20.02.2013 Views

Functional Significance of Cell Volume Regulatory Mechanisms

Functional Significance of Cell Volume Regulatory Mechanisms

Functional Significance of Cell Volume Regulatory Mechanisms

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

PHYSIOLOGICAL REVIEWS<br />

Vol. 78, No. 1, January 1998<br />

Printed in U.S.A.<br />

<strong>Functional</strong> <strong>Significance</strong> <strong>of</strong> <strong>Cell</strong> <strong>Volume</strong> <strong>Regulatory</strong> <strong>Mechanisms</strong><br />

FLORIAN LANG, GILLIAN L. BUSCH, MARKUS RITTER, HARALD VÖLKL,<br />

SIEGFRIED WALDEGGER, ERICH GULBINS,<br />

AND DIETER HÄUSSINGER<br />

Institute <strong>of</strong> Physiology, University <strong>of</strong> Tübingen, Tübingen; Department <strong>of</strong> Internal Medicine, University <strong>of</strong><br />

Düsseldorf, Düsseldorf, Germany; and Department <strong>of</strong> Internal Medicine and Institute <strong>of</strong> Physiology,<br />

University <strong>of</strong> Innsbruck, Innsbruck, Austria<br />

I. Introduction 248<br />

II. <strong>Cell</strong> <strong>Volume</strong> <strong>Regulatory</strong> <strong>Mechanisms</strong> 248<br />

A. Ions in steady-state maintenance <strong>of</strong> cell volume 249<br />

B. <strong>Volume</strong> regulatory ion transport 249<br />

C. Osmolytes 251<br />

D. Further metabolic pathways contributing to cell volume regulation 252<br />

III. Intracellular Signaling <strong>of</strong> <strong>Cell</strong> <strong>Volume</strong> Regulation 252<br />

A. Macromolecular crowding 253<br />

B. Cytoskeleton 253<br />

C. <strong>Cell</strong> membrane stretch 254<br />

D. <strong>Cell</strong> membrane potential 254<br />

E. Cytosolic pH 255<br />

F. Calcium 255<br />

G. G proteins 255<br />

H. Protein phosphorylation 256<br />

I. Chloride 257<br />

J. Magnesium 257<br />

K. Eicosanoids 257<br />

L. pH in acidic cellular compartments 258<br />

M. Gene expression 259<br />

IV. Challenges <strong>of</strong> <strong>Cell</strong> <strong>Volume</strong> Constancy 259<br />

A. Alterations <strong>of</strong> extracellular osmolarity 259<br />

B. Alterations <strong>of</strong> extracellular ion composition 260<br />

C. Energy depletion 261<br />

D. Ion transport altered by hormones and transmitters 261<br />

E. Substrate transport 261<br />

F. Metabolism 261<br />

G. Others 264<br />

V. Role <strong>of</strong> <strong>Cell</strong> <strong>Volume</strong> <strong>Regulatory</strong> <strong>Mechanisms</strong> in <strong>Cell</strong> Functions 264<br />

A. Erythrocyte function 264<br />

B. Epithelial transport 264<br />

C. Regulation <strong>of</strong> metabolism 266<br />

D. Receptor recycling 267<br />

E. Hormone and transmitter release 267<br />

F. Excitability and contraction 268<br />

G. Migration 269<br />

H. Pathogen host interactions 270<br />

I. <strong>Cell</strong> proliferation 271<br />

J. <strong>Cell</strong> death 272<br />

K. Others 273<br />

Lang, Florian, Gillian L. Busch, Markus Ritter, Harald Völkl, Siegfried Waldegger, Erich Gulbins, and<br />

Dieter Häussinger. <strong>Functional</strong> <strong>Significance</strong> <strong>of</strong> <strong>Cell</strong> <strong>Volume</strong> <strong>Regulatory</strong> <strong>Mechanisms</strong>. Physiol. Rev. 78: 247–306,<br />

1998.—To survive, cells have to avoid excessive alterations <strong>of</strong> cell volume that jeopardize structural integrity and<br />

constancy <strong>of</strong> intracellular milieu. The function <strong>of</strong> cellular proteins seems specifically sensitive to dilution and<br />

concentration, determining the extent <strong>of</strong> macromolecular crowding. Even at constant extracellular osmolarity,<br />

volume constancy <strong>of</strong> any mammalian cell is permanently challenged by transport <strong>of</strong> osmotically active substances<br />

0031-9333/98 $15.00 Copyright � 1998 the American Physiological Society<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev<br />

247


248<br />

LANG ET AL. <strong>Volume</strong> 78<br />

across the cell membrane and formation or disappearance <strong>of</strong> cellular osmolarity by metabolism. Thus cell volume<br />

constancy requires the continued operation <strong>of</strong> cell volume regulatory mechanisms, including ion transport across<br />

the cell membrane as well as accumulation or disposal <strong>of</strong> organic osmolytes and metabolites. The various cell<br />

volume regulatory mechanisms are triggered by a multitude <strong>of</strong> intracellular signaling events including alterations<br />

<strong>of</strong> cell membrane potential and <strong>of</strong> intracellular ion composition, various second messenger cascades, phosphorylation<br />

<strong>of</strong> diverse target proteins, and altered gene expression. Hormones and mediators have been shown to exploit<br />

the volume regulatory machinery to exert their effects. Thus cell volume may be considered a second message in<br />

the transmission <strong>of</strong> hormonal signals. Accordingly, alterations <strong>of</strong> cell volume and volume regulatory mechanisms<br />

participate in a wide variety <strong>of</strong> cellular functions including epithelial transport, metabolism, excitation, hormone<br />

release, migration, cell proliferation, and cell death.<br />

I. INTRODUCTION 236, 309, 336, 387–391, 395, 400, 604, 698, 763, 792, 852,<br />

970, 1121, 1138, 1168).<br />

With only few exceptions (416), the membranes <strong>of</strong> Instead, the discussion focuses on the significance<br />

animal cells are highly permeable to water (212, 776). <strong>of</strong> cell volume for the performance <strong>of</strong> mammalian cells.<br />

Animal cell membranes cannot tolerate substantial hydro- Moreover, the paper stresses recent developments. For a<br />

static pressure gradients, and water movement across more complete coverage <strong>of</strong> earlier literature, the reader<br />

those membranes is in large part dictated by osmotic pres- may refer to previous reviews on cell volume regulation<br />

sure gradients (406, 445, 608, 985, 1043). Thus any imbal- (114, 425, 539, 545, 682, 776, 778, 815, 817, 843, 911a, 971,<br />

ance <strong>of</strong> intracellular and extracellular osmolarity is paral- 1061, 1168), osmolytes (63, 142, 144, 370), and the role <strong>of</strong><br />

leled by respective water movement across cell mem- cell volume in regulation <strong>of</strong> cell function (495, 693).<br />

branes and subsequent alterations <strong>of</strong> cell volume. For various functions, experimental evidence point-<br />

As outlined below, most mammalian cells are bathed ing to the involvement <strong>of</strong> cell volume and cell volume<br />

in extracellular fluid with almost constant osmolarity. regulatory mechanisms is intriguing but far from conclu-<br />

Nevertheless, considerable alterations <strong>of</strong> extracellular os- sive. It is hoped that this review stimulates further experimolarity<br />

are encountered in a variety <strong>of</strong> diseases. Exces- mental effort in this exciting area <strong>of</strong> research to clarify<br />

sive alterations <strong>of</strong> extracellular osmolarity occur in kidney<br />

medulla during transition between antidiuresis and diuresis<br />

(63).<br />

the many remaining questions.<br />

Even at constant extracellular osmolarity, cell volume<br />

constancy is compromised by alterations <strong>of</strong> intracel-<br />

II. CELL VOLUME REGULATORY MECHANISMS<br />

lular osmolarity. A wide variety <strong>of</strong> metabolic pathways Rapid changes <strong>of</strong> cell volume are usually caused by<br />

leads to cellular formation or dissipation <strong>of</strong> osmotically<br />

active substances. Moreover, transport across the cell<br />

movement <strong>of</strong> water across the cell membrane (Jv), which<br />

is driven by a hydrostatic (Dp) and osmotic (Dp) pressure<br />

membrane modifies cellular osmolarity and thus cell gradient and depends on the hydraulic conductivity <strong>of</strong> the<br />

volume.<br />

To avoid excessive alterations <strong>of</strong> cell volume, cells<br />

cell membrane (Lp) have developed and utilize a multitude <strong>of</strong> volume regulatory<br />

mechanisms including transport across the cell mem-<br />

Jv Å Lp(Dp 0 Dp)<br />

brane and metabolism. These mechanisms are triggered<br />

by minute alterations <strong>of</strong> cell volume. They not only serve<br />

to readjust cell volume but pr<strong>of</strong>oundly modify a wide vari-<br />

ety <strong>of</strong> cellular functions. Thus cell volume is an integral<br />

Dp depends on the effective concentration difference<br />

across the cell membrane (Dc) and the reflection coefficient<br />

(s) for each solute i<br />

element within the cellular machinery regulating cellular<br />

performance.<br />

It is the aim <strong>of</strong> this review to illustrate the functional<br />

Dp Å RTSsiDci significance <strong>of</strong> cell volume. To this end, a description <strong>of</strong> where R and T are the gas constant and the absolute<br />

the volume regulatory mechanisms and the cellular func- temperature, respectively. Application <strong>of</strong> the equations<br />

tions sensitive to cell volume is followed by a discussion would require that the cytosol behaves as a dilute solu-<br />

<strong>of</strong> the role <strong>of</strong> cell volume in several integrated cell function. This is not entirely true, as discussed elsewhere in<br />

tions. detail (194–196, 357, 722). The cell membrane does not<br />

This review does not consider volume regulatory withstand hydrostatic pressure gradients exceeding 2 kPa<br />

mechanisms in prokaryotic cells or comparative aspects (445), which is equivalent to 1 mmol/l Dc. Even though<br />

<strong>of</strong> cell volume regulation, and the reader may refer to the interaction <strong>of</strong> the cell membrane with the cytoskeleton<br />

respective pertinent literature (84, 96, 128, 175, 225, 232, may allow the hydrostatic gradient to become larger (382,<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 249<br />

577, 828), the movement <strong>of</strong> water is mainly dictated by amino acids, or carbohydrate metabolites. The concentra-<br />

osmotic gradients across the cell membrane.<br />

tion <strong>of</strong> these substances is higher within the cells than in<br />

The Lp depends on the presence <strong>of</strong> water channels extracellular fluid. The excess cellular concentrations <strong>of</strong><br />

(aquaporins) in the cell membrane, a family <strong>of</strong> molecules, these organic substances are counterbalanced by lower<br />

which are inserted into the cell membrane and allow the intracellular ion concentration. Most cells extrude Na / in<br />

exchange for K / by the Na / -K / passage <strong>of</strong> water (6, 214, 270, 300, 349, 356, 494, 536,<br />

-ATPase. The cell mem-<br />

565, 773, 980). The aquaporins are especially important brane is only poorly permeable to Na / , and the exclusion<br />

<strong>of</strong> impermeable Na / in water transporting epithelia but may be expressed in<br />

outweighs the cellular osmolarity<br />

nonepithelial cells. Even though osmotically driven water created by impermeant organic solutes (double Donnan<br />

transport is an obvious requirement for osmotic cell swell- hypothesis; Refs. 721, 776). On the other hand, the cell<br />

ing and cell volume regulation, water movement across membrane is highly permeable to K / . The exit <strong>of</strong> K / cre-<br />

the cell membrane is rarely a limiting factor in cell volume<br />

ates an outside-positive cell membrane potential, which<br />

changes. Thus alterations <strong>of</strong> intra- or extracellular osmo- drives Cl 0 out <strong>of</strong> the cell. The low intracellular Cl 0 concen-<br />

larity are in general followed by the respective movements tration compensates for the excess intracellular concen-<br />

<strong>of</strong> water and alterations <strong>of</strong> cell volume. tration <strong>of</strong> organic substances.<br />

Inhibition <strong>of</strong> the Na / -K / <strong>Cell</strong> volume regulatory mechanisms are thus most<br />

-ATPase with ouabain evenconveniently<br />

disclosed by exposing cells to abrupt tually leads to cell swelling (see Table 2) because <strong>of</strong> dissipation<br />

<strong>of</strong> the Na / and K / changes <strong>of</strong> extracellular osmolarity. If cells are exposed<br />

gradients, depolarization <strong>of</strong> the<br />

to hypotonic extracellular fluid, they initially swell as cell membrane, and subsequent entry <strong>of</strong> Cl 0 into the cells<br />

(688, 779). However, inhibition <strong>of</strong> the Na / -K / more or less perfect osmometers but then approach the<br />

-ATPase<br />

original cell volume by so-called regulatory cell volume does not always lead to a rapid increase <strong>of</strong> cell volume,<br />

decrease (RVD). If cells are exposed to hypertonic extra- which may remain constant (407, 779, 924, 1039) or even<br />

cellular fluid, they initially shrink like almost perfect os- transiently decrease (16, 631, 919, 1131). A sequence <strong>of</strong><br />

events leading to cell shrinkage after inhibition <strong>of</strong> the Na / mometers but then may approach the original cell volume<br />

-<br />

by so-called regulatory cell volume increase (RVI). It K / -ATPase includes increase <strong>of</strong> intracellular Na / activity,<br />

reversal <strong>of</strong> Na / /Ca 2/ should be kept in mind, however, that exposure <strong>of</strong> cells<br />

exchange, increase <strong>of</strong> intracellular<br />

to anisotonic extracellular fluid does not only modify cell Ca 2/ activity, subsequent activation <strong>of</strong> Ca 2/ -sensitive K /<br />

volume but also the volume <strong>of</strong> intracellular organelles channels, hyperpolarization (despite decrease <strong>of</strong> intracel-<br />

such as mitochondria (969). Furthermore, in parallel to lular K / activity), and cellular KCl loss. Obviously, the<br />

cellular osmolarity, cellular ionic strength is altered even time required by ouabain to eventually cause cell swelling<br />

if extracellular ionic strength is kept constant. Thus the depends on Na / entry. In thick ascending limb (519, 520,<br />

sequelae <strong>of</strong> osmotic alterations <strong>of</strong> cell volume are not 1178) or diluting segment (444) <strong>of</strong> the nephron, for in-<br />

necessarily identical to the consequences <strong>of</strong> isotonic alter- stance, swelling can be delayed by inhibition <strong>of</strong> Na / -K / -<br />

2Cl 0 ations <strong>of</strong> cell volume.<br />

cotransport.<br />

Alterations <strong>of</strong> cell volume may be limited by con- Under the influence <strong>of</strong> ouabain, hepatocytes and re-<br />

straints from extracellular tissue, as shown for the brain nal cortical cells are apparently able to maintain their<br />

(1220), the heart (972), and renal proximal tubules (753, cell volume by electrolyte accumulation in intracellular<br />

755). More important, however, is the ability <strong>of</strong> cells to vesicles, which are subsequently expelled by exocytosis<br />

adjust intracellular osmolarity by ion movement across (1038, 1039, 1257–1260). The electrolyte accumulation is<br />

accomplished by a H / -ATPase in parallel to Cl 0 the cell membrane and by generation, breakdown, uptake,<br />

channels<br />

or release <strong>of</strong> organic substances. (1039). At least theoretically, a H / -ATPase in the plasma<br />

Ions contribute the bulk <strong>of</strong> intracellular (mainly K membrane could similarly maintain cell volume by creat-<br />

/ )<br />

and extracellular (mainly NaCl) osmolarity. Furthermore, ing a cell negative potential difference across the cell<br />

membrane, thus driving Cl 0 ions contribute some two-thirds to cell volume regulation<br />

after rapid alterations <strong>of</strong> extracellular osmolarity (331,<br />

extrusion.<br />

1266). Thus ion transport across the cell membrane is <strong>of</strong><br />

paramount importance for the regulation <strong>of</strong> cell volume.<br />

Largely because <strong>of</strong> volume regulatory ion transport, RVD<br />

B. <strong>Volume</strong> <strong>Regulatory</strong> Ion Transport<br />

and RVI are accomplished within minutes after exposure As indicated above, ion transport across the cell<br />

to anisotonic media.<br />

membrane is the most efficient and rapid means <strong>of</strong> alter-<br />

A. Ions in Steady-State Maintenance<br />

<strong>of</strong> <strong>Cell</strong> <strong>Volume</strong><br />

ing cellular osmolarity. During cell swelling, cells extrude<br />

ions, thus accomplishing RVD, whereas during cell<br />

shrinkage, cells accumulate ions to achieve RVI. The acti-<br />

To maintain their metabolic functions, cells have to vation <strong>of</strong> ion release during RVD is paralleled by inhibiaccumulate<br />

a number <strong>of</strong> substances, such as proteins, tion <strong>of</strong> ion uptake mechanisms, and the ion uptake during<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


250<br />

LANG ET AL. <strong>Volume</strong> 78<br />

RVI is paralleled by inhibition <strong>of</strong> ion release mechanisms. In many cells, swelling leads to the activation <strong>of</strong> non-<br />

Thus the simultaneous stimulation <strong>of</strong> ionic mechanisms selective cation channels (for review, see Refs. 682, 1040,<br />

for RVD and RVI is largely avoided (927, 938). A tremen- 1043). Because with the negative potential difference<br />

dous amount <strong>of</strong> work has been dedicated to the elucida- across the cell membrane the net driving force for cation<br />

tion <strong>of</strong> the ion transport systems in different tissues. A movement is directed into the cell, ion movement through<br />

synopsis <strong>of</strong> tissue-specific transport systems is beyond these channels cannot be expected to directly serve cell<br />

the scope <strong>of</strong> this review and has been reviewed in detail volume regulation. However, these channels allow the<br />

passage <strong>of</strong> Ca 2/ elsewhere (682).<br />

, which then enters the cells and activates<br />

1. <strong>Regulatory</strong> cell volume decrease<br />

Ca 2/ -sensitive K / channels (187, 1194, 1234).<br />

Usually more cations (K / and Na / ) are lost from cells<br />

than Cl 0 (436, 476, 998). The difference is partially due to<br />

loss <strong>of</strong> HCO 0 3 . Most HCO 0 The transport systems most <strong>of</strong>ten activated by cell<br />

3 lost is replaced by CO2, and<br />

swelling are separate K / and anion channels. In several the H / thus generated is bound to intracellular buffers.<br />

Thus the exit <strong>of</strong> HCO 0 studies, the anion channels activated by cell swelling have<br />

3 is limited by the intracellular buffer<br />

been found to be nonselective, allowing the passage not capacity (346, 738). The HCO 0 3 that is replaced by CO2<br />

only <strong>of</strong> Cl does not directly contribute to cell volume regulation but<br />

0 but also <strong>of</strong> HCO 0 3 (690, 1334) and even organic<br />

anions and neutral organic osmolytes (176, 576, 632, 1034, allows the cellular loss <strong>of</strong> K / .<br />

1169).<br />

Osmotic cell swelling decreases the gap junctional<br />

Obviously, different channel proteins from different conductance (890, 1002), an effect in part due to decrease<br />

families are utilized for cell volume regulation. Among the <strong>of</strong> intracellular ion concentration.<br />

cloned K / channels invoked to serve cell volume regula- Decreasing extracellular osmolarity activates Na /<br />

tion are the Kv1.3 (N-type K channels in the frog skin (126, 226), urinary bladder (329,<br />

/ channel) (273), the Kv1.5<br />

channel (316), and the minK channel (150, 151). Cloned 740), and A6 cells (234), an effect, however, not related<br />

Cl to cell volume regulation.<br />

0 channels invoked in cell volume regulation include<br />

the ClC-2 channel (435, 584, 585, 760, 1203), BRI-VDAC<br />

(272), ICln (158, 439, 440, 910, 948, 949), and the P-glycoprotein<br />

(or MDR protein) (362, 464, 1015, 1225, 1249, 1250).<br />

2. <strong>Regulatory</strong> cell volume increase<br />

Alternatively, P-glycoprotein (490, 532, 589, 590) and ICln The major ion transport systems accomplishing electrolyte<br />

accumulation in shrunken cells are the Na / -K / (647) were suggested to regulate the volume regulatory<br />

-<br />

Cl 0 channel. However, the role <strong>of</strong> P-glycoprotein in cell 2Cl 0 cotransporter (294, 381) and the Na / /H / exchanger<br />

volume regulation has been questioned (14, 15, 160, 256,<br />

(420). The latter alkalinizes the cell leading to parallel<br />

257, 663, 764, 988, 1217, 1269). Clearly, many <strong>of</strong> the proper- activation <strong>of</strong> the Cl 0 /HCO 0 3 exchanger. The H / and<br />

HCO 0 3 exchanged for NaCl by the Na / /H / ties <strong>of</strong> cell volume regulatory anion channels are not ex-<br />

exchanger and<br />

plained by the known cloned channels (539), and addi- the Cl 0 /HCO 0 3 exchanger are replenished within the cell<br />

tional anion channels must be operative. In addition,<br />

from CO 2, which diffuses into the cell and is thus osmoti-<br />

Na / (HCO 0 3 ) n cotransport may participate in RVD (1281). cally not relevant.<br />

Among the cloned members <strong>of</strong> the Na / /H / Apart from ion channels, the most frequently utilized<br />

exchanger<br />

transport system for KCl exit is electroneutral KCl co- family (1294), NHE-1 (266), NHE-2 (266, 601), and NHEtransport<br />

(708–710, 963, 1206; for review, see Ref. 682). 4 (107) are stimulated, whereas NHE-3 (86, 87, 266, 601)<br />

This transporter appears to be activated preferably by is inhibited by cell shrinkage. The putative volume-sensi-<br />

isotonic cell swelling (374). Some cells apparently release tive site at the NHE-1 molecule has been identified and is<br />

KCl by parallel activation <strong>of</strong> K / /H / exchange and Cl 0 / distinct from the sites regulated by Ca 2/ and growth fac-<br />

HCO tors (86). The cloned anion exchanger AE2 but not AE1<br />

0 3 exchange (103, 161). The H / and HCO 0 3 exchanged<br />

for KCl form CO2, which then diffuses out <strong>of</strong> the cell is postulated to participate in RVI (587).<br />

Several members <strong>of</strong> the volume regulatory Na / -K / and is thus not osmotically active. Beyond that, the anion<br />

-<br />

exchanger (AE1) has been implicated in activation <strong>of</strong> vol- 2Cl 0 cotransporters have been cloned (265, 364, 951, 952,<br />

1370). In muscle cells, NaCl cotransport rather than Na / ume regulatory ion channels (374, 861).<br />

-<br />

Swelling <strong>of</strong> Na / -rich erythrocytes is thought to stimu- K / -2Cl 0 cotransport is utilized for NaCl uptake (288).<br />

late Na However, little is known about the volume regulatory role<br />

/ extrusion through reversal <strong>of</strong> Na / /Ca 2/ exchange,<br />

and parallel extrusion <strong>of</strong> Ca 2/ by the Ca 2/ -ATPase (932). <strong>of</strong> the cloned NaCl cotransporters (365).<br />

Alternatively, evidence has been presented for the activa- In some cells, electrolyte accumulation during RVI is<br />

tion <strong>of</strong> ouabain-insensitive Na / -ATPase or Na / -K / -ATPase accomplished by activation <strong>of</strong> Na / channels and/or nonse-<br />

(850). Swelling has been shown to stimulate (1263) or<br />

lective cation channels (159, 177, 1278, 1332). The depolar-<br />

inhibit (1342) the Na / -K / -ATPase. The gastric K / -H / - ization induced by the Na / entry favors Cl 0 entry into the<br />

