague, Czech Republic, August 31st –September 4th <strong>2003</strong> :<br />

proceedings. Prague: Czech Association <strong>of</strong>the Applied Geophysicists,<br />

3p.<br />

Hyvönen, Eija; Pänttäjä, Markku; Sutinen, Marja-Liisa;<br />

Sutinen, Raimo <strong>2003</strong>. Assessing site suitability for Scots pine<br />

using airborne and terrestrial gamma-ray measurements in<br />

Finnish Lapland. Canadian Journal <strong>of</strong> Forest <strong>Research</strong> 33 (5),<br />

796–806.<br />

Iisalo, Esko <strong>2003</strong>. Till stratigraphy and geochemical differencesbetweentill<br />

bedsinwestern<strong>Finland</strong>.In:Räisänen,M.L.<br />

In:Räisänen,M.L.<br />

&Nikkarinen, M. (eds.) Complexity <strong>of</strong> glacial dispersal and<br />

hydromorphicprocessesintill geochemistry.<strong>Geological</strong><strong>Survey</strong><br />

<strong>of</strong> <strong>Finland</strong>. Special Paper 34, 21–42.<br />

Iljina, M. <strong>2004</strong>.The unique Konttijärvi marginal series PGE<br />

ore <strong>of</strong> the Portimo Layered Igneous Complex, <strong>Finland</strong> [Electronic<br />

resource]. In: St. Catharines <strong>2004</strong>. <strong>Geological</strong> Association<br />

<strong>of</strong> Canada &Mineralogical Association <strong>of</strong>Canada joint<br />

annual meeting, St. Catharines, Ontario, Canada, May 12–14,<br />

<strong>2004</strong>.GAC-MAC programwithabstracts 29,255.Opticaldisc<br />

(CD-ROM).<br />

Iljina, Markku J. <strong>2004</strong>. Fennoscandian layered mafic intru- intru -<br />

sionsandrelated Cu-Ni-PGE deposits. In:Iljina,M.&Sullivan,<br />

J. (eds.) Fennoscandian seminar, March 5,<strong>2004</strong>, [Toronto] :<br />

agenda, abstracts and biographies, 2p.<br />

Iljina, Markku (ed.); Sullivan, John (ed.) <strong>2004</strong>. FennoscanFennoscandian seminar, March 5,<strong>2004</strong>, [Toronto]:agenda, abstracts and<br />

biographies. 15 p.<br />

Johansson, Carl Erik;Andersen, Steen; Erikstad, Lars; Suo -<br />

minen, Veli <strong>2004</strong>. Geodiversity in Nordic nature conservation.<br />

In: 32nd International <strong>Geological</strong> Congress, Florence, Italy,<br />

August 20–28, <strong>2004</strong> :abstracts. Part 1, 579.<br />

Johansson, Peter <strong>2003</strong>. Aeolian landforms and erosion in<br />

northern<strong>Finland</strong>.In:Raukas,A.&Kukk,H.(eds.) In:Raukas,A.&Kukk,H.(eds.) International<br />

symposiumonHumanImpactand<strong>Geological</strong>Heritage, 12–17<br />

May <strong>2003</strong>, Tallinn, Estonia :excursion guide and abstracts.<br />

Tallinn: Institute <strong>of</strong> Geology at Tallinn Technical University,<br />

72–73.<br />

Johansson, Peter <strong>2003</strong>. Eskers and bedrock gorges (tunnel<br />

valleys) inthePakasaivoarea,westernFinnishLapland.Bulletin<br />

<strong>of</strong> the <strong>Geological</strong> Society <strong>of</strong> <strong>Finland</strong> 75 (1–2), 5–15.<br />

Johansson, Peter <strong>2003</strong>. Kallio ja maaperä. In: Kuusisto, A.<br />

(ed.) Ylläs-Aakenuksen alueen luonto. Metsähallituksen luonnonsuojelujulkaisuja.<br />

SarjaA141, 19–21.<br />

Johansson,Peter(ed.) <strong>2003</strong>.Pallas-Ounastunturi:geologinen<br />

retkeilykartta=geological outdoor map 1:50000.2nd rev.ed..<br />

Rovaniemi: Geologian tutkimuskeskus.<br />

Johansson,Peter(ed.);Mäkinen,Kalevi(ed.)<strong>2003</strong>.Koilliskaira Koilliskaira<br />

:geologinen retkeilykartta=geological outdoor map 1:100 000.<br />

2nd rev.ed. Rovaniemi: Geologian Geologian tutkimuskeskus.


Johansson,Peter<strong>2004</strong>.Eskersystems<strong>of</strong>differentagesineasternFinnishLapland.In:Zelcs,V.&Seglins,V.(eds.)International<br />

field symposiumonQuaternarygeologyand modern terrestrial<br />

processes,westernLatvia,September12–17,<strong>2004</strong>:abstracts <strong>of</strong><br />

papers and posters. Riga: University <strong>of</strong> Latvia, 18–19 .<br />

Johansson,Peter<strong>2004</strong>.Evidences<strong>of</strong>glaciationanddeglaciation<br />

inwesternFinnishLapland.In:Lappalainen,E.(ed.)Vitalityand<br />

In:Lappalainen,E.(ed.)Vitalityand Vitalityand<br />

peace <strong>of</strong>mindfrom GreatTeuravuomaaapamire:post congress<br />

excursion to Lapland, 11–16 June, <strong>2004</strong>, 52–58.<br />

Johansson,Peter<strong>2004</strong>.Jäätikköjokimuodostumat.In:Koivisto,<br />

M. (ed.) Jääkaudet. Helsinki: WSOY,139–151.<br />

Johansson, Peter <strong>2004</strong>. Maaperäkartoituksen keskeiset kehittämistavoitteet.<br />

In: Kaakinen,A. (ed.) Geologian 3. tutkijapäivät,10.–11.3.<strong>2004</strong>,Helsinki.Helsinki<br />

:Helsinginyliopisto,<br />

geologian laitos, 10.<br />

Johansson,Peter;Haavisto-Hyvärinen,Maija;Huttunen,Timo;<br />

Putkinen, Satu <strong>2004</strong>. Maaperäkartan sovelluksia maaperän ja<br />

pohjavedensuojeluunSiilinjärvellä.Abstract:Applications<strong>of</strong>the<br />

Abstract:Applications<strong>of</strong>the<br />

map <strong>of</strong> surficial geology tosoil and groundwater conservation<br />

inSiilinjärvi,central<strong>Finland</strong>.In:Seppälä,J.&Idman,H.(eds.)<br />

In:Seppälä,J.&Idman,H.(eds.)<br />

Maaperänsuojelu :Geologian tutkimuskeskuksen ja Suomen<br />

ympäristökeskuksen tutkimusseminaari 5.11.<strong>2004</strong>. Suomen<br />

ympäristö 726, 63–66.<br />

Johansson, Peter; Koivisto, Marjatta <strong>2004</strong>. Moreenimuo -<br />

dostumat. In: Koivisto, M. (ed.) Jääkaudet. Helsinki: WSOY,<br />

130–138.<br />

Johansson, Peter; Manninen, Tuomo <strong>2004</strong>. Maankamaran<br />

synty ja kehitys. In: Kajala, L. (ed.) Lemmenjoki :Suomen<br />

suurin kansallispuisto –The largest national park in<strong>Finland</strong>.<br />

Ivalo: Metsähallitus, 150–173.<br />

Johansson,Peter;Rainio, Heikki;Kejonen,Aimo <strong>2004</strong>. Mannerjäätikön<br />

reunalla–tuulikerrostumatjapölymaat. In:Koivisto,<br />

M. (ed.) Jääkaudet. Helsinki: WSOY, 106–113.<br />

Jones, A.P.;Mutanen, T.;Tuisku,P.;Hanski, E.;Price, G. D.<br />

<strong>2003</strong>. ThePechengastructure,Russia:giantNi-Cumineralisation<br />

ThePechenga structure, Russia :giantNi-Cumineralisation<br />

related to large meteorite impact?. In: McDonald, I. ... [et al.]<br />

(eds.) Worldclass mineraldeposits andEarthevolution,18–21<br />

August <strong>2003</strong>.Applied Earth Science 112 (2), B149–B150.<br />

Juntunen, Risto;Vartiainen, Sirkka;Pullinen, Arto<strong>2004</strong>. Ar -<br />

seeniPirkanmaanporakaivovesissä.Summary:Arsenicinwater<br />

Summary:Arsenicinwater<br />

from drilled bedrock wells in Pirkanmaa, southern <strong>Finland</strong>. In:<br />

Loukola-Ruskeeniemi,K.&Lahermo,P.(eds.)ArseeniSuomen<br />

luonnossa, ympäristövaikutukset ja riskit. Espoo: Geologian<br />

tutkimuskeskus, 111–122.<br />

Juvonen,Riitta;Bartha,Andras;Lakomaa,Tuula M.;Soikkeli,<br />

Leena A.; Bertalan, Éva; Kallio, Eeva I.; Ballók, Maria <strong>2004</strong>.<br />

Comparison <strong>of</strong> recoveries by lead fire assay and nickel sulfide<br />

fire assayin the determination <strong>of</strong> gold, platinum, palladiumand<br />

rhenium insulfide ore samples. In: Kane, J. S. ... [et al.] (eds.)<br />

Geoanalysis <strong>2003</strong>. Geostandards and Geoanalytical <strong>Research</strong><br />

28 (1), 123–130.<br />

Kahelin, Hanna; Kallio, Eeva <strong>2004</strong>. Arseenin kemiallinen<br />

analysointi.Summary:Determination Summary:Determination <strong>of</strong>arsenicconcentrations<br />

in geological and environmental samples. In: Loukola-Rus-<br />

Loukola-Rus-<br />

keeniemi, K. &Lahermo, P.(eds.) Arseeni Suomen luonnossa,<br />

ympäristövaikutukset ja riskit. Espoo: Geologian tutkimuskeskus,<br />

19–28.<br />

Kaija,Juha;Rasilainen, Kari;Blomqvist,Runar <strong>2003</strong>.IAEA IAEA<br />

Coordinated <strong>Research</strong>Project(CRP)”Theuse<strong>of</strong>selected safety<br />

indicators (concentrations, fluxes) in the assessment<strong>of</strong> radioactivewastedisposal”.<br />

Report6:Site-specific natural geochemical<br />

concentrations and fluxes at the Palmottu U-Th mineralisation<br />

(<strong>Finland</strong>)foruseasindicators <strong>of</strong>nuclearwasterepositorysafety.<br />

Geologian tutkimuskeskus. Ydinjätteiden sijoitustutkimukset.<br />

TiedonantoYST-114. 45 p.<br />

Kakkuri,Juhani;Virkki,Hanna<strong>2004</strong>.Maanousee.In:Koivisto,<br />

M. (ed.) Jääkaudet. Helsinki: WSOY, 168–178.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Papers published by <strong>Geological</strong> survey <strong>of</strong> <strong>Finland</strong> staff in <strong>2003</strong>–<strong>2004</strong><br />

Kallinen, Riitta-Liisa <strong>2004</strong>. Kaavilla tutkitut suot ja niiden<br />

turvevarat. Osa 2.Abstract:The peatlands and peat reserves in<br />

Kaavi.Part Part 2.Geologiantutkimuskeskus.Turvetutkimusraportti<br />

350. 28 p. +3app.<br />

Kananoja,Tapio<strong>2004</strong>.Kallioperänsuojelu-jaopetuskohteita<br />

Kainuussa.Abstract:Sitesforgeologicalprotection Abstract:Sitesforgeologicalprotection andeduca- andeducation<br />

in Kainuu. Suomen ympäristö 692. 124 p.<br />

Kananoja,Tapio<strong>2004</strong>.Kallioperänsuojelu-jaopetuskohteita<br />

Pohjois-Pohjanmaalla.Abstract:Sitesforgeologicalprotection<br />

Abstract:Sitesforgeologicalprotection<br />

and education in northern Ostrobothnia (Pohjois-Pohjanmaa).<br />

Suomen ympäristö 714. 157 p.<br />

Kane, JeanS.(ed.);Niskavaara, Heikki(ed.);Hämäläinen,Lea<br />

(ed.); Sandström, Harry (ed.); Ramsey,Michael H. (ed.) <strong>2004</strong>.<br />

Geoanalysis <strong>2003</strong>. Geostandards and Geoanalytical <strong>Research</strong><br />

28 (1), 9–136.<br />

Kankainen, Tuovi; Vuorela, Irmeli <strong>2003</strong>. Rapolan rantakerrostuman<br />

kertomaa – kasvillisuuden rakenteesta ja viljelyn<br />

historiasta. In: Heikkurinen-Montell, T.&Taskinen, H. (eds.)<br />

Sääksmäen Rapolan rautakautinen maisema ja elinkeinot Valkeakoskella.<br />

Rapola-tutkimuksia 3, 124–152.<br />

Käpyaho,A.;Mänttäri, I.;Huhma,H.<strong>2004</strong>. EpisodicArchaean<br />

crustalgrowthandcrustalrecyclinginKuhmo,eastern<strong>Finland</strong>:<br />

U-Pbzircon andSm-Ndwhole-rockstudy<strong>of</strong>plutonicrocks. In:<br />

Mansfeld, J. (ed.) The 26thNordic <strong>Geological</strong> Winter Meeting,<br />

January 6th –9th <strong>2004</strong>, Uppsala, Sweden :abstract volume.<br />

GFF 126 (1), 11.<br />

Karhu, Eila <strong>2003</strong>. Suomen Kivikeskus aloitti toimintansa<br />

Juuassa. Tietohippu (3–4), 4–6.<br />

Karhunen, Ritva <strong>2004</strong>. Iniön ja Turun kartta-alueiden kallioperä<br />

=Berggrunden inom Iniö och Åbo kartblad. Summary:<br />

Pre-Quaternary rocks <strong>of</strong> the Iniö and Turku map-sheet areas.<br />

Suomengeologinenkartta1:100 000 :kallioperäkarttojenselitykset<br />

lehdet 1041 ja 1043. 76 p. +1app. map.<br />

Kärkkäinen, Niilo <strong>2003</strong>. Gabbro-hosted ilmenite deposits in<br />

<strong>Finland</strong>.In:Duchesne, J.-C.&Korneliussen,A.(eds.) Ilmenite<br />

deposits andtheirgeologicalenvironmentwithspecialreference<br />

totheRogalandAnorthositeProvince includingageologicalmap<br />

atscale1:75,000 andaCD withaguide totheprovince.Norges<br />

geologiske undersøkelse. Special publication 9, 80–82.<br />

Kärkkäinen, Niilo K.; Bornhorst, Theodore J. <strong>2003</strong>. The<br />

Svec<strong>of</strong>ennian gabbro-hosted Koivusaarenneva magmatic ilmenite<br />

deposit, Kälviä, <strong>Finland</strong>. Mineralium Deposita 38 (2),<br />

169–184.<br />

Kauniskangas, Esa;Saijos, Henri <strong>2004</strong>. Geologian tutkimus -<br />

keskukselle geologisten karttojen tuotantojärjestelmä. ESRI<br />

<strong>Finland</strong> uutiset (2), 3–5.<br />

Kauppila, Tommi; Valpola, Samu E. <strong>2003</strong>. Response <strong>of</strong> a<br />

shallowboreallaketorecentnutrientenrichment–implications<br />

for diatom-based phosphorus reconstructions. Hydrobiologia<br />

495 (1–3), 47–58.<br />

Keinänen, M. M.;Korhonen, L. K.;Martikainen, P. J.;Varti -<br />

ainen, T.;Miettinen, I. T.;Lehtola, M. J.;Nenonen, K.;Pajunen,<br />

H.;Kontro,M.H.<strong>2003</strong>.Gaschromatographic-massspectrometric<br />

Gaschromatographic-massspectrometric<br />

detection <strong>of</strong>2-and3-hydroxy fattyacidsasmethylesters from<br />

soil, sediment and bi<strong>of</strong>ilm. Journal <strong>of</strong> Chromatography B783<br />

(2), 443–451.<br />

Kejonen,Aimo <strong>2003</strong>.Geologienelämänviisauksiajapalindromeja.<br />

Geologi 55 (2), 34–37.<br />

Kejonen,Aimo<strong>2003</strong>.Yhdysvaltojenkadonneetkultakaivokset.<br />

Kivi 21 (4), 20–21.<br />

Kejonen, Aimo; Kejonen, Eetu <strong>2003</strong>. Lahden kivimessut<br />

hajaannuksen ja hygienatuotteiden pyörteissä. Geologi 55 (7),<br />

186–189.<br />

Kejonen, Aimo <strong>2004</strong>. Kansanuskomuksia ja geologiaa. In:<br />

Koivisto, M. (ed.) Jääkaudet. Helsinki: WSOY, 226–233.<br />

Kejonen,Aimo <strong>2004</strong>.Kiinalaisenkadonnutkultakaivos. Kivi<br />

22 (2), 24–25.<br />

87


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Papers published by <strong>Geological</strong> survey <strong>of</strong> <strong>Finland</strong> staff in <strong>2003</strong>-<strong>2004</strong><br />

Kejonen, Aimo <strong>2004</strong>. Mannerjäätikön reunalla – routiva maa.<br />

In: Koivisto, M. (ed.) Jääkaudet. Helsinki: WSOY, 114–116.<br />

Kejonen, Aimo <strong>2004</strong>. On the Finnish pseudokarsts. In: Gaál,<br />

L. (ed.) Proceedings <strong>of</strong> the 8th International Symposium on<br />

Pseudokarst, Teply Vrch – Slovakia, <strong>2004</strong>. Liptovsky Mikulás:<br />

Slovak Caves Administration, 24–31.<br />

Kejonen, Aimo <strong>2004</strong>. Suomi ennen jääkautta. In: Koivisto, M.<br />

(ed.) Jääkaudet. Helsinki: WSOY, 11–13.<br />

Kejonen, Aimo; Johansson, Peter <strong>2004</strong>. Geologiset maisema-alueet.<br />

In: Koivisto, M. (ed.) Jääkaudet. Helsinki: WSOY,<br />

211–225.<br />

Kejonen,Aimo;Kejonen,Eetu<strong>2004</strong>.Lahdenkivimessuillauusi<br />

pitopaikka ja järjestäjä. Geologi 56 (7), 162–164.<br />

Keskitalo, Katriina (ed.); Kurkinen, Ilpo; Malkavaara, Terhi;<br />

Liljeqvist, Lasse; Lyytikäinen, Ari; Nurmi, Heikki; Ranta, Panu;<br />

Sahala, Lauri; Timperi, Jukka; Tossavainen, Jyrki; Vallinkoski,<br />

Veli-Matti; Britschgi, Ritva <strong>2004</strong>. Pohjavesien suojelun ja kivi -<br />

aineshuollon yhteensovittaminen – Kymenlaakson loppuraportti.<br />

Abstract: The adjustment <strong>of</strong> groundwater protection with aggregate<br />

service – final report from Kymenlaakso region. Alueelliset<br />

ympäristöjulkaisut 349. 134 p. + 3 app. maps.<br />

Kinnunen, Heli; Holopainen, Toini; Räisänen, Marja Liisa;<br />

Kärenlampi, Lauri <strong>2003</strong>. Fluoride inbirchleaves,groundvegeta-<br />

in birch leaves, ground vegeta-<br />

tion, litter and humus in the surroundings <strong>of</strong> a fertilizer plant and<br />

apatite mine in Siilinjärvi, eastern <strong>Finland</strong>. Boreal Environment<br />

<strong>Research</strong> 8 (2), 185–192.<br />

Kinnunen,KariA.<strong>2003</strong>.AidostaL apinkultahipustatakuutuote.<br />

Prospäkkäri 27 (4), 24–31.<br />

Kinnunen, Kari A. <strong>2003</strong>. Hurrikkaan tutkimustulokset. Lapin<br />

Kullankaivaja (17), 33–34.<br />

Kinnunen, Kari A. <strong>2003</strong>. Jaspista Susiluolassa : viime kesän<br />

kaivauksilta taltioitu piikiven veroista kivimateriaalia. Karijoen<br />

joulu <strong>2003</strong>, 24–25.<br />

Kinnunen, Kari A. <strong>2003</strong>. Korukivien tunnistaminen on yhteistyötä.<br />

Kivi 21 (4), 6–12.<br />

Kinnunen, Kari A. <strong>2003</strong>. Mercury-rich coating on some gold<br />

nuggets from Ivalojoki placers, northern <strong>Finland</strong>. In: Autio, S.<br />

(ed.)<strong>Geological</strong><strong>Survey</strong><strong>of</strong><strong>Finland</strong>,<strong>Current</strong><strong>Research</strong>2001–2002.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>. Special Paper 36, 29–33.<br />

Kinnunen, Kari A. <strong>2003</strong>. Santorinin kivet. Kivi 21 (1), 33.<br />

Kinnunen, Kari A. <strong>2004</strong>. Hohtokordieriitti, uusi kotimainen<br />

korukivi. Kivi 22 (1) , 8–21.<br />

Kinnunen, Kari A. <strong>2004</strong>. Karijoen Susiluolasta tunnistettu<br />

jaspista. Kivi 22 (3), 14–19.<br />

Kinnunen, Kari A. <strong>2004</strong>. Kulta kiteytyi kvartsijuoneen. Prospäkkäri<br />

28 (4), 14–20.<br />

Kinnunen, KariA. <strong>2004</strong>. Kultaa ja kalsedonia samassa hipussa.<br />

Kivi 22 (2), 26–27 .<br />

Kinnunen, Kari A. <strong>2004</strong>. Puskuojalta kultapitoista kalsedonia.<br />

Prospäkkäri 28 (2) , 8–13.<br />

Kinnunen, Kari A. <strong>2004</strong>. Tapio-kultahipun tutkimus. Prospäkkäri<br />

28 (1), 14–20.<br />

Koistinen, Tapio; Stephens, Michael; Bogatchev, Vladimir;<br />

Nordgulen, Oystein; Wennerström, Marit; Korhonen, Juha Ville<br />

<strong>2004</strong>. <strong>Geological</strong> <strong>Geological</strong>map<strong>of</strong>theFennoscandianShield1:2000 map <strong>of</strong> the Fennoscandian Shield 1:2 000 000.<br />

In:32ndInternational<strong>Geological</strong>Congress,Florence,Italy,August<br />

20–28, <strong>2004</strong> : abstracts. Part Part1, 1, 565.<br />

Koivisto, Marjatta (ed.) <strong>2004</strong>. Jääkaudet. Helsinki: WSOY.<br />

233 p.<br />

Koivisto,Marjatta<strong>2004</strong>.Jäätikkökuljetus.In:Koivisto,M.(ed.)<br />

