E], 1OD - Pmf

E], 1OD - Pmf E], 1OD - Pmf

web.math.pmf.unizg.hr
from web.math.pmf.unizg.hr More from this publisher
20.02.2013 Views

25. Numerical Interpolation, Differentiation, and Integration PHILIP J. DAVIS AND IVAN POLONSKY * Contente Formulas 25.1. Differences . . . . . . . . . . . . . . . . . . . . . . 25.2. Interpolation . . . . . . . . . . . . . . . . . . . . . 25.3. Differentiation . . . . . . . . . . . . . . . . . . . . 25.4. In tepa tion . . . . . . . . . . . . . . . . . . . . . . 25.5. Ordinary Differential Equations . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 25.1. +Point Lagrangian Interpolation Coefficients (3 In IS) . . n=3,4,p=- [“;‘I - (.01) E], Exact n=5, 6, p=-p$] (.01) E], 10D n=7,8, p=- pi1] - (.1) E], 1OD Table 25.2. +Point coefficients for k-th Order Daerentiation (15kI5) . . . . . . . . . . . . . . . . . . . . . . . . . . k=1, n=3(1)6, Exact k=2(1)5, n=k+1(1)6, Exact Table 25.3. n-Point Lagrangian Integration Coe5cients (3 In 510) . . n=3(1)10, Exact Table 25.4. Abscissae and Weight Factors for Gaussian Integration (2In596). . . . . . . . . . . . . . . . . . . . . . . . . . n=2(1)10, 12, 15D n= 16(4)24(8)48(16)96, 21D Table 25.5. Abscissas for Equal Weight Chebyshev Integration (21n59) . . . . . . . . . . . . . . . . . . . . . . . . . . n=2(1)7, 9, 10D Table25.6. Abscissae and Weight Factors for Lobatto Integration (3 5nI 10). . . . . . . . . . . . . . . . . . . . . . . . . . n=3(1)10, 8-10D Table 25.7. Abscissas and Weight Factors for Gaussian Integration for Integrands with a Logarithmic Singularity (25n54) . . . . . n=2(1)4, 6D National Bureau of Standards. * National Bureau of Standards. (Preaently, Bell Tel. Labe., Whippeny, N.J.1 Pege 877 878 882 885 896 898 900 914 915 916 920 920 920 876

25. Numerical Interpolation, Differentiation,<br />

and Integration<br />

PHILIP J. DAVIS AND IVAN POLONSKY *<br />

Contente<br />

Formulas<br />

25.1. Differences . . . . . . . . . . . . . . . . . . . . . .<br />

25.2. Interpolation . . . . . . . . . . . . . . . . . . . . .<br />

25.3. Differentiation . . . . . . . . . . . . . . . . . . . .<br />

25.4. In tepa tion . . . . . . . . . . . . . . . . . . . . . .<br />

25.5. Ordinary Differential Equations . . . . . . . . . . . . .<br />

References . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Table 25.1. +Point Lagrangian Interpolation Coefficients (3 In IS) . .<br />

n=3,4,p=- [“;‘I - (.01) E], Exact<br />

n=5, 6, p=-p$] (.01) E], 10D<br />

n=7,8, p=- pi1] - (.1) E], <strong>1OD</strong><br />

Table 25.2. +Point coefficients for k-th Order Daerentiation<br />

(15kI5) . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

k=1, n=3(1)6, Exact<br />

k=2(1)5, n=k+1(1)6, Exact<br />

Table 25.3. n-Point Lagrangian Integration Coe5cients (3 In 510) . .<br />

n=3(1)10, Exact<br />

Table 25.4. Abscissae and Weight Factors for Gaussian Integration<br />

(2In596). . . . . . . . . . . . . . . . . . . . . . . . . .<br />

n=2(1)10, 12, 15D<br />

n= 16(4)24(8)48(16)96, 21D<br />

Table 25.5. Abscissas for Equal Weight Chebyshev Integration<br />

(21n59) . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

n=2(1)7, 9, 10D<br />

Table25.6. Abscissae and Weight Factors for Lobatto Integration<br />

(3 5nI 10). . . . . . . . . . . . . . . . . . . . . . . . . .<br />

n=3(1)10, 8-10D<br />

Table 25.7. Abscissas and Weight Factors for Gaussian Integration<br />

for Integrands with a Logarithmic Singularity (25n54) . . . . .<br />

n=2(1)4, 6D<br />

National Bureau of Standards.<br />

* National Bureau of Standards. (Preaently, Bell Tel. Labe., Whippeny, N.J.1<br />