ATPase is stimulated by cell swelling (1113).<br />

cell.<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 251<br />

On the other hand, cell shrinkage has been shown to acting the adverse effects <strong>of</strong> inorganic (such as K / ,Na / ,<br />

and Cl 0 inhibit K ) and organic (such as spermine) ions (26, 138,<br />

/ and Cl 0 channels, preventing cellular electro-<br />

lyte loss through those channels (for review, see Ref. 682). 139, 213, 334, 662, 1271, 1351). Furthermore, betaine and<br />

In several cell types, shrinkage has been observed to acti- glycerophosphorylcholine, and to a lesser extent inositol,<br />

vate the Na / -K / -ATPase, which serves to replace accumu- counteract the destabilizing effect <strong>of</strong> urea on proteins<br />

lated Na (145, 203, 384, 483, 750, 879, 966, 1119, 1380, 1382). For<br />

/ with K / (for review, see Ref. 682).<br />

Some cells do not undergo RVI during exposure to normal cell function, an appropriate balance must be<br />

hypertonic extracellular fluid. The same cells, if exposed maintained between destabilizing (i.e., ions, urea) and sta-<br />

to hypotonic extracellular fluid, show RVD, and if reex- bilizing (i.e., counteracting osmolytes) forces (19, 267,<br />

posed to isotonic fluid, first shrink and then display RVI 807, 863, 1272, 1376, 1383). Accordingly, an increase <strong>of</strong><br />

(secondary RVI or RVI on RVD). In these cells, primary urea concentration specifically favors the parallel increase<br />

RVI is presumably prevented by increased intracellular <strong>of</strong> glycerophosphorylcholine (723, 855, 966).<br />

Cl 0 activity, as detailed in section IIII. Beyond their function in cell volume regulation, osmolytes<br />

are protective against the destructive effects <strong>of</strong><br />

excessive temperatures (34, 292, 352, 383, 534, 579, 759,<br />

C. Osmolytes 926, 989, 1058, 1160, 1193, 1200) and dessication (169,<br />

The cellular accumulation <strong>of</strong> electrolytes after cell<br />

232). Furthermore, they have been found to ease cell<br />

membrane assembly (642).<br />

shrinkage is limited because high ion concentrations inter- <strong>Cell</strong>ular osmolyte accumulation can be achieved by<br />

fere with structure and function <strong>of</strong> macromolecules, in- stimulated uptake, enhanced formation, or decreased degcluding<br />

proteins (25, 139, 192, 193, 413, 491, 564, 573, 1376, radation. Decrease <strong>of</strong> intracellular osmolyte concentra-<br />

1381). Furthermore, alterations <strong>of</strong> ion gradients across tion is accomplished by degradation or release. As comthe<br />

cell membrane would affect the respective transport- pared with RVI accomplished by ions, accumulation <strong>of</strong><br />

osmolytes is a slow process taking hours to days.<br />

ers. An increase <strong>of</strong> intracellular Na / activity, for instance,<br />

would reverse Na / /Ca 2/ exchange and thus increase intracellular<br />

Ca 2/ activity, which would in turn affect a multi- 1. Glycerophosphorylcholine<br />

tude <strong>of</strong> cellular functions (1226).<br />

To circumvent the untoward effects <strong>of</strong> disturbed ion<br />

composition, cells produce so-called osmolytes, mole-<br />

cules specifically designed to create osmolarity without<br />

compromising other cell functions (37, 44, 141, 371, 384,<br />

484, 629, 630, 714, 875, 1138, 1377, 1378). Unlike ions,<br />

organic osmolytes even at high concentrations are com-<br />

patible with normal macromolecular function. Thus the<br />

term compatible osmolytes has been coined (129).<br />

Three groups <strong>of</strong> osmolytes are used in mammalian<br />

Glycerophosphorylcholine (GPC) is formed by deacylation<br />

<strong>of</strong> phosphatidylcholine. The reaction is catalyzed<br />

by a phospholipase A2, which is distinct from the<br />

arachidonyl-selective enzyme (370, 371). Glycerophos-<br />

phorylcholine is broken down by the GPC phosphodiesterase,<br />

which degrades GPC to glycerol phosphate and<br />

choline (370, 371). Increase <strong>of</strong> osmolarity by extracellular<br />

addition <strong>of</strong> either NaCl or urea inhibits the phosphodies-<br />

terase and thus leads to accumulation <strong>of</strong> GPC (1243).<br />

cells: polyalcohols, such as sorbitol and inositol; methylamines,<br />

such as glycerophosphorylcholine and betaine;<br />

2. Sorbitol<br />

and amino acids and amino acid derivatives, such as gly- Sorbitol is produced from glucose under the catalytic<br />

cine, glutamine, glutamate, aspartate, and taurine (141, influence <strong>of</strong> aldose reductase (70, 321, 373), an enzyme<br />

368, 370, 371, 629, 630, 714, 719, 724, 1077, 1381). Tissue- that is distributed in various tissues (104, 140, 217, 358,<br />

specific utilization <strong>of</strong> the various osmolytes has been re- 614, 765, 856, 1053–1055, 1102, 1198). The enzyme is<br />

viewed elsewhere in detail (682). upregulated by hypertonic extracellular addition <strong>of</strong> NaCl<br />

Osmolytes are specifically important for cell volume or raffinose, but not <strong>of</strong> membrane-permeable solutes, such<br />

regulation in renal medulla, where extracellular osmolar- as urea or glycerol. It is presumably an increase <strong>of</strong> cellular<br />

ity may become more than fourfold that <strong>of</strong> isotonicity (62, ionic strength that stimulates the aldose reductase tran-<br />

64–66, 99, 112, 141, 369, 399, 442, 452, 525, 666, 718, 724, scription rate (40, 230, 373, 599, 854, 1130, 1236). With<br />

855, 1075, 1076, 1078, 1352, 1353, 1356, 1377, 1378), and continued hyperosmotic stress, the enzyme activity and<br />

in the brain, where cell volume alterations cannot be toler- thus sorbitol concentration increases slowly, approaching<br />

ated due to the rigid skull and where alterations <strong>of</strong> ion maximal values within 3 days (372). Osmolarity does not<br />

composition would affect excitability (453, 524, 715–717, affect mRNA stability or enzyme degradation (39, 854).<br />

745, 746, 915, 1155, 1166, 1167, 1170, 1220, 1221, 1266, The half-life <strong>of</strong> the enzyme is Ç6 days (372). <strong>Cell</strong> swelling<br />

1270). stimulates the release <strong>of</strong> sorbitol (39, 377, 1345) through<br />

Osmolytes not only replace ions as osmotically active putative channels, which are thought to be inserted into<br />

species but also stabilize macromolecules, thus counter- the cell membrane by fusion <strong>of</strong> vesicles (629).<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


252<br />

LANG ET AL. <strong>Volume</strong> 78<br />

3. Inositol <strong>of</strong> glutamine and glycine (496, 500) as well as cellular<br />

Myo-inositol (inositol) is taken up into cells by a Na<br />

release <strong>of</strong> several amino acids (540), at least partially<br />

/ -<br />

coupled transporter (81, 480, 666–668, 670, 1375). In-<br />

creased cellular ionic strength (141) but not urea (878)<br />

stimulates the transcription <strong>of</strong> the transporter and thus<br />

cellular inositol accumulation (877, 1372). Similar to sorbitol,<br />

inositol is rapidly released from swollen cells (354,<br />

630).<br />

through volume regulatory anion channels (176). Accordingly,<br />

cellular amino acid concentration increases upon<br />

cell shrinkage and decreases upon cell swelling (714). In<br />

fibroblasts, the major amino acid accumulated is gluta-<br />

mine (238, 239). Amino acids are probably important dur-<br />

ing adaptation to minor changes <strong>of</strong> extracellular osmolarity.<br />

Their contribution is, however, negligible for the adap-<br />

4. Betaine<br />

Betaine is accumulated in cells by a Na<br />

tation to the excessive osmolarities in kidney medulla<br />

(714).<br />

/ -coupled<br />

transporter (149, 1190, 1372, 1374). The carrier prefers g-<br />

aminobutyric acid (GABA), which, however, is minimally<br />

available in extracellular fluid (1374). Increased cellular<br />

D. Further Metabolic Pathways Contributing to<br />

<strong>Cell</strong> <strong>Volume</strong> Regulation<br />

ionic strength (1242), but not urea (878), stimulates the<br />

transcription rate <strong>of</strong> the transporter and thus betaine ac-<br />

cumulation (876, 878, 1191, 1372). Betaine may further<br />

be accumulated by choline oxidation, which is, however,<br />

sensitive to cell shrinkage only in renal cortex (433, 758).<br />

After cell swelling, betaine is rapidly released (354, 630).<br />

In addition to amino acids, numerous organic metabolites<br />

contribute to cellular osmolarity. Several metabolic<br />

pathways known to be sensitive to cell volume may mod-<br />

ify the concentrations <strong>of</strong> these metabolites and thus con-<br />

tribute to cell volume regulation. <strong>Cell</strong> swelling increases<br />

glycogen synthesis and inhibits glycolysis, thus decreasing<br />

5. Taurine<br />

the concentration <strong>of</strong> carbohydrate metabolites (12, 49, 50,<br />

696, 819, 953). Furthermore, cell swelling has a relatively<br />

Taurine is accumulated in cells by a Na weak stimulatory effect on lipogenesis (51). As detailed<br />

/ -coupled<br />

transporter (1239). The transcription <strong>of</strong> the transporter is in section VC, cell volume changes interfere with a great<br />

stimulated by enhanced ionic strength, eventually leading number <strong>of</strong> other metabolic functions that to some extent<br />

to cellular taurine accumulation (1238, 1240). After cell may modify cellular osmolarity. The overall impact <strong>of</strong><br />

swelling, taurine is rapidly released, presumably through these effects on cellular osmolarity is probably modest,<br />

an anion channel (102, 540, 632, 671, 672, 678, 847, 1050, but the influence <strong>of</strong> cell volume on various metabolic path-<br />

1087, 1238, 1240) which is, at least in Ehrlich ascites tumor ways is <strong>of</strong> paramount importance for regulation <strong>of</strong> metacells,<br />

distinct from the volume regulatory Cl 0 channel bolic function (see sect. VC).<br />

(677). In oocytes, expression <strong>of</strong> band 3-anion exchanger<br />

tAE1 confers volume regulatory taurine transport (324,<br />

374, 861), but in mammalian cells, taurine efflux is not<br />

dependent on the presence <strong>of</strong> band 3 protein (1049). On<br />

III. INTRACELLULAR SIGNALING OF CELL<br />

VOLUME REGULATION<br />

the other hand, taurine transport is induced by the insertion<br />

<strong>of</strong> the peptide phospholemman (PLM) in lipid bilayers<br />

(845).<br />

<strong>Cell</strong> swelling and shrinkage exert pr<strong>of</strong>ound effects<br />

on intracellular signaling mechanisms, which in turn modify<br />

a multitude <strong>of</strong> cellular functions including the volume<br />

6. Amino acids<br />

regulatory mechanisms. A great deal <strong>of</strong> experimental effort<br />

has been spent in elucidating the intracellular machin-<br />

In addition to taurine, the cellular concentration <strong>of</strong> ery underlying cell volume regulation. Frequently, the reseveral<br />

other amino acids and amino acid metabolites is sult has been inconclusive for several reasons. 1) Not<br />

modified by cell volume, including glutamine, glutamate, every effect <strong>of</strong> altered cell volume on intracellular signal-<br />

glycine, proline, serine, threonine, b-alanine, (N-acetyl)- ing is related to regulation <strong>of</strong> cell volume. 2) <strong>Cell</strong>s usually<br />

aspartate, and GABA (for review, see Refs. 181, 682). Al- use several mechanisms in parallel, with different, parthough<br />

the intracellular concentration <strong>of</strong> most individual tially overlapping cellular signaling mechanisms. 3) Differ-<br />

amino acids is quite low, the sum <strong>of</strong> all amino acids sigent cells utilize distinct mechanisms, i.e., the information<br />

nificantly contributes to cellular osmolarity in cells ex- gained in any given cell cannot necessarily be generalized<br />

posed to isotonic extracellular fluid (714). <strong>Cell</strong> shrinkage to other cells. 4) <strong>Volume</strong> regulation requires mechanisms<br />

stimulates Na / -coupled transport <strong>of</strong> neutral amino acids that are themselves not modified by cell volume changes<br />

(182, 380, 1135, 1373) and proteolysis (498) and inhibits but rather permissive for activation <strong>of</strong> cell volume regulaprotein<br />

synthesis (1159). Conversely, cell swelling inhibits tory mechanisms.<br />

proteolysis and stimulates protein synthesis (498, 499, In the simplest case, an intracellular mechanism<br />

1159). Furthermore, cell swelling stimulates breakdown serves cell volume regulation if it is modified by alter-<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 253<br />

ations <strong>of</strong> cell volume, and a qualitatively and quantitatively erythrocyte Na / /Ca 2/ exchange (936), and hepatocyte K /<br />

channels (474) and to inhibit Na / /H / identical modification <strong>of</strong> this intracellular mechanism trig-<br />

exchanger in erythgers<br />

the appropriate alterations <strong>of</strong> cell volume. This re- rocytes (936) and adenosine 3�,5�-cyclic monophosphate<br />

(cAMP) production (58), Na / /H / quirement frequently is not met. If the identical modifica-<br />

exchanger (732), and<br />

tion does not trigger respective alterations <strong>of</strong> cell volume, Na / -K / -2Cl 0 cotransport (595) in thick ascending limb<br />

the participation <strong>of</strong> a mechanism in cell volume regulation cells, thus leading to cell shrinkage. In erythrocytes, the<br />

still cannot be ruled out, since the mechanism may require effect <strong>of</strong> urea was reversed by okadaic acid, pointing to<br />

the collaboration <strong>of</strong> other mechanisms to be effective.<br />

Similarly, the use <strong>of</strong> inhibitors, even if they are specific,<br />

the involvement <strong>of</strong> phosphorylation (936).<br />

does not lead to conclusive results. On the one hand,<br />

inhibition <strong>of</strong> cell volume regulation by elimination <strong>of</strong> a<br />

B. Cytoskeleton<br />

given element <strong>of</strong> intracellular signaling (e.g., inhibition <strong>of</strong><br />

protein kinases or removal <strong>of</strong> Ca<br />

1. Actin filaments<br />

2/ ) does not discriminate<br />

between volume regulatory and permissive mechanisms. Obviously, cell swelling or shrinkage will affect the<br />

On the other hand, cell volume regulation may prove in- cytoskeletal architecture. In fact, actin filaments have<br />

sensitive to elimination <strong>of</strong> a volume regulatory mechanism been found to be depolymerized during swelling <strong>of</strong> a vari-<br />

if other mechanisms operating in parallel are strong ety <strong>of</strong> cells (89, 220–223, 241, 477, 478, 527, 736, 830, 831,<br />

enough to replace the defect. Further examples could be 848, 1209, 1398), an effect which is at least partially due<br />

to Ca 2/ given, each <strong>of</strong> which illustrates that the experimental elu- (223). Calcium concentration increases in most<br />

cidation <strong>of</strong> the complex machinery serving cell volume cells after osmotic swelling (see sect. IIIF). As a result,<br />

Ca 2/ regulation is extremely difficult.<br />

depolymerizes actin filaments by binding to gelsolin<br />

Even though our understanding <strong>of</strong> the intracellular (1161, 1327). Depolymerization could further result from<br />

machinery mediating cell volume regulation is still incom- degradation <strong>of</strong> phosphatidylinositol 4,5-bisphosphate,<br />

plete, knowledge <strong>of</strong> the interaction between cell volume, which inhibits depolymerization by interaction with pro-<br />

elements <strong>of</strong> cellular signaling, and cell volume regulatory filin (703, 704). A transient depolymerization <strong>of</strong> the actin<br />

mechanisms is mandatory for understanding the role <strong>of</strong> filaments may be followed by a polymerization <strong>of</strong> actin<br />

cell volume for cell function.<br />

filaments (1398). In hepatocytes, polymerization <strong>of</strong> actin<br />

filaments prevails (1202) and is paralleled by expression<br />

<strong>of</strong> b-actin (1097, 1202). The de novo actin biosynthesis is<br />

A. Macromolecular Crowding probably the result <strong>of</strong> actin polymerization, since it is<br />

inhibited by depolymerized actin (993).<br />

<strong>Cell</strong> swelling leads to dilution and cell shrinkage to Cytoskeletal elements may interfere in several ways<br />

concentration <strong>of</strong> cellular constituents including proteins. with volume regulatory mechanisms. Actin filaments may<br />

The concentration <strong>of</strong> intracellular proteins markedly in- inhibit osmotically driven water fluxes (566, 567) and thus<br />

fluences their function (131, 353, 376, 834, 836, 937, 1011). retard osmotically induced cell volume changes. Beyond<br />

In erythrocytes, the volume regulatory set point can in- that, RVD is inhibited in several tissues by cytochalasin<br />

deed be varied by manipulation <strong>of</strong> intracellular protein D (89, 221, 222, 224, 289, 340, 363, 619, 754, 1258), which<br />

concentration (835, 837, 1397). The set points <strong>of</strong> both the interferes with actin assembly (781, 1161). Moreover, ex-<br />

KCl symport (835, 838) and the Na / /H / exchanger (209, pression <strong>of</strong> actin binding protein was required for RVD in<br />

210, 940) appear to be determined by macromolecular melanoma cells (166). Thus an intact actin filament netcrowding.<br />

It has been suggested that among the enzymes work is required for activation <strong>of</strong> at least some <strong>of</strong> the<br />

sensitive to ambient protein concentration is a kinase that volume regulatory mechanisms. In fibroblasts, actin depo-<br />

is inactivated by protein dilution during cell swelling and lymerization reverses the shrinking effect <strong>of</strong> bradykinin<br />

activated by protein crowding during cell shrinkage (835, into a swelling effect, again pointing to a role <strong>of</strong> actin<br />

838). This kinase may inhibit the volume regulatory KCl filaments in cell volume control (1001, 1004). Via other<br />

cotransport. Its inactivation during cell swelling would cytoskeletal elements, such as spectrin and ankyrin, actin<br />

then disinhibit volume regulatory KCl efflux. filaments couple to membrane proteins, an interaction<br />

Because <strong>of</strong> interaction <strong>of</strong> proteins with ambient elec- modified by cell volume changes. For instance, cell swelltrolytes,<br />

macromolecular crowding is reduced by increas- ing stimulates binding <strong>of</strong> ankyrin to the anion exchanger<br />

ing ionic strength, which indeed shifts the volume regula- band 3 protein (868). Another putative target <strong>of</strong> the actin<br />

tory set point to smaller volumes (942). filament network is a K / channel that cannot be activated<br />

Similarly, urea decreases the thermodynamic activity in isolated membrane vesicles devoid <strong>of</strong> cytoskeleton<br />

<strong>of</strong> proteins and thus reduces macromolecular crowding (423). Furthermore, it has been shown that actin filament<br />

fragments regulate Na / (211, 574, 723, 837, 978, 984, 1376). Urea has been shown<br />

channels (77), and it has been<br />

to activate erythrocyte KCl transport (293, 596, 936), speculated that the cytoskeleton may participate in the<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


254<br />

LANG ET AL. <strong>Volume</strong> 78<br />

insertion <strong>of</strong> cell volume regulatory channels into the tion (857, 1043). Most <strong>of</strong> these channels, however, are<br />

nonselective cation channels, allowing the passage <strong>of</strong> K / plasma membrane (340, 741), in the regulation <strong>of</strong> channels<br />

,<br />

by kinases (see sect. IIIH) and phospholipids (see sect. Na / , and Ca 2/ (for review, see Refs. 682, 1043). Because <strong>of</strong><br />

IIIK), and in the activation <strong>of</strong> channels by membrane the cell-negative cell membrane potential, the respective<br />

stretch (1040). However, disruption <strong>of</strong> the actin network electrochemical gradients favor the cellular accumulation<br />

<strong>of</strong> Na / and Ca 2/ rather than cellular loss <strong>of</strong> K / did not prevent activation <strong>of</strong> channels by cell membrane<br />

. Thus<br />

stretch (1133). Furthermore, the stimulation <strong>of</strong> taurine or these channels are not likely to directly serve cell volume<br />

inositol release during cell swelling was not affected by regulation, and inhibition <strong>of</strong> these channels by gadolinium<br />

cytochalasin B (626, 848). has been shown to decrease osmotic swelling and favor<br />

The depolymerization <strong>of</strong> the actin filament network regulatory decrease <strong>of</strong> cell volume (1173). On the other<br />

may participate in the activation <strong>of</strong> a mechanosensitive hand, Ca 2/ entering the cells through these channels is<br />

thought to activate Ca 2/ -sensitive K / anion channel (832, 1108, 1227). Furthermore, depolymer-<br />

channels (187, 1194,<br />

ization <strong>of</strong> submembranous actin filaments may facilitate 1234).<br />

the fusion <strong>of</strong> channel-containing vesicle membranes with The mechanism linking membrane stretch to activa-<br />

the plasma membrane. Agonist-induced exocytosis has tion <strong>of</strong> the channels has not been clearly defined (1043).<br />

indeed been shown to be favored by actin depolymeriza- Under discussion are 1) release <strong>of</strong> fatty acids from the<br />

tion (32, 130, 147, 283, 954). stretched membrane and subsequent activation <strong>of</strong> stretch-<br />

The cytoskeleton is further thought to be involved in sensitive channels by these fatty acids (917) and 2)<br />

the volume regulatory activation <strong>of</strong> the Na / /H / exchanger stretch-induced activation <strong>of</strong> some element <strong>of</strong> the cy-<br />

(106, 404, 431, 1292), which does contain putative cytoskeleton, such as spectrin (1133). Because stretch entoskeletal<br />

binding sites (333). Actin depolymerization by hances channel open probability in the cell-free excised<br />

either cell swelling or by addition <strong>of</strong> cytochalasin B, how- patch configuration (1043), cytosolic components are ap-<br />

ever, activates the Na / -K / -2Cl 0 cotransporter (541, 586, parently not required for channel activation.<br />

813), and in vesicles devoid <strong>of</strong> cytoskeleton, the Na / -K / -<br />

2Cl<br />

It is debatable whether stretch-activated channels par-<br />

0 cotransporter is permanently active (541). This acti- ticipate in the fine-tuning <strong>of</strong> cell volume, since considerable<br />

vation is counterproductive during the initial phase <strong>of</strong> cell stretch is required to activate these channels (1043). Possi-<br />

swelling. bly, these channels may represent a last line <strong>of</strong> defense<br />

In addition to its role in regulation <strong>of</strong> ion transport, against excessive cell swelling but are not involved in the<br />

the cytoskeleton may mediate some effects <strong>of</strong> cell volume<br />

on gene expression (76, 529).<br />

response to moderate changes <strong>of</strong> cell volume.<br />

2. Microtubules<br />

D. <strong>Cell</strong> Membrane Potential<br />

<strong>Cell</strong> swelling increases microtubule stability and<br />

stimulates the expression <strong>of</strong> tubulin (511).<br />

Colchicine, which disrupts the microtubule network,<br />

inhibits RVD in Jurkat cells, HL-60 cells, and peripheral<br />

The influence <strong>of</strong> cell swelling on cell membrane po-<br />

tential depends on the ion channels preferentially activated<br />

or inactivated and on the potential difference before<br />

cell swelling. Activation <strong>of</strong> K / neutrophils (289), but not in Ehrlich ascites tumor cells<br />