Jääkaudet. Helsinki: WSOY, 152–156.<br />

Koivisto, Marjatta <strong>2004</strong>. Jäätikön jäljet. In: Koivisto, M. (ed.)<br />

Jääkaudet. Helsinki: WSOY, 58–62.<br />

Koivisto, Marjatta <strong>2004</strong>. Moreeni. In: Koivisto, M. (ed.) Jääkaudet.<br />

Helsinki: WSOY, 121–126.<br />

Koivisto, Marjatta <strong>2004</strong>. Moreenin tutkimus. In: Koivisto, M.<br />

(ed.) Jääkaudet. Helsinki: WSOY, 127–129.<br />

88<br />

Koivisto, Marjatta <strong>2004</strong>. Rantakerrostumat. In: Koivisto, M.<br />

(ed.) Jääkaudet. Helsinki: WSOY, 179–184.<br />

Koivisto, Marjatta <strong>2004</strong>. Suomen maaperän mineraalit. In:<br />

Koivisto, M. (ed.) Jääkaudet. Helsinki: WSOY, 157–163.<br />

Koivisto,Marjatta<strong>2004</strong>.UuttatietoaLappajärvestä.In:Koivisto,<br />

M. (ed.) Jääkaudet. Helsinki: WSOY, 164–167.<br />

Koivisto,Marjatta;Kejonen,Aimo<strong>2004</strong>.Maalajit.In:Koivisto,<br />

M. (ed.) Jääkaudet. Helsinki: WSOY, 117–120.<br />

Kojonen, K.; Isomäki, O.-P.; Knauf, V. 2002. Platinum group<br />

minerals and an undefined (Re, Mo, Cu, Os, Fe, Ni, Co)1.93S3<br />

from the Proterozoic Hitura Ni-Cu-PGE deposit, western <strong>Finland</strong>.<br />

In: 18th General Meeting <strong>of</strong> the International Mineralogical Association<br />

: mineralogy for the new millennium, 1–6 September<br />

2002,Edinburgh,Scotland:programmewithabstracts.Edinburgh:<br />

International Mineralogical Association, 285.<br />

Kojonen, K.; Isomäki, O.-P.; Pulkkinen, K.; Knauf, V. <strong>2003</strong>.<br />

Mineral processing <strong>of</strong> base metal sulphides and platinum group<br />

minerals (PGM) at the Proterozoic Hitura Ni-Cu-PGE deposit,<br />

western <strong>Finland</strong> [Electronic resource]. In: Applied mineralogy<br />

’03, Helsinki, <strong>Finland</strong>, March 17–18, <strong>2003</strong>, 4 p. Optical disc<br />

(CD-ROM).<br />

Kojonen, K.; Zaccarini, F.; Garuti, G. <strong>2003</strong>. Platinum-group<br />

elements and gold geochemistry and mineralogy in the Ray-Iz<br />

ophiolitic chromitites, Polar Urals. In: In:Eliopoulos,D.G.... Eliopoulos, D. G. ... [etal.] [et [etal.] al.]<br />

(eds.)Mineralexplorationandsustainabledevelopment:proceedings<strong>of</strong>theSeventhBiennialSGAMeeting,Athens,Greece,24–28<br />

August <strong>2003</strong>. Vol. 1. Rotterdam: Millpress, 599–602.<br />

Kojonen,Kari<strong>2004</strong>.Tarkianiitti(Cu,Fe)(Re,Mo)4S8uusisulfidimineraali<br />

Hituran kaivoksesta Nivalasta. Kivi 22 (3), 20–25.<br />

Kojonen, Kari; Isomäki, Olli-Pekka <strong>2004</strong>. Tarkianiitti<br />

(Cu,Fe)(Re,Mo)4S8–uusimineraaliHiturankaivoksesta.Materia<br />

61 (3), 36–41.<br />

Kojonen,Kari;Välimaa,Jukka;Gervilla,Fernando;Parkkinen,<br />

Jyrki <strong>2004</strong>. Platinum-group element mineralization pipes <strong>of</strong> the<br />

early Proterozoic Keivitsa mafic-ultramafic intrusion, Sodankylä,<br />

northern<strong>Finland</strong>.In:32ndIntern ational<strong>Geological</strong>Congress,Flor -<br />

ence, Italy, August 20–28, <strong>2004</strong> : abstracts. Part Part2,1267–1268.<br />

2, 1267–1268.<br />

Kojonen, Kari K.; Roberts, Andrew C.; Isomäki, Olli-Pekka;<br />

Knauf, Vladimir V.; Johanson, Bo; Pakkanen, Lassi <strong>2004</strong>. Tarki- Tarki-<br />

anite, (Cu,Fe)(Re,Mo)4S8, a new mineral species from the Hitura<br />

mine, Nivala, <strong>Finland</strong>. In: Mungall, J. E., Meurer, W. P. & Martin,<br />

R. F. (eds.) Platinum-group elements : petrology, geochemistry,<br />

mineralogy. The Canadian Mineralogist 42 (2), 539–544.<br />

Konishi, Hiromi; Alviola, Reijo; Buseck, Peter R. <strong>2004</strong>. 2111<br />

biopyriboleintermediatebetween pyroxeneandamphibole:artifact<br />

or natural product?. American Mineralogist 89 (1), 15–19.<br />

Kontinen,Asko 2002. Jormua Ophiolite Complex. In:Niemelä, In: Niemelä,<br />

M. (ed.) Talc-magnesite deposits in <strong>Finland</strong>, September 10–15,<br />

2002, <strong>Finland</strong> : third field correlation, 14–20.<br />

Kontinen,Asko; Meriläinen, Kauko <strong>2004</strong>. Paltaniemi. Suomen<br />

geologinen kartta 1:100 000 : kallioperäkartta = <strong>Geological</strong> map<br />

<strong>of</strong> <strong>Finland</strong> 1:100 000 : pre-Quaternary rocks lehti = sheet 3432.<br />

Korhonen, J. V. (comp.);Aaro, S. (comp.);All, T. (comp.); Elo,<br />

S.(comp.);Haller,L.Å.(comp.);Kääriäinen,J.(comp.);Kulinich,<br />

A.(comp.);Skilbrei,J.R.(comp.);Solheim,D.(comp.);Säävuori,<br />

H. (comp.); Vaher, R. (comp.); Zhdanova, L. (comp.); Koistinen,<br />

T. (comp.) 2002. Bouguer anomaly map <strong>of</strong> the Fennoscandian<br />

Shield : IGSN 71 gravity system, GRS80 normal gravity formula.<br />

Bouguer density 2670 kg/m³, terrain correction applied.Anomaly<br />

continued upwards to 500 m above ground : scale 1 : 2 000 000.<br />

Espoo : Trondheim : Uppsala : Moscow: <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong><br />

<strong>Finland</strong> : <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> Norway : <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong><br />

Sweden : Ministry <strong>of</strong> Natural Resources <strong>of</strong> Russia.<br />

Korhonen, J. V. (comp.); Aaro, S. (comp.); All, T. (comp.);<br />

Nevanlinna, H. (comp.); Skilbrei, J. R. (comp.); Säävuori, H.<br />

(comp.); Vaher, R. (comp.); Zhdanova, L. (comp.); Koistinen, T.<br />

(comp.)2002.Magneticanomalymap<strong>of</strong>theFennoscandianShield


: DGRF-65 anomaly <strong>of</strong> total field. Anomaly continued upwards<br />

to 500 m above ground : scale 1 : 2 000 000. Espoo : Trondheim<br />

: Uppsala : Moscow: <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong> : <strong>Geological</strong><br />

<strong>Survey</strong> <strong>of</strong> Norway : <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> Sweden : Ministry <strong>of</strong><br />

Natural Resources <strong>of</strong> Russia.<br />

Korhonen, Juha Ville; Aaro, Sven; All, Tarmo; Elo, Seppo;<br />

Koistinen, Tapio; Kulinich, Anatoli; Kääriäinen, Jussi; Skilbrei,<br />

Jan Reidar; Solheim, Dag;Vaher, Rein; Zhdanova, Ludmila <strong>2003</strong>.<br />

Correlation <strong>of</strong> potential field anomalies, petrophysical properties<br />

andevolution<strong>of</strong>theFennoscandianShield.In:IUGG<strong>2003</strong>:XXIII<br />

General Assembly <strong>of</strong> the International Union <strong>of</strong> Geodesy and<br />

Geophysics, June 30 – July 11, <strong>2003</strong>, Sapporo, Japan : abstracts.<br />

Week B. Sapporo : IUGG, 35.<br />

Korhonen, JuhaVille;Säävuori,Heikki;Koistinen,Tapio <strong>2003</strong>.<br />

Lithospheric sources <strong>of</strong> magnetic and gravity anomalies <strong>of</strong> the<br />

Fennoscandian Shield. In: IUGG <strong>2003</strong> : XXIII GeneralAssembly<br />

<strong>of</strong> the International Union <strong>of</strong> Geodesy and Geophysics, June 30<br />

– July 11, <strong>2003</strong>, Sapporo, Japan : abstracts. Week B. Sapporo :<br />

IUGG, 28.<br />

Korhonen, Juha Ville; Aaro, Sven; All, Tarmo; Elo, Seppo;<br />

Kulinich, Anatoly; Skilbrei, Jan Reidar; Säävuori, Heikki; Vaher,<br />

Rein; Zhdanova, Ludmila; Koistinen, Tapio <strong>2004</strong>. Bouguer<br />

anomaly map <strong>of</strong> the Fennoscandian Shield 1:2 000 000. In: 32nd<br />

International<strong>Geological</strong>Congress,Florence,Italy,August20–28,<br />

<strong>2004</strong> : abstracts. Part Part1, 1, 565.<br />

Korhonen, Juha Ville; Aaro, Sven; All, Tarmo; Nevanlinna,<br />

Heikki; Skilbrei, Jan Reidar; Säävuori, Heikki; Zhdanova,<br />

Ludmila; Koistinen, Tapio <strong>2004</strong>. Magnetic anomaly map <strong>of</strong> the<br />

Fennoscandian Shield 1:2 000 000. In: 32nd International <strong>Geological</strong><br />

Congress, Florence, Italy,August 20–28, <strong>2004</strong> : abstracts.<br />

Part 1, 565.<br />

Korhonen, Juha Ville; Lahtinen, Raimo <strong>2004</strong>. Magnetization<br />

components <strong>of</strong> Precambrian rocks in <strong>Finland</strong>, central FennoscandianShield.In:32ndInternational<strong>Geological</strong>Congress,Florence,<br />

Italy, August 20–28, <strong>2004</strong> : abstracts. Part 2, 1348–1349.<br />

Korhonen, Juha Ville; Reeves, Colin; Ghidella, Marta; Maus,<br />

Stefan; McClean, Susan; Ravat, Dhananjay <strong>2004</strong>. World DigDigital Magnetic Anomaly Map. In: 32nd International <strong>Geological</strong><br />

Congress, Florence, Italy, August 20–28, <strong>2004</strong> : abstracts. Part<br />

1, 779.<br />

Korhonen, JuhaVille;Säävuori,Heikki;Koistinen,Tapio <strong>2004</strong>.<br />

Bulk density and magnetic properties <strong>of</strong> central Fennoscandian<br />

Shield in time and space. In: 32nd International <strong>Geological</strong><br />

Congress, Florence, Italy, August 20–28, <strong>2004</strong> : abstracts. Part<br />

2, 951–952.<br />

Korhonen, Riitta <strong>2003</strong>. Kalliomme ja maaperämme. In: Sar- Sar-<br />

lund, S. (ed.) Tavinsalmen TavinsalmenKuninkaankartanostaKäärmelahteen<br />

Kuninkaankartanosta Käärmelahteen<br />

: kotiseutukirja ja historiikki Maaningalta Haapamäen, Kinnulanlahden,<br />

Käärmelahden ja Tavinsalmen kylistä. Maaninka:<br />

Sinikivi-työryhmä, 9–10.<br />

Korhonen, Riitta <strong>2003</strong>. Satakunnan soiden käyttömahdollisuudet.<br />

Sarka. Satakunnan Museon vuosikirja 2001–2002, 76–79.<br />

Korhonen, Riitta; Suomi, Timo <strong>2003</strong>. Jalasjärvellä tutkitut suot<br />

ja niiden turvevarat. Osa2.Abstract:Themiresandpeatreserves<br />

Osa 2. Abstract: The mires and peat reserves<br />

<strong>of</strong> Jalasjärvi. Part 2. 2.Geologiantutkimuskeskus. Geologian tutkimuskeskus. TurvetutkimusTurvetutkimusraportti<br />

343. 36 p. + 5 app.<br />

Korja, Annakaisa; Lahtinen, Raimo; Nironen, Mikko; Heikkinen,Pekka;Kukkonen,IlmoT.<br />

<strong>2004</strong>.Thegrowth<strong>of</strong>Fennoscandia<br />

Thegrowth<strong>of</strong>Fennoscandia<br />

by Paleoproterozoic accretionary orogenies – results from FIRE<br />

and BABEL reflection pr<strong>of</strong>iles. In: 32nd Internatioal <strong>Geological</strong><br />

Congress, Florence, Italy, August 20–28, <strong>2004</strong> : abstracts. Part<br />

2, 1225.<br />

Kortelainen, N. M.;Karhu,J.A.<strong>2003</strong>.Tracing Tracingthedecomposi-<br />

the decomposi-<br />

tion <strong>of</strong> dissolved organic carbon in artificial recharge by carbon<br />

isotoperatios. In:Internationalsymposiumonisotopehydrology<br />

andintegratedwaterresourcesmanagement,Vienna,Austria,19–23<br />

May<strong>2003</strong> :book <strong>of</strong> extended synopses. Vienna: IAEA,25–26.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Papers published by <strong>Geological</strong> survey <strong>of</strong> <strong>Finland</strong> staff in <strong>2003</strong>–<strong>2004</strong><br />

Kortelainen,NinaM.;Karhu,JuhaA.;Lallukka,Heli;Lindqvist,<br />

Kristian <strong>2003</strong>. Compositional and isotopic evolution <strong>of</strong> groundgroundwater in a carbonate-bearing glacigenic aquifer, SW<strong>Finland</strong>. In:<br />

Batts, B. D. & Batts, J. E. (eds.) 5th International Symposium<br />

on Applied Isotope Geochemistry, Heron Island, Queensland,<br />

Australia, May 26–30, <strong>2003</strong> : program and abstracts, 115–116.<br />

Kortelainen, N. M.; Karhu, J. A. <strong>2004</strong>. Tracing the decomposidecomposition <strong>of</strong> dissolved organic carbon in artificial recharge by carbon<br />

isotoperatios.In:Isotopehydrologyandintegratedwaterresources<br />

management:internationalsymposiumheldinVienna,19–23May<br />

<strong>2003</strong> : unedited proceedings. IAEA Conference & Symposium<br />

Papers 23/P, 123–124.<br />

Kortelainen, N. M.; Karhu, J. A.; Lallukka, H.; Lindqvist, K.<br />

<strong>2004</strong>. Evolution<strong>of</strong> Evolution <strong>of</strong>groundwaterinacarbonate-bearingglacigenic<br />

groundwater in a carbonate-bearingglacigenic<br />

aquifer, SW <strong>Finland</strong> : hydrochemical and isotopic evidence. In:<br />

International conference on isotopes in environmental studies<br />

–aquaticforum<strong>2004</strong>,Monte-Carlo,Monaco,25–29October<strong>2004</strong><br />

: book <strong>of</strong> extended synopses. Vienna: Vienna:IAEA,141–142.<br />

IAEA, 141–142.<br />

Kortelainen, Nina; Gustavsson, Nils <strong>2004</strong>. Virttaankankaan<br />

pohjavedenjaKokemäenjoenjokivedenhapenjavedynisotooppikoostumusseuranta:seossuhteidenvirhetarkastelusimuloinneilla.<br />

Summary: The oxygen and hydrogen isotope ratio in Virttaankangas<br />

groundwater and Kokemäenjoki river water monitoring<br />

program. TurunSeudunVesi Turun Seudun Vesi Oy:n julkaisu1/<strong>2004</strong>. julkaisu 1/<strong>2004</strong>. 30 p.<br />

Kortelainen, Nina M.; Karhu, Juha A. <strong>2004</strong>. Regional and sea- seasonal<br />

trends in the oxygen and hydrogen isotope ratios <strong>of</strong> Finnish<br />

groundwaters : a key for mean annual precipitation. Journal <strong>of</strong><br />

Hydrology 285 (1–4), 143–157.<br />

Kortelainen, P.; Pajunen, H.; Rantakari,M.; Saarnisto, M. <strong>2004</strong>.<br />

Carbon pool in boreal Holocene lake sediments. In: SIL XXIX<br />

Congress, Lahti, <strong>Finland</strong>, 8–14 August <strong>2004</strong> : book <strong>of</strong> abstracts.<br />

Lahti: Societas Internationalis Limnologiae (SIL), 241.<br />

Kortelainen, Pirkko; Pajunen, Hannu; Rantakari, Miitta;<br />

Saarnisto, Matti <strong>2004</strong>. AAlarge large carbon pool and small sink in<br />

boreal Holocene lake sediments. Global Change Biology 10<br />

(10), 1648–1653.<br />

Kotilainen, A. T.; Alvi, K.; Hämäläinen, J. M. S.; Kotilainen,<br />

M. M.; Rantataro, J. <strong>2004</strong>. The NorthAtlanticOscillationand North Atlantic Oscillation and the<br />

Baltic Sea during the past 8000 years. In: Puura, I., Tuuling, I. &<br />

Hang, T. (eds.) The Baltic : the Eighth Marine <strong>Geological</strong> Conference,September23–28,<strong>2004</strong>,Tartu,Estonia:abstracts,excursion<br />

guide. Tartu: University <strong>of</strong> Tartu, Institute <strong>of</strong> Geology, 26.<br />

Kotilainen, Aarno; Hutri, Kaisa-Leena <strong>2004</strong>. Submarine<br />

Holocene sedimentary disturbances in the Olkiluoto area <strong>of</strong> the<br />

Gulf<strong>of</strong>Bothnia,BalticSea:ac ase<strong>of</strong>postglacialpalaeoseismici ty.<br />

Quaternary Science Reviews 23 (9–10), 1125–1135.<br />

Kotilainen,Aarno; Hämäläinen, Jyrki; Kohonen, Jarmo; Korja,<br />

Annakaisa; Mertanen, Satu; Ojala, Juhani; Rämö, Tapani; Sundblad,<br />

Krister; Vaarma, Markus <strong>2004</strong>. Syväkairausta Itämerellä<br />

– haaveista totta tällä vuosituhannella?. Summary:Ageological<br />

Summary: Ageological<br />

drilling programme for the Baltic Sea Basin – will the dreams<br />

come true in this millennium? Geologi 56 (9–10), 204–207.<br />

Kousa, Anne; Nikkarinen, Maria <strong>2003</strong>. Geochemistry Geochemistry<strong>of</strong> <strong>of</strong> local<br />

ground water in relation to the incidence <strong>of</strong> chronic diseases. In:<br />

Autio, S. (ed.) <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, <strong>Current</strong> <strong>Research</strong><br />

2001–2002. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>. Special Paper 36,<br />

53–59.<br />

Kousa, A.; Moltchanova, E.; Taskinen, O.; Nikkarinen, M.;<br />

Tuomilehto, J.; Karvonen, M. <strong>2004</strong>. Chemistry Chemistry<strong>of</strong> <strong>of</strong> well water and<br />

the acute myocardial infarction (AMI) incidence in <strong>Finland</strong>. In:<br />

Törrönen, R. & Gylling, H. (eds.) The 20th Anniversary Symposium<br />

<strong>of</strong> the Department <strong>of</strong> Clinical Nutrition, March 18–19, <strong>2004</strong>,<br />

Kuopio, <strong>Finland</strong> : abstracts. Kuopio University Publications D.<br />

Medical Sciences 325, 44.<br />

Kousa,A.; Moltchanova, E.; Viik-Kajander, M.; Rytkönen, M.;<br />

Tuomilehto, J.; Tarvainen, T.; Karvonen, M. <strong>2004</strong>. Geochemistry<br />

<strong>of</strong> ground water and the incidence <strong>of</strong> acute myocardial infarction<br />

89


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Papers published by <strong>Geological</strong> survey <strong>of</strong> <strong>Finland</strong> staff in <strong>2003</strong>-<strong>2004</strong><br />

in <strong>Finland</strong>. Journal <strong>of</strong> Epidemiology and Community Health 58<br />

(2), 136–139.<br />

Kousa,Anne; Moltchanova, Elena; Taskinen, Olli; Nikkarinen,<br />

Maria; Tuomilehto, Jaakko; Karvonen, Marjatta <strong>2004</strong>. Geochem- Geochem-<br />

istry <strong>of</strong> local ground water in relation to the incidence <strong>of</strong> acute<br />

myocardial infarction (AMI) in <strong>Finland</strong>. In: 32nd International<br />

<strong>Geological</strong> Congress, Florence, Italy, August 20–28, <strong>2004</strong> : ab-<br />

stracts. Part 2, 1371–1372.<br />

Kousa,Jukka;Luukas,Jouni2002.Piippola.Suomengeologinen<br />

kartta 1:100 000 : kallioperäkartta = <strong>Geological</strong> map <strong>of</strong> <strong>Finland</strong><br />

1:100 000 : pre-Quaternary rocks lehti = sheet 3411.<br />

Kozlovskaya, E.; Elo, S.; Hjelt, S.-E.; Yliniemi, J.; Pirttijärvi,<br />

M. <strong>2004</strong>. 3-D 3-Ddensitymodel<strong>of</strong>thecrust density model <strong>of</strong> the crust <strong>of</strong>southernandcentral<br />

<strong>of</strong> southern and central<br />

<strong>Finland</strong> obtained from joint interpretation <strong>of</strong> the SVEKALAPKO<br />

crustal P-wave velocity models and gravity data. Geophysical<br />

Journal International 158 (3), 827–848.<br />

Kozlovskaya, E.; Hjelt, S.-E.;Yliniemi, J.; Ushakov,A.;Elo, S.;<br />

Pirttijärvi, M. <strong>2004</strong>. 3-D 3-Dinversion inversion <strong>of</strong> <strong>of</strong>P-andS-wavearrivalsfrom<br />

P- and S-wave arrivals from<br />

local events recorded during the SVEKALAPKO deep seismic<br />

experiment [Electronic resource]. In: EGU General Assembly<br />

<strong>2004</strong>, Nice, France, 25–30 April <strong>2004</strong>. Geophysical <strong>Research</strong><br />