Pege<br />

877<br />

878<br />

882<br />

885<br />

896<br />

898<br />

900<br />

914<br />

915<br />

916<br />

920<br />

920<br />

920<br />

876


876<br />

NUMERICAL ANALYSIS<br />

Table 25.8. Abscissae and Weight Factors for Gaussian Integration of<br />

Momenta (1 SnS8). . . . . . . . . . . . . . . . . . . . . .<br />

Page<br />

921<br />

k=0(1)5, n=1(1)8, 10D<br />

Table 25.9. Abscissae and Weight Factors for Laguerre Integration<br />

(2SnS15). . . . . . . . . . . . . . . . . . . . . . . . . . 923<br />

n=2(1)10, 12, 15, 12D or S<br />

Table 25.10. Abscissae and Weight Factors for Hermite Integration<br />

(2Sn120). . . . . . . . . . . . . . . . . . . . . . . . . . 924<br />

n=2(1)10, 12, 16, 20, 13-15D or S<br />

Table 25.11. Coefficienta for Filon’a Quadrature Formula (0 5e-g 1) . , 924<br />

e=o(.oi).i (.1) 1 , 8D


25. Numerical Interpolation, Differentiation, and Integration<br />

Numerical analyste have a tendency to ac-<br />

cumulate a multiplicity of tools each designed for<br />

highly specialized operations and each requiring<br />

special knowledge to use properly. From the<br />

vast stock of formulas available we have culled<br />

the present selection. We hope that it will be<br />

useful. As with all such compendia, the reader<br />

may miss his favorites and find others whose<br />

utility he thinks is marginal.<br />

We would have liked to give examplea to<br />

illuminate the formulas, but this haa not been<br />

feasible. Numerical analysis is partially a ecience<br />

and partially an art, and short of writing a text-<br />

book on the subject it has been imposeible to<br />

indicate where and under what circumstances the<br />

various formulas are useful or accurate, or to<br />

elucidate the numerical difficulties to which one<br />

might be led by uncritical use. The formulas are<br />

therefore issued together with a caveat against<br />

their blind application.<br />

mainders.<br />

25.1.1<br />

Formulas<br />

25.1. Dif€emncea<br />

Forwud DiiTerencea<br />

bk=~$:(.--~) if n and k am of same parity.<br />

Forward Diferencu Central Dif.tncsr<br />

25.1.3<br />

25.1.4<br />

2-1 f-1<br />

Divided Mfllerencxm<br />

877


878 NUMERICAL ANALYSIS<br />

25.1.6 where *n(Z)=(Z-%) (Z-ZI) . . . (Z-zn)<br />

and r:(z) is ita derivative:<br />

25.1.7<br />

*:(z&)= (zt-5) . * * (z&-zt-l)(Zt-zt+l)<br />

. . . (zt-z.)<br />

Let D be a simply connected domain with a<br />

piecewise smooth boundary C and contain the<br />

points a, . . ., zn in its interior. Let f(z) be<br />

qalytic in D and continuous in D+C. Then,<br />

25.1.10<br />

25.1.11<br />

25.1.12<br />

Reciprocal DHenncea<br />

25.2.3<br />

25.2.4<br />

25.2.5<br />

Remainder in Lagrmqe Interpolation Formula<br />

The conditions of 25.1.8 are assumed here.<br />

For n odd, (-; (n-l)Skl 3 1 (n-1)).<br />

25.2.7<br />

25.2.8<br />

k has the same range aa in 25.2.6.<br />

n even.<br />

n odd.<br />

(s


25.2.11<br />

wange Three Point Interpolation Formula<br />

f(zo+~h)=A-if-i+Aofo+Alfi+R2<br />

25.2.12<br />

Rib) .065hy(€) = .065Aa (IpI 5 1)<br />

Lagrange Four Point Interpolation Formula<br />

25.2.13<br />

f (&+ph)=A-i f-i+Aojo+Ai fi+Ao fa+Ra<br />

-P(P--l) (P--2)f-l+(p’--1)(P--2)fo<br />

k<br />

6 2<br />

NUMERICAL ANALYSIS 879<br />

25.2.18 R&)<br />

.0049hyce)(€) = .0049Ae (O


880 NUMERICAL ANALYSIS<br />

25.2.24<br />

Taylor Erplnaion<br />

25.2.25 R,,=J:f(n+l) (t) @=$ dt<br />

(For r,, see 25.1.6.)<br />

25.2.28<br />

(zo