(223), kidney cells (924), and gallbladder (340). In macro-<br />

phages, disruption <strong>of</strong> microtubules was found to activate<br />

anion channels (821).<br />

An intact microtubule network was found to be crucial<br />

for the influence <strong>of</strong> cell volume on alkalinization <strong>of</strong><br />

intracellular vesicles (156, 1089), proteolysis (156, 1284),<br />

and taurocholate exit from liver cells (508).<br />

channels and a low initial<br />

cell membrane potential favor hyperpolarization, whereas<br />

activation <strong>of</strong> anion or nonselective cation channels and a<br />

high initial cell membrane potential would favor depolar-<br />

ization. After cell swelling, hyperpolarization <strong>of</strong> the cell<br />

membrane is seen in hepatocytes (406), depolarization <strong>of</strong><br />

the cell membrane in Ehrlich ascites tumor cells (680,<br />

691), Madin-Darby canine kidney (MDCK) cells (947),<br />

opossum kidney cells (1235), lymphocytes (418, 419,<br />

1060), pancreatic b-cells (124), astrocytes (627), neuro-<br />

C. <strong>Cell</strong> Membrane Stretch<br />

blastoma cells (313), and vascular smooth muscle cells<br />

(685). In some cells, a transient hyperpolarization due to<br />

activation <strong>of</strong> K / A variety <strong>of</strong> ion channels are activated by cell mem-<br />

channels is followed by a more sustained<br />

brane stretch, i.e., increased tension <strong>of</strong> the cell membrane depolarization due to activation <strong>of</strong> anion channels (516–<br />

(1040, 1043). Stretch increases the open probability <strong>of</strong> the 518, 1002).<br />

channels without affecting single-channel conductance or The alteration <strong>of</strong> cell membrane potential may influselectivity<br />

<strong>of</strong> the channels (1043).<br />

ence the activity <strong>of</strong> additional ion channels. A depolariza-<br />

The stretch-activated channels may be selective for tion <strong>of</strong> the cell membrane may open voltage-sensitive ion<br />

channels. In lymphocytes, RVD involves n-type K / K chan-<br />

/ or for anions, thus directly serving cell volume regula-<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 255<br />

nels (273, 429), which are activated by cell membrane<br />

depolarization. Depolarization <strong>of</strong> the cell membrane may<br />

further activate voltage-sensitive Ca 2/ channels, as ob-<br />

served in pancreatic b-cells (124) and vascular smooth<br />

muscle cells (685). The increase <strong>of</strong> intracellular Ca 2/<br />

could trigger a variety <strong>of</strong> further mechanisms, as illus-<br />

trated in section V, E and F.<br />

As discussed in section IIB, increase <strong>of</strong> extracellular<br />

osmolarity may either depolarize or hyperpolarize cells<br />

due to activation <strong>of</strong> unspecific cation channels or inhibi-<br />

The increase <strong>of</strong> [Ca 2/ ] i accounts for the activation <strong>of</strong><br />

Ca 2/ -sensitive K / channels, as shown in Ehrlich ascites<br />

tumor cells (188), MDCK cells (1334), proximal tubule<br />

cells (290, 605), thick ascending limb cells (1194), choroid<br />

plexus epithelial cells (187), and neuroblastoma cells<br />

(313). In MDCK cells, [Ca 2/ ]i did not appreciably increase<br />

upon moderate osmotic cell swelling, even though the<br />

Ca 2/ -sensitive K / channels were already activated by this<br />

treatment (1002). Possibly small, localized increases <strong>of</strong><br />

[Ca 2/ ] i are sufficient to activate the K / tion <strong>of</strong> K<br />

channels but are<br />

not detected by fluorescence measurements (1357).<br />

/ and/or Cl 0 channels.<br />

Despite the activation <strong>of</strong> Ca 2/ -sensitive K / channels,<br />

RVD is apparently not mediated by a rise <strong>of</strong> [Ca 2/ E. Cytosolic pH<br />

]i in<br />

Ehrlich ascites tumor cells (1204), and swelling-induced<br />

K / efflux was virtually unaffected by the inhibitors <strong>of</strong> the<br />

<strong>Cell</strong> swelling leads to cytosolic acidification (216, 397, Ca 2/ -sensitive K / channels, clotrimazole and charybdo-<br />

479, 610, 616, 685, 757, 864, 1002, 1089, 1143, 1279), which toxin (489). Because these K / channels are inwardly rectihas<br />

been explained by the exit <strong>of</strong> HCO 0 3 through anion fying (1334), K / exit through these channels during cell<br />

channels (1334), by release <strong>of</strong> H / from acidic intracellular swelling may be limited by the depolarization <strong>of</strong> the cell<br />

compartments (see sect. IIIL), and by enhancement <strong>of</strong> Cl 0 / membrane. Other less inwardly rectifying K / channels<br />

HCO 0 3 exchange due to decreasing cellular Cl 0 activity may thus be more important for cell volume regulation in<br />

those cells (539). In a variety <strong>of</strong> tissues, increase <strong>of</strong> [Ca 2/ (757). This latter mechanism, however, should be im-<br />

] i<br />

peded by inhibition <strong>of</strong> the exchanger at acidic cytosolic was not required for RVD (for review, see Ref. 682).<br />

Clearly, activation <strong>of</strong> K / channels by Ca 2/ pH (645), and cellular acidosis is not inhibited by removal<br />

may contribute<br />

<strong>of</strong> extracellular Cl to, but is frequently not crucial for, RVD (539).<br />

0 , at least in osteosarcoma cells (864).<br />

In contrast to volume regulatory K / <strong>Cell</strong> shrinkage is frequently observed to alkalinize<br />

channels in many<br />

tissues, volume regulatory Cl 0 cells, at least partially due to activation <strong>of</strong> volume regula-<br />

channels have been found<br />

to be insensitive to Ca 2/ tory Na in intestinal cells (517, 657), cili-<br />

/ /H / exchange (see sect. IIB).<br />

The impact <strong>of</strong> intracellular pH on volume regulatory ary epithelial cells (1385), cardiac myocytes (1227), T84<br />

mechanisms has not been explored. After cell swelling, colon carcinoma cells (1134, 1364), airway epithelial cells<br />

the cytosolic acidification may impede activation <strong>of</strong> vol- (361, 1134), MDCK cells (48, 1029, 1334), lymphocytes<br />

ume regulatory K (421), Ehrlich cells (188), and chromaffin cells (287). Yet,<br />

/ channels (783) and may contribute to<br />

as shown in Ehrlich ascites tumor cells, Ca 2/ inhibition <strong>of</strong> glycolysis and thus to the decreased release<br />

triggers the<br />

<strong>of</strong> lactic acid (696). The alkalinization after cell shrinkage formation <strong>of</strong> leukotrienes, which do activate the channels<br />

(539). In kidney cortex, Ca 2/ -sensitive Cl 0 should stimulate glycolysis (696).<br />

channels have<br />

been found in endosomes and proposed to serve cell volume<br />

regulation (991). Calcium is also thought to trigger<br />

F. Calcium the fusion <strong>of</strong> vesicles, allowing the release <strong>of</strong> sorbitol<br />

(629), whereas it is apparently not required for release <strong>of</strong><br />

After cell swelling, intracellular Ca 2/ concentration GPC (629) or taurine (1051).<br />

([Ca 2/ ] i) increases in a variety <strong>of</strong> cells, whereas it remains Calmodulin antagonists and inhibitory peptides<br />

apparently constant in others (for review, see Refs. 682, against Ca 2/ /calmodulin-dependent kinase (116) have<br />

815). Swelling may increase [Ca 2/ ] i by both activation <strong>of</strong> been shown to inhibit RVD or activation <strong>of</strong> cell volume<br />

Ca 2/ -permeable channels in the cell membrane and Ca 2/<br />

regulatory ion channels (71, 263, 421, 424, 543, 546, 815),<br />

release from intracellular stores. Calcium-permeable and it has been concluded that calmodulin/Ca 2/ comchannels<br />

may be activated by cell membrane stretch (see plexes are important for activation <strong>of</strong> RVD. In other cells,<br />

however, Ca 2/ -sensitive K / sect. IIIC), cell membrane depolarization (see sect. IIID),<br />

channels involved in cell voland/or<br />

protein kinase C (1066). Calcium release from in- ume regulation did not require calmodulin and were actu-<br />

tracellular stores is presumably triggered by inositol phos- ally activated by calmodulin antagonists (950).<br />

phates (52, 72, 1180, 1288, 1289) or Ca Beyond its putative role during RVD, calmodulin has<br />

2/ -induced Ca 2/<br />

been implicated in activation <strong>of</strong> the Na / -K / -2Cl 0 release (516, 518). The regulation <strong>of</strong> [Ca cotrans-<br />

2/ ] i by cell volume<br />

may interfere with signaling <strong>of</strong> Ca port in RVI (583).<br />

2/ -recruiting hormones,<br />

as shown for gastric parietal cells (885) and HT-29 cells<br />

(330). In those cells, agonist-induced entry <strong>of</strong> Ca<br />

G. G Proteins<br />

2/ was<br />

further stimulated by cell swelling (330, 885) and inhibited Inhibitors <strong>of</strong> G proteins such as pertussis toxin or<br />

by cell shrinkage (885). cholera toxin have been shown to blunt the RVD (539) as<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


256<br />

LANG ET AL. <strong>Volume</strong> 78<br />

well as swelling-induced osmolyte efflux (1037), increases Cl 0 channels and K / channels. To the extent that in those<br />

<strong>of</strong> intracellular Ca cells cAMP is increased after cell swelling, cAMP partici-<br />

2/ concentration (30), mitogen-activated<br />

protein kinase (MAPK) activity (895, 1072), vesicu- pates in cell volume regulation. Beyond that, cAMP has<br />

lar acidification (1088), and swelling-induced stimulation been postulated to shift the volume regulatory set point<br />

<strong>of</strong> taurocholate excretion (895), suggesting that G proteins <strong>of</strong> the channel toward smaller volumes (823).<br />

do mediate some effects <strong>of</strong> cell swelling. Activation <strong>of</strong> Additional experimental evidence points to the<br />

the Na / /H / exchanger during cell shrinkage has similarly involvement <strong>of</strong> various kinases in volume regulation <strong>of</strong><br />

been claimed to involve G proteins (108, 249).<br />

different cell types. In intestinal cells, volume regulatory<br />

In addition to heterotrimeric G proteins, small G pro- rubidium efflux was inhibited by herbimycin A and gen-<br />

teins have been implicated in cell volume regulation. Closistein, pointing to involvement <strong>of</strong> tyrosine kinase (1211).<br />

tridium botulinus C3 exoenzyme, which depolymerizes Swelling <strong>of</strong> Jurkat cells activates the src-like tyrosine kinase<br />

p56 lck the actin filament network by ADP-ribosylation <strong>of</strong> rho<br />

, which in turn accounts for the activation <strong>of</strong><br />

(8), blunts the volume regulatory anion efflux (1209). In the volume regulatory Cl 0 channels (727a). Wortmannin,<br />

neurons, osmotic cell shrinkage stimulates the expression an inhibitor <strong>of</strong> PI 3-kinase, similarly interferes with cell<br />

<strong>of</strong> a1-chimerin (286), a GTPase-activating protein that in- volume regulation in those cells (1209). In proximal tubules<br />

activates the small G protein Rac. The impact <strong>of</strong> this effect (1012–1014) and in HeLa cells (490), protein kinase C has<br />

on cell volume regulation is not explored. been invoked to link cell swelling to activation <strong>of</strong> Cl 0 channels.<br />

<strong>Cell</strong> swelling leads to phosphorylation <strong>of</strong> the anion<br />

H. Protein Phosphorylation<br />

exchanger, which was postulated to release taurine (869).<br />

In addition to its role in the phosphorylation <strong>of</strong> pro-<br />

1. <strong>Cell</strong> swelling<br />

teins, ATP may serve as a signaling molecule itself. The<br />

volume regulatory Cl 0 channel in collecting duct, glioma,<br />

Mechanical stress or cell swelling has been found to and intestine 470 cells (908, 1277) as well as taurine efflux<br />

stimulate protein kinase C (997, 1017) to foster tyrosine in skate hepatocytes and glioma cells (47, 575, 1277) are<br />

phosphorylation <strong>of</strong> several proteins including focal adhe- apparently regulated by intracellular ATP concentration.<br />

sion kinase p125 FAK (1209, 1211), to stimulate phosphati- Decreased ATP concentration, as it occurs during energy<br />

dylinositol 3-kinase (PI 3-kinase) (1209), and to trigger depletion, inhibited the channel. In pancreatic b-cells, cell<br />

MAPK cascades leading to the activation <strong>of</strong> Jun-NH2-ter- swelling leads to activation <strong>of</strong> ATP-sensitive K / channels<br />

minal kinase (JNK) or extracellular signal-regulated ki- (289a). Extracellular ATP has been shown to stimulate<br />

nases ERK-1 and ERK-2 (4, 360, 482, 568, 569, 895, 1044, taurine release from tracheal cells (362). It has been spec-<br />

1072, 1073, 1127, 1211). Adenylate cyclase has been reulated that after cell swelling ATP is extruded via the<br />

ported to be stimulated (851, 1324–1326) and inhibited cystic fibrosis transmembrane conductance regulator and<br />

activates K / channels and Cl 0 (535) by cell swelling, and cAMP has been shown to inhibit<br />

channels from the extracelvolume<br />

regulatory Cl 0 channels in chicken hearts (468). lular side (1030, 1310). On the other hand, extracellular<br />

ATP has been shown to inhibit volume regulatory Cl 0<br />

Most recently, we have successfully cloned a cell volumeregulated<br />

serine/threonine kinase, the human serum glucocorticoid-dependent<br />

kinase h-sgk (1295). Expression <strong>of</strong><br />

channels in intestinal cells (1228).<br />

this kinase is rapidly upregulated by moderate cell shrinkage<br />

and markedly depressed by moderate cell swelling.<br />

2. <strong>Cell</strong> shrinkage<br />

How these events link to activation <strong>of</strong> the various Similar to cell swelling, osmotic cell shrinkage has<br />

volume regulatory mechanisms is poorly understood. The been shown to activate protein kinase C (702), whereas<br />

volume regulatory KCl cotransport is activated by dephos- cAMP formation (648) and cAMP-dependent phosphoryla-<br />

phorylation and inactivated by phosphorylation (94, 295, tion have been shown to remain unaffected (13, 648). In<br />

580, 581, 597, 920, 1144). Swelling or increased hydrostatic several cell types, osmotic shrinkage stimulates the phos-<br />

pressure was suggested to inhibit a kinase, favoring dephorylation <strong>of</strong> myosin light chains, an effect presumably<br />

phosphorylation (94, 295, 386, 580), but nothing is known related to activation <strong>of</strong> Na / -K / -2Cl 0 cotransport (635, 903,<br />

about the properties <strong>of</strong> this kinase, which appears to be 1188).<br />

distinct from protein kinases A and C (581). Some evi- Excessive osmotic cell shrinkage, such as doubling<br />

dence indicates the involvement <strong>of</strong> the cytoskeleton in <strong>of</strong> extracellular osmolarity, triggers several proteins in-<br />

the swelling-induced inhibition <strong>of</strong> the kinase (539). On the volved in the MAPK pathways, such as Raf-1, MAPK ki-<br />

other hand, the view that phosphorylation or dephosphornase, MAPK, and ribosomal protein S6 kinase (809, 1197)<br />

ylation links cell swelling to activation <strong>of</strong> KCl cotransport or activation <strong>of</strong> JNK by the MAPK kinase MKK4 (853),<br />

has been challenged (1041).<br />

which may be triggered by the tyrosine kinase Pyk2<br />

The volume <strong>of</strong> a wide variety <strong>of</strong> cells is decreased by through a pathway requiring activation <strong>of</strong> PI 3-kinase and<br />

cAMP (see Table 2), an effect mainly due to activation <strong>of</strong> the small G proteins Ras and Rac (1216). The activation<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 257<br />

<strong>of</strong> MAPK pathways may be secondary to clustering and Decreased intracellular Cl 0 activity is apparently required<br />

for full activation <strong>of</strong> Na / -K / -2Cl 0 internalization <strong>of</strong> cytokine receptors with subsequent acti-<br />

cotransport durvation<br />

<strong>of</strong> downstream targets (1020). On the other hand, ing cell shrinkage (539, 548, 1245, 1370). Beyond its influence<br />

on one <strong>of</strong> the driving forces <strong>of</strong> Na / -K / -2Cl 0 the ribosomal protein S6 has been reported to be dephoscotransphorylated<br />

upon osmotic cell shrinkage (656). port, a decreased intracellular Cl 0 concentration is<br />

As shown in several tissues, cell shrinkage stimulates thought to play a permissive role for the activation <strong>of</strong> both<br />

serine and threonine phosphorylation <strong>of</strong> the Na / -K / -2Cl 0 Na / -K / -2Cl 0 cotransport (119, 734, 735, 1009) and Na / /<br />

cotransporter (636, 772, 927, 968, 1219). <strong>Volume</strong>-regulated<br />

H / exchange (108, 250, 933, 934, 1009). If extracellular<br />

Na / -K / -2Cl 0 cotransport may be activated (812, 814, 968) osmolarity is made hypertonic by increased extracellular<br />

NaCl concentration, the increase <strong>of</strong> intracellular Cl 0 or inhibited (728) by cAMP, and cAMP does not particiactivpate<br />

in activation <strong>of</strong> this carrier during cell shrinkage ity could thus impede RVI (539). Accordingly, some cells<br />

(381). The protein kinase C inhibitor chelerythrine (702), are unable to regulate their volume during exposure to<br />

but not staurosporine (583, 919), inhibits volume regula- hypertonic extracellular fluid (308, 437, 522, 539, 544, 545,<br />

634). If intracellular Cl 0 tory Na is lowered by prior RVD (308,<br />

/ -K / -2Cl 0 cotransport, which may be activated<br />

(583) or inhibited (728) by phorbol esters. The involve- 420, 522, 634) or by activation <strong>of</strong> Cl 0 channels with cAMP<br />

ment <strong>of</strong> protein kinase C in the activation <strong>of</strong> this carrier (437, 1177) or vasopressin (351, 519, 1177), the same cells<br />

is thus a matter <strong>of</strong> debate. do accomplish RVI. Moreover, if cells are exposed to<br />

Even though the Na short-chain fatty acids, they swell by accumulation <strong>of</strong> the<br />

/ /H / exchanger is activated by<br />

phosphorylation (88), phosphorylation <strong>of</strong> the carrier is acids along with Na / and are forced to release Cl 0 for<br />

not affected by cell shrinkage (430) and not required for RVD (see Table 2). In the presence <strong>of</strong> these acids, they<br />

activation (430). In Ehrlich ascites tumor cells, shrinkage- display RVI after exposure to hypertonic extracellular<br />

induced activation <strong>of</strong> the transporter has been reported fluid (1016).<br />

to be blunted by inhibition <strong>of</strong> protein kinase C and stimu- Intracellular Cl 0 inhibits the glycogen synthase phosphatase<br />

(408), and the decrease <strong>of</strong> intracellular Cl 0 lated by inhibition <strong>of</strong> phosphatases (956). In dog erythroactivcytes,<br />

inhibition <strong>of</strong> phosphatases shifted the set point <strong>of</strong> ity participates in the stimulation <strong>of</strong> glycogen synthesis<br />

the Na during osmotic or glutamine-induced cell swelling (555,<br />

/ /H / exchanger to higher volumes (941). However,<br />

protein kinase C appeared not to be involved in activation<br />

<strong>of</strong> the carrier in other tissues (108, 244, 422, 426, 427).<br />

819).<br />

The role <strong>of</strong> MAPKs in triggering <strong>of</strong> cell volume regulatory<br />

mechanisms remains elusive, whereas their involve-<br />

J. Magnesium<br />

ment in regulation <strong>of</strong> betaine transporter expression has<br />

been ruled out (669).<br />

In yeast, histidine kinases are activated by enhanced<br />

The dilution and concentration <strong>of</strong> intracellular sol-<br />

utes during cell swelling or shrinkage lead to the respective<br />

alterations <strong>of</strong> Mg 2/ osmolarity and trigger a cascade involving a MAPK-like<br />

protein (791). Up to now, attempts to identify a volumeregulated<br />

histidine kinase in mammalian cells have failed.<br />

concentration. Magnesium has<br />

been described to inhibit volume regulatory KCl cotransport<br />

(78, 295). During cell swelling, the decrease <strong>of</strong> intra-<br />

cellular Mg 2/ concentration may partially account for the<br />

activation <strong>of</strong> KCl cotransport (78, 295). Conversely, an<br />

increase <strong>of</strong> intracellular Mg 2/ activity stimulates Na / /H /<br />

I. Chloride<br />

exchange (944) and Na / -K / -2Cl 0 cotransport (794) and<br />

may thus participate in regulatory cell volume increase.<br />

As pointed out in section IIA, intracellular Cl 0 activity<br />

is kept low, and this counterbalances the high intracellular<br />

osmolarity created by organic substances. During osmotic K. Eicosanoids<br />

cell swelling, intracellular Cl 0 activity is expected to de-<br />

crease further due to H2O entry during the swelling phase <strong>Cell</strong> swelling has been shown to activate phospholi-<br />

and Cl pase A2 (542, 800), possibly in part through decrease <strong>of</strong><br />

0 release during RVD. Intracellular Cl 0 activity is<br />

similarly expected to decrease during swelling by cumula- macromolecular crowding (539). Metabolites <strong>of</strong> arachi-<br />

tive substrate uptake, but it should increase during swelldonic acid include the products <strong>of</strong> cyclooxygenase (e.g.,<br />

ing by depolarization <strong>of</strong> the cell membrane or after stimu- prostaglandins), 15-lipoxygenase (such as hepoxilin A3), lation <strong>of</strong> Na 5-lipoxygenase [e.g., leukotriene (LT) D4], and epoxygen-<br />

/ -K / -2Cl 0 cotransport.<br />

Osmotic cell shrinkage is expected to increase intra- ase (epoxyeicosatrienoic acids) (675). On the other hand,<br />

cellular Cl as shown in Ehrlich ascites tumor cells, swelling stimu-<br />

0 activity due to cellular H2O loss during the<br />

shrinking phase and Cl 0 accumulation during RVI. On the lates the formation <strong>of</strong> the leukotrienes, namely, LTD4, at<br />

other hand, intracellular Cl the expense <strong>of</strong> prostaglandins such as prostaglandin (PG)<br />

0 activity should decrease during<br />

shrinkage caused by activation <strong>of</strong> ion channels. E2 (675). Both phospholipase A2 and 5-lipoxygenase are<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


258<br />

LANG ET AL. <strong>Volume</strong> 78<br />

activated by Ca 2/ (542, 675). Thus an increase <strong>of</strong> intracel- noic acids (818), indicating that the inhibitory effect on<br />

lular Ca osmolyte flux is not due to inhibition <strong>of</strong> epoxygenase.<br />

2/ concentration during cell swelling could participate<br />

in the activation <strong>of</strong> these two enzymes during cell Similarly, in Necturus gallbladder, ketoconazole does not<br />

swelling. Along these lines, LTD4 may overcome the inhib- prevent regulatory KCl efflux but stimulates NaCl entry,<br />

itory effect <strong>of</strong> the calmodulin antagonist pimozide on cell leading to cell swelling (615).<br />

volume regulation, suggesting that LTD4 is a signal down- In addition to their influence on volume-sensitive ion<br />

stream <strong>of</strong> Ca 2/ (673). channels, phospholipase A2 and a cytochrome P-450 prod-<br />

Arachidonic acid has been shown to inhibit glial cell uct <strong>of</strong> arachidonic acid have been invoked in mediating<br />

volume regulation (1052) and to inhibit volume regulatory the swelling-induced cellular release <strong>of</strong> sorbitol (354).<br />

Cl The fatty acid composition <strong>of</strong> the cell membrane can<br />

0 channels (403, 673, 679, 1047). On the other hand, it<br />

may increase Ca 2/ concentration in renal collecting duct be modulated by dietary polyunsaturated fatty acids,<br />

and activate K which lead to enhanced formation <strong>of</strong> leukotrienes and<br />