Abstracts 6, 2 p. Optical disc (CD-ROM).<br />

Kozlovskaya, Elena; Korhonen, Juha Ville; Elo, Seppo; Hjelt,<br />

Sven-Erik; Yliniemi, Jukka; Pirttijärvi, Markku <strong>2003</strong>. Crustal<br />

model for southern and central <strong>Finland</strong> (Fennoscandian Shield).<br />

In: IUGG <strong>2003</strong> : XXIII General Assembly <strong>of</strong> the International<br />

Union <strong>of</strong> Geodesy and Geophysics, June 30 – July 11, <strong>2003</strong>, Sapporo,<br />

Japan : abstracts. Week B. Sapporo: IUGG, 35.<br />

90<br />

Kukkonen, I. T.; Kinnunen, K. A.; Peltonen, P. <strong>2003</strong>. Mantle<br />

xenoliths and thick lithosphere in the Fennoscandian Shield. In:<br />

Cermak, V. & Kukkonen, I. T. (eds.) Heat flow and the structure<br />

<strong>of</strong> the lithosphere. Physics and Chemistry <strong>of</strong> the Earth 28 (9–11),<br />

349–360.<br />

Kukkonen, Ilmo T.; Jõeleht, Argo <strong>2003</strong>. Weichselian tempera- temperatures<br />

from geothermal heat flow data. Journal <strong>of</strong> Geophysical<br />

<strong>Research</strong> 108 (B3), 11 p.<br />

Kukkonen, Ilmo T.; Jõeleht, Argo <strong>2003</strong>. Weichselian tempera- tempera-<br />

tures from geothermal heat flow data. In: IUGG <strong>2003</strong> : XXIII<br />

General Assembly <strong>of</strong> the International Union <strong>of</strong> Geodesy and<br />

Geophysics, June 30 – July 11, <strong>2003</strong>, Sapporo, Japan : abstracts.<br />

Week A. Sapporo: IUGG, 199.<br />

Kukkonen,IlmoT.;Peltonen,Petr i;Kinnunen,Kari<strong>2003</strong>. Mantle<br />

xenoliths and thick lithosphere in the Fennoscandian Shield. In:<br />

IUGG <strong>2003</strong> : XXIII GeneralAssembly <strong>of</strong> the International Union<br />

<strong>of</strong> Geodesy and Geophysics, June 30 – July 11, <strong>2003</strong>, Sapporo,<br />

Japan : abstracts. Week A. Sapporo: IUGG, 175.<br />

Kukkonen, I. T.; Kinnunen, K.; Peltonen, P. <strong>2004</strong>. Mantle<br />

xenoliths and thick lithosphere in the Fennoscandian Shield<br />

– geophysical implications. In: Mansfeld, J. (ed.) The 26th Nordic<br />

<strong>Geological</strong> Winter Meeting, January 6th – 9th <strong>2004</strong>, Uppsala,<br />

Sweden : abstract volume. GFF 126 (1), 12.<br />

Kukkonen, Ilmo <strong>2004</strong>. Suomen kallioperän seismiset heijastusluotaukset<br />

päätökseen. Materia 61 (1), 24–27.<br />

Kukkonen, Ilmo <strong>2004</strong>. Suomen syvimmän reiän kairaus käynnissä<br />

Outokummussa. Vuorityö ja -tekniikka, 26–27.<br />

Kukkonen, Ilmo; Korja, Annakaisa; Lahtinen, Raimo; Heikkinen,<br />

Pekka <strong>2004</strong>. Thermal modelling <strong>of</strong> crustal stacking and<br />

exhumation during the Palaeoproterozoic orogenic growth <strong>of</strong> the<br />

central Fennoscandian Shield. In: 32nd International <strong>Geological</strong><br />

Congress, Florence, Italy, August 20–28, <strong>2004</strong> : abstracts. Part<br />

2, 1467–1468.<br />

Kultti, Seija; Väliranta, Minna; Sarmaja-Korjonen, Kaarina;<br />

Solovieva, Nadia; Virtanen, Tarmo; Kauppila, Tommi; Eronen,<br />

Matti<strong>2003</strong>.Palaeoecologicalevidence<strong>of</strong>changesinvegetationand<br />

Palaeoecologicalevidence<strong>of</strong>changesinvegetationand<br />

climate during the Holocene in the pre-Polar Urals, northeast European<br />

Russia. Journal <strong>of</strong> Quaternary Science 18 (6), 503–520.<br />

Kunzendorf, Helmar; Vallius, Henry <strong>2004</strong>. Rare earth ele-<br />

ments (REE) in deep basin sediments <strong>of</strong> the Baltic Sea. Baltica<br />

17 (2), 53–62.<br />

Kuosmanen,V. V.;Arkimaa, H.A.; Kuosmanen, E. L.; Laitinen,<br />

J. L. <strong>2003</strong>. Combined use <strong>of</strong> AISA, HyMap and ultraspectral<br />

image data for detection <strong>of</strong> environmental features, a case history<br />

from Elijärvi chromium mine, <strong>Finland</strong>. In: Benes, T. (ed.)<br />

Geoinformation for European-wide integration : proceedings <strong>of</strong><br />

the 22nd Symposium <strong>of</strong> the European Association <strong>of</strong> Remote<br />

Sensing Laboratories, Prague, Czech Republic, 4–6 June 2002.<br />

Rotterdam: Millpress, 473–478.<br />

Kuusisto, Erna <strong>2004</strong>. Arseeni kasveissa. Summary: Arsenic in<br />

plants. In: Loukola-Ruskeeniemi, K. & Lahermo, P. (eds.) Arseeni<br />

Suomen luonnossa, ympäristövaikutukset ja riskit. Espoo:<br />

Geologian tutkimuskeskus, 67–71.<br />

Lahti, Seppo I. <strong>2003</strong>. Mineraalien värien syntymekanismeista.<br />

Osa 3. Kivi 21 (1), 8–17.<br />

Lahtinen, Raimo (ed.); Korja, Annakaisa (ed.); Arhe, Katriina<br />

(ed.); Eklund, Olav (ed.); Hjelt, Sven-Erik (ed.); Pesonen, Lauri J.<br />

(ed.)2002.Lithosphere2002:secondsymposiumonthestructure,<br />

Lithosphere2002:secondsymposiumonthestructure,<br />

composition and evolution <strong>of</strong> the lithosphere in <strong>Finland</strong>, <strong>Geological</strong><br />

<strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Espoo, Otaniemi, November 12–13, 2002<br />

: programme and extended abstracts. Institute <strong>of</strong> Seismology.<br />

University <strong>of</strong> Helsinki. Report S-42. 146 p.<br />

Lahtinen, R.; Nironen, M.; Korja, A. <strong>2003</strong>. Palaeoproterozoic<br />

orogenic evolution <strong>of</strong> the Fennoscandian Shield at 1.92–1.77<br />

Ga with notes on the metallogeny <strong>of</strong> FeOx-Cu-Au, VMS, and<br />

orogenic gold deposits. In: Eliopoulos, D. G. ... [et al.] (eds.)<br />

Mineral exploration and sustainable development : proceedings<br />

<strong>of</strong> the Seventh Biennial SGA Meeting, Athens, Greece, 24–28<br />

August <strong>2003</strong>. Vol. 2. Rotterdam: Millpress, 1057–1060.<br />

Lahtinen, Raimo; Korja, Annakaisa; Nironen, Mikko <strong>2004</strong>.<br />

Paleoproterozoic evolution <strong>of</strong> the Fennoscandian (Baltic) Shield.<br />

In:32ndInternational<strong>Geological</strong> Congress,Florence,Italy,August<br />

20–28, <strong>2004</strong> : abstracts. Part Part1, 1, 563.<br />

Laiho, Jussi V.-P. <strong>2003</strong>. Ympäristötutkimuksissa käytettävien<br />

kenttämittareiden luotettavuutta voidaan helposti parantaa,<br />

esimerkkinä kannettavat XRF-kenttämittarit. Geologi 55 (4–5),<br />

94–99.<br />

Lambie,Katherine;Frape,Shaun; Stotler, Randy;Ruskeeniemi,<br />

Timo; Hobbs, Monique <strong>2004</strong>. Site characterization techniques<br />

using fracture minerals for radioactive waste disposal. In: Geoscienceinachangingworld:GSA<br />

AnnualMeetingandExposition,<br />

Denver, Colorado, November 7–10, <strong>2004</strong>. <strong>Geological</strong> Society <strong>of</strong><br />

America. Abstracts with Programs 36 (5), 358–359.<br />

Lappalainen, Eino (comp.); Luukkanen, Ari (ed.) <strong>2003</strong>. Suo -<br />

seura ry:n opintoretki Kolarin Suur-Teuravuomalle 9.–10.9.<strong>2003</strong>.<br />

Helsinki : Kuopio: Suoseura Ry : Geologian tutkimuskeskus.<br />

104 p.<br />

Laurén, Ari; Koivusalo, Harri; Kokkonen, Teemu; Pentti -<br />

nen, Sari; Nenonen, Keijo; Hänninen, Pekka; Finér, Leena;<br />

Mannerkoski, Hannu <strong>2003</strong>. Uusia työvälineitä metsätalouden<br />

ympäristökuormituksen hallintaan – Femma. In: Finér, L.,<br />

Laurén, A. & Karvinen, L. (eds.) Ajankohtaista metsätalouden<br />

ympäristökuormituksesta–tutkimustietoajatyökaluja–seminaari<br />

Kolin Luontokeskus Ukko 23.9.2002. Metsäntutkimuslaitoksen<br />

tiedonantoja 886, 89–95.<br />

Lauri, Laura S.; Karinen, Tuomo; Räsänen, Jorma <strong>2003</strong>. The<br />

earliestPaleoproterozoicsupracrustalrocksinKoillismaa,northe rn<br />

<strong>Finland</strong> – their petrographic and geochemical characteristics and<br />

lithostratigraphy. Bulletin <strong>of</strong> the <strong>Geological</strong> Society <strong>of</strong> <strong>Finland</strong><br />

75 (1–2), 29–50.<br />

Lehtonen, M. L.; O’Brien, H. E.; Peltonen, P.; Johanson, B. S.;<br />

Pakkanen,L.K.<strong>2004</strong>.Layeredlithosphericmantleattheedge<strong>of</strong>the<br />

Layeredlithosphericmantleattheedge<strong>of</strong>the<br />

Karelian Craton : P-Tand compositions <strong>of</strong> kimberlitic xenocrysts<br />

and xenoliths from Kaavi-Kuopio, <strong>Finland</strong>. In: Mansfeld, J. (ed.)<br />

The 26th Nordic <strong>Geological</strong> Winter Meeting, January 6th – 9th<br />

<strong>2004</strong>, Uppsala, Sweden : abstract volume. GFF 126 (1), 12.


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Papers published by <strong>Geological</strong> survey <strong>of</strong> <strong>Finland</strong> staff in <strong>2003</strong>–<strong>2004</strong><br />

Lehtonen, M. L.; O’Brien, H. E.; Peltonen, P.; Johanson, B. Backman, B.; Juntunen, R.; Pullinen, A.; Vartiainen, S. <strong>2003</strong>.<br />

S.; Pakkanen, L. K. <strong>2004</strong>. Layered mantle at atthe the Karelian Craton<br />

Naturally high arsenic contents in groundwater in areas with<br />

margin:P-T<strong>of</strong>mantlexenocrysts andxenolithsfrom theKaavi- abundantgoldoccurrences,<strong>Finland</strong>.In:Gobran,G.R.&Lepp,<br />

Kuopiokimberlites,<strong>Finland</strong>.In:Mitchell,R.H.... [etal.](eds.) N.(eds.) 7thInternationalConference on theBiogeochemistry<strong>of</strong><br />

Selectedpapersfromthe8thInternationalKimberliteConference, Trace Elements,Uppsala,Sweden,June15–19,<strong>2003</strong>:conference<br />

Victoria, BC, Canada, 22–27 June <strong>2003</strong>. Vol. 2: The J. Barry proceedings. Vol.2:Symposia.Uppsala:SwedishUniversity<strong>of</strong><br />

Hawthorne volume. Lithos 77 (1–4), 593–608.<br />

Agricultural Sciences, 86.<br />

Lehtonen, Marja <strong>2004</strong>. Kaavin Lahtojoen sekä Kuhmon Sei- Lukkarinen, Heikki 2002. Kuopio. Suomen geologinen<br />

taperän kimberliittien indikaatiot pohjamoreenissa. Summary:<br />

kartta1:100 000 :kallioperäkartta=<strong>Geological</strong> map <strong>of</strong> <strong>Finland</strong><br />

Glacialdispersion studies<strong>of</strong>twoeastern<strong>Finland</strong>kimberlitesin 1:100 000 :pre-Quaternary rocks lehti =sheet 3242.<br />

Quaternary till. Geologi 56 56(4–5), (4–5), 92–103.<br />

Lunkka,Juha Pekka; Johansson,Peter;Saarnisto, Matti; Sallas-<br />

Leino,Jukka<strong>2004</strong>.Tohmajärvenkunnassatutkitutsuotjaniiden maa,Olli <strong>2004</strong>.Glaciation Glaciation<strong>of</strong><strong>Finland</strong>.In:Ehlers,J.&Gibbard,<br />

<strong>of</strong><strong>Finland</strong>.In:Ehlers,J.&Gibbard,<br />

turvevarat. Osa 1.Abstract: The peatlands and peat reserves <strong>of</strong><br />

P.L.(eds.) Quaternaryglaciations:extentandchronology.Part<br />

Tohmajärvi.Part1.Geologiantutkimuskeskus.Turvetutkimus-<br />

Part 1.Geologiantutkimuskeskus.Turvetutkimus- 1: Europe. Developments in Quaternary Science 2, 93–100.<br />

raportti 355. 58 p. +4app.<br />

Luodes, Hannu; Selonen, Olavi<strong>2003</strong>.GTK:n luonnonkivikar-<br />

Leinonen,Seppo2002.TheJuurikkaniemisoapstonedeposit. toituksella uusia kivilaatuja. Suomalainen kivi (4), 48–51.<br />

In: Niemelä, M. (ed.) Talc-magnesite deposits in <strong>Finland</strong>, Sep- Sep- Luukkanen, Ari 2002. Kiuruvedellä tutkitut suot ja niiden<br />

tember 10–15, 2002, <strong>Finland</strong> :third field correlation, 32–33. turvevarat. Osa4.Abstract:Themiresandpeatreserves<strong>of</strong>Kiu-<br />

Osa4.Abstract:Themiresandpeatreserves<strong>of</strong>Kiu-<br />

Leinonen, Seppo 2002.The Kivikangas and Haaponen soapruvesi.Part Part 4.Geologiantutkimuskeskus.Turvetutkimusraportti<br />

stone deposits. In: Niemelä, M. (ed.) Talc-magnesite deposits 341. 68 p.+3app.<br />

in <strong>Finland</strong>, September 10–15, 2002, <strong>Finland</strong> :third field cor- Luukkanen, Ari <strong>2003</strong>. Kiuruvedellä tutkitut suot ja niiden<br />

relation, 27–29.<br />

turvevarat. Osa5.Abstract:Themiresandpeatreserves<strong>of</strong>Kiu-<br />

Osa5.Abstract:Themiresandpeatreserves<strong>of</strong>Kiu-<br />

Leinonen, Seppo <strong>2003</strong>. Kivilajien synty. In: Vuorjoki, K. ruvesi.Part Part 5.Geologiantutkimuskeskus.Turvetutkimusraportti<br />

(author) Kivimatka. Helsinki: Sarmala, 10–15.<br />

346. 69 p.+4app.<br />

Leivuori, Mirja; Vallius, Henry <strong>2004</strong>. Arseeni merisedi- merisedi- Luukkanen, Ari <strong>2003</strong>. Kiuruvedellä tutkitut suot ja niiden<br />

menteissä. Summary: Arsenic in marine sediments. In: Lou- Lou- turvevarat. Osa 6.Abstract: The peatlands and peat reserves <strong>of</strong><br />

kola-Ruskeeniemi, K. &Lahermo, P .(eds.) Arseeni Suomen Kiuruvesi. Part6.Geologian tutkimuskeskus. Tur Turvetutkimusravetutkimusraluonnossa,<br />

ympäristövaikutukset ja riskit. Espoo: Geologian portti 348. 62 p. +4app.<br />

tutkimuskeskus, 89–96.<br />

Luukkanen, Ari <strong>2004</strong>. Lapinlahdella tutkitut suot ja niiden<br />

Leveinen,Jussi;Harlin,Ali;Nou siainen,Pertti<strong>2003</strong>. Functional turvevarat. Osa 1.Abstract: The peatlands and an dpeat peat reserves <strong>of</strong><br />

fibre materials in passivetreatment<strong>of</strong> polluted groundwater.In: Lapinlahti. Part 1. Geologian tutkimuskeskus. Turvetutkimus-<br />

Turvetutkimus-<br />

EuroNanoForum <strong>2003</strong>. European and international forum on raportti 354. 50 p. +3app.<br />

nanotechnology,Trieste(Italy), 9–12December<strong>2003</strong>:catalogue Luukkonen, Erkki <strong>2003</strong>. Nurmes. Suomen geologinen<br />

<strong>of</strong> posters, 1p.<br />

kartta1:100 000 :kallioperäkartta=<strong>Geological</strong> map <strong>of</strong> <strong>Finland</strong><br />

Leveinen, Jussi; Lintinen, Petri <strong>2003</strong>. Flow model <strong>of</strong> an 1:100 000 :pre-Quaternary rocks lehti =sheet 4321.<br />

industrial site in Pori, W-Finlan d–asimple approximation Maier, W.D.; Peltonen, P.;Grant ham, G.; Mänttäri, I. <strong>2003</strong>.<br />

<strong>of</strong> acomplex drainage system. In: Poeter, E. ... [et al.] (orgs.) Anew 1.9 Ga age for the Trompsburg intrusion, SouthAfrica.<br />

MODFLOWandmore<strong>2003</strong>:understandingthrough modeling: Earth and Planetary Science Letters 212 (3–4), 351–360.<br />

proceedings, September 16–19, <strong>2003</strong>,Colorado School <strong>of</strong> Mines. Makarikhin, Vladimir; Suominen, V eli; Systra, Ylo <strong>2004</strong>.<br />

Vol. 1. Golden, CO :Colorado School <strong>of</strong> Mines, 188–192. Unique objects <strong>of</strong> the Early Precambrian in the eastern Fen-<br />

Lindholm, Tapio;Heikkilä, Raimo;Kuznetsov,Oleg;Mäkilä, noscandianShield.In:32ndInternational<strong>Geological</strong>Congress,<br />

Markku <strong>2004</strong>.Ypäyssuo, Ypäyssuo, ahuge East Fennoscandi Fennoscandian an proposed<br />

Florence, Italy,August 20–28, 20 04 :abstracts. Part 1, 580.<br />

RAMSAR mire site in Russian Karelia. In: Barry, M. (comp.) Mäkelä-Kurtto, Ritva;Louekari, Kimmo;Nummivuori, Sari;<br />

IMCG Scientific Symposium, 24–25 September <strong>2004</strong>, [Paarl, Sippola,Jouko;Kaasalainen, Marika;Kuusisto,Erna;Virtanen,<br />

SouthAfrica]:managementchalle ngesforwetlands,miresand Virpi; Salminen, Reijo; Tarvainen, Timo; Malm, Jukka <strong>2003</strong>.<br />

peatlands in the 21st century,1p.<br />

Kadmium Suomen peltoekosysteemeissä :pitoisuuksia, taseita<br />

Lintinen, P.;Savolainen, H.; Jarva, J. <strong>2003</strong>. Suggested new ja riskejä. Abstract: Cadmium in Finnish agro-ecosystems :<br />

guidelinevaluesforCu,Cr,NiandZnandcomparison withcon- concentrations, balances and risks. Maa- jaelintarviketalous<br />

centrationsinsoilparentmaterialin<strong>Finland</strong>[Electronicresource]. 27. 51 p. +app.<br />

In: ConSoil <strong>2003</strong>. 8th International FZK/TNO Conference on Mäkilä, Markku <strong>2004</strong>. Electric conductivity within araised<br />

Contaminated Soil,12–16May<strong>2003</strong>,Gent,Belgium:conference boginsoutheastern<strong>Finland</strong>:implicationsforbogdevelopment.<br />

proceedings. Gent: ICC, 2p.. Optical disc (CD-ROM). In: 7th INTECOL International Wetlands Conference, Utrecht,<br />

Lintinen, P.;Suppala,I.;Vanhala, H.;Eklund, M. <strong>2003</strong>.<strong>Survey</strong> <strong>Survey</strong> The Netherlands, 25–30 July <strong>2004</strong> :book <strong>of</strong> abstracts. Utrecht:<br />

<strong>of</strong>aburied ice-marginaldepositbyairborneEMmeasurements Utrecht University,191–192.<br />

–acase from Kyrönjoki valley plain in southern Ostrobothnia, Mäkilä, Markku; Saarnisto, Matti<strong>2004</strong>.Anaapa Anaapamireinnorth-<br />

mire in north-<br />

<strong>Finland</strong>. In:Autio, S. (ed.) <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Curern <strong>Finland</strong> as acarbon sink and source during the Holocene.<br />

rent<strong>Research</strong>2001–2002.<strong>Geological</strong><strong>Survey</strong><strong>of</strong><strong>Finland</strong>.Special Special In: 7th INTECOL International Wetlands Conference, Utrecht,<br />

Paper 36, 67–75.<br />

The Netherlands, 25–30 July <strong>2004</strong> :book <strong>of</strong> abstracts. Utrecht:<br />

Lintinen, Petri; Tarvainen, Timo <strong>2004</strong>. Luontaiset metallipi- Utrecht University,191.<br />

toisuudet pilaantuneessa maaperässä. Kuntatekniikka 59 (2), Mäkinen,Jari<strong>2003</strong>.Amathematicalmodeltoexplaintheeffect<br />

44–47.<br />

<strong>of</strong> comminution, resedimentation and outwashing on the finest<br />

Loukola-Ruskeeniemi,K.;Kantola,M.;Halonen,T.;Seppänen, fractions<strong>of</strong>till infourtest areasincentral<strong>Finland</strong>.In:Räisänen,<br />

In:Räisänen,<br />

K.; Henttonen, P.;Kallio, E.; Kurki, P.; Savolainen, H. <strong>2003</strong>. M. L. &Nikkarinen, M. (eds.) Complexity <strong>of</strong> glacial dispersal<br />

Mercury-bearing black shales and human Hg intake in eastern and hydromorphic processes in till geochemistry. <strong>Geological</strong><br />

<strong>Finland</strong> :impact and mechanisms. In: Mercury.Environmental <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>. Special Paper 34, 43–69.<br />