f ( + ~ ph) = (1 - p )jo +pji + E&. o +F&, 1<br />

+ E4%, O+F4$. 1 +<br />

25.2.44 8:s 6'- .0131266+ .004368-.001610<br />

25.2.45 6&= 9- .278276'+ .06856'- .01661°<br />

25.2.% R = .00000083lp$,l+ .00000946'<br />

25.2.47<br />

-1's Formula With Throwback<br />

f(2o +ph) = (1 -p>jo+pj1+ Bz (6:. 0 + 6;. 1)<br />

P(P-1) (P-))<br />

+B36;+RJ B2=pv~ B3- 6<br />

1<br />

f (x) "2 s+& (ak cos kx+bk sb kz)<br />

k-1<br />

25.2.54 m=2n+l<br />

25.2.55 m=2n<br />

(k=OJIJ. . .,n)<br />

b, is arbitrary.<br />

(k=OJlJ. . .Jn-l)<br />

Subtabulation<br />

(k=OJ1,. . ,Jn)<br />

Let j(x) be tabulated initially in intervals of<br />

width h. It is desired to subtabulate j(z) in<br />

intervals of width h/m. Let A and designate<br />

differences with respect to the original and the<br />

h<br />

ha1 intervals respectively. Thus &=j (z,,+z)<br />

-j(;co). Assuming that the original 5* order<br />

differences are zero<br />

25.2.56<br />

(1 - m) (1 -2m) (1 - 3m)<br />

+ 24m4<br />

From this information we may construct the b al<br />

tabulation by addition. For m= 10,<br />

25.2.57<br />

-<br />

-<br />

&=.1&-.045&+.0285~-.02066~<br />

@=.01&-.009&+.007725a - g=.OOl&- .00135G<br />

2=.OOO1g<br />

hear Inverse Interpolation<br />

Find p, given jp(=j(ro+ph)).<br />

25.2.58<br />

Linear<br />

At


882 NUMERICAL ANALYSIS<br />

25.2.59<br />

Quadratic Inverse Interpolation<br />

(f1- 2fo+f- l)P8 + (fl -f- l)P + 2 (fo-fp) = 0<br />

Inverse Interpolation by Revemion of !hries<br />

OD<br />

25.2.60 Given f(zo+ph) =fp=C akpk<br />

25.2.61<br />

25.2.62<br />

k=O<br />

p=h+C2h8+C3h3+ . . ., h=(fp-%)/$<br />

ca= -a~lai<br />

-a, 3a; 2l& 14at<br />

c5=-+>+---<br />

al ai a; ai +- at<br />

Inversion of Newton's Forward Difference Formula<br />

25.2.63<br />

%=fo<br />

ale&--+--- Ai @ %+<br />

G At+<br />

2 3 4 - . *<br />

cca=s-4 ..*<br />

a4=a+. % . .<br />

(Used in conjunction with 25.2.62.)<br />

25.2.64<br />

Inversion of Everett'r Formula<br />

%=jo<br />

s: s: s: 6'<br />

aI=s4---- +-+'+<br />

3 6 20 30<br />

. . .<br />

6: ff+<br />

aa=8-a - * .<br />

-s:+s: 4+s:<br />

%=6--<br />

24 +.a.<br />

Lagrange's Formula<br />

a4=a+ 4 . . .<br />

a,= ~<br />

-st+%+<br />

120 .-<br />

(Used in conjunction with 25.2.62.)<br />

25.2.65<br />

Bivariate Interpolation<br />

+<br />

Three Point Formula (Linear)<br />

f(zo+Ph,Yo+ n4 = (1 -P- n)fo. 0<br />

25.2.66<br />

Four Point Formula<br />

i-<br />

+PfL o+ do, 1 + OW)<br />

f (%+Ph,YO+ nk) = (1 -PI (1 - n)fo.o+P(1- nvi. o<br />

+ n(1 - Plfo, 1 +Pdl. 1 + W2)<br />

25.2.67<br />

25.3.1<br />

(See 25.2.1.)<br />

Six Point Formula<br />

25.3. Dmerentiation<br />

k=O


{ {<br />

25.3.3<br />

rn(z) d (*+I) )<br />

Rb(x)= (n+ fn+l) 1) ! (€>?rb(z) +(n+l)! &j (€<br />

t=t (%I (G


884<br />

NUMERICAL ANALYSIS<br />

25.3.22 I 25.3.26<br />

-- a&o-a (A<br />

1 a2.fo.0- 1<br />

1 -f- 1.1 +A, - 1 -f- 1. - 1) + 0(h2)<br />

25.3.23 25.3.27<br />

25.3.a<br />

a2f0 -3- O 1 ~f1,0-2f0.0+f-1,0~+0~h2~ a2f 0.0- - 1<br />

az2 h2<br />

-- a;?-& ~f1.1-~f0.I+f-l,l+f1.0-2f0.0+f~~.0<br />

+f1.-1--2fo, -I+f-l.-l,+O(h”><br />

Cfl.l-~l,-l-f-l.l+f-l. axay -,,+0(h2)<br />

a 2<br />

axay 212<br />

25.3.28<br />

--- a;+0- I& (-fa. 04- 1 6f1, o- 30f0, o -- a;$ ’-$<br />

+ w-~. o-j-2, o) + o(h41<br />

25.3.25 25.3.29<br />

cfi. o+f-1, o+ fo. 1 +fo. -1<br />

-2fo.o-f1.1-f-I. -1) +O(h2)<br />

cfa, 0-4f1, O+ 6f0. 0-4f-I, o+f-2. o) + 0 (h2)<br />

1 .-<br />

;f&-p ~fl,l+f-l,l+fl.-l+f-l.--l<br />

--2f1,,-2f -l,o-~fo,1-~fo,-l+~fo.o~+~~~B)