/ channels in neurons (622, 1213). Moreover,<br />

the 15-lipoxygenase product <strong>of</strong> arachidonic acid thus to acceleration <strong>of</strong> RVD in Ehrlich ascites tumor cells<br />

(712).<br />

hepoxilin A3 activates volume regulatory K / channels in<br />

platelets (798–801), and the 5-lipoxygenase product LTD4<br />

activates volume regulatory K / and Cl 0 channels (547,<br />

592, 674, 675, 679) and volume regulatory taurine release L. pH in Acidic <strong>Cell</strong>ular Compartments<br />

(592, 678) in Ehrlich ascites tumor cells, as well as taurine<br />

release in fish erythrocytes (1207). 5-Lipoxygenase prod- As evidenced from acridine orange and fluorescein<br />

ucts similarly appear to mediate regulatory cell volume isothiocyanate-dextran fluorescence, hepatocyte swelling<br />

decrease in colonic epithelium (277, 281, 282), chromaffin leads to alkalinization <strong>of</strong> acidic cellular compartments,<br />

cells (287), MDCK cells (947), and human fibroblasts whereas cell shrinkage enhances the acidity in those com-<br />

(808). However, in most <strong>of</strong> these cell types, the evidence partments (156, 683, 1088, 1089, 1279, 1280).<br />

comes largely from effects <strong>of</strong> 5-lipoxygenase inhibitors The lysosomal proteases are known to have their pH<br />

such as nordihydroguaiaretic acid (NDGA). In Ehrlich as- optimum in the acidic range, and alkalinization <strong>of</strong> the<br />

cites tumor cells (679) and proximal renal tubules (Völkl lysosomes is well known to inhibit hepatic proteolysis<br />

and Lang, unpublished observations), on the other hand, (859, 860). Thus the alkalinizing effect on acidic cellular<br />

the inhibitory effect <strong>of</strong> NDGA was not overcome by the compartments could at least in theory contribute to the<br />

addition <strong>of</strong> LTD4, pointing to an additional effect <strong>of</strong> the antiproteolytic action <strong>of</strong> cell swelling. Along these lines,<br />

drug not related to 5-lipoxygenase inhibition. It may more alkalinization <strong>of</strong> acidic cellular compartments parallels<br />

directly inhibit the volume regulatory Cl 0 channels (438) the cell swelling and antiproteolytic effect <strong>of</strong> transforming<br />

or be effective by increasing arachidonic acid concentra- growth factor-b1 on LLC-PK1 cells (752). However, the<br />

tion (1052). contribution <strong>of</strong> vesicular alkalinization to the antiproteo-<br />

The enhanced formation <strong>of</strong> leukotrienes in swollen lytic effect <strong>of</strong> cell swelling remains to be proven. At least<br />

Ehrlich ascites tumor cells parallels a decreased forma- in liver cells, swelling alkalinizes prelysosomal rather than<br />

tion <strong>of</strong> PGE2, an effect possibly accounting for the inhibi- lysosomal compartments (766, 1090). Moreover, inhibition<br />

tion <strong>of</strong> Na / channels (679). Those channels are thought <strong>of</strong> tyrosine kinase by erbstatin interferes with prelyso-<br />

to be stimulated by PGE2 (679). On the other hand, in somal alkalinization but not with inhibition <strong>of</strong> proteolysis<br />

ciliary epithelial cells, PGE2 was thought to mediate the (S. vom Dahl and D. Häussinger, unpublished observaactivation<br />

<strong>of</strong> volume regulatory K tions), pointing to some antiproteolytic mechanisms inde-<br />

/ channels during cell<br />

swelling (191). Prostaglandin E2 similarly activates K /<br />

pendent <strong>of</strong> lysosomal pH.<br />

channels in MDCK cells (1153) and erythrocytes (743). The alkalinization <strong>of</strong> acidic cellular compartments in<br />

In collecting duct principal cells, inhibition <strong>of</strong> phos- hepatocytes occurs not only if cell swelling is due to de-<br />

pholipase A2 with quinacrine blunted the activation <strong>of</strong> crease <strong>of</strong> extracellular osmolarity but also if cell swelling<br />

volume regulatory Ca 2/ -sensitive K / channels, which, on is caused by inhibition <strong>of</strong> K / channels and by concentra-<br />

the other hand, were activated by arachidonic acid (751). tive uptake <strong>of</strong> amino acids (1279).<br />

In LLC-PK1 cells, however, volume regulatory rubidium It appears that the influence <strong>of</strong> cell volume on pH <strong>of</strong><br />

flux was not modified by arachidonic acid, even though acidic cellular compartments is not confined to prelyso-<br />

it was inhibited by an arachidonic acid antagonist (262). somes in hepatocytes but involves a number <strong>of</strong> distinct<br />

Ketoconazole, an inhibitor <strong>of</strong> epoxygenase (cyto- compartments in a great variety <strong>of</strong> cells, such as pancrechrome<br />

P-450), impedes volume regulatory efflux <strong>of</strong> os- atic b-cells, glial cells, neurons, vascular smooth muscle<br />

molytes, such as sorbitol, betaine, myo-inositol, or amino cells, proximal renal tubules, MDCK cells, alveolar cells,<br />

acids from renal papillary cells (354), MDCK cells (38), macrophages, and fibroblasts (153–157, 684, 1090, 1283).<br />

and C6 glioma cells (818, 1171). However, the inhibitory Accordingly, the functions <strong>of</strong> these compartments may be<br />

effect is not reversed by addition <strong>of</strong> hydroxyeicosatetrae- modified by alterations <strong>of</strong> cell volume.<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 259<br />

TABLE 1. Effect <strong>of</strong> cell volume on gene expression osmotic equilibrium and cell volume constancy (144).<br />

Moreover, cell shrinkage stimulates the expression <strong>of</strong> heat<br />

Effect Gene/Gene Product Affected<br />

shock proteins that serve to stabilize the proteins and<br />

/<br />

/<br />

/<br />

<strong>Cell</strong> swelling<br />

c-jun in hepatocytes (328)<br />

c-fos in cardiac myocytes (1044)<br />

JNK-1 in cardiac myocytes (1044)<br />

thus to counteract the detrimental effects <strong>of</strong> increased<br />

salt concentrations. The cell volume regulated kinase h-<br />

sgk (see sect. IIIH) is a putative element <strong>of</strong> the signaling<br />

cascade triggering cell volume regulation. Furthermore,<br />

/<br />

/<br />

ERK-1,2 in cardiac myocytes (1044)<br />

Ornithine decarboxylase in LLC-PK1 cells (75, 769),<br />

leukemia cells (977), CHO cells (761), and<br />

cell shrinkage stimulates the expression <strong>of</strong> proteins with<br />

diverse functions not obviously related to RVI, such as P-<br />

glycoprotein, ClC-K1, and Na / -K / 0<br />

hepatocytes (1215)<br />

TNF-a in macrophages (1392)<br />

-ATPase a1-subunit,<br />

cyclooxygenase-2, the GTPase-activating protein for Rac<br />

/<br />

/<br />

b-Actin (1202)<br />

Tubulin (511)<br />

a1-chimerin, the immediate early gene transcription factors<br />

Egr1–1 and c-Fos, vasopressin, phosphoenolpyruvate<br />

/<br />

/<br />

<strong>Cell</strong> shrinkage<br />

Aldose reductase in MDCK cells and kidney medulla<br />

(373, 1130)<br />

Na<br />

carboxykinase, tyrosine aminotransferase, tyrosine hydroxylase,<br />

dopamine b-hydroxylase, matrix metalloproteinase<br />

9, and several matrix proteins (see Table 1).<br />

<strong>Cell</strong> swelling similarly stimulates the expression <strong>of</strong> a<br />

/ /<br />

-inositol cotransporter SMIT (141, 670, 1318)<br />

Na / -betaine cotransporter BGLT1 (319, 878, 1319, variety <strong>of</strong> proteins including b-actin, tubulin, cyclooxy-<br />

/<br />

1372, 1393)<br />

Na<br />

genase-2, extracellular signal-regulated kinases ERK-1 and<br />

/ /<br />

/<br />

-taurine cotransporter (1238, 1239, 1320, 1322)<br />

ROSIT, putative osmolyte transporter (1323)<br />

Amino acid transport system A (182, 380, 1135,<br />

ERK-2, JNK, the transcription factors c-Jun and c-Fos,<br />

ornithine decarboxylase, and tissue plasminogen activator<br />

/<br />

1373)<br />

a1-Subunit Na<br />

(see Table 1).<br />

/ -K / /<br />

/<br />

/<br />

-ATPase (322)<br />

P-glycoprotein (1333)<br />

ClC-K1 in kidney (1241)<br />

Serine/threonine kinase h-sgk (1295)<br />

Information on the mechanisms triggering altered<br />

gene expression remains scanty (1254). Some evidence<br />

points to involvement <strong>of</strong> the cytoskeleton (76). The ex-<br />

/<br />

/<br />

/<br />

Egr-1 in MDCK cells (205, 206, 208) and<br />

cardiomyocytes (1361)<br />

a1-Chimerin in neurons (286)<br />

c-fos in MDCK cells (208), hypothalamic cells (396),<br />

pression <strong>of</strong> aldose reductase is regulated by a distinct<br />

osmolarity-responsive element (320, 321, 1036). The stimulation<br />

<strong>of</strong> c-fos expression by swelling <strong>of</strong> cardiac myoand<br />

cardiomyocytes (1361) cytes is apparently secondary to tyrosine phosphorylation<br />

/<br />

/<br />

/<br />

0<br />

Heat shock proteins (11, 208, 1116, 1192)<br />

Cyclooxygenase-2 (1391)<br />

PEPCK (713, 886, 1317)<br />

Tyrosine hydroxylase in PC12 cells (621)<br />

(1044); the c-jun transcription after swelling <strong>of</strong> hepatocytes<br />

is at least partially the result <strong>of</strong> MAPK activation,<br />

followed by phosphorylation <strong>of</strong> c-Jun (895, 1072, 1211).<br />

0<br />

/<br />

/<br />

Dopamine b-hydroxylase in PC12 cells (621)<br />

Tyrosine aminotransferase (1317)<br />

Tissue plasminogen activator in endothelial and<br />

HeLa cells (733)<br />

<strong>Cell</strong> volume changes modify phosphorylation <strong>of</strong> a histonelike<br />

nuclear protein (1057), and hypertonicity has<br />

been shown to alter the karyotype (1237).<br />

/ ab-Crystallin in lens and kidney (245) In mice, a gene (rol) has been identified that renders<br />

0<br />

/<br />

0<br />

Matrix metalloproteinase 9 (1031)<br />

Matrix proteins in chondrocytes (1244)<br />

Laminin B2 in mesangial cells (603)<br />

erythrocytes resistant to osmotic lysis. The product <strong>of</strong><br />

this gene is likely to be involved in the stimulation <strong>of</strong><br />

volume regulatory K / / Vasopressin (866)<br />

fluxes. However, the precise func-<br />

/ CD9 antigen in MDCK and PAP-HT25 cells (1115) tion <strong>of</strong> this gene remains elusive (318).<br />

/, Stimulation; 0, inhibition; CHO, Chinese hamster ovary; TNF-a,<br />

tumor necrosis factor-a; MDCK, Madin-Darby canine kidney; PEPCK,<br />

phosphoenolpyruvate carboxykinase. For review, see Reference 144. IV. CHALLENGES OF CELL<br />

Reference numbers are given in parentheses. VOLUME CONSTANCY<br />

M. Gene Expression<br />

A multitude <strong>of</strong> mechanisms alter cell volume. They<br />

may do so by overriding the volume regulatory mechanims,<br />

by knocking them out, or by shifting their volume<br />

Both cell swelling and cell shrinkage markedly influence<br />

the expression <strong>of</strong> a wide variety <strong>of</strong> genes (see Table 1).<br />

regulatory set point.<br />

As indicated in section IIC, exposure <strong>of</strong> cells to enhanced<br />

extracellular osmolarity or ionic strength stimulates<br />

the expression <strong>of</strong> aldose reductase and the Na<br />

A. Alterations <strong>of</strong> Extracellular Osmolarity<br />

/ -<br />

coupled transport systems for inositol, betaine, taurine, In mammalian tissues, most cells are exposed to ex-<br />

and amino acids. The function <strong>of</strong> these proteins serves tracellular fluid with well-controlled osmolarity. A notable<br />

cellular accumulation <strong>of</strong> osmolytes and thus reestablishes exception is the kidney medulla, where extracellular os-<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


260<br />

LANG ET AL. <strong>Volume</strong> 78<br />

molarity may approach values exceeding isotonicity by a 858, 1142). Causes include excessive sweating, osmotic<br />

factor <strong>of</strong> ú4 (1033). Any blood cell passing the kidney diuresis, lack <strong>of</strong> ADH or defective renal response to ADH,<br />

medulla experiences exposure to this high ambient osmo- and drinking <strong>of</strong> seawater (553).<br />

larity and subsequent return to isosmolarity within sec- Even though extracellular osmolarity increases due<br />

onds. Medullary cells have not only to cope with this to accumulation <strong>of</strong> urea in uremia (803), urea easily pasexcessive<br />

extracellular osmolarity for prolonged periods ses cell membranes and does thus not usually cause os-<br />

but encounter rapid changes <strong>of</strong> osmolarity during transi- motic gradients across the cell membrane. Nevertheless,<br />

tion from antidiuresis to diuresis, when medullary osmo- as shown in several cell types, high extracellular urea<br />

larity rapidly decreases toward isosmolarity (63). concentrations may trigger cell shrinkage by modifying<br />

Less dramatic alterations <strong>of</strong> extracellular osmolarity the set point for volume regulatory mechanisms (see sect.<br />

occur during intestinal absorption, which exposes intesti- IIIA). <strong>Cell</strong> shrinkage may be the signal for increase <strong>of</strong><br />

nal cells to anisosmotic luminal fluid and may modify osmolyte concentration in the brain, which has been ob-<br />

portal blood osmolarity and liver cell volume (460). served to parallel enhanced urea concentration in uremia<br />

Other tissues are exposed to altered extracellular os- (1223).<br />

molarity during a variety <strong>of</strong> disorders. Although moderate, Rapid correction <strong>of</strong> chronically enhanced osmolarity<br />

these alterations are still highly relevant challenges to cell may lead to cell swelling, namely, to cerebral edema (28,<br />

volume control. 1157). Chronic increases <strong>of</strong> extracellular osmolarity are<br />

Because Na compensated by cells through accumulation <strong>of</strong> osmolytes,<br />

/ salts (mainly NaCl) contribute ú90% to<br />

extracellular osmolarity, a significant decrease <strong>of</strong> extra- which may not be rapidly readjusted. Cerebral betaine,<br />

cellular osmolarity is necessarily paralleled by hypona- inositol, and glycerophosphorylcholine, for instance, may<br />

tremia. A variety <strong>of</strong> clinical conditions can lead to hypona- remain enhanced for days after correction <strong>of</strong> extracellular<br />

tremia (20, 21, 90, 816, 905, 1265). Hyponatremia may re- hypertonicity (746, 1208). Conversely, rapid correction <strong>of</strong><br />

flect an excess <strong>of</strong> water, either due to excessive oral load<br />

or due to impaired renal elimination, or a deficit <strong>of</strong> Na<br />

hyponatremia may prove similarly harmful (1141, 1156).<br />

/<br />

due to renal or extrarenal loss (90, 606, 1264). In both<br />

cases, the hyponatremia reflects a decreased extracellular<br />

osmolarity, leading to cell swelling. Excessive water in-<br />

B. Alterations <strong>of</strong> Extracellular Ion Composition<br />

take is seen in psychiatric disorders (22). Causes for im- Even at constant extracellular osmolarity, cell vol-<br />

paired renal water elimination include inappropriate antiume constancy may be challenged by altered extracellular<br />

diuretic hormone (ADH) secretion, glucocorticoid defi- ion composition (see Table 2).<br />

Most importantly, an increase <strong>of</strong> extracellular K / ciency, hypothyroidism, and renal and hepatic failure.<br />

con-<br />

Renal and/or extrarenal loss <strong>of</strong> Na / may result from min- centration depolarizes the cell membrane and eventually<br />

leads to cellular uptake <strong>of</strong> K / eralocorticoid deficiency, salt losing kidney, nephrotic<br />

with accompanying anions<br />

syndrome, osmotic diuresis, vomiting, and diarrhea (90). (mainly Cl 0 and HCO 0 3 ) and subsequent cell swelling. Con-<br />

versely, a decrease <strong>of</strong> extracellular K / Moreover, a wide variety <strong>of</strong> drugs including diuretics,<br />

could result in cell<br />

cyclooxygenase inhibitors, and certain central nervous shrinkage due to cellular loss <strong>of</strong> KCl (see Table 2).<br />

An increase <strong>of</strong> extracellular HCO 0 system active drugs may lead to hyponatremia due to<br />

3 concentration<br />

loss <strong>of</strong> Na / and/or to retention <strong>of</strong> water (90). Hyposmolar could swell cells by electrogenic entry, hyperpolarization,<br />

reduced driving force for K / hyponatremia is further observed after burns, pancreati-<br />

exit, and subsequent accumutis,<br />

and crush syndrome (90). lation <strong>of</strong> KHCO3 (976). During correction <strong>of</strong> extracellular<br />

Hyponatremia does not necessarily indicate hypos- acidosis in the course <strong>of</strong> the treatment <strong>of</strong> diabetic ketoacimolarity<br />

but may occur in isosmolar or even hyperosmolar dosis, increasing extracellular pH allows the cells to extrude<br />

H / through the Na / /H / states (90). Extracellular osmolarity may be enhanced de-<br />

exchanger, similarly leading<br />

spite normal or even decreased extracellular Na / concen- to cell swelling (1255).<br />

tration during hyperglycemia in uncontrolled diabetes Several organic anions such as acetate, lactate, and<br />

mellitus (27) and ethanol poisoning (1010). Moreover, hy- proprionate swell cells by entry <strong>of</strong> the unionized acid,<br />

intracellular dissociation, stimulation <strong>of</strong> Na / /H / ponatremia cannot be equated with cell swelling. As de-<br />

exchange<br />

tailed in section IVF, cell swelling or cell shrinkage may by cytosolic acidosis, and subsequent accumulation <strong>of</strong><br />

Na / prevail in diabetes mellitus. Burns, pancreatitis, and se- and organic anions (see Table 2). A similar effect is<br />

vere trauma, all conditions associated with hyponatremia exerted by CO2. In general, acidosis favors cell swelling,<br />

(see above), may actually lead to muscle cell shrinkage whereas cellular alkalosis has the opposite effect (see<br />

rather than cell swelling (507). Table 2). Along these lines, the cellular accumulation <strong>of</strong><br />

Extracellular osmolarity is increased in hyperna- lactate in muscle exercise triggers volume regulatory<br />

tremia, due to excessive oral intake and/or renal retention mechanisms (1048).<br />

Isotonic replacement <strong>of</strong> Cl 0 <strong>of</strong> Na with gluconate leads to<br />

/ and/or renal and extrarenal loss <strong>of</strong> water (325, 553,<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 261<br />

cell shrinkage due to cellular loss <strong>of</strong> Cl 0 (and K / ) (see An increase <strong>of</strong> cell volume appears to be required for cell<br />

Table 2).<br />

proliferation (see sect. VI).<br />

Activation <strong>of</strong> Na / channels or nonselective cation<br />

channels by excitatory neurotransmitters such as gluta-<br />

C. Energy Depletion mate tends to swell neurons, whereas activation <strong>of</strong> K /<br />

As pointed out in section IIB, the maintenance <strong>of</strong> a<br />

channels or anion channels by inhibitory neurotransmitters<br />

such as GABA tends to shrink neurons (see Table 2).<br />

constant cell volume requires the expenditure <strong>of</strong> energy Secretagogues may stimulate transepithelial trans-<br />

to fuel the Na port by enhancing cellular ion entry, ion exit, or both. If<br />

/ -K / -ATPase, which is required to establish<br />

the ionic gradients across the cell membrane. Inhibition <strong>of</strong> stimulation <strong>of</strong> ion entry prevails, the cells swell, whereas<br />

Na if ion exit is preferentially activated, the cells shrink. Thus<br />

/ -K / -ATPase by ouabain or during ischemia eventually<br />

leads to cell swelling. In cardiac myocytes, the swelling secretagogues may either swell (e.g., epinephrine) or<br />

is preceded by transient cell shrinkage due to increase <strong>of</strong> shrink (e.g., acetylcholine) the cells (see Table 2).<br />

intracellular Ca 2/ and hypercontraction (31, 174, 1131). In kidney medulla, ADH enhances extracellular os-<br />

As would be expected, ischemia leads to swelling <strong>of</strong> molarity and thus forces the medullary cells to accumu-<br />

the brain (347, 1229) by impairment <strong>of</strong> Na / -K / -ATPase and late osmolytes (1033, 1075). Furthermore, ADH may more<br />

subsequent accumulation <strong>of</strong> NaCl (347, 593). However, ac- directly trigger the formation or accumulation <strong>of</strong> osmocording<br />

to in vitro studies on glial and neuronal cells, energy<br />

depletion alone does not result in cell swelling (35,<br />

lytes (880).<br />

613, 775, 1396). Rather, additional factors such as the intracellular<br />

acidosis (91, 578, 611, 1299) may account for cell<br />

E. Substrate Transport<br />

swelling observed during ischemia (625). Furthermore, cell<br />

swelling in cerebral ischemia is favored by an increase <strong>of</strong><br />

The transport and cellular accumulation <strong>of</strong> amino<br />

acids lead to cell swelling (Table 2). Especially Na / extracellular K<br />

-cou-<br />

/ concentration (612) and by extracellular<br />

accumulation <strong>of</strong> glutamate (42, 1396), which stimulates cationic<br />

channels through N-methyl-D-aspartate (NMDA) re-<br />

pled transport processes can generate large chemical gradients<br />

across the cell membrane, due to the steep electrochemical<br />

gradient for Na / ceptors and leads to subsequent accumulation <strong>of</strong> Na<br />

. For instance, cellular gluta-<br />

/ , depolarization,<br />

and uptake <strong>of</strong> Cl<br />

mine has been observed to increase by ú30 mM after the<br />

0 (185, 186). In the heart,<br />

recovery from ischemia is facilitated in the presence <strong>of</strong> the<br />

Na<br />

addition <strong>of</strong> 3 mM glutamine to portal blood (502).<br />

As listed in Table 2, transport <strong>of</strong> several other sub-<br />

/ /H / exchange inhibitor 3-methylsulfonyl-4-piperidinobenzoyl-guanidine-mesilate<br />

(HOE-694) (1085).<br />

strates such as glucose, taurine, and taurocholeate simi-<br />

larly increases cell volume.<br />

Alterations <strong>of</strong> cell volume are encountered during<br />

cryopreservation <strong>of</strong> organs (366, 394, 681). Low temperatures<br />

inhibit the Na / -K / -ATPase and may thus be ex- F. Metabolism<br />

pected to eventually result in cell swelling.<br />

In theory, any reaction resulting in an increase <strong>of</strong><br />

osmotically active substances, such as degradation <strong>of</strong> pro-<br />

D. Ion Transport Altered by Hormones teins to amino acids, glycogen to glucose phosphate, or<br />

and Transmitters triglycerides to glycerol and fatty acids, may be expected<br />

As listed in Table 2, a wide variety <strong>of</strong> hormones has<br />

to create intracellular osmolarity. However, very little is<br />

known about the influence <strong>of</strong> metabolism on cell volume.<br />

been shown to alter cell volume. Exercising muscle may lead to cellular accumulation<br />