Geology 43 (3), 283–297.<br />

Mäkinen, Jari <strong>2004</strong>. Arseeni järvisedimenteissä.Summary:<br />

Loukola-Ruskeeniemi, K.; Tanskanen, H.; Lahermo, P.; Arsenic in lake sediments. In: Loukola-Ruskeeniemi, K. &La-<br />

91


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Papers published by <strong>Geological</strong> survey <strong>of</strong> <strong>Finland</strong> staff in <strong>2003</strong>-<strong>2004</strong><br />

hermo,P.(eds.)ArseeniSuomenluonnossa,ympäristövaikutukset<br />

ja riskit. Espoo: Geologian tutkimuskeskus, 73–88.<br />

Mäkinen, Jari; Makkonen, Hannu V. <strong>2004</strong>. Petrology and<br />

structure<strong>of</strong>thePalaeoproterozoic(1.9Ga)Rytkynickelsulphide<br />

deposit,central<strong>Finland</strong>:acomparison withtheKotalahtinickel<br />

deposit. Mineralium Deposita 39 (4), 405–421.<br />

Mäkinen, Jari; Pajunen, Hannu <strong>2004</strong>. Two opposite compo- composition<br />

trends in boreal lake sediment columns. In: 32nd International<br />

<strong>Geological</strong> Congress, Florence, Italy, August 20–28,<br />

<strong>2004</strong> :abstracts. Part 2,1360–1361.<br />

Mäkinen, Kalevi;Pihlaja, Jouni <strong>2003</strong>.Land Landuseon use on drumlins<br />

in<strong>Finland</strong>.In:Raukas,A.&Kukk,H.(eds.) In:Raukas,A.&Kukk,H.(eds.) Internationalsym-<br />

InternationalsymInternationalsymposiumonHumanImpactand<strong>Geological</strong>Heritage,<br />

12–17May<br />

<strong>2003</strong>,Tallinn,Estonia:excursion guide andabstracts. Tallinn:<br />

Institute <strong>of</strong> Geology at Tallinn Technical University, 95–97.<br />

Mäkitie, Hannu; Lahti, Seppo I. <strong>2004</strong>. Jalasjärven kart -<br />

ta-alueen kallioperä. Summary: Pre-Quaternary rocks <strong>of</strong><br />

the Jalasjärvi map-sheet area. Suomen geologinen kartta<br />

1:100 000 :kallioperäkarttojen selitykset lehti 2221. 63 p. +<br />

1app., 1app. map.<br />

Makkonen, HannuVeli;Mäkinen, Jari <strong>2004</strong>. ThePalaeoprot-<br />

The Palaeoproterozoic(1.9Ga)Rytkynickelsulphide<br />

deposit:discoveryand<br />

geology.In:32ndInternational<strong>Geological</strong>Congress,Florence,<br />

Italy,August 20–28, <strong>2004</strong> :abstracts. Part 1, 474.<br />

Mangerud, J.; Jakobsson, M.; Alexanderson, H.; Astakhov,<br />

V.;Clarke, G. K. C.; Henriksen, M.; Hjort, C.; Krinner, G.;<br />

Lunkka, J. P.;Möller, P.;Murray,A.;Nikolskaya, O.;Saarnisto,<br />

M.; Svendsen, J. I. <strong>2004</strong>. Ice-dammed lakes and rerouting <strong>of</strong><br />

the drainage <strong>of</strong> northern Eurasia during the last glaciation.<br />

In: Thiede, J. (ed.) Quaternary environments <strong>of</strong> the Eurasian<br />

North (QUEEN). Quaternary Science Reviews 23 (11–13),<br />

1313–1332.<br />

Manninen, Tuomo <strong>2003</strong>. Pokka. Suomen geologinen kartta<br />

1:100 000 : kallioperäkartta = <strong>Geological</strong> map <strong>of</strong> <strong>Finland</strong><br />

1:100 000 :pre-Quaternary rocks lehti =sheet 2744+3722.<br />

Mänttäri, Irmeli; Kohonen, Jarmo; Kujala, Hannu; Pihlaja,<br />

Pekka<strong>2004</strong>.Arevised Arevised agefortheSääksjärvimeteoriteimpact,<br />

south-western<strong>Finland</strong>:theconnexion withaCaledonianforelandbasin.In:32ndInternational<strong>Geological</strong>Congress,Florence,<br />

Italy,August 20–28, <strong>2004</strong> :abstracts. Part 2, 1434.<br />

Marmo, J.; Vareikiene, O. <strong>2004</strong>. Development <strong>of</strong> standard<br />

procedures for multidisciplinary approach using physical,<br />

chemical and mineralogical methods for explanation <strong>of</strong> geochemical<br />

anomalies in soil, Lithuania [Electronic resource].<br />

In: EGU General Assembly <strong>2004</strong>, Nice, France, 25–30 April<br />

<strong>2004</strong>. Geophysical <strong>Research</strong> Abstracts 6, 2p. Optical disc<br />

(CD-ROM).<br />

Marmo,Jukka<strong>2004</strong>.Kolinalueenkallioperäntutkimukset. In:<br />

Lovén, L. (ed.)Tutkittu Tutkittujatuntematon ja tuntematon Koli :Kolin :Kolinkansallispuiskansallispuiston<br />

tutkimusseminaari24.–25.2.2002.Metsäntutkimuslaitoksen<br />

tiedonantoja 915, 15–18.<br />

Middleton, M.; Hyvönen, E.; Arkimaa, H.; Helminen, T.;<br />

Laitinen, J.; Kuosmanen, V.; Räisänen, M. L.; Timonen, M.;<br />

Sutinen, R. <strong>2003</strong>. Analysis <strong>of</strong> hyperspectral airborne HyMap<br />

data for vegetation mapping around Lahnaslampi talc mine,<br />

<strong>Finland</strong>.In:Habermeyer,M.,M�ller,A.&Holzwarth,S.(eds.)<br />

3rdEARSeLWorkshopon ImagingSpectroscopy,Herrsching,<br />

Germany, 13–16 May <strong>2003</strong> :proceedings. Paris: EARSeL,<br />

349–356.<br />

Moisanen, Markku <strong>2004</strong>. Vegetation development in the<br />

Teuravuomamirecomplexandits environmentasrevealed by<br />

apollen diagram. In: Lappalainen, E. (ed.) Vitality and peace<br />

<strong>of</strong> mind from Great Teuravuoma aapa mire :post congress<br />

excursion to Lapland, 11–16 June, <strong>2004</strong>, 42–49.<br />

Moore, Tim; Blodau, Christian; Turunen, Jukka <strong>2004</strong>. Pat -<br />

terns <strong>of</strong> Nand Saccumulation and retention in bogs, eastern<br />

Canada.In:7thINTECOL InternationalWetlandsConference,<br />

92<br />

Utrecht,TheNetherlands,25–30July<strong>2004</strong>:book<strong>of</strong>abstracts.<br />

Utrecht: Utrecht University, 212.<br />

Moore, Tim R.; Turunen, Jukka <strong>2004</strong>. Carbon accumulation<br />

and storage in mineral subsoil beneath peat. Soil Science Society<br />

<strong>of</strong> America Journal 68 (2), 690–696.<br />

Mutanen, Tapani; Huhma, Hannu <strong>2003</strong>. The 3.5 Ga Siurua<br />

trondhjemite gneiss in the Archaean Pudasjärvi Granulite Belt,<br />

northern <strong>Finland</strong>. Bulletin <strong>of</strong> the <strong>Geological</strong> Society <strong>of</strong> <strong>Finland</strong><br />

75 (1–2), 51–68.<br />

Mutanen, T.; Väänänen, J. <strong>2004</strong>. PGE-Au-Cu-Ni potential <strong>of</strong><br />

postkinematicappinitic(1.79Ga)intrusionsin<strong>Finland</strong>.In:McPhie,<br />

J. & McGoldrick, P. (eds.) Dynamic earth : past, present and future<br />

: 17th Australian <strong>Geological</strong> Convention, 8–13 February <strong>2004</strong>,<br />

Hobart, Tasmania, Australia : abstracts and program. <strong>Geological</strong><br />

Society <strong>of</strong> Australia. Abstracts 73, 104.<br />

Muurinen, Tapio; Aro, Ilkka 2002. Tutkimus Haukiputaan<br />

soista ja turvevarojen käyttökelpoisuudesta. Abstract:Themires<br />

Abstract: The mires<br />

and peat reserves and their usefulness in the municipality <strong>of</strong><br />

Haukipudas. Geologian tutkimuskeskus. Turvetutkimusraportti<br />

342. 58 p. + 2 app.<br />

Muurinen, Tapio; Aro, Ilkka <strong>2004</strong>. Kiimingin suot, turvevarat<br />

ja niiden käyttökelpoisuus. Osa 2. Abstract: The peatlands <strong>of</strong><br />

Kiiminki, peat reserves and their potential use. Part 2.Geologian<br />

2. Geologian<br />

tutkimuskeskus. Turvetutkimusraportti 351. 39 p. + 2 app.<br />

Negrel, Philippe; Casanova, Joël; Blomqvist, Runar; Kaija,<br />

Juha; Frape, Shaun <strong>2003</strong>. Strontium isotopic characterization <strong>of</strong><br />

the Palmottu hydrosystem (<strong>Finland</strong>) : water-rock interaction and<br />

geochemistry <strong>of</strong> groundwaters. Ge<strong>of</strong>luids 3(3), 3 (3), 161–175.<br />

Nenonen, Jari; Peronius, Antti <strong>2003</strong>. Placer gold-digging and<br />

its impact on soil erosion in Finnish Lapland. In: Raukas, Raukas,A. A. &<br />

Kukk, H. (eds.) InternationalsymposiumonHumanImpactand<br />

International symposium on Human Impact and<br />

<strong>Geological</strong> Heritage, 12–17 May <strong>2003</strong>, Tallinn, Estonia : excursion<br />

guide and abstracts. Tallinn: Institute <strong>of</strong> Geology at Tallinn<br />

Technical University, 98–99.<br />

Nenonen, Jari <strong>2004</strong>. Till stratigraphy and problems with<br />

concrete-like till in the Haukipudas area, North <strong>of</strong> Oulu city. In:<br />

Zelcs, V. & Seglins, V. (eds.) International field symposium on<br />

Quaternary geology and modern terrestrial processes, western<br />

Latvia, September 12–17, <strong>2004</strong> : abstracts <strong>of</strong> papers and posters.<br />

Riga: University <strong>of</strong> Latvia, 44.<br />

Nenonen,Keijo<strong>2003</strong>.PyhäsalmenjaRuotasenalueenmaaperä.<br />

In: Tulkku, J. (ed.) Ruotasen savut : kylä ja kaivos. Ruotanen:<br />

Ruotasen Maamiesseura, 19–26.<br />

Nenonen, Keijo <strong>2004</strong>. Kvartäärikausi ja jääkausiaika. In: Koivisto,<br />

M. (ed.) Jääkaudet. Helsinki: WSOY, 42–44.<br />

Nenonen, Keijo <strong>2004</strong>. Maapallo jäähtyy. In: Koivisto, M. (ed.)<br />

Jääkaudet. Helsinki: WSOY, 40–41.<br />

Nenonen, Keijo <strong>2004</strong>. Maapallon ikivanhat jäätiköitymiset. In:<br />

Koivisto, M. (ed.) Jääkaudet. Helsinki: WSOY, 16–18.<br />

Nenonen, Keijo <strong>2004</strong>. Mikä on jääkausi. In: Koivisto, M. (ed.)<br />

Jääkaudet. Helsinki: WSOY, 14–15.<br />

Nenonen, Keijo; Eriksson, Brita <strong>2004</strong>. Muinaiset jääkaudet<br />

ja interglasiaalit Suomessa. In: Koivisto, M. (ed.) Jääkaudet.<br />

Helsinki: WSOY, 45–52.<br />

Nenonen, Keijo; Eriksson, Brita <strong>2004</strong>. Veiksel-jääkausi. In:<br />

Koivisto, M. (ed.) Jääkaudet. Helsinki: WSOY, 53–57.<br />

Nenonen, Keijo; Hotakainen, Markus <strong>2004</strong>. Jäätiköitymisten<br />

syyt ja ilmastonmuutokset. In: Koivisto, M. (ed.) Jääkaudet.<br />

Helsinki: WSOY, 32–39.<br />

Nenonen, Keijo; Määttä, Matti; Lovén, Lasse; Flander, Jukka-<br />

Pekka<strong>2004</strong>.Saimaa-PielinenLakeSystemasanexample<strong>of</strong>major<br />

Saimaa-PielinenLakeSystemasanexample<strong>of</strong>major<br />

glaciations and earth’s crust development. In: 32nd International<br />

<strong>Geological</strong> Congress, Florence, Italy, August 20–28, <strong>2004</strong> : abstracts.<br />

Part 1, 141.<br />

Nevalainen, Raimo; Hyvönen, Eija; Lerssi, Jouni; Liwata,<br />

Pauliina;Middleton, Maarit;Palmu, Jukka-Pekka;Virkki,Hanna;<br />

Väänänen, Tapio 2002. Maaperän yleiskartoitus paikkatietoai-


neistojen ja -analyysien avulla – uuden alueellisesti kattavan<br />

tietovaraston kerääminen. In: Pietola, L. & Esala, M. (eds.) Maa,<br />

josta elämme : II Maaperätieteiden päivien laajennetut abstraktit.<br />

Pro Terra 15, 116–119.<br />

Nevalainen, Raimo <strong>2004</strong>. Geologiset tiedot verkossa – Geokarttapaikka<br />

ja muut verkkopalvelut. Ajankohtaista ympäristöstä<br />

Pohjois-Savossa 9 (1), 36–38.<br />

Niiranen,Tero;Eilu,Pasi<strong>2003</strong>.Ironoxide-copper-golddeposits<br />

Ironoxide-copper-golddeposits<br />

in northern <strong>Finland</strong>. In:Eliopoulos,D.G.... In: Eliopoulos, D. G. ... [etal.](eds.) [et al.] (eds.) Mineral<br />

exploration and sustainable development : proceedings <strong>of</strong> the<br />

Seventh Biennial SGAMeeting, Athens, Greece, 24–28 August<br />

<strong>2003</strong>. Vol. 2. Rotterdam: Millpress, 1091–1094.<br />

Niiranen, Tero; Hanski, Eero; Eilu, Pasi <strong>2003</strong>. General geol- geol-<br />

ogy, alteration, and iron deposits in the Palaeoproterozoic Misi<br />

region, northern <strong>Finland</strong>. Bulletin <strong>of</strong> the <strong>Geological</strong> Society <strong>of</strong><br />

<strong>Finland</strong> 75 (1–2), 69–92.<br />

Nikkarinen,Maria;Lestinen,Pekka<strong>2003</strong>.Sulphurinsoilvertical<br />

Sulphurinsoilvertical<br />

pr<strong>of</strong>iles in Pirkanmaa region, southern <strong>Finland</strong>. In: Räisänen, M.<br />

L. & Nikkarinen, M. (eds.) Complexity <strong>of</strong> glacial dispersal and<br />

hydromorphic processes in till geochemistry. <strong>Geological</strong> <strong>Survey</strong><br />

<strong>of</strong> <strong>Finland</strong>. Special SpecialPaper34, Paper 34, 5–20.<br />

Nikkarinen,Maria;Hartikainen,Aimo;Kousa,Anne;Mertanen,<br />

Enni <strong>2004</strong>. Trace element composition <strong>of</strong> potatoes and edible<br />

mushrooms according to the geographical origin. In: Törrönen,<br />

R. & Gylling, H. (eds.) The 20th Anniversary Symposium <strong>of</strong> the<br />

Department <strong>of</strong> Clinical Nutrition, March 18–19, <strong>2004</strong>, Kuopio,<br />

<strong>Finland</strong> : abstracts. Kuopio University Publications D. Medical<br />

Sciences 325, 52.<br />

Nikkarinen, Maria; Mertanen, Enni <strong>2004</strong>. Impact Impact<strong>of</strong> <strong>of</strong> geological<br />

originontraceelementcompositi on<strong>of</strong>ediblemushrooms.Journal<br />

<strong>of</strong> Food Composition and Analysis 17 (3–4), 301–310.<br />

Nironen, Mikko; Kuosmanen, Eira; Wasenius, Pekka 2002.<br />

Keski-Suomen granitoidikompleksi = Central <strong>Finland</strong> Granitoid<br />

Complex : kallioperäkartta = bedrock map 1:400 000. Espoo:<br />

Geologian tutkimuskeskus.<br />

Nironen, Mikko <strong>2003</strong>. Keski-Suomen granitoidikompleksi :<br />

karttaselitys. Summary:Central<strong>Finland</strong>GranitoidComplex–ex-<br />

Summary: Central <strong>Finland</strong> Granitoid Complex – explanation<br />

to a map. Geologiantutkimuskeskus. Geologian tutkimuskeskus. Tutkimusraportti<br />

157. 45 p. +1app. + 1 app. map.<br />

Nironen, Mikko; Mänttäri, Irmeli <strong>2003</strong>. Structural evolution<br />

<strong>of</strong> the Vuotso area, Finnish Lapland. Bulletin <strong>of</strong> the <strong>Geological</strong><br />

Society <strong>of</strong> <strong>Finland</strong> 75 (1–2), 93–101.<br />

Nurmi, Pekka; Kuivamäki, Aimo; Lampio, Eero; Airo, Meri-<br />

Liisa; Wennerström, Marit <strong>2004</strong>. AnewInternet A new Internet based informainformation system for land use planning in the Helsinki capital region,<br />

<strong>Finland</strong>. In: 32nd International <strong>Geological</strong> Congress, Florence,<br />

Italy, August 20–28, <strong>2004</strong> : abstracts. Part 1, 233.<br />

Nyström,Annika;Selonen,Olavi<strong>2004</strong>.Rapakivienrapautumisprosessissa<br />

liukenevat aineet. Geologi 56 (9–10), 208–212.<br />

O’Brien, H. E.; Lehtonen, M. L. <strong>2004</strong>. Karelian craton 250 250km km<br />

thick lithospheric mantle, eastern <strong>Finland</strong>. In: Mansfeld, J. (ed.)<br />

The 26th Nordic <strong>Geological</strong> Winter Meeting, January 6th – 9th<br />

<strong>2004</strong>, Uppsala, Sweden : abstract volume. GFF 126 (1), 13.<br />

Oberthür, Thomas; Weiser, Thorolf W.; Kojonen, Kari 2002.<br />

Local variatons and regional trends in PGE geochemistry and<br />

mineralogyintheMainSulfideZone<strong>of</strong>theGreatDyke,Zimbabwe.<br />

In: Boudreau, A. (ed.) 9th International Platinum Symposium,<br />

21–25 July, 2002, Billings, Montana, USA: extended abstracts.<br />

Billings, MT: Duke University, 337–340.<br />

Oberthür, Thomas; Weiser, Thorolf W.; Gast, Lothar; Kojonen,<br />

Kari <strong>2003</strong>. Geochemistry and mineralogy <strong>of</strong> platinum-group<br />

elements at Hartley Platinum Mine, Zimbabwe. Part 1 : Primary<br />

distribution patterns in pristine ores <strong>of</strong> the Main Sulfide Zone <strong>of</strong><br />

the Great Dyke. Mineralium Deposita 38 (3), 327–343.<br />

Oberthür, Thomas; Weiser, Thorolf W.; Gast, Lothar; Kojonen,<br />

Kari <strong>2003</strong>. Geochemistry and mineralogy <strong>of</strong> platinum-group elements<br />

at Hartley Platinum Mine, Zimbabwe. Part 2 : Supergene<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Papers published by <strong>Geological</strong> survey <strong>of</strong> <strong>Finland</strong> staff in <strong>2003</strong>–<strong>2004</strong><br />

redistribution in the oxidized Main Sulfide Zone <strong>of</strong> the Great<br />

Dyke,andalluvialplatinum-groupminerals.MineraliumDeposita<br />

38 (3), 344–355.<br />

Öhman, T.; Pesonen, L. J.; Elo, S.; Uutela, A.; Tuisku, P.; Rai-<br />

tala, J. <strong>2003</strong>. The origin and evolution <strong>of</strong> the Saarijärvi impact<br />

structure. In: 66th Annual Meteoritical Society Meeting, July 28<br />

– August 1, <strong>2003</strong>, M�nster, Germany : abstracts. Meteoritics &<br />

Planetary Science supplement 38 (7), A52.<br />

Ojala, Antti; Tiljander, Mia; Alenius, Teija <strong>2003</strong>. Sedimenttien<br />

paleomagneettinenajoittaminen:esimerkkinäMikkelinOrijärven<br />

rautakautisen asuinpaikan siitepölystratigrafinen tutkimus. Sum- Sum-<br />

mary: Paleomagnetic dating <strong>of</strong> sediments. Geologi 55 (9–10),<br />

241–245.<br />

Ojala, Antti E. K.; Saarnisto, Matti; Snowball, Ian F. <strong>2003</strong>.<br />

Climate and environmental reconstructions from Scandinavian<br />

varved lake sediments. PAGES Newsletter 11 (2–3), 10–12.<br />

Ojala, Antti E. K.; Tiljander, Mia <strong>2003</strong>. Testing the fidelity <strong>of</strong><br />

sediment chronology : comparison <strong>of</strong> varve and paleomagnetic<br />

results from Holocene lake sediments from central <strong>Finland</strong>. Quaternary<br />

Science Reviews 22 (15–17), 1787–1803 .<br />

Ojala, Antti E. K. <strong>2004</strong>. Application <strong>of</strong> X-ray radiography<br />

and densitometry in varve analysis. In: Francus, P. (ed.) Image<br />

analysis, sediments and paleoenvironments. Developments in<br />

Paleoenvironmental <strong>Research</strong> 7, 187–202.<br />

Ojala, V. Juhani <strong>2004</strong>. Gold Goldmetallogeny<strong>of</strong>theFennoscandian<br />

metallogeny <strong>of</strong> the Fennoscandian<br />

Shield. In:Iljina,M.&Sullivan,J.(eds.) In: Iljina, M. & Sullivan, J. (eds.) Fennoscandianseminar,<br />

Fennoscandian seminar,<br />

March5,<strong>2004</strong>,[Toronto]:agenda ,abstracts andbiographies,1p.<br />