25.3.30<br />

acu acu<br />

V4%,0= (2 -+2 az’ay2+5do*o -<br />

NUMERICAL hNALYSIS<br />

Laplacian 25.3.33<br />

=p 1 [ ~0~0.0-~(~1,0+~0. Isu-l,o+%. -1)<br />

+2(UI,l+Ul, -l+~-l,l+~--I. -1)<br />

+ (%. 2+ u2. o+u-2. O+%. -2) 1 + 0(h2)<br />

25.4.4<br />

Modified Trapeeoidal Rule<br />

Jrf(z)dz=h [$’+fl+ . . . +fm-l+$]<br />

885<br />

h 1lm 6 (4) )<br />

+E [-f-1+f1+fm-1-fm+1l+720 hf (€


886 NUMERICAL ANALYSIS<br />

25.4.5<br />

25.4.6<br />

25.4.7<br />

Simpeon'e Rule<br />

Extended Simpn's Rule<br />

Euler-Maclaurin Summation Formula<br />

(For &k, Bernoulli numbers, see chapter 23.)<br />

If f(a+2)(z) and f("#)(z) do not change sign for<br />

q


25.4.20<br />

{ ~of(2Mz=- 5h<br />

299376<br />

16067Cf0+f10)<br />

t 1 06300 Cf1 +fo) - 48525 (f2 +fa) +272400 Cf8 +f71<br />

-26O55OCfi+fd +427368fsI<br />

- 1346350 f(12) (€)h13<br />

32691 8592<br />

25.4.21<br />

25.422<br />

25.4.23<br />

Newton-Cotes Formulas (Open 'bp)<br />

3h f(*) (€)ha<br />

J;f(2)d2=F (fI+f21+4<br />

28f (4) (4) h5<br />

[f(x)dz=$ (2f,-f2+2f3)+ 90<br />

~ f ( z ) ~ z = ~<br />

25.4.24<br />

NUMERICAL ANALYSIS 887<br />

95f4) (€)he<br />

(11f1+.f2+f3+llf4)+ 144<br />

6h<br />

cf(x)dz=s (1 1fi- 14j2+26fr 14f4 + 1 1fs)<br />

25.4.25<br />

+41f'"(€)h7<br />

140<br />

[f(X)d%=- 7h (6llf1-453f2+562f8+562j.<br />

1440<br />

5257<br />

-453f~+611f,)+~~~')(€)W<br />

25.4.26<br />

8h<br />

J;f(Z)dZ=- 945 (46Of1-954f2+2196f3-2459fr<br />

+2196fs-954f6+460f7)+~f(*)(~)hg 3956<br />

Five Point Rule for Analytic Functions<br />

25.4.27<br />

to+ ih<br />

J_:Df(z)dz=& {24f(z0) +4[f(z0+h) +f(zo-h)l<br />

-[f(zo+a) +f(zo--ih)] 1 +R<br />

147<br />

IRI S a 9 If'"(z)l, S designates the square<br />

withvertices zo+i'h(k=O, 1,2,3); hcan becomplex.<br />

Chebyahev's Equal Weight Integration Formula<br />

2 n<br />

25.4.28 J",j(x)dx=- c j(st> +En<br />

n 1-1<br />

Abscissas: 2, is the itb zero of the polynomial part<br />

of<br />

2s exp [------<br />

-n n<br />

n . . .]<br />

2.322 4-52 6-72'<br />

(See Table 25.5 for z,.)<br />

For n=8 and n210 some of the zeros are<br />

complex.<br />

Remainder :<br />

+1 %=+I<br />

- (n+l)<br />

( ~ 2<br />

R~=J-~ (n+ 1) ! f<br />

--<br />

2<br />

n(n+l>! 1-1<br />

2 2.+y(n+I) (€f 1<br />

where (=€(d satisfies OIEIs and O l E t l s<br />

(i=l, . . . ,n)<br />

Integration Formulas of Gaussian Type<br />

(For Orthogonal Polynomials see chapter 22)<br />

Gaud Formula<br />

1<br />

2504.29 J-lj(~)d~=~<br />

a= 1 wij(zt)+Rn<br />

Related orthogonal polynomials: Legendre poly-<br />

nomials Pn(z) 9 Pn(l)=l<br />

Abscissas: x, is the ith zero of Pn(x)<br />

Weights : w, = 2/( 1 - 8) [Pn ( 2, ,I2<br />

(See Table 25.4 for z1 and w,.)<br />

22n+1 (n!) 4<br />

'n=(2n+i) [(24!13<br />

f(2n)(€) (-1


888 NUMERICAL ANALYSIS<br />

Related orthogonal polynomials: Pn(z), Pn(l)= 1<br />

Abscissas: z( is the i" zero of P,(Z)<br />

Weights: wt=2/(1 -$) [P:(zt)I2<br />

25.4.31<br />

Related polynomials:<br />

Radau's Integration Formula<br />

Abscissas: xf is the im zero of<br />

Weights:<br />

Remainder:<br />

25.4.32<br />

Pn-l(z)+Z'n(d<br />

z+1<br />

1 1-zt - 1 1<br />

[Pn4(zt)]2 1-z: [PL(zt)I2<br />

wf=2<br />

Lobatto's Integration Formula<br />

Related polynomials: P:-l(z)<br />

Abscissas: zr is th6 (i-lPzero of P:,,(z)<br />

Weights:<br />

2<br />