Most importantly, insulin swells hepatocytes by acti- <strong>of</strong> lactate and thus may increase cell volume (1048). The<br />

vation <strong>of</strong> both Na / /H / exchange and Na / -K / -2Cl 0 cotrans- developing intracellular acidosis may compound cell<br />

swelling by activation <strong>of</strong> the Na / /H / port (4, 472, 953), and glucagon shrinks hepatocytes, pre-<br />

exchanger.<br />

sumably by activation <strong>of</strong> ion channels (473, 1286, 1287). Diabetic ketoacidosis may cause cell swelling (125,<br />

The effect <strong>of</strong> these hormones on cell volume accounts for 197, 646, 1388) due to cellular uptake <strong>of</strong> acids and en-<br />

several <strong>of</strong> the effects on hepatocyte metabolism (504, 506, hanced Na / /H / exchange activity in compensation for cel-<br />

lular H / 1286, 1287). It should be pointed out that insulin and glu- generation (1255). More importantly, high glucose<br />

cagon modify cell volume at hormone concentrations well concentrations favor cellular formation and accumulation<br />

encountered under physiological conditions. This is not <strong>of</strong> sorbitol through aldose reductase (143, 180, 559, 748,<br />

necessarily true for all hormones listed in Table 2. Similar 990, 1196). As a consequence, cells decrease other osmo-<br />

to insulin, several growth factors increase cell volume in lytes such as myo-inositol (143, 411, 1079, 1158, 1222,<br />

a variety <strong>of</strong> cells by stimulation <strong>of</strong> Na / /H / exchange and 1386, 1387), an effect which can be reversed by inhibition<br />

in some cases <strong>of</strong> Na <strong>of</strong> aldose reductase with sorbinil (303, 326, 1218). On the<br />

/ -K / -2Cl 0 cotransport (see Table 2).<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


262<br />

TABLE 2. Factors altering cell volume<br />

LANG ET AL. <strong>Volume</strong> 78<br />

Factor <strong>Cell</strong> Affected Factor <strong>Cell</strong> Affected<br />

Factors leading to cell swelling Factors leading to cell swelling—Continued<br />

Insulin Hepatocytes (4, 472, 473, 953, 1287, 1286),<br />

pneumocytes (805)<br />

IGF-I Hepatocytes (1285)<br />

Growth hormone Chondrocytes (557)<br />

ADH (AVP) Glial cells (259, 705)<br />

Glucocorticoids Hepatocytes (660)<br />

Fibroblasts (316)<br />

Mineralocorticoids Leukocytes (1329–1331)<br />

Estrogens Astrocytes (344)<br />

Parathyroid glands (137)<br />

Progesterone Astrocytes (344)<br />

Parathyroid glands (137)<br />

Testosterone Parathyroid glands (137)<br />

Gonadotropin Leydig cells (1346)<br />

Somatostatin Colon cells (277)<br />

Adenosine Erythrocytes (1132)<br />

Angiotensin Vascular smooth muscle cells (296)<br />

Interleukin Lymphocytes (1184)<br />

a-Adrenergic Hepatocytes (1286)<br />

b-Adrenergic Erythrocytes (56, 323, 459, 862)<br />

Salivary glands (172)<br />

Sweat glands (907)<br />

Acetylcholine* Sweat glands (907)<br />

Myogenic L6 cells (1110)<br />

Glutamate* Glial cells (73, 185, 486–488, 594, 1084,<br />

1151)<br />

Neurons (185, 186, 975, 1059)<br />

Kainate Neurons (24, 999)<br />

NMDA Brain (190, 1267)<br />

Aspartate Neurons (1059)<br />

Deoxyadenosine Lymphoblastoid cells (36)<br />

cAMP Sweat glands (907)<br />

cGMP Barnacle muscle (957)<br />

PKC-e,d Promyelocytes (1302)<br />

Arachidonic acid Glial cells (1147, 1148)<br />

ras Oncogene Fibroblasts (695, 824)<br />

Phorbol esters Necturus gallbladder (247)<br />

Genistein Tumor cells (925)<br />

Okadaic acid Erythrocytes (581, 597, 941)<br />

Superoxide Erythrocytes (1247)<br />

Lithium Erythrocytes (935, 944)<br />

Magnesium Erythrocytes (332, 943, 944)<br />

Amino acid uptake Hepatocytes (43, 51, 60, 204, 342, 471,<br />

502, 653, 654, 1300, 1341)<br />

Proximal renal tubule (67, 69, 122, 173)<br />

Intestine cells (706, 785, 788, 930, 1092,<br />

1095)<br />

Glucose uptake Necturus gallbladder (355)<br />

Kidney (67)<br />

LLC-PK1 cells (75)<br />

Intestine cells (785)<br />

Vascular smooth muscle cells (881)<br />

Mesangial cells (620)<br />

Bile acids Hepatocytes (497, 506)<br />

Increase <strong>of</strong> K /<br />

Hepatocytes (1261)<br />

Gallbladder epithelium (229, 528, 639)<br />

Proximal renal tubule (261, 631, 689,<br />

1282)<br />

Renal cortical slices (973)<br />

Thick ascending limb (1178)<br />

Amphiuma diluting segment (443)<br />

Shark rectal gland (638)<br />

Glial cells (46, 259, 594, 612, 628, 731, 802,<br />

847, 902, 1086)<br />

Neurons (24, 33, 1086)<br />

Retinal Müller cells (312)<br />

GH-producing cells (307)<br />

Adrenal glomerulosa cells (513)<br />

Vestibular dark cells (1314)<br />

Ba 2/ , quinidine* Proximal renal tubule (1174, 1282)<br />

Hepatocytes (12, 498, 618)<br />

A6 cells (272a)<br />

MDCK cells (1176)<br />

Ouabain* Necturus gallbladder (251, 378)<br />

Thick ascending limb (1179)<br />

Collecting duct principal cells (1164,<br />

1165)<br />

Neurons (168)<br />

Platelets (806)<br />

Enterocytes (784)<br />

Sperm (258)<br />

HCO 0 3<br />

Parotid glands (976)<br />

Acidosis Proximal renal tubule (1174, 1175)<br />

Neurons (1149, 1150)<br />

Glial cells (611, 883, 1145, 1146, 1149,<br />

1151, 1172)<br />

Esophageal cells (1214)<br />

(Short chain) Enterocytes (278, 280, 1032)<br />

fatty acids* Proximal renal tubule (1016)<br />

Erythrocytes (385)<br />

Brain (178)<br />

Vestibular dark cells (1313)<br />

NH 3<br />

Shark rectal gland (315)<br />

Astrocytes (867, 897, 898)<br />

Opossum kidney cells (982)<br />

Cytochalasin B Lymphoblast cells (36)<br />

Colchicine Lymphoblast cells (36)<br />

Vinblastine* Lymphoblast cells (36)<br />

Endotoxin Hepatocytes (127)<br />

N-methylformamide HT-29 cells (260)<br />

Chlorpromazine* Erythrocytes (219, 1205)<br />

Hydroxyurea Endothelial cells (2)<br />

Ethanol Hepatocytes (1362)<br />

Adenohypophysial cells (1063)<br />

Cardiac cells (552)<br />

Proximal tubule cells (600)<br />

Dideoxycytidine Monoblastoid cells (115)<br />

Mercurials MDCK cells (1028)<br />

Shark rectal gland (637)<br />

Dioxin* Hepatocytes (1344)<br />

Veratridine Neurons (190)<br />

Hyperthermia Chondrocytes (335)<br />

Osteoblasts (335)<br />

Hemolysin Erythrocytes (556)<br />

Phot<strong>of</strong>rin Tumor cells (729, 730)<br />

Fertilization Sperm (1212)<br />

Electric field Outer hair cells (906)<br />

stimulus<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 263<br />

TABLE 2—Continued<br />

Factor <strong>Cell</strong> Affected Factor <strong>Cell</strong> Affected<br />

Factors leading to cell shrinkage Factors leading to cell shrinkage—Continued<br />

Glucagon Hepatocytes (379, 473, 1287)<br />

VIP Intestine (276, 901, 1297)<br />

Somatoliberin GH-producing cells (307)<br />

(hGHRH)<br />

ADH MDCK cells (1176)<br />

Hepatocytes (1286)<br />

Atriopeptin (ANF) glial cells (705)<br />

Cardiac myocytes (198, 199, 201)<br />

NO Heart (200, 201)<br />

ATP Endothelial cells (916)<br />

Hepatocytes (1286)<br />

Bradykinin Enterocytes (1210)<br />

Fibroblasts (1005)<br />

Ehrlich cells (547, 1126)<br />

Endothelial cells (916)<br />

Histamine Enterocytes (1210)<br />

Ehrlich cells (547)<br />

Thrombin Enterocytes (1210)<br />

Ehrlich cells (547, 1126)<br />

Serotonin Leech glial cells (46)<br />

Adenosine Renal collecting duct (1107)<br />

Hepatocytes (1286)<br />

fMLP Granulocytes (955)<br />

Corticostatic Enterocytes (786)<br />

peptides<br />

a-Adrenergic Hepatocytes (849)<br />

Salivary glands (797)<br />

Isoprenaline Nonpigmented ciliary epithelium (183)<br />

Acetylcholine* Salivary glands (338, 341, 699, 797, 846,<br />

872, 873, 882, 911, 976, 1363)<br />

Sweat glands (1181, 1189)<br />

Enterocytes (1210, 1297)<br />

Erythrocytes (743)<br />

PGE 2<br />

H 2O 2<br />

Hepatocytes (470, 1045)<br />

cAMP Necturus gallbladder (229, 994)<br />

Hepatocytes (1286)<br />

MDCK cells (828, 829, 833, 1176)<br />

Barnacle muscle (957, 987)<br />

Pulmonary epithelium (787)<br />

Pancreatic epithelial cells (1182)<br />

Pancreatic epithelium (643)<br />

Intestine (1251)<br />

Nonpigmented ciliary epithelium (183)<br />

cGMP Heart (199, 201)<br />

A23187* Pulmonary epithelium (787)<br />

Enterocytes (786, 1210)<br />

Erythrocytes (134, 310)<br />

Fibroblasts (1358)<br />

Neuroblastoma cells (233)<br />

Thapsigargin Enterocytes (786)<br />

Okadaic acid* Hepatocytes (101)<br />

Cytochalasin B MDCK cells (828, 829)<br />

Colchicine Macrophages (821)<br />

Ouabain Neurons (16)<br />

Cardiac myocytes (1131)<br />

Vascular smooth muscle cells (919)<br />

Decrease in K / o<br />

Removal <strong>of</strong> Na / o<br />

Removal <strong>of</strong> Cl 0 o<br />

Removal <strong>of</strong> Ca 2/<br />

o<br />

Proximal renal tubules (631)<br />

Erythrocytes (291)<br />

Leech glial cells (46)<br />

Pigmented ciliary epithelium (301)<br />

Muscle cells (959)<br />

Pigmented ciliary epithelium (301)<br />

Kidney (777)<br />

Pigmented ciliary epithelium (301)<br />

Toad bladder (740)<br />

Amphibian skin (434, 1246)<br />

Erythrocytes (933, 939)<br />

Muscle cells (958)<br />

Mg 2/ depletion Erythrocytes (711)<br />

Starvation Hepatocytes (3, 1140)<br />

Heme oxygenation Erythrocytes (163, 164)<br />

Elastin peptides Tumor cells (946)<br />

Urea Proximal renal tubules (359)<br />

Hepatocytes (474)<br />

Erythrocytes (936)<br />

Mastoparan MDCK cells (1350)<br />

NDS Enterocytes (790)<br />

Furosemide* Macula densa cells (964)<br />

MDCK cells (1176)<br />

MAG-3but HL-60 leukemic cells (162)<br />

Ethanol Prolactin-secreting cells (1063, 1068)<br />

Thyrotropin-releasing cells (1063)<br />

Amphotericin B Cornea epithelium (992)<br />

Macrophages (299)<br />

Lead Erythrocytes (310)<br />

Cisplatin Renal tubule cells (110)<br />

Noise Auditory hair cells (275)<br />

VIP, vasoactive intestinal polypeptide; NDS, neutrophil-derived secretagogue; MAG-3but, monoacetone glucose 3-butyrate; NMDA, N-methyl-Daspartate;<br />

IGF-I, insulin-like growth factor I; ADH, antidiuretic hormone; AVP, arginine vasopressin; PKC, protein kinase C; ANF, atrial natriuretic<br />

factor; NO, nitric oxide; PG, prostaglandin; fMLP, formyl-methionyl-leucyl-phenylalanine; hGHRH, human growth hormone-releasing hormone. * Or<br />

similarly active drugs. Reference numbers are given in parentheses.<br />

other hand, hyperglycemia is paralleled by hyperosmolar- explored. On the other hand, the cellular formation <strong>of</strong> perity,<br />

which shrinks cells. In fact, some evidence points to oxides has been shown to shrink hepatocytes due to activa-<br />

shrinkage <strong>of</strong> polymorphonuclear lymphocytes in hyperos- tion <strong>of</strong> K / channels at the cell membrane (1045). Peroxides<br />

similarly activate K / molar diabetes mellitus (269).<br />

channels in pancreatic b-cells (652)<br />

In addition to creating osmotically active substances, and vascular smooth muscle cells (651) but inhibit N-type<br />

metabolic pathways may alter cell volume indirectly K / channels in lymphocytes (1183) and minK channels<br />

through modification <strong>of</strong> transport processes across the cell (152), which are expressed in a variety <strong>of</strong> cells (150). In<br />

membrane. For instance, a decrease <strong>of</strong> cellular ATP could endothelial cells, peroxides inhibit Na / -K / -2Cl 0 cotransport<br />

activate ATP-sensitive K (305). However, the consequences on cell volume have not<br />

/ channels and thus shrink susceptible<br />

cells, a possibility which has, however, not yet been been tested in any <strong>of</strong> those cells.<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


264<br />

G. Others<br />

In addition to hormones, a great number <strong>of</strong> drugs and<br />

toxins lead to cell swelling or cell shrinkage (Table 2).<br />

For most substances, the functional significance <strong>of</strong> the<br />

effect on cell volume has not been explored.<br />

In several stress situations, such as surgical intervention<br />

(306), acute pancreatitis (1027), severe injury, burns,<br />

and sepsis (79), a decrease <strong>of</strong> muscle intracellular space<br />

has been observed, leading to disinhibition <strong>of</strong> proteolysis<br />

and thus to hypercatabolism (507). However, the mechanisms<br />

underlying muscle cell shrinkage have not yet been<br />

elucidated.<br />

V. ROLE OF CELL VOLUME REGULATORY<br />

MECHANISMS IN CELL FUNCTIONS<br />

A. Erythrocyte Function<br />

Erythrocyte volume and shape are important determinants<br />

<strong>of</strong> blood viscosity. <strong>Cell</strong> volume regulatory mechanisms<br />

are specifically important in limiting alterations <strong>of</strong><br />

cell volume during their passage through the hypertonic<br />

kidney medulla and during HCO 0 3 transport in the lung<br />

and the periphery. One disorder exacerbated by altered<br />

LANG ET AL. <strong>Volume</strong> 78<br />

erythrocyte cell volume regulatory mechanisms is sickle<br />

cell anemia, where mutations <strong>of</strong> the hemoglobin chain<br />

FIG. 1. Three examples illustrating role <strong>of</strong> cell volume in coupling<br />

<strong>of</strong> apical to basolateral cell membranes in epithelia. A: Na / (HbS) favor the polymerization <strong>of</strong> deoxygenated hemoglo-<br />

-coupled<br />

transport across apical cell membrane <strong>of</strong> proximal renal tubules leads<br />

to accumulation <strong>of</strong> Na / bin, leading to characteristic changes <strong>of</strong> cell shape (sick-<br />

and substrate [e.g., amino acids (AA)] and thus<br />

to cell swelling, which activates basolateral K / ling) and impaired deformability <strong>of</strong> the erythrocytes (591,<br />

channels. B: electrolyte<br />

uptake by Na / -K / -2Cl 0 737); the consequence is a severe increase <strong>of</strong> blood viscoscotransport<br />

across basolateral cell membrane in<br />

dark vestibular cells leads to cell swelling and subsequent activation <strong>of</strong><br />

luminal K / channels. C: stimulation <strong>of</strong> apical Cl 0 channels in Cl 0 ity (591). The polymerization <strong>of</strong> hemoglobin is highly de-secreting<br />

cells leads to loss <strong>of</strong> Cl 0 and, because <strong>of</strong> depolarization, <strong>of</strong> K / pendent on protein concentration and thus on cell volume<br />

. <strong>Cell</strong><br />

shrinkage and decrease <strong>of</strong> intracellular Cl 0 activity in turn stimulate<br />

(297, 298). In HbS erythrocytes, volume regulatory KCl basolateral Na / -K / -2Cl 0 cotransport.<br />

cotransport (133, 163, 164, 343, 1276) is enhanced, partially<br />

due to direct interaction with the mutated hemoglo-<br />

bin (914). Furthermore, cell shrinkage is presumably fa-<br />

vored by enhanced activity <strong>of</strong> Ca 2/ -sensitive K / channels<br />

(105, 134, 343) due to increase <strong>of</strong> intracellular Ca 2/ con-<br />

centration. The ensuing cell shrinkage further favors the<br />

polymerization <strong>of</strong> hemoglobin (591). The expression <strong>of</strong><br />

the Na / /H / exchanger is enhanced, possibly in compensa-<br />

tion for cell shrinkage (165). Similarly, cell volume is decreased<br />

in homozygous hemoglobin C disease (135).<br />

B. Epithelial Transport<br />

Transcellular ion transport in epithelia is accom-<br />

plished by entry mechanisms across one cell membrane<br />

and ion exit mechanisms at the other cell membrane. Obviously,<br />

the entry or extrusion <strong>of</strong> osmotically active sub-<br />

stances during epithelial transport represents a continu-<br />

In intestine, gallbladder, and renal proximal tubules<br />

(see Fig. 1A), the luminal uptake <strong>of</strong> substrates for Na / -<br />

coupled transport, such as glucose or amino acids, tends<br />

to swell the cells, leading to volume regulatory activation<br />

<strong>of</strong> K / channels in the basolateral cell membrane (67, 68,<br />

122, 173, 355, 493, 687, 692, 706, 782, 995, 1092–1096,<br />

1230). The activation <strong>of</strong> these channels not only limits<br />

cell swelling but maintains the electrical driving force for<br />

continued transport.<br />

In the NaCl-reabsorbing thick ascending limb <strong>of</strong><br />

Henle’s loop and diluting segment <strong>of</strong> the amphibian kid-<br />

ney, NaCl entry is accomplished by luminal Na / -K / -2Cl 0<br />

cotransport, basolateral Cl 0 channels, and Na / -K / -<br />

ATPase as well as apical and basolateral K / channels (416,<br />

900, 1178). Inhibition <strong>of</strong> Na / -K / -ATPase leads to rapid cell<br />

swelling, which is prevented by inhibition <strong>of</strong> luminal Na / -<br />

ous challenge to cell volume constancy. K / -2Cl 0 cotransport (444, 520, 1178). On the other hand,<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 265<br />

stimulation <strong>of</strong> transport by ADH involves a well-coordi- cytosol by impairment <strong>of</strong> HCO 0 3 exit (687), whereas os-<br />

nated increase <strong>of</strong> transport rate across both luminal and motic cell swelling leads to cytosolic acidification (see<br />

basolateral cell membranes (521) without any appreciable sect. IIIE). Because K / channels are highly sensitive to<br />

increase <strong>of</strong> cell volume (519). If the cells are shrunk by cytosolic pH (692), their activation is expected to be dif-<br />

increased extracellular osmolarity, they do not display ferent between osmotic and substrate-induced cell swelling.<br />

In enterocytes, RVD apparently depends on Ca 2/ RVI unless they are stimulated with ADH or cAMP (520,<br />

from<br />

522, 1177). The hormone not only activates luminal Na / - outside and calmodulin-sensitive K / channels, whereas<br />

K substrate-induced cell swelling appears to be counterreg-<br />

/ -2Cl 0 cotransport but also a Na / /H / exchanger in the<br />

basolateral cell membrane, which contributes to ion accu- ulated by cellular Ca 2/ release and subsequent activation<br />

<strong>of</strong> Cl 0 mulation during RVI (520, 522, 1177).<br />

channels by protein kinase C (782, 788).<br />

Potassium secretion in dark vestibular cells (see Fig. <strong>Volume</strong>-mediated activation <strong>of</strong> transporters not only<br />

1B) and stria vascularis marginal cells <strong>of</strong> the inner ear involves ion channels and ion transporters. As pointed<br />

is accomplished by basolateral Na / -K / -2Cl 0 cotransport, out above, cell shrinkage stimulates the expression and/<br />

or activity <strong>of</strong> Na / Na -coupled transporters for inositol (877),<br />

/ -K / -ATPase, and Cl 0 channels as well as apical minK<br />

channels (1311). The K / channels are activated by cell betaine (1242, 1372), taurine (1238), and neutral amino<br />

swelling (1120, 1312), and the basolateral Na acids (182, 380, 1135, 1373). <strong>Cell</strong> swelling, on the other<br />

/ -K / -2Cl 0 cotransport<br />

by cell shrinkage (1315). <strong>Cell</strong> volume couples hand, stimulates cellular release <strong>of</strong> the above osmolytes<br />

the two cell membranes, since excess Na and <strong>of</strong> glutathione (503) and cellular uptake <strong>of</strong> alanine<br />

/ -K / -2Cl 0 cotransport<br />

would swell the cells and thus activate the apical and glutamine (502, 1335) and <strong>of</strong> taurocholate (469, 497).<br />

K Stimulation <strong>of</strong> osmolyte flux during alterations <strong>of</strong> cell vol-<br />

/ channels, and excess K / channel activity would shrink<br />

the cell and thus turn on Na / -K / -2Cl 0 cotransport. More- ume serves to regulate cell volume rather than transepi-<br />

over, exposure <strong>of</strong> the basolateral side to a hypotonic methelial transport, but entry and/or exit may be polarized<br />

dium stimulates transepithelial transport (1312), possibly (377, 480, 630, 1372), and in the liver, cell swelling indeed<br />

by decreasing intracellular Cl stimulates transepithelial transport <strong>of</strong> taurocholate (469,<br />

0 and subsequent activation<br />

<strong>of</strong> Na / -K / -2Cl 0 cotransport. 508) and leukotrienes (1340).<br />

In tight epithelia reabsorbing Na / , such as urinary<br />

Hyperosmolarity stimulates urea transport (392, 393)<br />

bladder, Na / entry through luminal Na / channels is simi- but inhibits transport <strong>of</strong> NaCl in inner medullary collect-<br />

larly coordinated with Na ing duct (410) and salivary gland (874).<br />

/ -K / -ATPase and K / channels<br />

at the basolateral cell membrane (179, 329, 742, 789, 995, Stimulation <strong>of</strong> transport during cell swelling may be<br />

1232, 1233, 1303, 1349). Accordingly, inhibition <strong>of</strong> the Na the result <strong>of</strong> insertion <strong>of</strong> the carriers and/or channels into<br />

/ -<br />

K / -ATPase in toad urinary bladder leads to parallel inhibi- the cell membrane by exocytosis (114, 132, 462, 497, 912,<br />

tion <strong>of</strong> luminal Na 969, 1260, 1354). Exocytosis may be stimulated by an in-<br />

/ channels, preventing luminal Na / entry<br />

and cell swelling (252). crease <strong>of</strong> intracellular Ca 2/ activity. In lung alveolar type<br />

II cells, the increase <strong>of</strong> intracellular Ca 2/ In several tight epithelia, insertion <strong>of</strong> Na concentration<br />

/ channels<br />

was stimulated by decrease <strong>of</strong> extracellular osmolarity due to mechanical stress not only accounts for exocytosis<br />