Oja la, V. Juhani; Kuivamäki, Aimo; Vuorela, Paavo <strong>2004</strong>.<br />

Postglacial deformation <strong>of</strong> bedrock in <strong>Finland</strong>. Geologian tut- tut-<br />

kimuskeskus. Ydinjätteiden sijoit ustutkimukset. Tiedonanto<br />

YST-120. 23 p.<br />

Ollila, Kaija; Lindqvist, Kristian <strong>2003</strong>. Air-oxidation tests<br />

with Gd-doped UO2 : preliminary dissolution experiments with<br />

pre-oxidized Gd-doped UO2+x. Tiivistelmä: Gd-UO2:n hapetuskokeita<br />

ilmassa : alustavat liukenemiskokeet ennalta hapetetulla<br />

Gd-UO2+x:lla. Posiva-raportti <strong>2003</strong>–08. 51 p.<br />

Pääkkönen, Kari <strong>2003</strong>. Stone research in <strong>Finland</strong>. Roc Maquina<br />

(51), 18.<br />

Paama, Lilli; Rönkkömäki, Hannu; Parvinen, Pekka; Kuokka-<br />

nen, Toivo <strong>2004</strong>. Determination <strong>of</strong>leadincontaminated <strong>of</strong> lead in contaminated soils soilsby by<br />

graphitefurnaceatomicabsorptionspectrometryforenvironmental<br />

riskassessment.Proceedings<strong>of</strong>t heEstonianAcademy<strong>of</strong>Sciences.<br />

Chemistry 53 (4), 201–209.<br />

Paananen, Markku; Ruskeeniemi, Timo <strong>2003</strong>. Permafrost at<br />

Lupin : interpretation <strong>of</strong> SAMPO electromagnetic soundings at<br />

Lupin.Tiivistelmä:Lupininikirouta:Lupininsähkömagneettisten<br />

Tiivistelmä:Lupininikirouta:Lupininsähkömagneettisten<br />

SAMPO-luotaustentulkinta.Geologiantutkimuskeskus.Ydinjätteiden<br />

sijoitustutkimukset. Tiedonanto YST-117. 22 p. + 4 app.<br />

Paananen, M.; Lehtimäki, J.; Ruskeeniemi, T.; Degnan, P.;<br />

Frape, S.; Lehto, K.; Moren, L. <strong>2004</strong>. Electromagnetic soundings<br />

in deep permafrost, Lupin Mine, northern Canada [Electronic<br />

resource]. In: EGU GeneralAssembly <strong>2004</strong>, Nice, France, 25–30<br />

April <strong>2004</strong>. Geophysical <strong>Research</strong> Abstracts 6, 2 p. Optical disc<br />

(CD-ROM).<br />

Paavola, Jorma <strong>2003</strong>. Vieremän kartta-alueen kallioperä.<br />

Summary: Pre-Quaternary rocks <strong>of</strong> the Vieremä map-sheet area.<br />

Suomengeologinenkartta1:100000:kallioperäkarttojenselitykset<br />

lehti 3342. 40 40p. p. +2app. + 2 app. maps.<br />

Pajunen, Hannu 2002. Ylikiimingissä tutkitut suot ja niiden<br />

turvevarat. Osa 8. Abstract: The mires and peat reserves <strong>of</strong><br />

Ylikiiminki, central <strong>Finland</strong>. Part 8. Geologian tutkimuskeskus.<br />

Turvetutkimusraportti 340. 46 p. + 3 app.<br />

Pajunen, Hannu; Mäkinen, Jari <strong>2003</strong>. Iron, phosphorus and<br />

nitrogen in Finnish lake sediments : their store and long-term<br />

accumulation. In: Autio, S. (ed.) <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>,<br />

<strong>Current</strong> <strong>Research</strong> 2001–2002. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>.<br />

Special Paper 36, 35–44.<br />

93


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Papers published by <strong>Geological</strong> survey <strong>of</strong> <strong>Finland</strong> staff in <strong>2003</strong>-<strong>2004</strong><br />

Pajunen,H.<strong>2004</strong>.Lakesedimentsasasink<strong>of</strong>carbon–long-term<br />

accumulation data from <strong>Finland</strong>. In: SIL XXIX Congress, Lahti,<br />

<strong>Finland</strong>, 8–14 August <strong>2004</strong> : book <strong>of</strong> abstracts. Lahti: Societas<br />

Internationalis Limnologiae (SIL), 293.<br />

Pajunen, Hannu <strong>2004</strong>. Järvisedimentit kuiva-aineen ja hiilen<br />

varastona. Summary: Lake sediments as astore a store <strong>of</strong> dry matter<br />

and carbon. Geologian tutkimuskeskus. Tutkimusraportti 160.<br />

308 p. + 1 app.<br />

Pajunen, Hannu <strong>2004</strong>. Ylikiimingissä tutkitut suot ja niiden<br />

turvevarat. Osa 9. Abstract: The mires and peat reserves <strong>of</strong><br />

Ylikiiminki, central <strong>Finland</strong>. Part 9. Geologian tutkimuskeskus.<br />

Turvetutkimusraportti 356. 51 p. + 3 app.<br />

94<br />

Pankka,Heikki;Vanhanen,Erkki<strong>2004</strong>.Au-Bi-Se-Temineralsin<br />

Au-Bi-Se-Temineralsin<br />

the Fe-Co-Au-U deposits in the Kuusamo Paleoproterozoic schist<br />

belt,northern<strong>Finland</strong>.In:32ndInternational<strong>Geological</strong>Congress,<br />

Florence, Italy, August 20–28, <strong>2004</strong> : abstracts. Part 1, 274.<br />

Partridge, Tim C.; Lowe, John J.; Barker, Philip; Hoelzmann,<br />

Philipp; Magri, Donatella; Saarnisto, Matti; Vandenberghe, Jef;<br />

Street-Perrott, F. Alayne; Gasse, Françoise <strong>2004</strong>. Climate variability<br />

in Europe and Africa : a PAGES-PEP III time stream II<br />

synthesis. In: Battarbee, R. W., Gasse, F. & Stickley, C. E. (eds.)<br />

PastclimatevariabilitythroughEuropeandAfrica.Developments<br />

in Paleoenvironmental <strong>Research</strong> 6, 583–603.<br />

Penttinen,Sari;Hänninen,Pekka;Sutinen,Raimo<strong>2003</strong>.Electri- Electrical<br />

conductivity measurements for cultivated soils. In: Lindén,<br />

B. & Olesen, S. E. (eds.) Implementation <strong>of</strong> precision farming<br />

in practical agriculture : proceedings <strong>of</strong> seminar no 336, Nordic<br />

Association <strong>of</strong> Agricultural Scientists, June 10–12, 2002 Skara,<br />

Sweden. DIAS report. Plant production 100, 136–138.<br />

Penttinen, Sari; Alakukku, Laura; Hänninen, Pekka; Jaakkola,<br />

Antti; Ristolainen, Antti <strong>2004</strong>. Soil electrical conductivity and<br />

fertilization.In:32ndInternational<strong>Geological</strong>Congress,Florence,<br />

Italy, August 20–28, <strong>2004</strong> : abstracts. Part Part1, 1, 36.<br />

Penttinen, Sari; Finér, Leena; Hänninen, Pekka; Mannerkoski,<br />

Hannu; Koivusalo, Harri; Kokkonen, Teemu; Laurén, Ari; Nenonen,<br />

Keijo <strong>2004</strong>. Monitoring Monitoring<strong>of</strong>behavior<strong>of</strong>forest <strong>of</strong> behavior <strong>of</strong> forest soils. In: In:32nd 32nd<br />

International<strong>Geological</strong>Congress,Florence,Italy,August20–28,<br />

<strong>2004</strong> : abstracts. Part Part1, 1, 35–36.<br />

Perttilä, M. (ed.); Albrecht, H.; Carman, R.; Jensen, A.; Jonsson,<br />

P.; Kankaanpää, H.; Larsen, B.; Leivuori, M.; Niemistö, L.;<br />

Uscinowicz, S.;Winterhalter, B. <strong>2003</strong>. Contaminants Contaminantsinthe in the Baltic<br />

Pekkala, Yrjö; Seppänen, Hannu 2002. Perspectives <strong>of</strong> the<br />

Sea sediments : results <strong>of</strong> the 1993 ICES/HELCOM Sediment<br />

Baseline Study. Meri. Report series <strong>of</strong> the Finnish Institute <strong>of</strong><br />

Marine <strong>Research</strong> 50. 69 p.<br />

Perttilä, Matti; Jonsson, Per; Larsen, Birger; Niemistö, Lauri;<br />

Winterhalter, Boris;Axelsson, Walter <strong>2003</strong>. The 1993 HELCOM/<br />

ICES Baltic Sea Sediment Baseline Study – conduct <strong>of</strong> the study<br />

Finnish industrial minerals industry. In: Scott, P. W. & Bristow, and conclusions. In: In:Perttilä,M.(ed.) Perttilä, M. (ed.) Contaminants intheBaltic in intheBaltic the Baltic<br />

C. M. (eds.) Industrial minerals and extractive industry geology Sea sediments : results <strong>of</strong> the 1993 ICES/HELCOM Sediment<br />

: based on papers presented at the combined 36th Forum on the Baseline Study. Meri. Report series <strong>of</strong> the Finnish Institute <strong>of</strong><br />

Geology <strong>of</strong> Industrial Minerals and 11th Extractive Industry Ge- Marine <strong>Research</strong> 50, 9–20.<br />

ology Conference, Bath, England, 7th–12th May, 2000. London: Perttunen, Vesa <strong>2003</strong>. Koivu. Suomen geologinen kartta<br />

The <strong>Geological</strong> Society, 129–132.<br />

1:100 000 : kallioperäkartta = <strong>Geological</strong> map <strong>of</strong> <strong>Finland</strong><br />

Peltonen, P.; Kontinen, A. <strong>2004</strong>. The Jormua JormuaOphiolite:ama-<br />

Ophiolite : a ma- 1:100 000 : pre-Quaternary rocks lehti = sheet 2633.<br />

fic-ultramafic complex from an ancient ocean-continent transition Perttunen, Vesa; Hanski, Eero <strong>2003</strong>. Törmäsjärven ja Koivun<br />

zone. In: Kusky, T. M. (ed.)Precambrian ophiolites and related kartta-alueiden kallioperä. Summary: Pre-Quaternary rocks <strong>of</strong><br />

rocks. Developments in Precambrian geology 13, 35–71. the Törmäsjärvi and Koivu map-sheet areas. Suomen geolo- geolo-<br />

Peltonen,P.;Kukkonen,I.T.;Kinnunen,K.A.;Huhma,H.<strong>2004</strong>. ginen kartta 1:100 000 : kallioperäkarttojen selitykset lehdet<br />

Composition and structure <strong>of</strong> the 250-km-thick Fennoscandian 2631+2633. 88 p.<br />

cratonic root. In: Mansfeld, J. (ed.) The 26th Nordic <strong>Geological</strong> Pesonen, L. J.; Elming, S.-Å.; Mertanen, S.; Pisarevsky, S.;<br />

Winter Meeting, January 6th – 9th <strong>2004</strong>, Uppsala, Sweden : D’Agrella-Filho, M. S.;Meert, J. G.;Schmidt, P. W.;Abrahamsen,<br />

abstract volume. GFF 126 (1), 13.<br />

N.; Bylund, G. <strong>2003</strong>. Palaeomagnetic configuration <strong>of</strong> <strong>of</strong> continents<br />

Peltonen, Petri; Mänttäri, Irmeli; Huhma, Hannu; Kontinen, during the Proterozoic. In: Sircombe, K. N. & McElhinny, M. W.<br />

Asko2002.Archeanzirconsfromthemantle:theJormuaophiolite<br />

Archeanzirconsfromthemantle:theJormuaophiolite (eds.) Orogenic belts, regional and global tectonics : a memorial<br />

revisited. Geology Geology31(7), 31 (7), 645–648.<br />

volume to Chris McAulay Powell. Tectonophysics 375 (1–4),<br />

Peltonen, Petri<strong>2003</strong>. Geokemistit vastaan seismologit. Geologi 289–324.<br />

55 (8), 219.<br />

Pesonen, Lauri J.; Mader, Dieter; Gurov, Eugene P.; Koeberl,<br />

Peltonen, Petri; Mänttäri, Irmeli <strong>2004</strong>. Zircons from from the mantle<br />

Christian; Kinnunen, Kari A.; Donadini, Fabio; Handler, Robert<br />

: timing the mantle veining and metasomatism in the passive <strong>2004</strong>. Paleomagnetism and Ar-40/Ar-39 age determinations <strong>of</strong><br />

margin – type Jormua Ophiolite (<strong>Finland</strong>). In: 32nd International impactites from the Ilyinets structure, Ukraine. In: Dypvik, H.,<br />

<strong>Geological</strong> Congress, Florence, Italy, August 20–28, <strong>2004</strong> : ab- Burchell, M. & Claeys, P. (eds.) Cratering in marine environments<br />

stracts. Part Part1, 1, 596.<br />

and on ice. Berlin: Berlin:Springer, Springer, 251–280.<br />

Penttinen, Sari; Finér, Leena; Hänninen, Pekka; Laurén, Ari Peuraniemi, Vesa Juhani; Roman, Seija; Lahermo, Pertti <strong>2004</strong>.<br />

2002.Puustoparametrienarvioiminensähkönjohtavuudenavulla. Groundwater ponds acidified by natural weathering processes in<br />

In: Pietola, L. & Esala, M. (eds.) Maa, josta elämme : II Maaperä- the northern Ostrobothnia, northern <strong>Finland</strong>. In: 32nd Internatieteiden<br />

päivien laajennetut abstraktit. Pro Terra 15, 93–95. tional <strong>Geological</strong> Congress, Florence, Italy, August 20–28, <strong>2004</strong><br />

Penttinen, Sari; Finér, Leena; Hänninen, Pekka <strong>2003</strong>. Electrical : abstracts. Part 1, 358.<br />

conductivity and dielectric coefficient – a useful tool to estimate Pihlaja, Jouni <strong>2004</strong>. Mapping<strong>of</strong>Quaternarygeologyin<strong>Finland</strong><br />

Mapping <strong>of</strong> Quaternary geology in <strong>Finland</strong><br />

nutrient status <strong>of</strong> forest. In: Decision support for multiple purpose at 1:20,000 and 1:50,000. In: Zelcs,V. & Seglins,V. (eds.) Interna-<br />

forestry : a transdisciplinary conference on the development and tional field symposium on Quaternary geology and modern terres-<br />

application <strong>of</strong> decision support tools for forest management, trial processes, western Latvia, September 12–17, <strong>2004</strong> : abstracts<br />

Vienna, April 23–25, <strong>2003</strong> : book <strong>of</strong> abstracts, 62.<br />

<strong>of</strong> papers and posters. Riga: University <strong>of</strong> Latvia, 46–47 .<br />

Penttinen, Sari; Finér, Leena; Hänninen, Pekka; Mannerkoski, Pirttijärvi, M.; Kozlovskaya, E.; Elo, S.; Hjelt, S.-E.; Ylinie-<br />

Hannu; Kauppi, Susanne; Koivusalo, Harri; Kokkonen, Teemu; mi, J. <strong>2004</strong>. 3-D potential field modeling using ablock a block model<br />

Kujala, Kauko; Laurén, Ari; Nenonen, Keijo <strong>2003</strong>. Maaperän [Electronic resource]. In: EGU General Assembly <strong>2004</strong>, Nice,<br />

kosteuden ja sähkönjohtavuuden mittaukset Kangasvaaran ja France, 25–30 April <strong>2004</strong>. Geophysical <strong>Research</strong> Abstracts 6, 1<br />

Korsukorvenvaluma-alueella.In:Finér,L.,Laurén,A.&Karvinen, p.. Optical disc (CD-ROM).<br />

L. (eds.) Ajankohtaista metsätalouden ympäristökuormituksesta Plant, J. A.; Reeder, S.; Salminen, R.; Smith, D. B.; Tarvainen,<br />

– tutkimustietoa ja työkaluja – seminaari Kolin Luontokeskus T.;DeVivo,B.;Petterson,M.G.<strong>2003</strong>.Thedistribution<strong>of</strong>uranium<br />

Ukko 23.9.2002. Metsäntutkimuslaitoksen tiedonantoja 886, over Europe : geological and environmental significance.Applied<br />

107–112.<br />

Earth Science 112 (3), B221–B238.


Pomiès, C.; Hamelin, B.; Lancelot, J.; Blomqvist, R. <strong>2004</strong>.<br />

Pb-207/Pb-206 and U-238/Th-230 dating <strong>of</strong> uranium migration<br />

in carbonate fractures from the Palmottu uranium ore (southern<br />

<strong>Finland</strong>). Applied Geochemistry 19 (3), 273–288.<br />

Puura, Väino; Konsa, Mare; Flodén, Tom; Henkel, Herbert;<br />

Kärki, Aulis; Pihlaja, Pekka; Suuroja, Kalle 2002. Structural<br />

settings <strong>of</strong> estolites in meteorite craters. In: Dalwigk, I. von (ed.)<br />

8th workshop <strong>of</strong> the European Science Foundation program IM-<br />

PACT: impact tectonism, Mora, Sweden, May 31 – June 3, 2002<br />

: program, abstracts & guide to Siljan and Uppland, 52.<br />

Puura, Väino; Kärki, Aulis; Konsa, Mare; Juvonen, Riitta;<br />

Karhu, Juha; Kirs, Juho; Kleesment, Anne; Flodén, Tom; Pihlaja,<br />

Pekka; Suuroja, Kalle 2002. Extremely high, moderate and low<br />

temperature mineral phases in estolites – products <strong>of</strong> a cooling<br />

impact plume. In: 9th ESF-IMPACTWorkshop ”Impacts : a geological<br />

and astronomical perspective”, Prague (Czech Republic),<br />

October 12–16, 2002 : abstract book, 65–68.<br />

Puura,Väino; Hints, Rutt; Huhma, Hannu; Klein,Vello; Konsa,<br />

Mare; Kuldkepp, Reedik; Mänttäri, Irmeli; Soesoo, Alvar <strong>2004</strong>.<br />

Svec<strong>of</strong>ennian metamorphic zones in the basement <strong>of</strong> Estonia.<br />

In: Soesoo, A. (ed.) Special issue on the Precambrian basement<br />

<strong>of</strong> Estonia. Proceedings <strong>of</strong> the Estonian Academy <strong>of</strong> Sciences.<br />

Geology 53 (3), 190–209.<br />

Raiche, Art; Sugeng, Fred; Soininen, Heikki <strong>2003</strong>. Using the<br />

Loki 3D edge-finite-element program to model EM dipole-dipole<br />

drill-hole data [Electronic resource]. In: ASEG 16th Geophysical<br />

Conference & Exhibition, Adelaide, South Australia, 16–19<br />

February, <strong>2003</strong> : extended abstracts. Adelaide:Australian Society<br />

<strong>of</strong> Exploration Geophysicists, 4 p. Optical disc (CD-ROM).<br />

Raiche, Art; Sugeng, Fred; Soininen, Heikki <strong>2003</strong>. Using the<br />

Loki 3D edge-finite-element program to model EM dipole-dipole<br />

drill-hole data. In:ASEG 16th Geophysical Conference & Exhibition,Adelaide,SouthAustralia,<br />

16–19February,<strong>2003</strong>:conference<br />

handbook. Preview 102, 84–85.<br />

Rainio, Heikki <strong>2003</strong>. Rakennusgeologisia Rakennusgeologisiamuisteluja.Geologi<br />

muisteluja. Geologi<br />

55 (4–5), 121–123.<br />

Rainio, Heikki; Lahermo, Pertti <strong>2003</strong>.Terveisiä Kiitehenjärven<br />

rannoilta. Karjalan heimo 88 (1–2), 6–10.<br />

Rainio, Heikki <strong>2004</strong>. J. W. Snellman geologian asiamiehenä.<br />

Snellmanien tiedotuslehti Domus Nostra <strong>2004</strong>, 9–12.<br />

Rainio, Heikki <strong>2004</strong>. Mahtavat Salpausselät. In: Koivisto, M.<br />

(ed.) Jääkaudet. Helsinki: WSOY, 87–105.<br />

Rainio, Heikki <strong>2004</strong>. Uskomattoman suurenmoisia ajatuksia<br />

Suomen maaperän synnystä. In: Koivisto, M. (ed.) Jääkaudet.<br />

Helsinki: WSOY, 19–31.<br />

Rainio, Heikki; Johansson, Peter <strong>2004</strong>. Jäätikkö sulaa. In:<br />

Koivisto, M. (ed.) Jääkaudet. Helsinki: WSOY, 69–86.<br />

Räisänen, Marja L. <strong>2003</strong>. Rehabilitation options for tailings<br />

impoundments – case studies <strong>of</strong> ”wet” cover and wetland treatment.<br />

In:Hebestreit,C.,Kudelko,J.&Kulczycka,J.(eds.) In: Hebestreit, C., Kudelko, J. & Kulczycka, J. (eds.) Mine<br />

waste management : best available techniques. Kraków: Mineral<br />

and Energy Economy <strong>Research</strong> Institute, 141–150.<br />

Räisänen, Marja Liisa <strong>2003</strong>. Rehabilitation optionsfortailings<br />

options for tailings<br />

impoundments – case studies <strong>of</strong> ’wet’ cover and wetland treatment.<br />

In: International conference ”Mine waste management<br />

– BAT project application”, 2–3 June, <strong>2003</strong>, Wroclaw, Poland :<br />

proceedings, 42–47.<br />

Räisänen, Marja Liisa; Carlson, Liisa <strong>2003</strong>. Selective extrac- extraction<br />

methods applied for secondary precipitates in the mining<br />

environment. Nordiska föreningen för lerforskning. Meddelande<br />

(14), 6–7.<br />

Räisänen, Marja Liisa; Nikkarinen, Maria; Lehto, Olli; Aatos,<br />

Soile <strong>2003</strong>. Liukoisuustesteistä riskienhallintaan kaivosympäristössä.<br />

Vesitalous 44 (1), 39–43.<br />

Räisänen, Marja Liisa (ed.); Nikkarinen, Maria (ed.) <strong>2003</strong>.<br />

Complexity <strong>of</strong> glacial dispersal and hydromorphic processes in<br />

till geochemistry. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>. Special Paper<br />

34. 69 p. + 1 app.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Papers published by <strong>Geological</strong> survey <strong>of</strong> <strong>Finland</strong> staff in <strong>2003</strong>–<strong>2004</strong><br />

Räisänen, Marja Liisa <strong>2004</strong>. After-care After-careplans<strong>of</strong>theoldLuikon-<br />

plans <strong>of</strong> the old LuikonlahtiCu-Zn-Comineandtailingsfacilitypreviouslyused<br />

inatalc<br />

operation, eastern <strong>Finland</strong>. In: SPILM <strong>2004</strong> :the international<br />

conference Sustainable Post-Industrial Land Management, 4–6<br />

November,<strong>2004</strong>,Kraków,Poland:conference proceedings,28.<br />

Räisänen,MarjaLiisa<strong>2004</strong>.Kosteikotkaivosympäristönvesien<br />

puhdistajana. Geologi 56(2), 44–49.<br />

Räisänen, Marja Liisa;Juntunen, Petri <strong>2004</strong>. Decommissioning<br />