W{= (X'P f 1)<br />

n(n- 1) [Pn- 1 ( 4 I'<br />

(See Table 25.6 for z: and wi.9<br />

Remainder:<br />

Related orthogonal polynomials:<br />

(21 =&~ZGRP~~O) (1-22)<br />

(For the Jacobi polynomials P!". O' see chapter 22.)<br />

Abscissas:<br />

Weights:<br />

zt is the i" zero of q,,(z)<br />

(See Table 25.8 for zt and wt.)<br />

Remainder :<br />

25.4.34<br />

Related orthogonal polynomials:<br />

Abscissas: zt=l-[j where is the im positive<br />

zero of P2n+l(z).<br />

Weights: ~,=2[jw:~"+~) where w12"+') are the<br />

Gaussian weights of order 2n+l.<br />

Remainder :<br />

25.4.35<br />

yt=a+ (b-ulzt<br />

Related orthogonal polynomials:<br />

1<br />

JCi<br />

-p2n+1 (G), ~2,+1(1)=1<br />

Abscissas: x,=l-tj where is the itb positive<br />

zero of P2,,+l(z).<br />

Weights: ~~=2[:w/*~+l) where ~i("+~)<br />

Gaussian weights of order 2n+ 1.<br />

are the<br />

&


Related orthogonal polynomials:<br />

-<br />

~2~ (Jl-x), P2n(1)=1<br />

Abscissas: xi=l-t: where ti is the i" positive<br />

zero of PZn (x) .<br />

Weights: wf=2wjZn) wiZn) are the Gaussian weights<br />

of order 2n.<br />

Remrticder :<br />

25.4.37 ey<br />

dy=dca 2 i-1 wJ(yt) +Rn<br />

yf=a+ (b-ah<br />

Related orthogonal polynomials:<br />

-<br />

Pzn (41 - z) ,P2n (1) = 1<br />

Abscissas:<br />

xi=l-t: where tf is the it" positive zero of PZn(x).<br />

2L4.41<br />

Weights: w,=~w/~~) wjZn' are the Gaussian weights<br />

of order 2n.<br />

25.4.38 fo dx=x wi j(xf) +R,<br />

n<br />

-1 JiZ 1-1<br />

Related orthogonal polynomials: Chebyshev Poly-<br />

nomials of First Kind<br />

Abscissas:<br />

Xt=COS<br />

(2i- 1)r<br />

2n<br />

b+a b--a<br />

Yi=-+-x* 2 2<br />

Related orthogonal polynomials:<br />

Tn (2) t Tn (1) =F<br />

1<br />

NUMERICAL ANALYSIS 889<br />

Bbscissas:<br />

Weights:<br />

25.4.40<br />

(2i-1)r<br />

xf=cos<br />

2n<br />

r<br />

Wac-<br />

n<br />

Related orthogonal polynomials: Chebyshev Polynomials<br />

of Second Kind<br />

sin [(n+l) arccos x] *<br />

un(x)= sin (arccos x)<br />

Abscissas:<br />

i<br />

x*=cos - r<br />

n+ 1<br />

*<br />

Weights:<br />

r<br />

wi=- sinZ<br />

i<br />

-<br />

n+l n+l<br />

*<br />

Remainder:<br />

(2%) !22n+1 f""'(t) (-1


890<br />

Related orthogonal polynomials:<br />

Abscissas:<br />

Weights:<br />

2i-1 r<br />

x: =cos2 - * -<br />

2n+l 2<br />

2r<br />

w:=2n+l z:<br />

Related orthogonal polynomials: polynomials or-<br />

thogonal with respect the weight function --In z<br />

Abscissas: See Table 25.7<br />

Weights: See Table 25.7<br />

25.4.45<br />

Related orthogonal polynomials: Laguerre polynomials<br />

Ln(z).<br />

Abscissas: z: is the i* zero of Ln(Z)<br />

Weights:<br />

*<br />

'Zr<br />

wi= (~+~)TL+~(s:)I*<br />

(See Table 25.9 for xf and wt.)<br />

Remainder:<br />

25.4.46<br />

Related orthogonal polynomials: Hermite polynomials<br />

Hn(z).<br />

Abscissas: z: is the it" zero of Hn(z)<br />

Weights:<br />

2"-Ln! 6<br />

n2[Hn - 1(zd l2<br />

(See Table 25.10 for zf and toc.)<br />

*See page 11.<br />

NUMERICAL ANALYSIS<br />

Remainder:<br />

25.4.47<br />

n! Jr<br />

Rn=-<br />

2"(2n)! f""(€> (-


25.4.56 S2n-1=gf2f-1<br />

sin (tx2f-l)<br />

I= 1<br />

n<br />

25-4-57 C~,-~=~j$?.~ I= 1 COS (t22f-1)<br />

1 1 2Tn nn<br />

"> m<br />

- J ~(X,Y)G%=- C f(h COS mj h sin -<br />