(1231, 1347), a function obviously serving Na but also for stimulation <strong>of</strong> surfactant secretion (1354).<br />

/ homeostasis<br />

rather than cell volume regulation. Protein secretion in seminal vesicles, on the other hand,<br />

Activation <strong>of</strong> K is inhibited by both hyper- and hypotonic extracellular<br />

/ and Cl 0 channels during stimulation<br />

<strong>of</strong> secretion in several epithelia (Fig. 1C) may lead to cell fluid (554). Exposure <strong>of</strong> the apical side <strong>of</strong> the pulmonary<br />

shrinkage due to cellular KCl loss (229, 338, 339, 873, epithelium to hypotonic fluid is thought to stimulate the<br />

1363). Shrinkage then turns on volume regulatory Na / / secretion <strong>of</strong> a humoral factor, leading to bronchodilation<br />

H (367).<br />

/ exchange and/or Na / -K / -2Cl 0 cotransport, which may<br />

partially recover cell volume and at the same time supply Whether the polarized trafficking <strong>of</strong> vesicles in epithe<br />

cell with further Cl thelia is influenced by cell volume has not yet been ex-<br />

0 for secretion (341, 549, 796, 797).<br />

Thus, during both reabsorption <strong>of</strong> Na / and substrates plored. The polarized distribution <strong>of</strong> secretory proteins is<br />

and secretion <strong>of</strong> Cl modified by an alkalinization <strong>of</strong> vesicular pH (167, 931)<br />

0 , cell volume participates in the coupling<br />

<strong>of</strong> the basolateral and luminal cell membrane, the and could thus theoretically be sensitive to cell volume.<br />

so-called cross-talk between the opposing cell membranes However, the alkalinization <strong>of</strong> vesicles during cell swell-<br />

(995). It should be kept in mind, however, that cell volume ing may be too small to significantly interfere with traf-<br />

participates in, but does not fully account for, the coupling ficking.<br />

<strong>of</strong> the cell membranes (687). Accordingly, even though In addition to its effect on transcellular transport, cell<br />

osmotic cell swelling mimics many effects <strong>of</strong> swelling in- volume has been demonstrated to modify the permeability<br />

duced by substrate transport, the underlying mechanisms <strong>of</strong> tight junctions and thus paracellular transport. How-<br />

are not necessarily identical. For instance, the depolarizaever, the reported effects are not consistent (29, 111, 402,<br />

tion resulting from Na / -coupled transport alkalinizes the 930, 962, 1348, 1384).<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


266<br />

LANG ET AL. <strong>Volume</strong> 78<br />

TABLE 3. Influence <strong>of</strong> cell volume on metabolism the cell swelling effect <strong>of</strong> the hormone. Conversely, glucagon<br />

and cAMP stimulate proteolysis and glycogenolysis<br />

Effect Process Affected<br />

and inhibit protein synthesis in part by cell shrinkage due<br />

/ Glycogen synthesis in hepatocytes (4, 12, 50, 51, 53, 455,<br />

456, 555, 819, 953) and muscle (762)<br />

to activation <strong>of</strong> ion channels and subsequent release <strong>of</strong><br />

KCl (504). Although cell shrinkage correlates well with<br />

0<br />

0<br />

/<br />

Glycogenolysis (406, 696)<br />

Glucose-6-phosphatase activity (409)<br />

Glucokinase activity in hepatocytes (1261)<br />

the inhibitory effect <strong>of</strong> cAMP and ADH on protein synthesis,<br />

this is not true for the effects <strong>of</strong> insulin and phenyleph-<br />

0 Glycolysis in muscle and fibroblasts (196, 918) rine (1159). Thus cell volume may play a less prominent<br />

/<br />

/<br />

/<br />

Glycolysis in hepatocytes (953)<br />

Macrophages and lymphocytes (1366)<br />

Lactate uptake in hepatocytes (696)<br />

Pentose phosphate shunt in hepatocytes (496, 1046)<br />

role in hormonal regulation <strong>of</strong> protein synthesis than in<br />

proteolysis. The same probably holds true for glycogen<br />

metabolism and lipogenesis.<br />

0<br />

/<br />

Release <strong>of</strong> glutamine and alanine from muscle (945)<br />

Protein synthesis in hepatocytes (1007, 1159), HeLa cells<br />

(1008, 1343), and mammary cells (825)<br />

The antiproteolytic effect <strong>of</strong> cell swelling depends on<br />

an intact microtubule network (156, 1284) and could thus<br />

0<br />

/<br />

/<br />

Proteolysis in hepatocytes (471, 472, 498, 499, 767, 1284,<br />

1285, 1287)<br />

Amino acid uptake (100, 500, 502)<br />

Glutamine breakdown in liver (502), lymphocytes, and<br />

macrophages (1366)<br />

not be reproduced in freshly isolated hepatocytes (820),<br />

which suffer from a disintegrated microtubule network<br />

(511, 1284).<br />

The set points <strong>of</strong> volume regulatory mechanisms and<br />

0<br />

/<br />

/<br />

Glutamine synthesis (502)<br />

Glycine and alanine oxidation (496, 510, 676)<br />

Urea synthesis from amino acids (505)<br />

thus cell volume can be altered by a wide variety <strong>of</strong> other<br />

hormones and transmitters, which thus trigger the meta-<br />

0 Urea synthesis from NH / 4 (500, 502) bolic pattern typical for swollen or shrunken cells (Table<br />

/<br />

0<br />

/<br />

Glutathione (GSH) efflux (503)<br />

GSSG release into bile (1046)<br />

Ornithine decarboxylase activity and expression (769,<br />

1). By this means, the mediators exploit volume regulatory<br />

mechanisms to exert their effects on cellular metabolism.<br />

1215) In addition to hormones, nutrients may modify pro-<br />

/<br />

/<br />

/<br />

RNA and DNA synthesis in HeLa cells (1008)<br />

Ketoisocaproate oxidation (510)<br />

Acetyl CoA carboxylase (49, 51, 53, 555)<br />

tein, glycogen, and lipid metabolism in part through their<br />

influence on cell volume. In fact, the antiproteolytic effect<br />

/ Lipogenesis (51) <strong>of</strong> glutamine and glycine in liver has been shown to be<br />

0<br />

/<br />

/<br />

Carnitine palmitoyltransferase I activity (457, 841, 1389)<br />

Taurocholate excretion into bile (469, 497, 508)<br />

Respiration in glial cells (609) and sperm (231)<br />

completely accounted for by their influence on cell volume<br />

(471). The antiproteolytic and swelling effect <strong>of</strong> gly-<br />

0<br />

0<br />

/<br />

<strong>Cell</strong>ular ATP concentration in hepatocytes (820)<br />

Phosphocreatine concentrations in glioma cells (747)<br />

Formation <strong>of</strong> active oxygen species in neutrophils (658,<br />

659)<br />

cine is potentiated after starvation (471, 1285), which<br />

upregulates the glycine transporting system A (515). However,<br />

the antiproteolytic action <strong>of</strong> other amino acids such<br />

/ Bile secretion (497) as phenylalanine, serine, alanine, and proline cannot be<br />

/, Stimulation upon cell swelling and/or inhibition by cell shrinkage;<br />

0, inhibition upon cell swelling and/or stimulation by cell shrinkage.<br />

For effects on gene expression, see Table 1. For effects on intracellular<br />

fully explained by their effects on cell volume. Thus mechanisms<br />

other than cell swelling contribute to the antiproteolytic<br />

action <strong>of</strong> some amino acids.<br />

signaling, see text. Reference numbers are given in parentheses. The influence <strong>of</strong> cell volume on metabolism is not<br />

restricted to macromolecular synthesis and breakdown.<br />

C. Regulation <strong>of</strong> Metabolism<br />

Swelling <strong>of</strong> hepatocytes apparently interferes with the<br />

transfer <strong>of</strong> reducing equivalents through the mitochondrial<br />

malate/aspartate shuttle (503). The lack <strong>of</strong> aspartate<br />

As listed in Table 3, cell volume changes modify a impedes the formation <strong>of</strong> urea from NH3, an effect that<br />

wide variety <strong>of</strong> metabolic functions. Most importantly, is overcome by addition <strong>of</strong> lactate and pyruvate, allowing<br />

cell swelling favors the synthesis and inhibits the degrada- the mitochondrial regeneration <strong>of</strong> oxaloacetate (503). The<br />

tion <strong>of</strong> proteins, glycogen, and to a lesser extent lipids formation <strong>of</strong> urea from glutamine is enhanced after cell<br />

(504, 506). <strong>Cell</strong> shrinkage has the opposite effect. Thus swelling (500).<br />

cell swelling can be considered as an anabolic signal, Some effects <strong>of</strong> cell swelling caused by a decrease<br />

whereas cell shrinkage favors cell catabolism.<br />

<strong>of</strong> extracellular osmolarity may actually be due to con-<br />

In hepatocytes, the influence <strong>of</strong> cell volume on metab- comitant mitochondrial swelling (969) because <strong>of</strong> de-<br />

olism is one way that insulin and glucagon exert their creasing ambient osmolarity. Glutamine breakdown (502)<br />

metabolic effects. Insulin increases liver cell volume by and glycine oxidation (510), for instance, are stimulated<br />

activation <strong>of</strong> Na not only by decrease <strong>of</strong> extracellular osmolarity but also<br />

/ /H / exchange and Na / -K / -2Cl 0 cotransport<br />

and thus triggers a variety <strong>of</strong> metabolic functions, by glucagon, cAMP, and several Ca 2/ -mobilizing hor-<br />

including protein and glycogen synthesis and inhibition mones that swell mitochondria (465–467), but at the same<br />

<strong>of</strong> protein and glycogen degradation (4, 504, 506). The time shrink hepatocytes (see Table 2). Similarly, the<br />

effect <strong>of</strong> insulin on proteolysis is fully accounted for by swelling-induced decrease <strong>of</strong> the b-hydroxybutyrate-to-<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 267<br />

acetoacetate ratio (510) is probably due to stimulation <strong>of</strong> (246, 485, 531, 644, 909) and K / depletion (485, 700, 701),<br />

the respiratory chain due to concomitant mitochondrial both maneuvers expected to shrink cells. Conversely, in-<br />

swelling (274, 466). ternalization <strong>of</strong> LDL or ferritin is increased by hypotonic<br />

Peroxides may modify cell volume by activation <strong>of</strong> extracellular fluid (644, 707). However, because almost<br />

ion channels (see Table 2). They shrink hepatocytes by identical effects were exerted by KCl and NaCl but not<br />

activation <strong>of</strong> K by glucose or urea, the altered internalization appeared<br />

/ channels (470). On the other hand, superoxide<br />

has been shown to swell erythrocytes (1247). <strong>Cell</strong> to be due to the ionic strength rather than cell volume<br />

volume in turn influences the peroxide metabolism; cell (644). Increased ionic strength may impede internalization<br />

swelling stimulates and cell shrinkage inhibits flux by interference with the formation <strong>of</strong> coated pits (531).<br />

through the pentose phosphate pathway and NADPH gen- On the other hand, cell swelling has been shown to inhibit<br />

eration (1046). Thus cell swelling provides NADPH for endocytosis (1316).<br />

glutathione reductase to produce reduced glutathione <strong>Cell</strong> swelling leads rather to cytosolic acidification<br />

(GSH) and strengthens the protective mechanisms against (see sect. IIIE), which has been shown to interfere with<br />

peroxides (1046). On the other hand, cell swelling should endocytosis from coated pits (485, 530, 1056). Moreover,<br />

favor the formation <strong>of</strong> reactive oxygen species by NADPH cell swelling reverses lysosomal acidification, which is a<br />

oxidase, which is inhibited by high osmolarity (1186). Fur- prerequisite for normal recycling <strong>of</strong> LDL (57) and transthermore,<br />

components <strong>of</strong> the cytosolic burst oxidase have ferrin receptors (248). Accordingly, cell swelling would<br />

been found to be dissociated by high osmolarity (573). have been expected to impede receptor recycling. The<br />

Moreover, cell swelling stimulates formation <strong>of</strong> arachi- vesicular alkalinization and cytosolic acidification after<br />

donic acid (see sect. IIIK), which is required for activation cell swelling may not be sufficient to significantly interfere<br />

<strong>of</strong> NADPH oxidase (526). Accordingly, osmotic cell swell- with receptor recycling, and the effects <strong>of</strong> ionic strength<br />

ing stimulates (602) and osmotic cell shrinkage inhibits exceed the weak effects <strong>of</strong> cell volume. The reason for<br />

formation <strong>of</strong> peroxides in neutrophils (602, 659, 795, 810). the interference <strong>of</strong> K / depletion with the formation <strong>of</strong><br />

The enhanced formation <strong>of</strong> sorbitol in diabetes melli- coated pits (701) remains, however, unexplained.<br />

tus (see sect. IVF) has been implicated in the generation In glial cells, NH3, which swells the cells (10, 897,<br />

<strong>of</strong> several diabetic complications such as neuropathy, reti- 898) and alkalinizes their lysosomes (153), leads to upregnopathy,<br />

microangiopathy, and cataracts (143). Similarly, ulation <strong>of</strong> peripheral type benzodiazepine receptors (571,<br />

the cellular accumulation <strong>of</strong> galactitol with subsequent 572). Moreover, binding <strong>of</strong> benzodiazepine to glial cells<br />

decrease <strong>of</strong> other osmolytes has been implicated in the (570), muscarinic drugs to peritoneal cells (537), atrial<br />

pathophysiology <strong>of</strong> galactosemia (80, 302). However, the natriuretic peptide to collecting duct cells (561), and en-<br />

mechanisms linking cell swelling with defined sequelae <strong>of</strong> dothelin to renal cells (1268) increases after hypotonic<br />

diabetes mellitus or galactosemia are far from under- exposure. Excessive osmotic shrinkage, on the other<br />

stood. hand, has been shown to induce clustering and internal-<br />

Information on metabolic effects <strong>of</strong> cell volume in ization <strong>of</strong> cytokine receptors and thus to mimic effects <strong>of</strong><br />

mammalian cells other than hepatocytes is still scarce the ligands (1020).<br />

(see Table 3), even though it appears highly unlikely that Taken together, these data do not suggest a uniform<br />

the influence <strong>of</strong> altered cell volume on metabolism is re- influence <strong>of</strong> cell volume as such on the regulation <strong>of</strong> cell<br />

stricted to hepatocytes. For instance, mechanical or osmotic<br />

deformation <strong>of</strong> chondrocytes or osteoblasts, re-<br />

membrane receptors.<br />

spectively, may stimulate the synthesis <strong>of</strong> proteoglycans<br />

and proteins (123, 623, 1244) and thus foster cartilage and<br />

bone growth, which indeed correlated with chondrocyte<br />

E. Hormone and Transmitter Release<br />

volume (661). Moreover, a decrease <strong>of</strong> muscle cell volume An increase in cell membrane tension, as occurs dur-<br />

was correlated with hypercatabolism in several clinical ing cell swelling, has been described to trigger fusion <strong>of</strong><br />

conditions (507). endocytotic vesicles with the plasma membrane, leading<br />

Certainly, more experimental information is needed to release <strong>of</strong> vesicle contents and insertion <strong>of</strong> ion channels<br />

on the interaction <strong>of</strong> cell volume and cell metabolism in in the cell membrane (132, 417, 462, 508, 969, 1260). The<br />

mechanism requires Ca 2/ other cells, such as glial cells and adipocytes.<br />

and an intact actin filament net-<br />

work. If the same is true for secretory vesicles, osmotic<br />

cell swelling should stimulate hormone release (Fig. 2).<br />

D. Receptor Recycling <strong>Cell</strong> swelling has indeed been shown to trigger the<br />

release <strong>of</strong> insulin (95, 768), prolactin (414, 1063, 1066,<br />

The formation <strong>of</strong> coated pits and internalization <strong>of</strong> 1070, 1304, 1306, 1307, 1309), gonadotropin-releasing horlow-density<br />

lipoproteins (LDL) and transferrin receptors mone (563), luteinizing hormone (414, 415), thyrotropin<br />

are inhibited by both increase <strong>of</strong> extracellular osmolarity (414, 1065, 1306), aldosterone (514, 1081–1083, 1301), and<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


268<br />

LANG ET AL. <strong>Volume</strong> 78<br />

stance P from C-fiber neurons (375). Alterations <strong>of</strong> NaCl<br />

concentrations have further been shown to modify transmitter<br />

release from various regions <strong>of</strong> the brain (551).<br />

Renin secretion is inhibited by an increase <strong>of</strong> intracellular<br />

Ca 2/ activity, the so-called Ca 2/ paradox <strong>of</strong> renin<br />

secretion (461, 923). It has been suggested that an increase<br />

<strong>of</strong> intracellular Ca 2/ activity activates Ca 2/ -sensitive Cl 0<br />

channels, thus leading to cellular loss <strong>of</strong> KCl and cell<br />

shinkage, which in turn would inhibit renin release (665).<br />

<strong>Cell</strong> volume may further modify hormone and transmitter<br />

release through pH changes in secretory vesicles.<br />

In pancreatic b-cells, for instance, acidic proteases within<br />

the acidic secretory granules cleave proinsulin to yield<br />

FIG. 2. Mechanism <strong>of</strong> stimulated hormone release and <strong>of</strong> contrac- insulin, a function probably compromised by cell swelling<br />

tion after swelling <strong>of</strong> endocrine and vascular smooth muscle cells, respectively.<br />

Swelling leads to activation <strong>of</strong> anion channels, and exit <strong>of</strong><br />

Cl<br />

and fostered by cell shrinkage. Furthermore, the release<br />

<strong>of</strong> insulin may be modified by the luminal pH <strong>of</strong> the secre-<br />

0 depolarizes cell membrane. Subsequent activation <strong>of</strong> voltage-sensi-<br />

tive Ca tory granules and thus be sensitive to alterations <strong>of</strong> cell<br />

2/ channels stimulates Ca 2/ entry. Ca 2/ then triggers hormone<br />

release from endocrine cells or contraction <strong>of</strong> smooth muscle cells, volume. In neurons, metabolism, uptake, and release <strong>of</strong><br />

respectively.<br />

neurotransmitters may be modified by the luminal pH <strong>of</strong><br />

synaptic vesicles. For instance, the uptake <strong>of</strong> neurotransmitters<br />

such as catecholamines, glutamate, GABA, and<br />

renin (345, 582, 1128, 1129). Where tested, the hormone- acetylcholine into small synaptic vesicles is driven by a<br />

releasing effect was correlated with an increase <strong>of</strong> intra- proton gradient between the cytosol and the acid lumen<br />

cellular Ca 2/ activity (514, 983, 1062, 1064–1069, 1080, (254). Uptake <strong>of</strong> glutamate and aspartate into glial cells<br />

1308). In insulin-secreting b-cells, Ca 2/ entry during cell has indeed been found to be impaired by osmotic cell<br />

swelling is partially due to activation <strong>of</strong> Cl 0 channels (82), swelling (628).<br />

with subsequent depolarization <strong>of</strong> the cell membrane and Transmitter metabolism may be further influenced by<br />

opening <strong>of</strong> voltage-sensitive Ca 2/ channels (124). cell volume through effects on the expression <strong>of</strong> enzymes.<br />

Osmotic cell shrinkage has been shown to inhibit At enhanced extracellular K / , an increase <strong>of</strong> extracellular<br />

prolactin release, presumably by inhibiting Ca 2/ influx osmolarity inhibits the expression <strong>of</strong> tyrosine hydroxylase<br />

(1065, 1305). Furthermore, increase <strong>of</strong> extracellular osmo- and dopamine b-hydroxylase in PC12 cells (621). Increaslarity<br />

decreases the formation and release <strong>of</strong> endothelin- ing extracellular osmolarity at low extracellular K / was,<br />

1 (640). however, without effect on the expression <strong>of</strong> these en-<br />

For atrial natriuretic factor (ANF), the position is less zymes (621).<br />

clear. It is released from cardiac myocytes in response to Some <strong>of</strong> the osmolytes released during cell swelling<br />

mechanical stretch (198, 1071) and osmotic cell swelling <strong>of</strong> neurons such as glutamate (148, 304, 523, 550, 865,<br />

(412). <strong>Cell</strong> volume may be part <strong>of</strong> a negative-feedback 1339), aspartate (550, 891), GABA (774, 891), glycine<br />

loop limiting ANF release. Atrial natriuretic factor inhibits (891), and taurine (184, 560) function as neurotransmitters<br />

the cardiac Na / /K / /2Cl 0 exchanger via guanosine 3�,5�- in the brain. Hyperosmolar glucose or sorbitol concentracyclic<br />

monophosphate (cGMP), with the resulting cell tions inhibited K / -induced GABA release and inhibited<br />

shrinkage then inhibiting ANF release (199, 201). On the K / -induced release <strong>of</strong> norepinephrine and serotonin (327).<br />

other hand, ANF release has been postulated to be stimulated<br />

by cell shrinkage (1399, 1400).<br />

In contrast to the above hormones, vasopressin is F. Excitability and Contraction<br />

released during cell shrinkage, which apparently leads to<br />

disinhibition <strong>of</strong> a stretch-inactivated cation channel. The After swelling <strong>of</strong> cardiac cells, volume-sensitive Cl 0<br />

activation <strong>of</strong> this channel leads to depolarization and ac- currents have been shown to depolarize the cell memcelerated<br />

action potentials (913). Interestingly, ethanol, brane (1253, 1394), enhance excitability, and reduce the<br />

which triggers hormone release from other cells (1063, duration <strong>of</strong> the action potential (1139). On the other hand,<br />

1068), is known to inhibit vasopressin release (90). In moderate osmotic shrinkage exerts a positive inotropic<br />

addition to ADH, the release <strong>of</strong> nitric oxide (1152) and <strong>of</strong> effect in the heart (74, 432). This latter effect may be due<br />

the putative hormones ouabain or ouabainlike factors (98, to a direct influence on the contractile elements. As shown<br />

744) may be stimulated by an increase in plasma osmolar- in skinned muscle fibers, increased ionic strength destabi-<br />

ity. Furthermore, hyperosmolarity stimulates the release lizes the actinomyosin complex, thus interfering with the<br />

Ca 2/ <strong>of</strong> histamine from basophil granulocytes (892) and <strong>of</strong> sub- -activated force (41, 398). To the extent that cell<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 269<br />

shrinkage leads to increase <strong>of</strong> intracellular ionic strength,<br />

this effect could modify muscular contraction. Osmotic<br />

swelling <strong>of</strong> smooth muscle cells (see Fig. 2) activates a<br />

depolarizing anion conductance, leading to depolarization,<br />

opening <strong>of</strong> voltage-gated Ca 2/ channels, increase <strong>of</strong><br />

intracellular Ca 2/ activity, and contraction (685). Conversely,<br />

osmolar cell shrinkage leads to vasodilation<br />

(1112, 1152).<br />

An enhanced activity <strong>of</strong> Na / /H / exchanger with resulting<br />

cell swelling has been implicated in the generation<br />

<strong>of</strong> one type <strong>of</strong> essential hypertension (271, 314, 348, 558,<br />

664, 793, 887–889, 1022–1024, 1026, 1109, 1124, 1330,<br />

1390). On the one hand, cell swelling should increase contractility<br />

<strong>of</strong> smooth muscle cells, and on the other hand,<br />

enhanced Na / /H / exchange activity should favor cell proliferation<br />

and thus hypertrophy <strong>of</strong> vascular smooth mus-<br />

FIG. 3. Polarized cell volume regulatory ion transport in migrating<br />

cells. <strong>Cell</strong> migrates from left to right. At rear end, oscillations <strong>of</strong> intracellular<br />

Ca 2/ activity (Cai) lead to activation <strong>of</strong> Ca 2/ -sensitive K / cle cells. Proliferation <strong>of</strong> vascular smooth muscle cells<br />

channels,<br />

favoring regulatory cell volume decrease (RVD). At leading edge, Na / has been shown to be stimulated by mechanical stretch<br />