<strong>of</strong>theoldpyritictailingsfacilitypreviouslyusedinatalcoperation,<br />

eastern<strong>Finland</strong>.In:Jarvis,A.P.,Dudgeon,B.A.&Younger,P.L.<br />

(eds.)Minewater<strong>2004</strong>:process,policyandprogress:proceedings<br />

<strong>of</strong>thesymposium,Newcastleupon Tyne, UK,19–23 September<br />

<strong>2004</strong>. Vol. 1. Newcastle upon Tyne: University <strong>of</strong> Newcastle<br />

upon Tyne, 91–99.<br />

Räisänen,Mika<strong>2004</strong>.Fromoutcrops todust –mapping,testing,<br />

andqualityassessment<strong>of</strong>aggregates. Publications<strong>of</strong>thedepartment<strong>of</strong>geologyD1.80p.<br />

Rämö, O. T.;Karinen, T.;Iljina, M.;Lauri, L. S. <strong>2004</strong>. Ndand Nd and<br />

Sr isotope composition and origin <strong>of</strong> a2.44 Ga layered mafic intru -<br />

sion in Koillismaa, <strong>Finland</strong>. In:Abstracts <strong>of</strong> the 14thAnnual V.<br />

M.GoldschmidtConference, Copenhagen,Denmark,June5–11,<br />

<strong>2004</strong>. Geochimica etCosmochimica Acta68(11S), A593.<br />

Rämö, O.T.;Upton, B.G.J.;Kohonen,J.;Mänttäri, I.;Vaasjoki,<br />

M.;Sviridenko, L. P. <strong>2004</strong>. Origin Origin<strong>of</strong>MesoproterozoicCFB-type<br />

<strong>of</strong> Mesoproterozoic CFB-type<br />

magmatism in southeastern Fennoscandian Shield [Electronic<br />

resource]. In: IAVCEI General Assembly <strong>2004</strong>, Pucón, Chile :<br />

abstractvolume, 1p. Opticaldis c(CD-ROM).<br />

Räsänen,Johanna;Kauppila,Tommi;Salonen,Veli-Pekka<strong>2004</strong>.<br />

Paleolimnologisetmenetelmätvesipuitedirektiivintoimeenpanon<br />

valmistelussa–esimerkkinäluont aisestirehevätjärvet.Summary: Summary:<br />

Use<strong>of</strong>paleolimnologicalmethodsinpreparingforimplementation<br />

<strong>of</strong>theEUWaterFrameworkDirective–theexample<strong>of</strong>naturally<br />

eutrophic lakes. Geologi Geologi56(8), 56(8), 188–193.<br />

Räsänen, Jorma;Iljina, Markku; Karinen,Tuomo;Lauri, Laura;<br />

Salmirinne, Heikki; Vuollo, Jouni <strong>2004</strong>. Geologic map <strong>of</strong> the<br />

Koillismaa area, northeastern Fin land, 1:200 000. Rovaniemi:<br />

<strong>Geological</strong><strong>Survey</strong><strong>of</strong><strong>Finland</strong>.<br />

Rasilainen, Kalevi;Gaál,Gabor <strong>2003</strong>.NuPulse NuPulse:anon-destruc-<br />

:anon-destruc-<br />

tive pulse neutron multiple detector tool for environmental log -<br />

ging and monitoring. In: 3rd SENSPOL workshop :monitoring<br />

in polluted environments for integrated water-soil management,<br />

Kraków,Poland, 3–6June, <strong>2003</strong>,1p.<br />

Rasilainen, Kalevi;Gaál, Gabor;Baker,James;Buckup, Klaus;<br />

Meijer, Robertde;Maucec, Marko;Marwick, David;Williamson,<br />

Mark;Sideris, George;Sotiropoul os, Pavlos <strong>2003</strong>.Anon-destruc -<br />

tivepulseneutron multipledetectortoolforuseinenvironmental,<br />

hydrocarbon andmineralexploration work.In:Eliopoulos,D.G.<br />

In:Eliopoulos,D.G.<br />

... [etal.](eds.) Mineralexploration andsustainabledevelopment:<br />

proceedings<strong>of</strong>theSeventhBiennialSGAMeeting,Athens,Greece,<br />

24–28August <strong>2003</strong>.Vol.2.Rotterdam:Millpress,1013–1014.<br />

Rasilainen, Kalevi;Puustjärvi, Heikki;Kousa, Jukka;Luukas,<br />

Jouni;Mäki,Timo<strong>2003</strong>.ThePaleoproterozoicPyhäsalmivolcanic<br />

ThePaleoproterozoicPyhäsalmivolcanic<br />

complex,central<strong>Finland</strong>–bimodalvolcanismandassociatedVMS<br />

deposits. In:Eliopoulos,D.G.... [etal.](eds.) Mineralexploration<br />

Mineralexploration<br />

andsustainabledevelopment:proceedings<strong>of</strong>theSeventhBiennial<br />

SGAMeeting,Athens, Greece, 24–28August <strong>2003</strong>. Vol. 2.<br />

Rotterdam:Millpress,1095–1098.<br />

Rasilainen, Kari;Suksi, Juhani;Ruskeeniemi, Timo;Pitkänen,<br />

Petteri; Poteri, Antti <strong>2003</strong>. Release <strong>of</strong> uranium from rock matrix<br />

–arecord<strong>of</strong>glacialmeltwaterintrusions? Journal<strong>of</strong>Contaminant<br />

Hydrology61(1–4), 235–246.<br />

Rasilainen, Kari;Suksi, Juhani;Ruskeeniemi, Timo;Pitkänen,<br />

Petteri <strong>2004</strong>. The feasibility <strong>of</strong> USD method in tracking past<br />

hydrogeochemical changes in the Fennoscandian Shield. In:<br />

Oversby,V.M.&Werme, L. O. (eds.) Scientific Basis for Nu -<br />

clear Waste Management XXVII. Symposium held June 15–19,<br />

<strong>2003</strong>, Kalmar, Sweden. Materials <strong>Research</strong> Society symposium<br />

proceedings 807, 565–570.<br />

95


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Papers published by <strong>Geological</strong> survey <strong>of</strong> <strong>Finland</strong> staff in <strong>2003</strong>-<strong>2004</strong><br />

Rask, Markku <strong>2003</strong>. Graniittia vai valkobetonia Carrara-marmorin<br />

tilalle? Suomalainen kivi (4), 20–21.<br />

Rask, Markku <strong>2004</strong>. Sapokan rakennuskivipuisto on valmis.<br />

Suomalainen kivi (3), 20–21.<br />

Ravat, D.; Ghidella, M.; Korhonen, J.; Maus, S.; McLean, S.;<br />

Reeves, C. <strong>2003</strong>. Toward the World Digital Magnetic MagneticAnomaly Anomaly<br />

Map (WDMAM). In: AGU <strong>2003</strong> Fall Meeting, 8–12 December<br />

<strong>2003</strong>, San Francisco, California. Eos, Transactions, American<br />

Geophysical Union. Supplement 84 (46), F538–539.<br />

Read, David; Hellmuth, Karl-Heinz; Kaija, Juha; Ahonen,<br />

Lasse 2002. Natural uranium fluxes and their use in repository<br />

safety assessment. In: Merkel, B. J., Planer-Friedrich, B. &<br />

Wolkersdorfer, C. (eds.) Uranium in the aquatic environment :<br />

proceedings <strong>of</strong> the International Conference Uranium Mining and<br />

Hydrogeology III and the International Mine Water Association<br />

Symposium, Freiberg, Germany, 15–21 September 2002. Berlin:<br />

Springer, 115–127.<br />

Read, David; Siitari-Kauppi, Marja; Kelokaski, Maarit; Black,<br />

Stuart; Buckby, Tracy; Marcos, Nuria; Kaija, Juha; Hellmuth,<br />

Karl-Heinz <strong>2004</strong>. Natural geochemical fluxes in <strong>Finland</strong> as<br />

indicators <strong>of</strong> nuclear repository safety. Teknillinenkorkeakoulu.<br />

Teknillinen korkeakoulu.<br />

Kalliotekniikan laboratorio. A. Tutkimusraportti 34. 58 p.<br />

Reimann, Clemens; Koller, Friedrich; Frengstad, Bjørn; Kas-<br />

hulina, Galina; Niskavaara, Heikki; Englmaier, Peter <strong>2003</strong>. Total<br />

sulphur in leaves <strong>of</strong> several plant species from nine catchments<br />

within a 1 500 000 km² area in northern Europe : local vs. regional<br />

variability. Geochemistry : exploration, environment, analysis 3<br />

(2), 205–215.<br />

Reimann, Clemens; Siewers, Ulrich; Tarvainen, Timo; Bi -<br />

tyukova, Liidia; Eriksson, Jan; Gilucis, Aivars; Gregorauskiene,<br />

Virgilija; Lukashev, Valentin K.; Matinian, Natalia N.; Pasieczna,<br />

Anna <strong>2003</strong>. AgriculturalsoilsinnorthernEurope:ageochemical<br />

Agricultural soils in northern Europe : a geochemical<br />

atlas. Geologisches Jahrbuch. Sonderhefte. Reihe D SD 5. 279<br />

p. + CD-ROM<br />

Rissanen, Kristina; Kostiainen, Eila; Ylipieti, Jarkko; Salmi-<br />

nen, Reijo; Chekushin, Victor 2002. The first Chernobyl fallout<br />

plume still visible in humus in the Arctic and subarctic regions<br />

<strong>of</strong> north-eastern Europe. In: The Second AMAP International<br />

SymposiumonEnvironmentalPollution<strong>of</strong>theArctic,Rovaniemi,<br />

<strong>Finland</strong>, October 1–4, 2002 : extended abstracts. AMAPReport<br />

2002:2, 3 p.<br />

Ristolainen, Antti; Jaakkola, Antti; Hänninen, Pekka; Alakuk -<br />

ku, Laura 2002. Maaperäfysiikka ja sato (MaSa)-viljelymaan<br />

fysikaalisten ja kemiallisten ominaisuuksien hallinta maaperä- ja<br />

satokarttojen avulla. In: Pietola, L. & Esala, M. (eds.) Maa, josta<br />

elämme : II Maaperätieteiden päivien laajennetut abstraktit. Pro<br />

Terra 15, 100–101.<br />

Roberts, M. D.; Oliver, N. H. S.; Lahtinen, R. <strong>2003</strong>. Reconstructing<br />

the architecture <strong>of</strong> highly deformed and metamorphosed<br />

Zn-CumassivesulphidedepositsintheVihanti-Pyhäsalmidistrict,<br />

central <strong>Finland</strong>. In: Eliopoulos, D. G. ... [et al.] (eds.) Mineral<br />

exploration and sustainable development : proceedings <strong>of</strong> the<br />

Seventh Biennial SGAMeeting, Athens, Greece, 24–28 August<br />

<strong>2003</strong>. Vol. 2. Rotterdam: Millpress, 1099–1102.<br />

Roberts, Michael D.; Oliver, Nicholas H. S.; Fairclough, Martin<br />

C.; Hölttä, Pentti S.; Lahtinen, Raimo <strong>2003</strong>. Geochemical and<br />

oxygen isotope signature <strong>of</strong> sea-floor alteration associated with<br />

a polydeformed and highly metamorphosed massive sulfide<br />

deposit, Ruostesuo, central <strong>Finland</strong>. Economic Geology 98 (3),<br />

535–556.<br />

Roberts, Michael D.; Oliver, Nicholas H. S.; Lahtinen, Raimo<br />

<strong>2004</strong>. Geology, lithogeochemistry and paleotectonic setting <strong>of</strong> the<br />

host sequence to the Kangasjärvi Zn-Cu deposit, central <strong>Finland</strong><br />

: implications for volcanogenic massive sulphide exploration in<br />

the Vihanti-Pyhäsalmi district. Bulletin <strong>of</strong> the <strong>Geological</strong> Society<br />

<strong>of</strong> <strong>Finland</strong> 76 (1–2), 31–62.<br />

Ruotoistenmäki,Tapio<strong>2003</strong>.Ruotasenge<strong>of</strong>ysikaalinenhistoria<br />

ja nykypäivä. In:Tulkku, J. (ed.) Ruotasen savut : kylä ja kaivos.<br />

Ruotanen: Ruotasen Maamiesseura, 12–17.<br />

96<br />

Ruotoistenmäki, Tapio <strong>2004</strong>. Geophysical and tectonic characteristic<br />

<strong>of</strong> ore potential : Outokumpu area in South-East <strong>Finland</strong>.<br />

In:32ndInternational<strong>Geological</strong>Congress,Florence,Italy,August<br />

20–28, <strong>2004</strong> : abstracts. Part 1, 479–480.<br />

Rusanen, Kaisa; Finér, Leena;Antikainen, Merja; Korkka-Nie-<br />

mi, Kirsti; Backman, Birgitta; Britschgi, Ritva <strong>2004</strong>. The effect<br />

<strong>of</strong> forest cutting on the quality <strong>of</strong> groundwater in large aquifers<br />

in <strong>Finland</strong>. Boreal Environment <strong>Research</strong> 9 (3), 253–261.<br />

Ruskeeniemi, T.; Ahonen, L.; Paananen, M.; Blomqvist, R.;<br />

Degnan, P.; Frape, S. K.; Jensen, M.; Lehto, K.; Wikström, L.;<br />

Morén, L.; Puigdomenech, I.; Snellman, M. <strong>2003</strong>. Groundwater<br />

under deep permafrost conditions. In: Haeberli, W. & Brandová,<br />

D. (eds.) 8th International Conference on Permafrost, Zurich,<br />

Switzerland, 20–25 July <strong>2003</strong> : extended abstracts reporting current<br />

reserch and new information. Zurich: University <strong>of</strong> Zurich,<br />

141–142.<br />

Ruskeeniemi,Timo;Ahonen, Lasse; Paananen, Markku; Frape,<br />

Shaun; Stotler, Randy; Hobbs, Monique; Kaija, Juha; Degnan,<br />

Paul; Blomqvist, Runar; Jensen, Mark; Lehto, Kimmo; Morén,<br />

Lena; Puigdomenech, Ignasi; Snellman, Margit <strong>2004</strong>. Permafrost<br />

at Lupin : report <strong>of</strong> phase 2. Tiivistelmä:Lupininikirouta:raportti<br />

Tiivistelmä: Lupinin ikirouta : raportti<br />

2 tutkimusvaiheesta. Geologian tutkimuskeskus. Ydinjätteiden<br />

sijoitustutkimukset. Tiedonanto YST-119. 89 p.<br />

Saarnisto,Matti<strong>2003</strong>.Karjalangeologia:Karjalanluonnonmaiseman<br />

synty. In:Saarnisto,M.(ed.) In: Saarnisto, M. (ed.) Viipurinlääninhistoria.Osa<br />

Viipurin Viipurinlääninhistoria.Osa<br />

läänin historia. Osa<br />

1: Karjalan synty. Lappeenranta: Karjalan kirjapaino, 21–80.<br />

Saarnisto, Matti <strong>2003</strong>. Tutkimusretki Hiitolan Kilpolansaa-<br />

relle 1992 ja Valamoon 1996. In: Saarnisto, M. M.(ed.) (ed.) Viipurin<br />

Viipurin<br />

läänin historia. Osa 1: Karjalan synty. Lappeenranta: Karjalan<br />

kirjapaino, 67–69.<br />

Saarnisto, Matti (ed.) <strong>2003</strong>. Viipurin läänin historia. Osa 1:<br />

Karjalan synty. Lappeenranta: Karjalan kirjapaino. 560 p. +<br />

app. map.<br />

Saarnisto, Matti <strong>2004</strong>. Karjalan maanviljelyn pitkä esihistoria :<br />

siitepöly ja siemenet paljastavat maanviljelyn salat. Joulukannel.<br />

Ajankohtaista karjalaista asiaa (4), 15–17.<br />

Saarnisto, Matti <strong>2004</strong>. Muinainen Kymijoki. In: In:Uino,P.(ed.)<br />

Uino, P. (ed.)<br />

AmmoinAnkkapurhassa:Kymenlaaksossakivikaudella.Helsinki:<br />

Museovirasto, 38–41.<br />

Saarnisto, Matti; Karhu, Juha <strong>2004</strong>. The last lastmammoths mammoths – –pal- pal-<br />

aeoenvironment <strong>of</strong> the Holocene mammoth on Wrangel Island.<br />

Quaternary Perspectives 14 (1), 126–129.<br />

Saarnisto, Matti; Lunkka, Juha P. <strong>2004</strong>. Climate variability dur -<br />

ing the last interglacial-glacial cycle in NWEurasia. In: Battarbee,<br />

R. W., Gasse, F. & Stickley, C. E. (eds.) Past climate variability<br />

through Europe andAfrica. Developments in Paleoenvironmental<br />

<strong>Research</strong> 6, 443–464.<br />

Saarnisto, Matti; Saksa, Alexander <strong>2004</strong>. Radiocarbon dates<br />

from archaeological excavations in Viipuri – the corner site <strong>of</strong><br />

former Uudenportinkatu and Etelävalli. Fennoscandiaarchaeolo-<br />

Fennoscandia archaeolo-<br />

gica 21, 37–42.<br />

Saarnisto, Matti; Saksa, Aleksandr <strong>2004</strong>. Radiohiiliajoituksia<br />

Viipurinarkeologisiltakaivauksilta.In:Korpela,J.(author)Viipurinlääninhistoria.Osa2:Viipurinlinnalääninsynty.Lappeenranta:<br />

Karjalan Kirjapaino, 259–261.<br />

Saksa,Aleksander; Saarnisto, Matti; Taavitsainen, Jussi-Pekka<br />

<strong>2003</strong>. 1200-luvun lopun radiohiiliajoitus Viipurista. SKAS (3),<br />

15–20.<br />

Salminen, R. <strong>2003</strong>. Geochemical Geochemicalatlas<strong>of</strong>Europe–dothenew<br />

atlas <strong>of</strong> Europe – do the new<br />

maps reveal risky areas. In: Angelelli, A., Barchiesi, P. & Forni,<br />

S. (eds.) 4th European Congress on Regional Geoscientific Cartography<br />

and Information Systems : geoscientific information<br />

for spatial planning, Bologna, Italy, June 17th – 20th <strong>2003</strong> :<br />

proceedings. Vol. 2. Bologna: Servizio geologico, sismico e dei<br />

suoli, 635–636.<br />

Salminen, R.; Bogatyrev, I.; Chekushin, V.; Glavatskikh, S. P.;<br />

Gregorauskiene, V.; Niskavaara, H.; Selenok, L.; Tenhola, M.;<br />

Tomilina, O. <strong>2003</strong>. Barents Ecogeochemistry–alargegeochemi-<br />

Ecogeochemistry – a large geochemical<br />

baseline study <strong>of</strong> heavy metals and other elements in surficial


deposits, NW-Russia and <strong>Finland</strong>. In: Autio, S. (ed.) <strong>Geological</strong><br />

<strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, <strong>Current</strong> <strong>Research</strong> 2001–2002. <strong>Geological</strong><br />

<strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>. Special Paper 36, 45–52.<br />

Salminen, R.; Bogatyrev, I.; Chekushin, V.; Glavatskikh, S. P.;<br />

Gregorauskiene, V.; Selenok, L.; Tenhola, M.; Tomilina, O. <strong>2003</strong>.<br />

Barents Ecogeochemistry projekti – raskasmetallien ja muiden<br />

alkuaineiden perustilan kartoitus Luoteis-Venäjällä ja Suomessa.<br />

Summary:BarentsEcogeochemistry–alargegeochemicalbaseline<br />

study <strong>of</strong> heavy metals and other elements in surficial deposits,<br />

NW-Russia and <strong>Finland</strong>. Geologi Geologi55 55 (2),28–33. (2), 28–33.<br />

Salminen, R.; Bogatyrev, I.; Chekushin, V.; Tomilina, O.;<br />

Tenhola, M. <strong>2003</strong>. Barents Ecogeochemistry project – –alarge a large<br />

geochemical baseline study in NE Europe. In: Angelelli, A., Barchiesi,<br />

P. & Forni, S. (eds.) 4th European Congress on Regional<br />

GeoscientificCartographyandInformationSystems:geoscientific<br />

information for spatial planning, Bologna, Italy, June 17th – 20th<br />

<strong>2003</strong> : proceedings. Vol. 2. Bologna: Servizio geologico, sismico<br />

e dei suoli, 653–654.<br />

Salminen, R.; Chekushin, V.;Tenhola, M.; Bogatyrev , I.;<br />

Glavatskikh, S. P.; Fedotova, E.; Gregorauskiene, V.; Kashulina,<br />

G.; Niskavaara, H.; Polischuok, A.; Rissanen, K.; Selenok,<br />

L.; Tomilina, O.; Zhdanova, L. <strong>2004</strong>. Geochemical atlas <strong>of</strong> the<br />

eastern Barents region. Journal <strong>of</strong> Geochemical Exploration 83<br />

(1–3), 1–530.<br />

Salminen, R.; Chekushin, V.;Tenhola, M.; Bogatyrev, I.;<br />

Glavatskikh, S. P.; Fedotova, E.; Gregorauskiene, V.; Kashulina,<br />

G.; Niskavaara, H.; Polischuok, A.; Rissanen, K.; Selenok, L.;<br />

Tomilina,O.;Zhdanova,L.<strong>2004</strong>.Geochemicalatlas<strong>of</strong>theeastern<br />

Geochemicalatlas<strong>of</strong>theeastern<br />

Barents region. Amsterdam: Elsevier. 548 p.<br />

Salminen, Reijo; Bogatyrev, Igor; Chekushin, Victor; Glavat -<br />

skikh, Sergey P.; Gregorauskiene, Virgilija; Niskavaara, Heikki;<br />

Selenok, Lubov; Tenhola, Markku; Tomilina, Olga <strong>2004</strong>. Geochemical<br />

baselines <strong>of</strong> nickel and chromium in various surficial<br />

materials in the Barents Region, NW Russia and <strong>Finland</strong>. Geostandards<br />

and Geoanalytical <strong>Research</strong> 28 (2), 333–341.<br />

Salminen, Reijo; Gilucis, Aivars; Gregorauskiene, Virgilija;<br />

Petersell,Valter;Tomilina,Olga<strong>2004</strong>.Influence<strong>of</strong>humanactivities<br />