2uh r 2m 12-1<br />

Circle C: i+ y2< ha.<br />

25.4.61<br />

1<br />

uh2 - JJ c f(x,Y)d;rdy=k i- 1 wJ(z*,yJ+R<br />

+0(hh"-2<br />

(Xf, Y i) wi<br />

(020) 112 ~=0(h4)<br />

(hh,O), (0,fh) 1/8<br />

Or, Y 3 wi<br />

(090) \12<br />

(fh,O) 1/12 ~=0(h4)<br />

(fz'fzJ3) h h 1/12


(xi, Yf) Wt<br />

(OJ 'I 1 /6<br />

(fh,O) 1/24 R=O(h6)<br />

(xt, Vi) Wi<br />

(0,O) 1/9<br />

(J6-lh ,,%!,Js-Ih sin 2Tk IS+&<br />

10 10 10 i.) 360<br />

-<br />

('"' * ' 'J1o)<br />

(.,/!I!$h~~~,$+AhsinM 10 IS-&<br />

10 10 -) 360<br />

R=O(h'')<br />

Square' S: lxllh,JY!Sh<br />

25.4.62<br />

1<br />

4h >JJf('J ?/)dsdy=& i=1 WJ(xf,Y


(A4 h,-+4 h) 251324<br />

h’<br />

G+1<br />

1200<br />

R = O(h6)<br />

47)<br />

4<br />

(Xf, YO<br />

I<br />

Wf<br />

((-F)h,O)<br />

1554-G<br />

0 1 1200 ((fly)<br />

h,*(+-) m)<br />

C0,O)<br />

(h, 0)<br />

314<br />

1/12<br />

R=O(hs)<br />

Regular Hexagon H<br />

Radius of Circumscribed Circle=h<br />

(+$)<br />

1/12<br />

25.4.64<br />

1<br />

- JJj(x,Y)dzdy=k 1-1 WfAXf, Yf)+R<br />

?ahz 2 H<br />

(Zf ,Yf ) Wf<br />

(090) 21/36<br />

( AS’fZ h h d-3) 5/72 R=O(h4)<br />

(fh,O) 5/72


894 NUMERICAL ANALYSIS<br />

(xr,?/r, 23<br />

(f4 A, *& h,O)<br />

W#<br />

(*& ho, *& h) 1/15<br />

I (O,*&h,fdh) .- I<br />

(X#,Y#) 201<br />

( f h, 0,O)<br />

R=O(V)<br />

(0,O)<br />

(A+-&<br />

258/1008<br />

m) 125/1008 R=OW<br />

(0, *h, 0)<br />

((40, fh)<br />

1/30<br />

(fh<br />

-<br />

9 9 0) 125/1008<br />

Surface of Sphere 2: zZ+y2+z2=h*<br />

25.4965<br />

1<br />

Ssf(xt~,4d~=& frl w.f(x:,vt,Zd+R<br />

(X#,Yf, z,)<br />

(*& fg h, h, f & h)<br />

(*.&hf&h,O)<br />

(f .& h,O, f & h)<br />

'u)f<br />

27/840<br />

32/840 R=O(h*)<br />

(21, %, 23 wi<br />

(0, f & h, f & h)<br />

(fh,O, 0)<br />

(0, f h, 0) 40/840<br />

(090, f h)<br />

Sphere S: $+yP+z*


(Zc,Yr,Zr) Wt<br />

(O,O, 0) 2/5<br />

(fh,O,o) 1/10<br />

(0, fh,O) 1/10<br />

(O,O, &I&) 1/10<br />

Cube6 C: IzlSh<br />

(zt, Yt, zo wr<br />

(-+h,O,O) 1/6<br />

(0, fh,O) 1/6<br />

(O,O, *h) 1/6<br />

25.4.68<br />

& J$Jf(r,Y,z)ddYdz<br />

C<br />

IYl Sh<br />

IzlSn.<br />

~=0(h4)<br />

R=o(~*)<br />

1<br />

=- 360 [-496fm+128Cf,+8cf,+5cfo]+O(h~)<br />

25.4.69<br />

1<br />

=- 450 [91Cf1-4OCfe+ 1 6Cfd]+O(h6)<br />

where fm=f(o, 0, 0) .<br />

I see footnote to 26.4.62.<br />

cf,=sum of values off at the 6 points midway<br />

from the center of C to the 6 faces.<br />

cfr=sum of values off at the 6 centers of the<br />

faces of c.<br />

cfo=sum of values off at the 8 vertices of C.<br />

cfe=SUm of values off at the 12 midpoints of<br />

edges of C.<br />

cfd=sum of values off at the 4 points on the<br />

diagonals of each face at a distance of<br />

i&h from the center of the face.<br />

2<br />

25.470<br />

'$$Sf (w,<br />

V<br />

9-<br />

where<br />

zfo:<br />

cfe:<br />

Tetrahedron: F<br />

z)dzdydz=qj<br />

1 Cfw+z 9 CfY<br />

+terms of 4th order<br />

32 1 4<br />

=Gfm+% C f o + C~ f a<br />

V: Volume of T<br />

+terms of 4" order<br />

Sum of values of the function at the vertices<br />

of F.<br />

Sum of values of the function at midpoints<br />

of the edges of F.<br />

Sum of values of the function at the center<br />

of gravity of the faces of 5.<br />

fm: Value of function at center of gravity of T.<br />

CfY:


896<br />

25.5.1<br />

25.5.2<br />

25.5. Ordinary DiEerential Equations'<br />

First Order: y'=j(x, y)<br />

Point Slope Formula<br />

Y .+l 'Y .+ hY: + 0(h2)<br />

Y n+1 =yn--l+ 2hY:+ o(ha)<br />

Trapeddal Formula<br />

h<br />

25.5.3 Y,+l=y.+z (Y:+,+Y:) +o(m<br />

6 The reader is cautioned against possible instabilities<br />

especially in formulas 25.5.2 and 25.5.13. See, e.g.<br />

(25.1 1 I, [ 25.121.<br />

NuadERIcAL ANALYSIB


Systems of Differential Equations<br />

First Order: y’=f(r,y,z), z’=g(z,y,z).<br />

Second Order Runge-Kutta<br />

25.5.17<br />

1<br />

yn+l=yn+2 (k1+kz)+O(h3),<br />

1<br />

Zn+l=zn+S (h+&) +O(h3)<br />

NUMERICAL ANALYSIS 897<br />

Runge-Kutta Method<br />

25.5.20<br />

1<br />

Yn+l=Yn+h [y:+g (k,+kz+b> +O(h6)<br />

25.5.22 yn+,=yn+h<br />

*See page 11.<br />

Runge-Kutta Method<br />

1


898<br />

Texts<br />

(For textbooks on numerical analysis, see texts in<br />

chapter 3)<br />

[25.1] J. Balbrecht and L. Collats, Zur numerischen<br />

Auswertung mehrdimensionaler Integrale, Z.<br />

Angew. Math. Mech. 38, 1-15 (1958).<br />

[25.2] Berthod-Zaborowski, Le calcul des integrales de<br />

L1<br />

la forme: f(x) log x dx.<br />

NUMERICAL ANALYSIS<br />

References<br />

H. Mineur, Techniques de calcul numerique, pp.<br />

555-556 (Librairie Polytechnique Ch. BBranger,<br />

Paris, France, 1952).<br />

[25.3] W. G. Bickley, Formulae for numerical integration,<br />

Math. Gas. 23, 352 (1939).<br />

[25.4] W. G. Bickley, Formulae for numerical differentiation,<br />

Math. Gas. 25, 19-27 (1941).<br />

[25.5] W. G. Bickley, Finite difference formulae for the<br />

square lattice, Quart. J. Mech. Appl. Math., 1,<br />

35-42 (1948).<br />

[25.6] G. Birkhoff and D. Young, Numerical quadrature<br />

of analytic and harmonic functions, J. Math.<br />

Phys. 29,217-221 (1950).<br />

[25.7] L. Fox, The use and construction of mathematical<br />

tables, Mathematical Tables vol. I, National<br />

Physical Laboratory (Her Majesty’s Stationery<br />

Office, London, England, 1956).<br />

[25.8] S. Gill, Process for the step-by-step integration of<br />

differential equations in an automatic digital<br />

computing machine, Proc. Cambridge Philos.<br />

SOC. 47, 96-108 (1951).<br />

[25.9] P. C. Hammer and A. H. Stroud, Numerical<br />

evaluation of multiple integrals 11, Math.<br />

Tables Aids Comp. 12, 272-280 (1958).<br />

[25.10] P. C. Hammer and A. W. Wymore, Numerical<br />

evaluation of multiple integrals I, Math. Tables<br />

Aids Comp. 11.59-67 (1957).<br />

[25.11] P. Henrici, Discrete variable methods in ordinary<br />

differential equations (John Wiley & Sons, Inc.,<br />

New York, N. Y., 1961).<br />

[25.12] F. B. Hildebrand, Introduction to numerical<br />

analysis (McGraw-Hill Book Co., Inc., New<br />

York, N.Y., 1956).<br />

[25.13] 2. Kopal, Numerical analysis (John Wiley & Sons,<br />

Inc., New York, N.Y., 1955).<br />

[25.14] A. A. Markoff, DifTerensenrechnung (B. G.<br />

Teubner, Leipsig, Germany, 1896).<br />

[25.15] S. E. Mikeladze, Quadrature formulas for a regular<br />

function, SoobFrE. Akad. Nauk Grusin. SSR. 17,<br />

289-296 (1956).<br />

[25.16] W. E. Milne, A note on the numerical integration<br />

of differential equations, J. Research NBS 43,<br />

537-542 (1949) RP2046.<br />

[25.17] D. J. Panov, Formelsammlung zur numerischen<br />

Behandlung partieller Differentialgleichungen<br />

nach dem Differenzenverfahren (Akad. Verlag,<br />

Berlin, Germany, 1955).<br />

r25.181 E. Radau, &tudes sur les formules d’approximation<br />

qui servent B calculer la valeur d’une intBgrale<br />

dBfinie, J. Math. Pures Appl. (3) 6, 283-336<br />

(1880).<br />

[25.19] R. D. Richtmeyer, Difference methods for initial-<br />

value problems (Interscience Publishers, New<br />

York, N.Y., 1957).<br />

[25.20] M. Sadowsky, A formula for approximate com-<br />

putation of a triple integral, Amer. Math.<br />

Monthly 47, 539-543 (1940).<br />

[25.21] H. E. Salser, A new formula for inverse interpola-<br />

tion, Bull. Amer. Math. SOC. SO, 513-516<br />

(1944).<br />

[25.22] H. E. Salser, Formulas for complex Cartesian<br />

interpolation of higher degree, J. Math. Phys.<br />

28,200-203 (1 949).<br />

[25.23] H. E. Salser, Formula for numerical integration of<br />

first and second order differential equations in the<br />

complex plane, J. Math. Phys. 29, 207-216<br />

(1950).<br />