/<br />

H / exchange and Na / -K / -2Cl 0 (770, 979).<br />

cotransport favor regulatory cell volume<br />

increase (RVI). Ca 2/ Neuronal excitability could be affected in several<br />

oscillations further trigger depolymerization <strong>of</strong> actin<br />

filaments at rear end. Fragments are transported to leading edge,<br />

ways by cell volume. Any release <strong>of</strong> K where polymerization <strong>of</strong> actin filaments prevails.<br />

/ for cell volume<br />

regulation should enhance extracellular K / , decrease the<br />

K / equilibrium potential, and thus depolarize the cell chemical K / membrane. Possibly, however, swollen neurons do not<br />

gradient, and thus to impairment <strong>of</strong> repolar-<br />

ization. Glial cells accumulate K / volume regulate by rapid release <strong>of</strong> electrolytes (23).<br />

and thus blunt the in-<br />

crease <strong>of</strong> extracellular K / As discussed in section VE, glutamate, aspartate,<br />

concentration in part by uptake<br />

<strong>of</strong> K / through Na / -K / -2Cl 0 GABA, glycine, and taurine serve both as osmolytes and<br />

as neurotransmitters. When released from swollen cells,<br />

they may modify the function <strong>of</strong> neighboring cells (628,<br />

1059). Conversely, the osmosensitive betaine transporter<br />

transports GABA at higher affinity than betaine (1374).<br />

Moreover, sensitivity <strong>of</strong> neurons to neurotransmitters may<br />

be modified by cell volume. For instance, NMDA receptors<br />

have been found to be mechanosensitive (929). <strong>Cell</strong> volume<br />

changes may further interfere with neuronal excitability<br />

by modifying the pH and trafficking <strong>of</strong> secretory<br />

vesicles (see above). Increases <strong>of</strong> osmolarity have been<br />

shown to increase the percentage <strong>of</strong> slow miniature endplate<br />

potentials (1262).<br />

Chloride concentration in neurons is regulated by furosemide-sensitive<br />

Na<br />

cotransport in parallel with<br />

/ /<br />

Na -K -ATPase (1298). This function is expected to be<br />

compromised during glial cell swelling. Glial cell swelling<br />

has indeed been implicated in a wide variety <strong>of</strong> disorders<br />

affecting the brain (505, 624, 649, 650, 896, 898, 1220). In<br />

hepatic encephalopathy, for instance, the enhanced NH3 concentration forces the formation and cellular accumula-<br />

tion <strong>of</strong> glutamine, leading to glial cell swelling (218, 896,<br />

898). One <strong>of</strong> the consequences is cellular loss <strong>of</strong> inositol<br />

(218, 649, 1021). Accordingly, inhibition <strong>of</strong> glutamine syn-<br />

thetase has been found to be protective against hepatic<br />

encephalopathy (512). A striking increase <strong>of</strong> brain inositol<br />

is observed in Alzheimer’s disease (1122). It is not clear,<br />

though, whether this change relates to altered cell volume<br />

regulation and contributes to the pathophysiology <strong>of</strong> this<br />

/ -K / -2Cl 0 cotransport (45, 839). Activation<br />

<strong>of</strong> K<br />

disease.<br />

/ and Cl 0 channels shrinks the cells by KCl<br />

loss, decreases intracellular Cl<br />

In part as a result <strong>of</strong> the above interactions, increased<br />

0 concentration, and thus<br />

dissipates the Cl<br />

plasma osmolarity decreases and reduced plasma osmo-<br />

0 gradient. The cell shrinkage activates<br />

the Na<br />

larity increases the susceptibility to epileptic seizures (22,<br />

/ -K / -2Cl 0 cotransport, which not only restores cell 921). It must be kept in mind, though, that alterations <strong>of</strong><br />

volume but also maintains intracellular Cl 0 activity. Ac- plasma osmolarity primarily create an osmotic gradient<br />

cordingly, GABA-induced depolarization was rendered across the blood-brain barrier, leading to respective<br />

transient by addition <strong>of</strong> furosemide (45). Moreover, furo- changes <strong>of</strong> extracellular space (235, 1125) and movements<br />

semide has been shown to block synchronized burst dis- <strong>of</strong> electrolytes from or to brain tissue (822). The decrease<br />

charges in hippocampal slices (538). <strong>of</strong> extracellular space during osmotic cell swelling may<br />

Excitability <strong>of</strong> neurons critically depends on glial cell<br />

function (612). One <strong>of</strong> the major tasks <strong>of</strong> glial cells is to<br />

be a major cause for altered excitability (921, 1224).<br />

maintain constancy <strong>of</strong> extracellular K / . Because <strong>of</strong> the<br />

minimal extracellular space, any release <strong>of</strong> K<br />

G. Migration<br />

/ from neurons<br />

during depolarization would lead to rapid increase Migration involves substantial reorganization <strong>of</strong> the<br />

<strong>of</strong> extracellular K / concentration, a dissipation <strong>of</strong> the cytoskeleton both at the leading edge and the rear <strong>of</strong> the<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


270<br />

LANG ET AL. <strong>Volume</strong> 78<br />

cell (202, 215, 1162) (see Fig. 3). At the leading edge, both Cl 0 and K / channels via cAMP (337), an effect ex-<br />

polymerization <strong>of</strong> actin filaments prevails, whereas at the pected to result in cell shrinkage. The heat-stable toxin<br />

rear <strong>of</strong> the cells, actin filaments are depolymerized (1162). from Escherichia coli has been shown to activate Cl 0<br />

The depolymerization is mediated by capping or escort channels via cGMP (749), and erythrocytes infected with<br />

proteins, such as gelsolin, which are stimulated by Ca 2/ malaria display new ion permeation pathways (633).<br />

(237, 492, 1162, 1355). In fact, after chemotactic stimuli, Moreover, several bacteria produce porins, which may<br />

Ca 2/ concentration increases primarily at the rear <strong>of</strong> the be inserted into the host cell membrane (97, 771, 1328).<br />

Because porins may function as Cl 0 cell (136, 463, 756). Bound to the capping or escort pro-<br />

channels (1035, 1338),<br />

teins, the actin fragments travel toward the leading edge, it is tempting to speculate that they serve to alter host<br />

where they are reutilized for elongation <strong>of</strong> the actin fila- cell volume. Exposure <strong>of</strong> erythrocytes to Schistosoma<br />

ments. The elongation is stimulated by polyphosphoinosi- mansoni membrane fractions has indeed been shown to<br />

tides, which bind and thus neutralize the capping proteins produce marked cell shrinkage (1201). However, whether<br />

(1162). The addition <strong>of</strong> new elements to the actin filament the metabolic alterations triggered by cell swelling or<br />

is thought to be facilitated by protrusion <strong>of</strong> the cell mem- shrinkage are favorable for the pathogen is similarly un-<br />

brane, which may be caused by local osmotic swelling known. As outlined above, cell shrinkage inhibits O 0 2 for-<br />

(1162).<br />

mation in neutrophils, an effect possibly contributing to<br />

Migration <strong>of</strong> leukocytes can be stimulated by chemo- the inhibitory effect on bacterial killing in a hypertonic<br />

attractants such as formylpeptides (727). N-formyl-methi- environment (481). On the other hand, a hypertonic envi-<br />

onyl-leucyl-phenylalanine (FMLP) stimulates Na / /H / co- ronment increases adherence and invasion <strong>of</strong> Salmonella<br />

transport in neutrophils, leading to cell swelling (842, 870,<br />

typhi (1195).<br />

871, 1003, 1019, 1365). Activation <strong>of</strong> Na / /H / exchange and Similar scanty information is available on the role <strong>of</strong><br />

cell swelling are required for migration, which is impeded cell volume in viral infection. The M2 protein <strong>of</strong> influenza<br />

by inhibitors <strong>of</strong> the carrier and osmotic cell shrinkage virus serves as an ion channel (974). Whether the insertion<br />

(1003, 1019). Similarly, inhibition <strong>of</strong> Na <strong>of</strong> this channel into the host membrane alters cell volume<br />

/ -K / -2Cl 0 cotransport<br />

with bumetanide inhibited migration <strong>of</strong> transformed is not known. Tacaribe virus infection was shown to inhibit<br />

Na / -K / MDCK cells (1101). In those cells, migration further re-<br />

-ATPase (996), and vaccinia virus infection<br />

quires the operation <strong>of</strong> Ca 2/ -sensitive K / channels, which <strong>of</strong> HeLa cells led to increases <strong>of</strong> Na / at the expense <strong>of</strong><br />

K / are activated by oscillating intracellular Ca (899). Infection <strong>of</strong> fibroblasts with herpes simplex vi-<br />

2/ activity (240,<br />

1101). Inhibition <strong>of</strong> these channels similarly prevented rus leads to pr<strong>of</strong>ound cell swelling (441). <strong>Cell</strong> swelling<br />

migration. It is attractive to postulate that migration in- was enhanced in the presence <strong>of</strong> the antiviral drug 3�volves<br />

RVD with Ca 2/ oscillations and activation <strong>of</strong> K /<br />

azido-3�-deoxythymidine, which inhibits ICln, the putative<br />

volume regulatory Cl 0 channels at the rear and RVI with activation <strong>of</strong> Na channel (441). Infection <strong>of</strong> renal<br />

/ /H /<br />

exchange and/or Na / -K / -2Cl 0 cotransport at the leading tubule cells with simian virus 40 results in the appearance<br />

<strong>of</strong> K / edge <strong>of</strong> a migrating cell. The migration would require channels (1199). Changes in cell volume, on the<br />

asymmetrical distribution and/or activation <strong>of</strong> channels other hand, may influence viral replication. For instance,<br />

and carriers. As a matter <strong>of</strong> fact, the Na a decrease <strong>of</strong> extracellular NaCl has been shown to reduce<br />

/ /H / exchanger<br />

is concentrated at the leading edge (431) and K / channel replication <strong>of</strong> reticuloendotheliosis (93) and Sindbis virus<br />

activity at the rear <strong>of</strong> the cell (1099, 1100), and a Ca (1290) as well as maturation <strong>of</strong> poliovirus (5). Further-<br />

2/<br />

gradient has been observed within a migrating cell with more, infection <strong>of</strong> MDCK cells with vesicular stomatitis<br />

virus is impaired by increasing extracellular K / highest values at the rear (136, 401, 463, 1098).<br />

at the<br />

The elongation <strong>of</strong> the neuritic cylinder, but not the expense <strong>of</strong> Na / (7), a maneuver known to induce cell<br />

extension <strong>of</strong> the growth cone <strong>of</strong> neurons, has been ob- swelling (see Table 2). The effect could not be explained<br />

served to be stimulated by a decrease <strong>of</strong> extracellular by altered intracellular Ca 2/ activity but was assumed to<br />

osmolarity (117). Accordingly, the role <strong>of</strong> osmotic gradi- be secondary to a depolarization <strong>of</strong> the cell membrane (7).<br />

ents in the protrusion <strong>of</strong> the leading edge is still a matter In duck hepatocytes, increase <strong>of</strong> extracellular osmolarity<br />

<strong>of</strong> debate (117, 965, 1162). Obviously, variation <strong>of</strong> extra- markedly reduced duck hepatitis B virus DNA, mRNA,<br />

cellular osmolarity does more than modify the detach- and protein (904). Because shrinkage <strong>of</strong> hepatocytes leads<br />

ment <strong>of</strong> the cell membrane from the cytoskeleton. In any to depolarization (406), the effect could have been due to<br />

case, more experimentation is needed to elucidate the role either depolarization or cell shrinkage.<br />

<strong>of</strong> cell volume regulatory mechanisms in the machinery <strong>of</strong> In tracheal epithelium, sulfation and sialation <strong>of</strong><br />

migration. membrane proteins has been shown to be sensitive to<br />

H. Pathogen Host Interactions<br />

luminal pH <strong>of</strong> acidic cellular compartments, and it has<br />

been argued that defective acidification <strong>of</strong> these compart-<br />

Reports on the interplay <strong>of</strong> cell volume and infection ments in cystic fibrosis leads to altered sulfation and sialaare<br />

scarce. It is well known that cholera toxin activates tion and thus to enhanced adhesion <strong>of</strong> Pseudomonas aer-<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 271<br />

uginosa (54). Because the primary defect <strong>of</strong> cystic fibrosis<br />

leads to impaired Cl 0 channel activity (92, 170, 171, 350,<br />

1118, 1336, 1337) and impairment <strong>of</strong> cell volume regulation<br />

(1252), it may be paralleled by cell swelling, which<br />

increases lysosomal pH (see sect. IIIL). Thus cell swelling<br />

could enhance adhesion <strong>of</strong> P. aeruginosa and infection,<br />

a possibility, however, not yet explored.<br />

Clearly, the role <strong>of</strong> cell volume in the interaction <strong>of</strong><br />

host and pathogen is far from understood. The data available<br />

thus far, however, are sufficiently intriguing to justify<br />

additional experimental effort.<br />

I. <strong>Cell</strong> Proliferation<br />

A wide variety <strong>of</strong> mitogenic factors (for review, see<br />

Ref. 1000) activate the Na / /H / exchanger, and many factors<br />

stimulate Na / -K / -2Cl 0 cotransport (85, 428, 826, 844,<br />

928, 1000, 1274, 1275, 1291, 1292, 1293). One expected<br />

consequence <strong>of</strong> the activation <strong>of</strong> these transport systems<br />

is an increase <strong>of</strong> cell volume.<br />

<strong>Cell</strong> proliferation has indeed been shown to correlate<br />

with increases <strong>of</strong> cell volume in fibroblasts (694, 695, 824,<br />

960), mesangial cells (1371), lymphocytes (284, 285, 454,<br />

1114, 1117), HL-60 cells (120, 146), GAP A3 hybridoma<br />

cells (884), smooth muscle cells (317, 881), and HeLa cells<br />

(1185). As shown for fibroblasts, the cell volume increase<br />

parallels the entry <strong>of</strong> fibroblasts from the G1 into the S<br />

phase (960), which is accompanied by inhibition <strong>of</strong> K<br />

FIG. 4. <strong>Cell</strong> volume in proliferating cells. <strong>Cell</strong>ular mechanisms trig-<br />

gered by expression <strong>of</strong> ras oncogene leading to activation or inhibition<br />

<strong>of</strong> cell volume regulatory mechanisms. Expression <strong>of</strong> Ras oncogene<br />

(RAS) sensitizes phospholipase C (PLC) for growth promotors such as<br />

bradykinin, bombesin, or serum. As a result, bradykinin-induced forma-<br />

/<br />

channels (253). Moreover, large variations <strong>of</strong> volume regution<br />

<strong>of</strong> inositol 1,4,5-trisphosphate (IP3) and inositol 1,3,4,5-tetrakisphos-<br />

phate (IP4) is enhanced. Instead <strong>of</strong> a single release <strong>of</strong> cellular Ca 2/ ,<br />

bradykinin induces sustained oscillations <strong>of</strong> intracellular Ca 2/ latory Cl concen-<br />

0 channels have been observed in ascidian emtration<br />

by triggering both Ca 2/ entry through Ca 2/ channels and Ca 2/<br />

bryos (1273).<br />

release from cellular stores. On one hand, Ca 2/ oscillations cause repeti-<br />

Osmotic alterations <strong>of</strong> cell volume indeed modify cell tive activation <strong>of</strong> Ca 2/ -sensitive K / channels, leading to oscillations <strong>of</strong><br />

proliferation. Hypertonic shrinkage inhibits (9, 533, 840,<br />

cell membrane potential and transient decrease <strong>of</strong> cell volume. On the<br />

other hand, Ca 2/ oscillations lead to depolymerization <strong>of</strong> actin filaments,<br />

967, 1008, 1380) and slight osmotic cell swelling has been / / /<br />

which presumably facilitates activation <strong>of</strong> Na /H exchanger and Na -<br />

shown to accelerate (18) cell proliferation. When exposed K / -2Cl 0 cotransport. Activation <strong>of</strong> these carriers results in uptake <strong>of</strong><br />

KCl and NaCl. Because Na / is replaced by K / by action <strong>of</strong> Na / -K / -<br />

to enhanced extracellular ionic strength, the cells may<br />

overcome cell shrinkage by cellular accumulation <strong>of</strong> os- ATPase, cells accumulate mainly KCl. Ion uptake increases cell volume,<br />

which is one prerequisite for stimulation <strong>of</strong> cell proliferation. Increase<br />

molytes which then allows them to proliferate normally <strong>of</strong> cell volume is limited by inhibition <strong>of</strong> Na / /H / exchanger and Na / -<br />

K / -2Cl 0 (720, 1379, 1380).<br />

cotransport by cell swelling (ICS and ECS stand for intracellular<br />

As illustrated in Figure 4, Ras oncogene expression<br />

in fibroblasts is paralleled by enhanced Na<br />

and extracellular space, respectively).<br />

/ /H / exchange<br />

and Na / -K / -2Cl 0 cotransport activity, leading to an in-<br />

Apparently, the activation <strong>of</strong> Na / /H / crease <strong>of</strong> cell volume (694, 695, 824). The increase <strong>of</strong><br />

exchange and<br />

Na / -K / -2Cl 0 cotransport is required for stimulation <strong>of</strong> cell<br />

cell volume is related to oscillations <strong>of</strong> intracellular Ca 2/<br />

activity (242), which can be triggered by bradykinin, proliferation by ras oncogene (694, 697, 824, 1000). In<br />

bombesin, or serum in those cells (686, 694, 697, 1296, several cell types, cell proliferation is similarly correlated<br />

with enhanced Ca 2/ and K / 1359, 1360). The Ca channel activity (for review,<br />

2/ oscillations cause rapid transient<br />

cell shrinkage due to activation <strong>of</strong> Ca see Ref. 1000) and is impeded by respective channel inhib-<br />

2/ -sensitive K / chan-<br />

nels (1005, 1358), followed by a sustained increase <strong>of</strong> cell itors (17, 726, 739, 893, 981, 1091, 1123, 1199, 1256, 1369).<br />

volume presumably due to a depolymerization <strong>of</strong> the actin However, the activity <strong>of</strong> certain ion channels and trans-<br />

filaments (243, 1004) and subsequent shift <strong>of</strong> the set point porters may not always be required for cell proliferation<br />

to occur. Inhibition <strong>of</strong> the Na / /H / for cell volume regulation (242). The Ca exchanger, for instance,<br />

2/ oscillations are<br />

in turn favored by cell shrinkage (1006), pointing to a is not always found to interfere with cell proliferation (83,<br />

negative-feedback loop (Fig. 4). 189, 598, 827, 1025).<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


272<br />

LANG ET AL. <strong>Volume</strong> 78<br />

How alterations <strong>of</strong> cell volume interact with cell cycle channel or Kv1.3 via tyrosine phosphorylation (449, 1183),<br />

which is the volume regulatory K / control is not known. As outlined above, cell swelling<br />

channel in lymphocytes<br />

stimulates the protein kinases ERK-1 and ERK-2 (1072), (273). It appears that cell shrinkage interferes at some<br />

proteins probably involved in regulation <strong>of</strong> cell cycle point with the signaling cascade <strong>of</strong> apoptotic cell death.<br />

(113).<br />

Fas-induced cell death is triggered by activation <strong>of</strong> cas-<br />

In proliferating cells, the role <strong>of</strong> increased cell volume pases with subsequent stimulation <strong>of</strong> sphingomyelinases,<br />

in altering further volume-sensitive cellular functions ceramide formation, activation <strong>of</strong> Ras, PI 3-kinase, Rac,<br />

such as alkalinization <strong>of</strong> lysosomal vesicles (588), de- MKK4, and JNK or p38 kinase (446, 448, 1368). In addition,<br />

creased proteolysis (501), and increased LDL receptor exactivation <strong>of</strong> Rac triggers formation <strong>of</strong> active oxygen spe-<br />

pression at the cell surface (1136) has not yet been excies (AOS), presumably by the NADPH oxidase (447). <strong>Cell</strong><br />

plored.<br />

shrinkage apparently does not interfere with the cascade<br />

In contrast to cell proliferation, cell differentiation is leading to Ras activation but prevents the formation <strong>of</strong><br />

accompanied by cell shrinkage in erythroleukemia cells AOS, since the decrease <strong>of</strong> GSH is blunted in shrunken<br />

(264, 458, 607, 725), HL-60 leukemic cells (311, 475), and lymphocytes (451).<br />

EMT6/ro mouse mammary sarcoma cells (118). HL-60 Several mechanisms could mediate the inhibition <strong>of</strong><br />

cells shrink despite enhanced expression <strong>of</strong> Na the signaling cascade: cell shrinkage stimulates the expres-<br />

/ /H / exchanger<br />

(986), which displays altered kinetic properties sion <strong>of</strong> a1-chimerin (see Table 1), a GTPase activating pro-<br />

(227, 228). On the other hand, senescent fibroblasts have tein for Rac. If a similar protein is expressed in lymphocytes<br />

been shown to gain cell volume (960, 961).<br />

as a function <strong>of</strong> cell volume, it could account for some<br />

inhibition <strong>of</strong> NADP oxidase activity. Moreover, cell shrink-<br />

J. <strong>Cell</strong> Death<br />

age inhibits glucose flux through the pentose phosphate<br />

pathway, decreasing the availability <strong>of</strong> NADPH (see sect.<br />

Apoptotic cell death (617, 1367) is triggered by a wide<br />

variety <strong>of</strong> factors including stimulation <strong>of</strong> specific receptors<br />

at the cell membrane, such as the receptor for Fas<br />

(CD95) (1074) or tumor necrosis factor-a (655).<br />

One <strong>of</strong> the hallmarks <strong>of</strong> apoptotic cell death is cell<br />

shrinkage (1, 207). Shrinkage may in some cells be sec-<br />

ondary to increased intracellular Ca<br />

VC). Furthermore, hyperosmolarity interferes with the respiratory<br />

burst oxidase (573). Along these lines, hyperos-<br />

motic cell shrinkage blunts agonist-triggered AOS formation<br />

(602, 659, 795, 810), and hyposmotic cell swelling stimulates<br />

AOS formation (602) in polymorphonuclear leukocytes.<br />

Leukocyte AOS production through NADPH oxidase is further<br />

inhibited by high concentrations <strong>of</strong> urea (1187), which<br />

2/ activity (922, 1226)<br />

and subsequent activation <strong>of</strong> Ca<br />

at least in some cells leads to cell shrinkage (see sect. IIIA)<br />

2/ -sensitive K / and/or Cl 0<br />

channels. Accordingly, it could be inhibited by K<br />

and similar to osmotic shrinkage inhibits Fas-induced cell<br />

/ channel<br />

blockers or increased extracellular K<br />

death (E. Gulbins and F. Lang, unpublished observations).<br />

/ concentration (55,<br />

61). Stimulation <strong>of</strong> the Fas-receptor leads to rapid activa-<br />

tion <strong>of</strong> cell volume regulatory Cl<br />

Although the decreased NADPH availability in<br />

shrunken cells may interfere with endogenous formation <strong>of</strong><br />

0 channels (I. Szabo, E.<br />

Gulbins, and F. Lang, unpublished observations) as well<br />

as delayed taurine release, the latter effect paralleling cell<br />

shrinkage (686a). The loss <strong>of</strong> cell volume may be function-<br />

ally important, since a doubling <strong>of</strong> extracellular osmolarity<br />

has been shown to trigger apoptosis (109, 811). More-<br />

AOS and thus protects from Fas-induced cell death, it renders<br />

the cells more vulnerable to exogenous oxidative<br />

stress, whereas cell swelling appears to protect from exogenous<br />

oxidative stress (804, 1046).<br />

Beyond the role <strong>of</strong> AOS, cell shrinkage is expected to<br />

turn on Na / /H / over, the ability <strong>of</strong> cells to resist osmotic shrinkage by cell<br />

volume regulation paralleled their resistance to apoptosis<br />

after an osmotic shock (109). As discussed in section IIIH,<br />

osmotic stress triggers the MAPK pathway, leading to activation<br />

<strong>of</strong> JNK via the MAPK kinase (MKK4) (809, 853,<br />

1020, 1216). Both JNK and p38 kinase, another target <strong>of</strong><br />

MKK4, have been invoked in the triggering <strong>of</strong> apoptosis<br />

exchange, leading to alkalinization (see<br />

sect. IIB). Intracellular acidosis, on the other hand, has been<br />

considered a prerequisite for apoptosis (405).<br />

Because cell shrinkage apparently interferes with the<br />

/<br />

Fas signaling pathway, the inhibition <strong>of</strong> K channels after<br />

activation <strong>of</strong> the Fas receptor could serve to prevent premature<br />

inhibition <strong>of</strong> the signaling cascade by cell shrinkage. In<br />

(1368). On the other hand, MKK4 has been postulated to analogy with Fas-induced cell death, methylprednisoloneprotect<br />

from apoptosis (894). Thus the precise function induced apoptosis <strong>of</strong> thymocytes was observed to be inhib-<br />

ited by low doses <strong>of</strong> the K / <strong>of</strong> these kinases in apoptosis remains elusive. Whether<br />

ionophore valinomycin (255).<br />

the proteolytic effect <strong>of</strong> cell shrinkage (see Table 1) con- Furthermore, tumor necrosis factor-a has been shown to<br />

stimulate Na / /H / tributes to apoptosis remains to be tested.<br />

exchange (1248).<br />

Surprisingly, Fas-induced cell death is inhibited dur- Clearly, the role <strong>of</strong> cell volume regulatory mechanisms<br />

ing exposure <strong>of</strong> the cells to moderately hypertonic extrain apoptotic cell death is still ill-defined, and at this point,<br />

cellular fluid (451). Moreover, in lymphocytes, stimulation their functional significance remains a matter <strong>of</strong> specula-<br />