Influence<strong>of</strong>humanactivities<br />

in the geochemical baselines in the Baltic countries, <strong>Finland</strong> and<br />

NW-Russia.In:32ndInternational<strong>Geological</strong>Congress,Florence,<br />

Italy, August 20–28, <strong>2004</strong> : abstracts. Part 2, 850.<br />

Salmirinne, H.; Iljina, M. <strong>2004</strong>. 3-D gravity modeling <strong>of</strong> un- unexposed<br />

feeder intrusion connecting western and eastern part <strong>of</strong><br />

the Koillismaa Layered Igneous Complex, <strong>Finland</strong> [Electronic resource].In:St.Catharines<strong>2004</strong>.<strong>Geological</strong>Association<strong>of</strong>Canada<br />

& Mineralogical Association <strong>of</strong> Canada joint annual meeting,<br />

St. Catharines, Ontario, Canada, May 12–14, <strong>2004</strong>. GAC-MAC<br />

program with abstracts 29, 258. Optical disc (CD-ROM).<br />

Saltik<strong>of</strong>f, Boris (comp.); Tontti, Mikko (comp.); Puustinen,<br />

Kauko (comp.) 2002.Metallogenicmap<strong>of</strong><strong>Finland</strong>1:1000 2002. Metallogenic map <strong>of</strong> <strong>Finland</strong> 1 : 1 000 000.<br />

Espoo: <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>.<br />

Sarala, Pertti <strong>2003</strong>. Ribbed-moreenit – jäätikön liikesuunnan<br />

poikittaiset indikaattorit. Summary: Ribbed moraines –trans- – transverse<br />

indicators <strong>of</strong> the ice flow direction. Geologi 55 (9–10),<br />

250–253.<br />

Sarala, Pertti <strong>2004</strong>. Deglaciation pattern and glacial dynamics<br />

<strong>of</strong> the southern Finnish Lapland. In: Mansfeld, J. (ed.) The 26th<br />

Nordic <strong>Geological</strong> Winter Meeting, January 6th – 9th <strong>2004</strong>,<br />

Uppsala, Sweden : abstract volume. GFF 126 (1), 124.<br />

Sarala, Pertti <strong>2004</strong>. Glasiaalimorfologia ja moreenistratigrafia<br />

glasiaalidynamiikanilmentäjinä.In:Kaakinen,A.(ed.)Geologian<br />

3. tutkijapäivät, 10.–11.3.<strong>2004</strong>, Helsinki. Helsinki: Helsingin<br />

yliopisto, geologian laitos, 56–58.<br />

Sarapää, Olli; Ahtola, Timo; Reinikainen, Jukka; Seppänen,<br />

Hannu <strong>2003</strong>. Industrial Industrialmineralpotentialin<strong>Finland</strong>.In:Autio,S.<br />

mineral potential in <strong>Finland</strong>. In: Autio, S.<br />

(ed.)<strong>Geological</strong><strong>Survey</strong><strong>of</strong><strong>Finland</strong>,<strong>Current</strong><strong>Research</strong>2001–2002.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>. Special Paper 36, 5–12.<br />

Satkunas, Jonas; Ransed, Gunnel; Suominen,Veli;Taht, Krista;<br />

Raudsep, Rein; Mikulenas, Vidas; Vdovets, Marina; Makarikhin,<br />

Vladimir; Cleal, Chris; Erikstad, Lars <strong>2004</strong>. Geosites listings for<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Papers published by <strong>Geological</strong> survey <strong>of</strong> <strong>Finland</strong> staff in <strong>2003</strong>–<strong>2004</strong><br />

northern Europe – a status report. In: 32nd International <strong>Geological</strong><br />

Congress, Florence, Italy,August 20–28, <strong>2004</strong> : abstracts.<br />

Part 1, 581.<br />

Schellschmidt, R.; Popov, Y.; Kukkonen, I.; Nover, G.; Milanovsky,<br />

S.; Borevsky, L.; Mottaghy, D.; Clauser, C. <strong>2003</strong>. Heat<br />

transfer processes in the upper crust – a case study for the region<br />

around the Kola superdeep borehole, Russia. In: IUGG <strong>2003</strong> :<br />

XXIII General Assembly <strong>of</strong> the International Union <strong>of</strong> Geodesy<br />

and Geophysics, June 30 – July 11, <strong>2003</strong>, Sapporo, Japan : abstracts.<br />

Week A. Sapporo : IUGG, 174.<br />

Schmidt-Thomé, P.; Lahti, M.; Gaál, G. 2002. Application <strong>of</strong><br />

airborne radiometric surveys in the mapping <strong>of</strong> areas with high<br />

natural or anthropogenic ionizing radiation. In: Bølviken, B.<br />

(ed.) Natural ionizing radiation and health : proceedings from a<br />

symposium held at the Norwegian Academy <strong>of</strong> Science and Letters,<br />

Oslo 6–7 June 2001. Oslo: Norwegian Academy <strong>of</strong> Science<br />

and Letters, 25–31.<br />

Schmidt-Thomé, Philipp; Greiving, Stefan; Kallio, Hilkka;<br />

Fleischhauer, Mark; Jarva, Jaana <strong>2004</strong>. Natural hazard and risk<br />

maps for European regions. In: 32nd International <strong>Geological</strong><br />

Congress, Florence, Italy, August 20–28, <strong>2004</strong> : abstracts. Part<br />

1, 589.<br />

Schmidt-Thomé, Philipp; Kallio, Hilkka; Staudt, Michael<br />

Gerhard <strong>2004</strong>. Developing tools for planners concerning spatial<br />

impacts <strong>of</strong> sea level rise in the Baltic Sea Region. In: 32nd International<br />

<strong>Geological</strong> Congress, Florence, Italy, August 20–28,<br />

<strong>2004</strong> : abstracts. Part 1, 351–352.<br />

Schultz, Eija; Joutti, Anneli; Räisänen, Marja Liisa; Lintinen,<br />

Petri;Martikainen,Esko;Lehto,Olli<strong>2004</strong>.Extractability<strong>of</strong>metals<br />

Extractability<strong>of</strong>metals<br />

and ecotoxicity <strong>of</strong> soils from two old wood impregnation sites in<br />

<strong>Finland</strong>. Science <strong>of</strong> the Total Environment 326 (1–3), 71–84.<br />

Selonen,Olavi<strong>2003</strong>.GraniittejaSuomenkeskeltä.Suomalainen<br />

kivi (3), 36–40.<br />

Selonen, Olavi <strong>2003</strong>. Kaakkois-Suomen graniittien tie vie<br />

ulkomaille. Suomalainen kivi (2), 34–37.<br />

Selonen, Olavi <strong>2003</strong>. Lounais-Suomesta globaaleja kivibrandeja.<br />

Suomalainen kivi (1), 34–36.<br />

Selonen, Olavi <strong>2003</strong>. Requisitesfornaturalstone.In:Selonen,<br />

Requisites for natural stone. In: In:Selonen, Selonen,<br />

O. & Suominen, V. (eds.) Nordic Nordicstone.Paris:UNESCO:IAEG,<br />

stone. Paris: UNESCO : IAEG,<br />

11–12.<br />

Selonen, Olavi; Heldal, Tom <strong>2003</strong>. Technologies. In: Selonen,<br />

O. & Suominen, V. (eds.) Nordic Nordicstone.Paris:UNESCO:IAEG,<br />

stone. Paris: UNESCO : IAEG,<br />

42–50.<br />

Selonen, Olavi; Härmä, Paavo <strong>2003</strong>. Stone resources and disdistribution : <strong>Finland</strong>. In: In:Selonen,O.&Suominen,V.(eds.) Selonen, O. & Suominen, V. (eds.) Nordic<br />

stone. Paris: UNESCO : IAEG, 19–29.<br />

Selonen, Olavi; Luodes, Hannu; Ehlers, Carl <strong>2003</strong>. Natural<br />

stone in <strong>Finland</strong> – production and development. Vuoriteollisuus<br />

61 (3), 39–43.<br />

Selonen, Olavi (ed.); Suominen, Veli (ed.) <strong>2003</strong>. Nordic stone.<br />

Paris: UNESCO : IAEG. 64 p.<br />

Selonen, Olavi <strong>2004</strong>. GTK kartoittaa laajasti Suomen kallioperää.<br />

Suomalainen kivi (3), 28–29.<br />

Selonen,Olavi<strong>2004</strong>.Kivialaesimerkkikestävästäkehityksestä.<br />

Suomalainen kivi (4), 30–31.<br />

Selonen, Olavi <strong>2004</strong>. Liuskekiviä käytetään verhouksissa ja<br />

ympäristörakentamisessa. Suomalainen kivi (1), 22–24.<br />

Selonen,Olavi;Ehlers,Carl<strong>2004</strong>.Naturstensindustrini<strong>Finland</strong><br />

Naturstensindustrini<strong>Finland</strong><br />

– en bransch i uppsving. Geologiskt forum 11 (42), 18–25.<br />

Selonen, Olavi; Johansson, Kurt <strong>2004</strong>. Hållbarutveckling Hållbar utveckling inom<br />

stenbranschen. STEN 66 (4), 37.<br />

Skyttä,Pietari<strong>2004</strong>.Rakennegeologisiatutkimuksiaeteläisessä<br />

Suomessa Inkoon-Kiskon alueella. Summary:Structuralgeology<br />

Summary: Structural geology<br />

investigations in the Inkoo-Kisko area, southern <strong>Finland</strong>. Geologi<br />

56 (3), 68–72.<br />

Sorjonen-Ward, Peter 2002. <strong>Geological</strong> setting <strong>of</strong> the Nun-<br />

nanlahti soapstone deposits. In:Niemelä,M.(ed.)Talc-magnesite<br />

In: Niemelä, M. (ed.) Talc-magnesite<br />

deposits in <strong>Finland</strong>, September 10–15, 2002, <strong>Finland</strong> : third field<br />

correlation, 34–37.<br />

97


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Papers published by <strong>Geological</strong> survey <strong>of</strong> <strong>Finland</strong> staff in <strong>2003</strong>-<strong>2004</strong><br />

Sorjonen-Ward, P.; Systra, Y. J. 2002. Tectonics and deep<br />

structure <strong>of</strong> the southeastern Fennoscandian Shield and its marginal<br />

zone. In: Sahrov, N. V. ... [et al.] (eds.) Glubinnoe stroenie<br />

i geodinamika Fennoskandii, okrainnyh i vnutriplatformennyh<br />

tranzitnyh zon : materialy vos’moj mezdunarodnoj konferencii,<br />

16–20 sentjabrja 2002 g., Petrozavodsk. Petrozavodsk: Karel’skij<br />

naucnyj centr RAN, 277–278.<br />

Sorjonen-Ward, P.; Ojala, V. J.; Airo, M.-L. <strong>2003</strong>. Structural<br />

modelling and magnetic expression <strong>of</strong> hydrothermal alteration<br />

in the Paleoproterozoic Lapland greenstone belt, northern Fen-<br />

noscandian Shield. In:Eliopoulos,D.G.... In: Eliopoulos, D. G. ... [et [etal.](eds.) al.] (eds.) Mineral<br />

Mineral<br />

exploration and sustainable development : proceedings <strong>of</strong> the<br />

Seventh Biennial SGAMeeting, Athens, Greece, 24–28 August<br />

<strong>2003</strong>. Vol. 2. Rotterdam: Millpress, 1107–1110.<br />

Starr, Michael; Lindroos, Antti-Jussi; Ukonmaanaho, Liisa;<br />

Tarvainen, Timo; Tanskanen, Heikki <strong>2003</strong>. Weathering release<br />

<strong>of</strong> heavy metals from soil in comparison to deposition, litterfall<br />

and leaching fluxes in a remote, boreal coniferous forest. Applied<br />

Geochemistry 18 (4), 607–613.<br />

Stotler,RandyL.;Frape,ShaunK.;Ruskeeniemi,Timo;Ahonen,<br />

Lasse; Blomqvist, Runar; Degnan, Paul; Jensen, Mark; Lehto,<br />

Kimmo; Morén, Lena; Snellman, Margit <strong>2003</strong>. Hydrogeochemistry<br />

<strong>of</strong> crystalline bedrock under deep permafrost conditions. In:<br />

Geoscience horizons, Seattle <strong>2003</strong> : GSAAnnual Meeting and<br />

Exposition, November 2–5,<strong>2003</strong>.<strong>Geological</strong>Society<strong>of</strong>America.<br />

Abstracts with Programs 35 (6 ), 573.<br />

Suksi, Urho J.; Rasilainen, Kari; Ruskeeniemi, Timo; Marcos,<br />

Nuria; Hellmuth, Karl-Heinz 2002. Natural Uoccurrences U occurrences as a<br />

98<br />

I.; Dowdeswell, J. A.; Funder, S.; Gataullin, V.; Henriksen, M.;<br />

Hjort, C.; Houmark-Nielsen, M.; Hubberten, H. W.; Ingólfsson,<br />

Ó.; Jakobsson, M.; Kjær, K. H.; Larsen, E.; Lokrantz, H.;<br />

Lunkka, J. P.; Lyså, A.; Mangerud, J.; Matiouchkov, A.; Murray,<br />

A.; Möller, P.; Niessen, F.; Nikolskaya, O.; Polyak, L.; Saarnisto,<br />

M.; Siegert, C.; Siegert, M. J.; Spielhagen, R. F.; Stein, R. <strong>2004</strong>.<br />

Late Quaternary ice sheet history <strong>of</strong> northern Eurasia. In: Thiede,<br />

J.(ed.)Quaternaryenvironments<strong>of</strong>theEurasianNorth(QUEEN).<br />

Quaternary Science Reviews 23 (11–13), 1229–1271.<br />

Svetov, S. A.; Huhma, H.; Svetova, A. I.; Nazarova, T. N.<br />

<strong>2004</strong>. The Theoldest oldest adakites adakites<strong>of</strong>theFennoscandianShield.Doklady<br />

<strong>of</strong> the Fennoscandian Shield. Doklady<br />

Earth Sciences 397A (6), 878–882. Taavitsainen, Jussi-Pekka;<br />

Sepänmaa, Timo; Miettinen, Mirja; Storå, Jan; Saarnisto, Matti<br />

<strong>2004</strong>. Hietamäki in inJämsä–amulti-perioddwellingsiteincentral<br />

Jämsä – a multi-period dwelling site in central<br />

<strong>Finland</strong>. Fennoscandia Fennoscandiaarchaeologica21, archaeologica 21, 3–21.<br />

Taipale, Kalle <strong>2003</strong>. Maa kivimiesten näkemänä : Geologian<br />

tutkimuskeskuksen arkistot kertovat. Raito 21 (1), 22–25.<br />

Taipale, Kalle <strong>2003</strong>. Särkyvää! Suomen Luonto 62 (4),<br />

22–27.<br />

Talkkari, Ari; Nevalainen, Raimo <strong>2003</strong>. Georeferenced<br />

1:250 000 soil database for <strong>Finland</strong> – an approach based on multisource<br />

geological and soil data. In:Angelelli,A., Barchiesi, P. &<br />

Forni, S. (eds.) 4th European Congress on Regional Geoscientific<br />

Cartography and Information Systems : geoscientific information<br />

for spatial planning, Bologna, Italy, June 17th – 20th <strong>2003</strong> :<br />

proceedings. Vol. 1. Bologna: Servizio geologico, sismico e dei<br />

suoli, 276–278.<br />

Tanskanen, Heikki; Lahermo, Pertti; Loukola-Ruskeeniemi,<br />

Kirsti <strong>2004</strong>. Arseeni Kittilän pohjavesissä Keski-Lapissa.Summary:<br />

Arsenic in groundwater in Kittilä, Finnish Lapland. In:<br />

Loukola-Ruskeeniemi, K. & Lahermo, P. (eds.) Arseeni Suomen<br />

luonnossa, ympäristövaikutukset j a riskit. Espoo: Geologian<br />

tutkimuskeskus, 123–134.<br />

Tarvainen, Timo 2002. Heavy metal accumulation in soils and<br />

mobility. Indicator development using the FOREGS and Baltic<br />

Soil <strong>Survey</strong> databases. In: Expert meeting on indicators for soil<br />

contamination, Sevilla, Spain, 27–29 May 2002. Copenhagen:<br />

European Environment Agency, 2–4.<br />

palaeo-hydrogeologicalindicator –observationsfromthePalmottu<br />

natural analogue site, <strong>Finland</strong>. In: Merkel, B. J., Planer-Friedrich,<br />

B. &Wolkersdorfer, C. (eds.) Uranium in the aquatic environment<br />

:proceedings<strong>of</strong>theInternationa lConferenceUraniumMiningand<br />

Hydrogeology III and the International Mine Water Association<br />

Symposium, Freiberg, Germany, 15–21 September 2002. Berlin:<br />

Springer, 231–240.<br />

Suomi, Timo; Korhonen, Riitta <strong>2004</strong>. Karviassa tutkitut suot ja<br />

niiden turvevarat.Osa2.Abstract:Thepeatlandsandpeatreserves<br />

Osa2.Abstract:Thepeatlands andpeatreserves<br />

<strong>of</strong> Karvia. Part 2. Geologian tutkimuskeskus. tutkimuskeskus. Turvetutkimusra-<br />

Turvetutkimusraportti<br />

357. 42 p. + 4 app.<br />

Tarvainen, Timo; Backman, Birgitta; Hellmuth, Karl-Heinz;<br />

Suominen, Meeri; Kontas, Esko; Niskavaara, Heikki <strong>2004</strong>. Hatakka, Tarja; Savolainen, Heimo <strong>2003</strong>. IAEA Coordinated<br />

Comparison <strong>of</strong> silver and gold inquarting in the fire assay determi- <strong>Research</strong> Project (CRP) ”The use <strong>of</strong> selected safety indicators<br />

nation <strong>of</strong> palladium, platinum and rhodium in geological samples. (concentrations, fluxes) in the assessment <strong>of</strong> radioactive waste<br />

In: Kane, J. S. ... [et al.] (eds.) Geoanalysis <strong>2003</strong>. Geostandards disposal”.Report5:ChemicalweatheringratesontheBalticShield<br />

and Geoanalytical <strong>Research</strong> 28 (1), 131–136.<br />

<strong>of</strong> <strong>Finland</strong> for use as indicators <strong>of</strong> nuclear waste repository safety.<br />

Suominen, Veli 2002. Ballastproduktionen i <strong>Finland</strong>. Norden- Norden- Geologian tutkimuskeskus. Ydinjätteiden sijoitustutkimukset.<br />

skiöld-samfundets tidskrift (62), 111–124.<br />

Tiedonanto YST-113. 51 p.<br />

Suppala,I.;Vanhala,H.;Lintinen,P. <strong>2003</strong>. Comparisonbetween<br />

Comparisonbetween Tarvainen, Timo; Schmidt-Thomé, Philipp <strong>2003</strong>. Heavy metal<br />

ground and airborne EM data in mapping acid sulphate soils and enrichment factors for different analytical methods. In: Autio, S.<br />

sulphide bearing clays in the river Kyrönjoki valley, western (ed.)<strong>Geological</strong><strong>Survey</strong><strong>of</strong><strong>Finland</strong>,<strong>Current</strong><strong>Research</strong>2001–2002.<br />

<strong>Finland</strong>. In: Mares, S. & Pospísil, L. (eds.) 9th Meeting <strong>of</strong> Envi- <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>. Special Paper 36, 61–65.<br />

ronmental and Engineering Geophysics, Prague, Czech Republic, Tarvainen, Timo <strong>2004</strong>. Arseeni maaperässä.Summary:Arsenic<br />

August 31st – September 4th <strong>2003</strong> : proceedings. Prague: Czech in soils. In: Loukola-Ruskeeniemi, K. & Lahermo, P. (eds.) Ar-<br />

Association <strong>of</strong> the Applied Geophysicists, 4 p.<br />

seeni Suomen luonnossa, ympäristövaikutukset ja riskit. Espoo:<br />

Suppala, I.; Hongisto, H.; Oksama, M. <strong>2004</strong>. Effect Effect<strong>of</strong> <strong>of</strong> the con- con- Geologian tutkimuskeskus, 45–49.<br />

ducting aircraft to fixed-wing airborne electromagnetic measure- Tarvainen, Timo; Mannio, Jaakko <strong>2004</strong>. Arseeni pintavesissä<br />

ments [Electronic resource]. In: Sharing the Earth : EAGE 66th ja purosedimenteissä. Summary: Arsenic in surface waters and<br />

Conference&Exhibition,Paris,France,7–10June<strong>2004</strong>:extended stream sediments. In: Loukola-Ruskeeniemi, K. &&Lahermo, Lahermo, P.<br />

abstracts. Houten: EAGE, 4 p. Optical disc (CD-ROM). (eds.) Arseeni Suomen luonnossa, ympäristövaikutukset ja riskit.<br />

Sutinen, R.; Teirilä, A.; Pänttäjä, M.; Sutinen, M.-L. 2002. Espoo: Geologian tutkimuskeskus, 97–101.<br />

Distribution and diversity <strong>of</strong> tree species with respect to soil Tenhola, Markku; Lahermo, Pertti; Väänänen, Pauli; Lehto,<br />

electrical characteristics in Finnish Lapland. Canadian Journal Olli <strong>2004</strong>. Alueellisessa geokemiallisessa purovesikartoituksessa<br />

<strong>of</strong> Forest <strong>Research</strong> 32 (7), 1158–1170.<br />

todettujen fysikaalisten ominaisuuksien ja alkuainepitoisuuksien<br />

Sutinen, R.; Teirilä, A.; Pänttäjä, M.; Sutinen, M.-L. 2002. vertailu Suomessa vuosina 1990, 1995 ja 2000. Summary: Summary:Com- Com-<br />

Survival <strong>of</strong> artificially regenerated Scots pine on till soils with parison <strong>of</strong> physical properties and element concentrations in the<br />

respecttovaryingdielectricproperties.CanadianJournal<strong>of</strong>Forest regional geochemical mapping <strong>of</strong> stream water in <strong>Finland</strong> during<br />

<strong>Research</strong> 32 (7), 1151–1157.<br />

1990, 1995, and 2000. Geologian tutkimuskeskus. Tutkimusra- Tutkimusra-<br />

Svendsen, J. I.; Alexanderson, H.; Astakhov, V. I.; Demidov, portti 159. 35 p.