[25.24] H. E. Salser, Formulas for numerical differentia-<br />

tion in the complex plane, J. Math. Phys. 31,<br />

155-169 (1952).<br />

[25.25] A. Sard, Integral representations of remainders,<br />

Duke Math. J. 15,333-345 (1948).<br />

[25.26] A. Sard, Remainders: functions of several variables,<br />

Acta Math. 84,319-346 (1951).<br />

[25.27] G. Schulz, Formelsammlung sur praktischen<br />

Mathematik (DeGruyter and Co., Berlin,<br />

Germany, 1945).<br />

[25.28] A. H. Stroud, A bibliography on approximate<br />

integration, Math. Comp. 15, 52-80 (1961).<br />

[25.29] G. J. Tranter, Integral transforms in mathematical<br />

physics (John Wiley & Sons, Inc., New York,<br />

N.Y., 1951).<br />

[25.30] G. W. Tyler, Numerical integration with several<br />

variables, Canad. J. Math. 5, 393-412 (1953).<br />

Tablee<br />

[25.31] L. J. Comrie, Chambers’ six-figure mathematical<br />

tables, vol. 2 (W. R. Chambers, Ltd., London,<br />

England, 1949).<br />

[25.32] P. Davis and P. Rabinowits, Abscissa and weights<br />

for Gaussian quadratures of high order, J.<br />

Research NBS 56, 35-37 (1956) RP2645.<br />

[25.33] P. Davis and P. Rabinowits, Additional abscissas<br />

and weights for Gaussian quadratures of high<br />

order: Values for n=64, 80, and 96, J. Research<br />

NBS 60,613-614 (1958) RP2875.<br />

[25.34] E. W. Dijkstra and A. van Wijngaarden, Table<br />

of Everett’s interpolation coefficients (Elcelsior’s<br />

Photo-offset, The Hague, Holland, 1955).<br />

[25.35] H. Fishman, Numerical integration constants,<br />

Math. Tables Aids Comp. 11, 1-9 (1957).<br />

[25.36] H. J. Gawlik, Zeros of Legendre polynomials of<br />

orders 2-64 and weight coefficients of Gauss<br />

quadrature formulae, A.R.D.E. Memo (B) 77/58,<br />

Fort Halstead, Kent, England (1958).<br />

[25.37] Gt. Britain H.M. Nautical Almanac Office, Interpolation<br />

and allied tables (Her Majesty’s<br />

Stationery Office, London, England, 1956).


[25.38] I. M. Longman, Tables for the rapid and accurate<br />

numerical evaluation of certain infinite integrals<br />

involving Bessel functions, Math. Tables Aids<br />

Comp. 11, 166-180 (1957).<br />

[25.39] A. N. Lowan, N. Davids, and A. Levenson, Table<br />

of the zeros of the Legendre polynomials of<br />

order 1-16 and the weight coefficients for Gauss’<br />

mechanical quadrature formula, Bull. Amer.<br />

Math. soc.48, 739-743 (1942).<br />

[25.40] National Bureau of Standards, Tables of La-<br />

grangian interpolation Coefficients (Columbia<br />

Univ. Press, New York, N.Y., 1944).<br />

[25.41] National Bureau of Standards, Collected Short<br />

Tables of the Computation Laboratory, Tables<br />

of functions and of zeros of functions, Applied<br />

Math. Series 37 (U.S. Government Printing<br />

05ce, Washington, D.C., 1954).<br />

[25.42] P. Rabinowitz, Abscissas and weights for Lobatto<br />

quadrature of high order, Math. Tables Aids<br />

Comp. 69, 47-52 (1960).<br />

(25.431 P. Rabinowitz and G. Weiss, Tables of abscissas<br />

and weights for numerical evaluation of integrals<br />

of the form<br />

Math. Tables Aids Comp. 68, 285-294 (1959).<br />

NUMERICAL ANALYSIS 899<br />

[25.44] H. E. Salzer, Tables for facilitating the use of<br />

Chebyshev’s quadrature formula, J. Math.<br />

Phys. 26, 191-194 (1947).<br />

[25.45] H. E. Salzer and R. Zucker, Table of the zero8 and<br />

weight factors of the first fifteen Laguerre<br />

polynomials, Bull. Amer. Math. SOC. 55, 1004-<br />

1012 (1949).<br />

[25.46] H. E. Salzer, R. Zucker, and R. Capuano, Table of<br />

the zeros and weight factors of the first twenty<br />

Hermite polynomials, J. Research NBS 48,<br />

111-116 (1952) RP2294.<br />

[25.47] H. E. Salzer, Table of coefficients for obtaining the<br />

first derivative without differences, NBS Applied<br />

Math. Series 2 (U.S. Government Printing<br />

Office, Wmhington, D.C., 1948).<br />

[25.48] H. E. Salzer, Coefficients for facilitating trigonometric<br />

interpolation, J. Math. Phys. 27,274-278<br />

(1949).<br />

[25.49] H. E. Salzer and P. T. Roberson, Table of coefficients<br />

for obtaining the second derivative without<br />

differences, Convair-Astronautics, San Diego,<br />

Calif. (1957).<br />

[25.50] H. E. Salzer, Tables of osculatory interpolation<br />

coefficients, NBS Applied Math. Series 56<br />

(U.S. Government Printing Office, Washington,<br />

D.C., 1958).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!