Tervo,Tapani<strong>2003</strong>. Vuolukiven synty. In:Vuorjoki, K. (author)<br />

Kivimatka. Helsinki: Sarmala, 16–17.<br />

Tiljander, Mia; Saarnisto, Matti; Ojala, Antti E. K.; Saarinen,<br />

Timo <strong>2003</strong>. AA3000-year 3000-year palaeoenvironmental record from an- an-<br />

nually laminated sediment <strong>of</strong> Lake Korttajärvi, central <strong>Finland</strong>.<br />

Boreas 32 (4), 566–577.<br />

Toivonen, Tapio <strong>2003</strong>. Honkajoella tutkitut suot ja niiden<br />

turvevarat. Abstract: The mires and peat reserves <strong>of</strong> Honkajoki.<br />

Geologian tutkimuskeskus. Turvetutkimusraportti 347. 40 p. +<br />

4 app.<br />

Toivonen, Tapio <strong>2004</strong>. Multialla tutkitut suot ja niiden käyttökelpoisuus.<br />

Osa Osa2.Abstract:Themires<strong>of</strong>Multiaandtheiruseful-<br />

2.Abstract: The mires <strong>of</strong> Multia and their usefulness.<br />

Part 2. Geologian tutkimuskeskus. Turvetutkimusraportti<br />

352. 65 p. + 4 app.<br />

Toivonen, Tapio <strong>2004</strong>. Pernajassa tutkitut suot ja niiden turvevarat.<br />

Abstract:The Abstract:Themiresandpeatreserves<strong>of</strong>Pernaja.Geologian<br />

mires and peat reserves <strong>of</strong> Pernaja. Geologian<br />

tutkimuskeskus. Turvetutkimusraportti 353. 26 p. + 4 app.<br />

Tukiainen, Tapani; Krebs, Johan Ditlev; Kuosmanen, Viljo;<br />

Laitinen, Jukka; Schäffer, Uwe <strong>2003</strong>. Field and laboratory laboratoryreflect- reflect -<br />

ance spectra <strong>of</strong> kimberlitic rocks, 0.35–2.5 µm, West Greenland.<br />

Danmarks og Grønlands Geologiske Undersøgelse. Rapport<br />

<strong>2003</strong>/43. 25 p.<br />

Turunen, Jukka <strong>2003</strong>. Past and present carbon accumulation<br />

in undisturbed boreal and subarctic mires : a review. Tiivistelmä:<br />

Luonnontilaistensoidenpitkänajan-janykykertymätboreaalisella<br />

ja subarktisella kasvillisuusvyöhykkeellä : katsaus. Suo 54 (1),<br />

15–28.<br />

Turunen, Pertti <strong>2004</strong>. On Ontheuse<strong>of</strong>theVLFmethodinmineral<br />

the use <strong>of</strong> the VLF method in mineral<br />

exploration – experiences from the northern <strong>Finland</strong>. In: VLF<br />

Workshop <strong>2004</strong>, Sodankylä Geophysical Observatory, 27th September<br />

– 1st October <strong>2004</strong> : abstracts. Sodankylä Geophysical<br />

Observatory publications 96, 25.<br />

Tyni, Matti; Puustinen, Kauko; Karhu, Juha; Vaasjoki, Matti<br />

<strong>2003</strong>. The ThePetäiskoski Petäiskoski carbonate carbonateveinsatJuuka,eastern<strong>Finland</strong>.<br />

veins at Juuka, eastern <strong>Finland</strong>.<br />

In: Autio, S. (ed.) <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, <strong>Current</strong> <strong>Research</strong><br />

2001–2002. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>. SpecialPaper<br />

Special Paper<br />

36, 13–16.<br />

Uski, Marja; Hyvönen, Tellervo; Korja,Annakaisa;Airo, Meri-<br />

Liisa <strong>2003</strong>. Focal mechanisms <strong>of</strong> three earthquakes in <strong>Finland</strong><br />

and their relation to surface faults. Tectonophysics 363 (1–2),<br />

141–157.<br />

Väänänen, Jukka <strong>2004</strong>. Sieppijärven ja Pasmajärven karttaalueiden<br />

kallioperä. Summary: Pre-Quaternary rocks <strong>of</strong> the<br />

Sieppijärvi and Pasmajärvi map-sheet areas.Suomen geologinen<br />

kartta 1:100 000 : kallioperäkarttojen selitykset lehdet 2624 ja<br />

2642. 55 p. +1app., + 1 app., 2app. 2 app. maps.<br />

Väänänen,Tapio;Kokkonen,Jyrki<strong>2003</strong>. GEOKARTTAInternet<br />

map service – a new perspective <strong>of</strong> delivering maps on Internet<br />

by <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>. In:Angelelli,A., Barchiesi, P. &<br />

Forni, S. (eds.) 4th European Congress on Regional Geoscientific<br />

Cartography and Information Systems : geoscientific information<br />

for spatial planning, Bologna, Italy, June 17th – 20th <strong>2003</strong> :<br />

proceedings. Vol. 2. Bologna: Servizio geologico, sismico e dei<br />

suoli, 428–429.<br />

Vaarma,Markus;Pipping,Fredrik<strong>2003</strong>.Kyyjärvi–Perhokartta-<br />

Kyyjärvi–Perhokarttaalueenkallioperä.Summary:Pre-Quaternaryrocks<strong>of</strong>theKyyjärvi<br />

Summary:Pre-Quaternaryrocks<strong>of</strong>theKyyjärvi<br />

and Perho map-sheet areas. Suomen Suomengeologinenkartta1:100 geologinen kartta 1:100 000<br />

: kallioperäkarttojen selitykset lehdet 2331 ja 2332. 54 p.<br />

Vaasjoki, Matti <strong>2003</strong>. Aktualismi, paradigmat ja talonpoikaisjärki.<br />

Geologi 55 (6 ), 144–146.<br />

Vaasjoki, Matti; Huhma, Hannu; Lahtinen, Raimo; Vestin,<br />

Jessica <strong>2003</strong>. Sources <strong>of</strong> Svec<strong>of</strong>ennian granitoids in the light<br />

<strong>of</strong> ion probe U-Pb measurements on their zircons. Precambrian<br />

<strong>Research</strong> 121 (3–4), 251–262.<br />

Väisänen, Markku; Mänttäri, Irmeli 2002. 1.90–1.88 Ga arc<br />

and back-arc basin in the Orijärvi area, SW<strong>Finland</strong>. Bulletin <strong>of</strong><br />

the <strong>Geological</strong> Society <strong>of</strong> <strong>Finland</strong> 74 (1–2), 185–214.<br />

<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Papers published by <strong>Geological</strong> survey <strong>of</strong> <strong>Finland</strong> staff in <strong>2003</strong>–<strong>2004</strong><br />

Väisänen, Ulpu <strong>2004</strong>. Groundwater and factors affecting its<br />

quality:examplesfromtheRovaniemidistrict<strong>of</strong>northern<strong>Finland</strong><br />

and western Nicaragua. <strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>. Bulletin<br />

400. 145 p. + 5 app.<br />

Väisänen, Ulpu Mirja <strong>2004</strong>. Groundwaterandfactors Groundwater and factors affecting<br />

its quality : examples from northern <strong>Finland</strong> and Nicaragua. In:<br />

32nd International <strong>Geological</strong> Congress, Florence, Italy, August<br />

20–28, <strong>2004</strong> : abstracts. Part Part1, 1, 638.<br />

Valjus, T.; Breilin, O.; Vanhala, H.; Lehtimäki, J. <strong>2004</strong>. DeDetailed geophysical study <strong>of</strong> glaci<strong>of</strong>luvial aquifer at Kempele,<br />

western <strong>Finland</strong>. In: Near surface <strong>2004</strong> : 10th European Meeting<br />

<strong>of</strong> Environmental and Engineering Geophysics, Utrecht, The<br />

Netherlands, 6–9 September <strong>2004</strong> : extended abstracts book.<br />

Houten: EAGE, 4 p.<br />

Valli,Tuire;Jokinen,Tarmo;Lehtimäki,Jukka;Vanhala,Heikki<br />

<strong>2003</strong>. Sampo –frequency – frequency domain wide-band EM system for<br />

deep hydrogeological and environmental studies. In: Mares, S. &<br />

Pospísil, L. (eds.) 9th Meeting <strong>of</strong> Environmental and Engineering<br />

Geophysics, Prague, Czech Republic, August 31st – September<br />

4th <strong>2003</strong> : proceedings. Prague: CzechAssociation <strong>of</strong> theApplied<br />

Geophysicists, 4 p.<br />

Vallius, Henry; Leivuori, Mirja <strong>2003</strong>. Classification <strong>of</strong> heavy<br />

metal contaminated sediments <strong>of</strong> the Gulf <strong>of</strong> <strong>Finland</strong>. Baltica<br />

16, 3–12.<br />

Vanhala, H.; Räisänen, M. L.; Huotari, T.; Valjus, T.; Lehtimäki,<br />

J.; Suppala, I. <strong>2004</strong>. Characterizing tailings impoundment at<br />

the closed Hammaslahti Cu-Zn mine, <strong>Finland</strong>. In: Near surface<br />

<strong>2004</strong> : 10th European Meeting <strong>of</strong> Environmental and Engineering<br />

Geophysics, Utrecht, The Netherlands, 6–9 September <strong>2004</strong><br />

: extended abstracts book. Houten: EAGE, 4 p.<br />

Vanhala, H.; Suppala, I.; Lintinen, P.; Lehtimäki, J. <strong>2003</strong>.<br />

Mapping buried glaci<strong>of</strong>luvial aquifer by airborne EM measurements<br />

– a case from Kyrönjoki valley in southern <strong>Finland</strong>. In:<br />

Mares, S. & Pospísil, L. (eds.) 9th Meeting <strong>of</strong> Environmental and<br />

Engineering Geophysics, Prague, Czech Republic, August 31st<br />

– September 4th <strong>2003</strong> : proceedings. Prague: Czech Association<br />

<strong>of</strong> the Applied Geophysicists, 4 p.<br />

Vanhala, H.; Suppala, I.; Lintinen, P. <strong>2004</strong>. Integrated geo- geophysical<br />

study <strong>of</strong> acid sulphate soil area near Seinäjoki, southern<br />

<strong>Finland</strong> [Electronic resource]. In: Sharing the Earth : EAGE 66th<br />

Conference&Exhibition,Paris,France,7–10June<strong>2004</strong>:extended<br />

abstracts. Houten: EAGE, 4 p.. Optical disc (CD-ROM).<br />

Vareikiene,O.;Lindqvist,K.;Marmo,J.<strong>2003</strong>.Selectedelements<br />

Selectedelements<br />

and their mineral carriers in the fine fraction <strong>of</strong> the Ahorizon in<br />

soil <strong>of</strong> Asmena Highlands, Lithuania. Nordiska föreningen för<br />

lerforskning. Meddelande (14), (14),8–12. 8–12.<br />

Vareikiene, Olga; Marmo, Jukka; Kadunas, Valentinas; Lindqvist,<br />

Kristian <strong>2003</strong>. Mineral mode <strong>of</strong> occurrence <strong>of</strong> selected<br />

elements in the fine fraction <strong>of</strong> soil (horizon A1) <strong>of</strong> Asmena<br />

Highlands, Lithuania. Geologija Geologija(42),9–18. (42), 9–18.<br />

Vareikiene, Olga; Lehtonen, Marja <strong>2004</strong>. Heavy minerals in<br />

the study <strong>of</strong> soil : techniques, their limitations and advantages.<br />

Geologija (46), 1–7.<br />

Veski, Siim; Seppä, Heikki; Ojala,Antti E. K. <strong>2004</strong>. Cold event<br />

at 8200 yr B.P. recorded in annually laminated lake sediments in<br />

eastern Europe. Geology Geology32(8), 32 (8), 681–684.<br />

Vesterbacka, P.; Mäkeläinen, I.; Tarvainen, T.; Hatakka, T.;<br />

Arvela,H.<strong>2004</strong>.Kaivovedenluonnollinenradioaktiivisuus–otantatutkimus2001.Abstract:Naturalradioactivityinprivatewellsin<br />

Abstract:Naturalradioactivityinprivatewellsin<br />

<strong>Finland</strong> – a representative survey 2001 . STUK-A 199. 51 p.<br />

Viana, R. R.; Mänttäri, I.; Kunst, H.; Jordt-Evangelista, H.<br />

<strong>2003</strong>. Age Age<strong>of</strong>pegmatitesfrom <strong>of</strong> pegmatites from eastern easternBrazil Brazil and andimplications<strong>of</strong><br />

implications <strong>of</strong><br />

mica intergrowths on cooling rates and age calculations. Journal<br />

<strong>of</strong> South American Earth Sciences 16 (6), 493–501.<br />

Virtanen, Kimmo; Herranen, Teuvo <strong>2003</strong>. Piippolassa tutkitut<br />

suot ja niiden turvevarat. Osa 2. Abstract: The mires and peat<br />

reserves in the municipality <strong>of</strong> Piippola, central <strong>Finland</strong>. Part<br />

99


<strong>Geological</strong> <strong>Survey</strong> <strong>of</strong> <strong>Finland</strong>, Special Paper 38<br />

Papers published by <strong>Geological</strong> survey <strong>of</strong> <strong>Finland</strong> staff in <strong>2003</strong>-<strong>2004</strong><br />

2. Geologian tutkimuskeskus. Turvetutkimusraportti 344. 78 p.<br />

+ 4 app.<br />

Virtanen, Kimmo; Hänninen, Pekka; Kallinen, Riitta-Liisa;<br />

Vartiainen, Sirkka; Herranen, Teuvo; Jokisaari, Ritva <strong>2003</strong>.<br />

Suomen turvevarat 2000. Summary: The peat reserves <strong>of</strong> <strong>Finland</strong><br />

in 2000. Geologian tutkimuskeskus. Tutkimusraportti 156 .101 . 101<br />

p. + 7 app.<br />

Virtanen, Kimmo; Kallinen, Riitta-Liisa; Herranen, Teuvo<br />

<strong>2003</strong>. Alavieskassa tutkitut suot ja niiden turvevarat. Abstract:<br />

The mires and peat reserves in the municipality <strong>of</strong> Alavieska,<br />

western <strong>Finland</strong>. Geologian tutkimuskeskus. Turvetutkimusra-<br />

Turvetutkimusraportti<br />

345. 47 p. + 4 app.<br />

Virtanen, Kimmo <strong>2004</strong>. Arseeni Pohjois-Pohjanmaan soiden<br />

turvekerrostumissa.Summary:ArsenicinpeatintheOstrobothnian<br />

Summary:ArsenicinpeatintheOstrobothnian<br />

area, northern <strong>Finland</strong>. In:Loukola-Ruskeeniemi,K.&Lahermo,<br />

In: Loukola-Ruskeeniemi, K. & Lahermo,<br />

P. (eds.) Arseeni Suomen luonnossa, ympäristövaikutukset ja<br />

riskit. Espoo: Geologian tutkimuskeskus, 51–58.<br />

Virtanen, Kimmo <strong>2004</strong>. Peat geological surveys and peat resources<br />

in <strong>Finland</strong>. Peatlands International (2), 40–41.<br />

Virtanen,Kimmo;Lerssi,Jouni<strong>2004</strong>.Airbornegammaradiation<br />

data : use <strong>of</strong> peat thickness estimation. In: Lappalainen, E. (ed.)<br />

Vitality and peace <strong>of</strong> mind from Great Teuravuoma aapa mire :<br />

post congress excursion to Lapland, 11–16 June, <strong>2004</strong>, 50–51.<br />

Virtasalo,Joonas;Kotilainen,Aarno<strong>2004</strong>.Trackingpost-glacial<br />

Trackingpost-glacial<br />

environmentalchange in theArchipelago Sea using biogenic sediment<br />

structures. In: Puura, I., Tuuling, I. & Hang, T. (eds.) The<br />

Baltic : the Eighth Marine <strong>Geological</strong> Conference, September<br />

23–28, <strong>2004</strong>, Tartu, Estonia : abstracts, excursion guide. Tartu:<br />

University <strong>of</strong> Tartu, Institute <strong>of</strong> Geology, 59.<br />

Vuollo, J. I.; Huhma, H.; Stepanov, V.; Fedotov, G. 2002.<br />

Geochemistry and Sm-Nd isotope studies <strong>of</strong> a 2.45 Ga dyke<br />

swarm : hints at parental magma composition and PGE potential<br />

to Fennoscandian layered intrusions. In: Boudreau, A. (ed.) 9th<br />

International Platinum Symposium, 21–25 July, 2002, Billings,<br />

Montana, USA: extended abstracts. Billings, MT: Duke University,<br />

469–470.<br />

Vuori, Saku K. <strong>2004</strong>. Petrogenesis Petrogenesis<strong>of</strong>theJurassicgabbroicin-<br />

<strong>of</strong> the Jurassic gabbroic in-<br />

trusions <strong>of</strong> Vestfjella, Dronning Maud Land,Antarctica. Helsinki:<br />

University <strong>of</strong> Helsinki. 102 p.<br />

Weihed, Pär; Bergman Weihed, Jeanette; Sorjonen-Ward, Peter<br />

100<br />

<strong>2003</strong>. Structural evolution <strong>of</strong> the Björkdal gold deposit, Skellefte<br />

district, northern Sweden : implications for early Proterozoic mesothermal<br />

gold in the late stage <strong>of</strong> the Svecokarelian orogen. In:<br />

Sundblad, K. & Cook, N. J. (eds.) Agroup <strong>of</strong> papers devoted to<br />

the metallogeny <strong>of</strong> gold in the Fennoscandian Shield. Economic<br />

Geology 98 (7), 1291–1309.<br />

Weihed, Pär; Eilu, Pasi <strong>2003</strong>. Gold, Fe oxide-Cu-Au and VMS<br />

metallogeny <strong>of</strong> the Fennoscandian Shield. In:Eliopoulos,D.G....<br />

In: Eliopoulos, D. G. ...<br />

[et al.] (eds.) Mineral exploration and sustainable development :<br />

proceedings<strong>of</strong>theSeventhBiennialSGAMeeting,Athens,Greece,<br />

24–28 August <strong>2003</strong>. Vol. 2. Rotterdam: Millpress, 1123–1126.<br />

Weihed, Pär (ed.); Eilu, Pasi (ed.) <strong>2003</strong>. FeOx-Cu-Au, VMS,<br />

and orogenic gold deposits in light <strong>of</strong> the tectonic evolution <strong>of</strong><br />

the Fennoscandian Shield. In:Eliopoulos,D.G.... In: Eliopoulos, D. G. ... [etal.](eds.)<br />

[et [etal.](eds.) al.] (eds.)<br />

Mineral exploration and sustainable development : proceedings<br />

<strong>of</strong> the Seventh Biennial SGA Meeting, Athens, Greece, 24–28<br />

August <strong>2003</strong>. Vol. 2. Rotterdam: Millpress, 1055–1130.<br />

Werme, Lars; King, Fraser;Ahonen, Lasse; Taxén, Claes; Vuo -<br />

rinen, Ulla <strong>2004</strong>. KBS-TR-90 twenty-five years on – progress in<br />

the understanding <strong>of</strong> the long-term corrosion behaviour <strong>of</strong> copper<br />

canisters. In: Oversby, V. M. & Werme, L. O. (eds.) Scientific<br />

Basis for Nuclear Waste Management XXVII. Symposium held<br />

June 15–19, <strong>2003</strong>, Kalmar, Sweden. Materials <strong>Research</strong> Society<br />

symposium proceedings 807, 417–422.<br />

Werner, S. C.; Plado, J.; Pesonen, L. J.; Janle, P.; Elo, S. 2002.<br />

Potential fields and subsurface models <strong>of</strong> Suvasvesi North impact<br />

structure, <strong>Finland</strong>. In: Aubourg, C. ... [et al.] (eds.) Rock magnetism<br />

and its applications. Physics and Chemistry <strong>of</strong> the Earth 27<br />

(25–31), 1237–1245.<br />

Yakhnin,E.Ya.;Tomilina,O.V.; Chekushin,V. A.;Salminen,R.<br />

<strong>2003</strong>. Sravnitel’nyj analiz dannyh o sostave atmosfernyh osadkov<br />

i sneznogo pokrova na territorii Leningradskoj oblasti i Ûgo-vostocnoj<br />

Finlândii i utocnenie parametrov atmosfernogo vypadeniâ<br />

tâzelyh metallov. Ekologiceskaâ himiâ 12 (1), 1–12.<br />

Yli-Halla, Markku; Talkkari, Ari; Nyholm, Rainer; Nevalainen,<br />

Raimo; Lerssi, Jouni; Väänänen, Tapio; Tamminen, Pekka;<br />

Starr, Michael <strong>2003</strong>. Numeerinen Suomen maannostietokanta<br />

mittakaavassa 1:250 000 – pilottihanke. Abstract: Abstract:Georeferenced<br />

Georeferenced<br />

soil database <strong>of</strong> <strong>Finland</strong> at scale 1:250,000 – pilot project. MTT:n<br />

selvityksiä 44. 52 p. + 1 app.


Tätä julkaisua myy Denna publikation säljes av This publication can be obtained<br />

from<br />

GEOLOGIAN GEOLOGISKA GEOLOGICAL SURVEY<br />

TUTKIMUSKESKUS (GTK) FORSKNINGSCENTRALEN (GTK) OF FINLAND (GTK)<br />

Julkaisumyynti Publikationsförsäljning Publication sales<br />

PL 96 PB 96 P.O. Box 96<br />

02151 Espoo 02151 Esbo FI-02151 Espoo, <strong>Finland</strong><br />

( 020 550 11 ( 020 550 11 ( +358 20 550 11<br />

Telekopio: 020 550 12 Telefax: 020 550 12 Telefax: +358 20 550 12<br />

GTK, Kuopion yksikkö GTK, Kuopio enhet GTK, Kuopio Unit<br />

Kirjasto Biblioteket Library<br />

PL 1237 PB 1237 P.O. Box 1237<br />

70211 Kuopio 70211 Kuopio FI-70211 Kuopio, <strong>Finland</strong><br />

( 020 550 11 ( 020 550 11 ( +358 20 550 11<br />

Telekopio: 020 550 13 Telefax: 020 550 13 Telefax: +358 20 550 13<br />

GTK, Rovaniemen yksikkö GTK, Rovaniemi enhet GTK, Rovaniemi Unit<br />

Kirjasto Biblioteket Library<br />

PL 77 PB 77 P.O. Box 77<br />

96101 Rovaniemi 96101 Rovaniemi FI-96101 Rovaniemi, <strong>Finland</strong><br />

( 020 550 11 ( 0 20 550 11 ( +358 20 550 11<br />

Telekopio: 020 550 14 Telefax: 020 550 14 Telefax: +358 20 550 14<br />

E-mail: info@gtk.fi ISBN 951-690-916-7<br />

WWW-address: www.gtk.fi ISSN 0782-8535<br />

9789516 909168

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!