<strong>of</strong> the Fas receptor leads to inhibition <strong>of</strong> the n-type K /<br />

tion.<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 273<br />

K. Others<br />

myces cerevisiae, and its expression is regulated by the highosmolarity<br />

glycerol response pathway. Mol. <strong>Cell</strong>. Biol. 14: 4135–<br />

4144, 1994.<br />

Obviously, a number <strong>of</strong> further functions involve al-<br />

terations <strong>of</strong> cell volume and/or activation <strong>of</strong> volume regulatory<br />

mechanisms.<br />

10. ALBRECHT, J., A. S. BENDER, AND M. D. NORENBERG. Ammonia<br />

stimulates the release <strong>of</strong> taurine from cultured astrocytes.<br />

Brain Res. 660: 288–292, 1994.<br />

11. ALFIERI, R., P. G. PETRONINI, S. URBANI, AND A. F. BORGH-<br />

Phagocytosis, for instance, could be expected to in-<br />

crease cell volume. Indeed, phagocytotic Kupffer cells do<br />

contain betaine, which is released during phagocytosis<br />

ETTI. Activation <strong>of</strong> heat shock transcription factor 1 by hypertonic<br />

shock in 3T3 cells. Biochem. J. 319: 601–606, 1996.<br />

12. AL-HABORI, M., M. PEAK, T. H. THOMAS, AND L. AGIUS. The<br />

role <strong>of</strong> cell swelling in the stimulation <strong>of</strong> glycogen synthesis by<br />

(1319, 1393). Similarly, the ion channels activated during<br />

phagocytosis (641) may at least in part serve RVD. Moreinsulin.<br />

Biochem. J. 282: 789–796, 1992.<br />

13. ALPER, S. L., H. C. PALFREY, S. A. DERIEMER, AND P. GREEN-<br />

GARD. Hormonal control <strong>of</strong> protein phosphorylation in turkey<br />

erythrocytes. Phosphorylation by cAMP-dependent and Ca 2/ over, phagocytosis has been shown to be sensitive to am-de-<br />

bient osmolarity (1321).<br />

Activation <strong>of</strong> thrombocytes is paralleled by excessive<br />

cell shrinkage, which participates in the metamorphosis<br />

pendent protein kinases <strong>of</strong> distinct sites in goblin, a high molecular<br />

weight protein <strong>of</strong> the plasma membrane. J. Biol. Chem. 255:<br />

11029–11039, 1980.<br />

14. ALTENBERG, G. A., J. W. DEITMER, D. C. GLASS, AND L. REUSS.<br />

P-glycoprotein-associated Cl 0 <strong>of</strong> the cells (59).<br />

Furthermore, some evidence points to the involvement<br />

<strong>of</strong> cell volume regulatory mechanisms during lymphocyte<br />

adhesion, which may play a permissive role in<br />

the activation <strong>of</strong> Na<br />

currents are activated by cell swell-<br />

ing but do not contribute to cell volume regulation. Cancer Res.<br />

54: 618–622, 1994.<br />

15. ALTENBERG, G. A., C. G. VANOYE, E. S. HAN, J. W. DEITMER,<br />

AND L. REUSS. Relationships between rhodamine 123 transport,<br />

cell volume, and ion-channel function <strong>of</strong> P-glycoprotein. J. Biol.<br />

/ /H / exchange (562, 1103–1106). Chem. 269: 7145–7149, 1994.<br />

Binding to L-selectins, with the receptors mediating the 16. ALVAREZ-LEEFMANS, F. J., S. M. GAMINO, AND L. REUSS. <strong>Cell</strong><br />

first contact <strong>of</strong> lymphocytes with the endothelial cell sur-<br />

face (1018), triggers an intracellular cascade involving Ras<br />

volume changes upon sodium pump inhibition in Helix aspersa<br />

neurones. J. Physiol. (Lond.) 458: 603–619, 1992.<br />

17. AMIGORENA, S., D. CHOQUET, J. L. TEILLAUD, H. KORN, AND<br />

activation (121), ultimately leading to an increase <strong>of</strong> cell W. H. FRIDMAN. Ion channel blockers inhibit B cell activation at<br />

volume (E. Gulbins, B. Brenner, and F. Lang, unpublished<br />

a precise stage <strong>of</strong> the G1 phase <strong>of</strong> the cell cycle. Possible involve-<br />

ment <strong>of</strong> K / observations). The functional significance <strong>of</strong> these events<br />

channels. J. Immunol. 144: 2038–2045, 1990.<br />

18. ANBARI, K., AND R. M. SCHULTZ. Effect <strong>of</strong> sodium and betaine<br />

is still elusive but may relate to the considerable mechani- in culture media on development and relative rates <strong>of</strong> protein<br />

cal forces operative during adhesion <strong>of</strong> lymphocytes to<br />

the endothelial surface (1395).<br />

synthesis in preimplantation mouse embryos in vitro. Mol. Reprod.<br />

Dev. 35: 24–28, 1993.<br />

19. ANDERSON, P. M. Purification and properties <strong>of</strong> the glutamineand<br />

N-acetyl-L-glutamate-dependent carbamoyl phosphate synthetase<br />

from liver <strong>of</strong> Squalus acanthias. J. Biol. Chem. 256: 12228–<br />

REFERENCES<br />

12238, 1981.<br />

20. ANDERSON, R. J. Hospital-associated hyponatremia. Kidney Int.<br />

29: 1237–1247, 1986.<br />

1. ADEBODUN, F., AND J. F. M. POST. 21. ANDERSON, R. J., H. M. CHUNG, R. KLUGE, AND R. W. SCHRIER.<br />

19 F NMR studies <strong>of</strong> changes<br />

in membrane potential and intracellular volume during dexameth- Hyponatremia: a prospective analysis <strong>of</strong> its epidemiology and the<br />

asone-induced apoptosis in human leukemic cell lines. J. <strong>Cell</strong>. pathogenetic role <strong>of</strong> vasopressin. Ann. Intern. Med. 102: 164–168,<br />

Physiol. 154: 199–206, 1993.<br />

1985.<br />

2. ADRAGNA, N. C., P. FONSECA, AND P. K. LAUF. Hydroxyurea 22. ANDREW, R. D. Seizure and acute osmotic change: clinical and<br />

affects cell morphology, cation transport, and red blood cell adhe- neurophysiological aspects. J. Neurol. Sci. 101: 7–18, 1991.<br />

sion in cultured vascular endothelial cells. Blood 83: 553–560, 23. ANDREW, R. D., M. E. LOBINOWICH, AND E. P. OSEHOBO. Evi-<br />

1994.<br />

dence against volume regulation by cortical brain cells during<br />

3. AGIUS, L., M. PEAK, AND M. AL-HABORI. What determines the acute osmotic stress. Exp. Neurol. 143: 300–312, 1997.<br />

increase in liver cell volume in the fasted-to-fed transition: glyco- 24. ANDREW, R. D., AND B. A. MACVICAR. Imaging cell volume<br />

gen or insulin? Biochem. J. 276: 843–845, 1991.<br />

changes and neuronal excitation in the hippocampal slice. Neuro-<br />

4. AGIUS, L., M. PEAK, G. BERESFORD, M. AL-HABORI, AND T. H. science 62: 371–383, 1994.<br />

THOMAS. The role <strong>of</strong> ion content and cell volume in insulin action. 25. ANDREWS, M. A., D. W. MAUGHAN, T. M. NOSEK, AND R. E.<br />

Biochem. Soc. Trans. 22: 516–522, 1994.<br />

GODT. Ion-specific and general ionic effects on contraction <strong>of</strong><br />

5. AGOL, V. I., G. Y. LIPSKAYA, E. A. TOLSKAYA, M. K. VOROSHI- skinned fast-twitch skeletal muscle from the rabbit. J. Gen. Phys-<br />

LOVA, AND L. I. ROMANOVA. Defect in poliovirus maturation un- iol. 98: 1105–1125, 1991.<br />

der hypotonic conditions. Virology 41: 533–540, 1970.<br />

26. ARAKAWA, T., AND S. N. TIMASHEFF. The stabilization <strong>of</strong> pro-<br />

6. AGRE, P., D. BROWN, AND S. NIELSEN. Aquaporin water chan- teins by osmolytes. Biophys. J. 47: 411–414, 1985.<br />

nels: unanswered questions and unresolved controversies. Curr. 27. ARIEFF, A. I., AND H. J. CARROLL. Nonketotic hyperosmolar<br />

Opin. <strong>Cell</strong>. Biol. 7: 472–483, 1995.<br />

coma with hyperglycemia: clinical features, pathophysiology, re-<br />

7. AKESON, M., J. SCHARFF, C. M. SHARP, AND D. M. NEVILLE, JR. nal function, acid-base balance, plasma cerebrospinal fluid equilib-<br />

Evidence that plasma membrane electrical potential is required ria and the effects <strong>of</strong> therapy in 37 cases. Medicine 51: 73–94,<br />

for vesicular stomatitis virus infection <strong>of</strong> MDCK cells: a study 1972.<br />

using fluorescence measurements through polycarbonate support. 28. ARIEFF, A. I., AND C. R. KLEEMAN. Cerebral edema in diabetic<br />

J. Membr. Biol. 125: 81–91, 1992.<br />

comas. II. Effects <strong>of</strong> hyperosmolarity, hyperglycemia and insulin<br />

8. AKTORIES, K., AND A. HALL. Botulinum ADP-ribosyltransferase in diabetic rabbits. J. Clin. Endocrinol. Metab. 38: 1057–1067,<br />

C3: a new tool to study low molecular weight GTP-binding pro- 1974.<br />

teins. Trends Pharmacol. Sci. 10: 415–418, 1989. 29. ARMITAGE, W. J., B. K. JUSS, AND D. L. EASTY. Response <strong>of</strong> epi-<br />

9. ALBERTYN, J., S. HOHMANN, J. M. THEVELEIN, AND B. A. thelial (MDCK) cell junctions to calcium removal and osmotic<br />

PRIOR. GPD1, which encodes glycerol-3-phosphate dehydroge- stress is influenced by temperature. Cryobiology 31: 453–460,<br />

nase, is essential for growth under osmotic stress in Saccharo- 1994.<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


274<br />

LANG ET AL. <strong>Volume</strong> 78<br />

30. ARORA, P. D., K. J. BIBBY, AND C. A. G. MCCULLOCH. Slow oscil- 52. BAQUET, A., A. J. MEIJER, AND L. HUE. Hepatocyte swelling inlations<br />

<strong>of</strong> free intracellular calcium ion concentration in human creases inositol 1,4,5-trisphosphate, calcium and cyclic AMP con-<br />

fibroblasts responding to mechanical stretch. J. <strong>Cell</strong>. Physiol. 161: centration but antagonizes phosphorylase activation by Ca 2/ -de-<br />

187–200, 1994.<br />

pendent hormones. FEBS Lett. 278: 103–106, 1991.<br />

31. ASKENASY, N., M. TASSINI, A. VIVI, AND G. NAVON. Intracellular 53. BAQUET, A., L. MAISIN, AND L. HUE. Swelling <strong>of</strong> rat hepatocytes<br />

volume measurement and detection <strong>of</strong> edema: multinuclear NMR activates acetyl-CoA carboxylase in parallel to glycogen synthase.<br />

studies <strong>of</strong> intact rat hearts during normothermic ischemia. Magn. Biochem. J. 278: 887–890, 1991.<br />

Reson. Med. 33: 515–520, 1995.<br />

54. BARASCH, J., B. KISS, A. PRINCE, L. SAIMAN, D. GRUENERT,<br />

32. AUNIS, D., AND M. F. BADER. The cytoskeleton as a barrier to AND Q. AL-AWQATI. Defective acidification <strong>of</strong> intracellular organ-<br />

exocytosis in secretory cells. J. Exp. Biol. 139: 253–266, 1988.<br />

elles in cystic fibrosis. Nature 352: 70–73, 1991.<br />

33. AYRAPETYAN, S. N., AND M. A. SULEYMANIAN. On the pump- 55. BARBIERO, G., F. DURANTI, G. BONELLI, J. S. AMENTA, AND<br />

induced cell volume changes. Comp. Biochem. Physiol. A Physiol. F. M. BACCINO. Intracellular ionic variations in the apoptotic<br />

64: 571–575, 1979. death <strong>of</strong> L cells by inhibitors <strong>of</strong> cell cycle progression. Exp. <strong>Cell</strong><br />

34. BACK, J. F., D. OAKENFULL, AND M. B. SMITH. Increased thermal Res. 217: 410–418, 1995.<br />

stability <strong>of</strong> proteins in the presence <strong>of</strong> sugars and polyols. Bio- 56. BAROIN, A., F. GARCIA-ROMEU, T. LAMARRE, AND R. MOTAIS.<br />

chemistry 18: 5191–5196, 1979.<br />

A transient sodium-hydrogen exchange system induced by cate-<br />

35. BAETHMANN, A., AND O. KEMPSKI. Ischemic brain edema. Prog. cholamines in erythrocytes <strong>of</strong> rainbow trout, Salmo gairdneri. J.<br />

Appl. Microcirc. 13: 38–53, 1989.<br />

Physiol. (Lond.) 356: 21–31, 1984.<br />

36. BAGNARA, A. S., L. E. MCDONALD, AND H. M. SLADE. Deoxy- 57. BASU, S. K., J. L. GOLDSTEIN, R. G. W. ANDERSON, AND M. S.<br />

adenosine toxicity in an adenosine deaminase-inhibited human BROWN. Monensin interrupts the recycling <strong>of</strong> low density lipopro-<br />

CCRF-CEM T-lymphoblastoid cell line causes cell swelling. Bio- tein receptors in human fibroblasts. <strong>Cell</strong> 24: 493–502, 1981.<br />

chim. Biophys. Acta 1180: 163–172, 1992.<br />

58. BAUDOUIN-LEGROS, M., L. ASDRAM, D. TONDELIER, M. PAU-<br />

37. BAGNASCO, S., R. BALABAN, H. M. FALES, Y.-M. YANG, AND LAIS, AND T. ANAGNOSTOPOULOS. Extracellular urea concentra-<br />

M. B. BURG. Predominant osmotically active organic solutes in tion modulates cAMP production in the mouse MTAL. Kidney Int.<br />

rat and rabbit renal medullas. J. Biol. Chem. 261: 5872–5877, 1986. 50: 26–33, 1996.<br />

38. BAGNASCO, S. M., M. H. MONTROSE, AND J. S. HANDLER. Role 59. BAUER, C., AND W. WUILLEMIN. Blood, plasma proteins, coagula<strong>of</strong><br />

calcium in organic osmolyte efflux when MDCK cells are shifted tion, fibrinolysis, and thrombocyte function. In: Comprehensive<br />

from hypertonic to isotonic medium. Am. J. Physiol. 264 (<strong>Cell</strong> Human Physiology, edited by R. Greger and U. Windhorst. Berlin:<br />

Physiol. 33): C1165–C1170, 1993. Springer-Verlag, 1996, p. 1651–1677.<br />

39. BAGNASCO, S. M., H. R. MURPHY, J. J. BEDFORD, AND M. B. 60. BEAR, C. E., AND O. H. PETERSON. L-Alanine evokes opening <strong>of</strong><br />

BURG. Osmoregulation by slow changes in aldose reductase and single Ca 2/ -activated K / channels in rat liver cells. Pflügers Arch.<br />

rapid changes in sorbitol flux. Am. J. Physiol. 254 (<strong>Cell</strong> Physiol. 410: 342–344, 1987.<br />

23): C788–C792, 1988. 61. BEAUVAIS, F., L. MICHEL, AND L. DUBERTRET. Human eosino-<br />

40. BAGNASCO, S. M., S. UCHIDA, R. S. BALABAN, P. F. KADOR, phils in culture undergo a striking and rapid shrinkage during<br />

AND M. B. BURG. Induction <strong>of</strong> aldose reductase and sorbitol in apoptosis. Role <strong>of</strong> K / channels. J. Leukoc. Biol. 57: 851–855, 1995.<br />

renal inner medullary cells by elevated extracellular NaCl. Proc. 62. BECK, F.-X., A. DÖRGE, R. RICK, AND K. THURAU. Intra- and<br />

Natl. Acad. Sci. USA 84: 1718–1720, 1987. extracellular element concentrations <strong>of</strong> rat renal papilla in antidi-<br />

41. BAGNI, M. A., G. CECCHI, P. J. GRIFFITHS, Y. MAEDA, G. RAPP, uresis. Kidney Int. 25: 397–403, 1984.<br />

AND C. C. ASHLEY. Lattice spacing changes accompanying isomet- 63. BECK, F.-X., A. DÖRGE, AND K. THURAU. <strong>Cell</strong>ular osmoregulation<br />

ric tension development in intact single muscle fibers. Biophys. in renal medulla. Renal Physiol. Biochem. 11: 174–186, 1988.<br />

J. 67: 1965–1975, 1994. 64. BECK, F.-X., M. SCHMOLKE, AND W. G. GUDER. Osmolytes. Curr.<br />

42. BAKER, A. J., M. H. ZOHRNOW, M. S. SHELLER, T. L. YAKSH, Opin. Nephrol. Hypertens. 1: 43–52, 1992.<br />

S. R. SKILLING, D. H. SMULLIN, A. A. LARSON, AND R. KUCZEN- 65. BECK, F.-X., M. SCHMOLKE, W. G. GUDER, A. DÖRGE, AND K.<br />

SKI. Changes in extracellular concentrations <strong>of</strong> glutamate, aspar- THURAU. Osmolytes in renal medulla during rapid changes in<br />

tate, glycine, dopamine, serotonin, and dopamine metabolites papillary tonicity. Am. J. Physiol. 262 (Renal Fluid Electrolyte<br />

after transient global ischemia in the rabbit brain. J. Neurochem. Physiol. 31): F849–F856, 1992.<br />

57: 1370–1379, 1991. 66. BECK, F.-X., M. SONE, A. DÖRGE, AND K. THURAU. Effect <strong>of</strong><br />

43. BAKKER-GRUNWALD, T. Potassium permeability and volume increased distal sodium delivery on organic osmolytes and cell<br />

control in isolated rat hepatocytes. Biochim. Biophys. Acta 731: electrolytes in the renal outer medulla. Pflügers Arch. 422: 233–<br />

239–242, 1983. 238, 1992.<br />

44. BALABAN, R. S., AND M. B. BURG. Osmotically active organic sol- 67. BECK, J. S., S. BRETON, H. MAIRBAURL, R. LAPRADE, AND G.<br />

utes in the renal inner medulla. Kidney Int. 31: 562–564, 1987. GIEBISCH. Relationship between sodium transport and intracellu-<br />

45. BALLANYI, K., AND P. GRAFE. <strong>Cell</strong> volume regulation in the ner- lar ATP in isolated perfused rabbit proximal convoluted tubule.<br />

vous system. Renal Physiol. Biochem. 11: 142–157, 1988. Am. J. Physiol. 261 (Renal Fluid Electrolyte Physiol. 30): F634–<br />

46. BALLANYI, K., P. GRAFE, G. SERVE, AND W. R. SCHLUE. Electro- F639, 1991.<br />

physiological measurements <strong>of</strong> volume changes in Leech neuro- 68. BECK, J. S., R. LAPRADE, AND J. Y. LAPOINTE. Coupling between<br />

pile glial cells. Glia 3: 151–158, 1990. transepithelial Na transport and basolateral K conductance in re-<br />

47. BALLATORI, N., A. T. TRUONG, P. S. JACKSON, K. STRANGE, nal proximal tubule. Am. J. Physiol. 266 (Renal Fluid Electrolyte<br />

AND J. L. BOYER. ATP depletion and inactivation <strong>of</strong> an ATP-sensi- Physiol. 35): F517–F527, 1994.<br />

tive taurine channel by classic ion channel blockers. Mol. Pharma- 69. BECK, J. S., AND D. J. POTTS. <strong>Cell</strong> swelling, cotransport activation<br />

col. 48: 472–476, 1995. and potassium conductance in isolated perfused rabbit kidney<br />

48. BANDERALI, U., AND G. ROY. Activation <strong>of</strong> K proximal tubules. J. Physiol. (Lond.) 425: 369–378, 1990.<br />

/ and Cl 0 channels<br />

in MDCK cells during volume regulation in hypotonic media. J. 70. BEDFORD, J. J., S. M. BAGNASCO, P. F. KADOR, H. W. HARRIS,<br />

Membr. Biol. 126: 219–234, 1992. JR., AND M. B. BURG. Characterization and purification <strong>of</strong> a mam-<br />

49. BAQUET, A., V. GAUSSIN, M. BOLLEN, W. STALMANS, AND L. malian osmoregulatory protein, aldose reductase, induced in renal<br />

HUE. Mechanism <strong>of</strong> activation <strong>of</strong> liver acetyl-CoA carboxylase by medullary cells by high extracellular NaCl. J. Biol. Chem. 262:<br />

cell swelling. Eur. J. Biochem. 217: 1083–1089, 1993.<br />

14255–14259, 1987.<br />

50. BAQUET, A., L. HUE, A. J. MEIJER, G. M. VAN WOERKOM, AND 71. BENDER, A. S., J. T. NEARY, J. BLICHARSKA, L. O. NOREN-<br />

P. J. A. M. PLOMP. Swelling <strong>of</strong> rat hepatocytes stimulates glyco- BERG, AND M. D. NORENBERG. Role <strong>of</strong> calmodulin and protein<br />

gen synthesis. J. Biol. Chem. 265: 955–959, 1990. kinase C in astrocytic cell volume regulation. J. Neurochem. 58:<br />

51. BAQUET, A., A. LAVOINNE, AND L. HUE. Comparison <strong>of</strong> the ef- 1874–1882, 1992.<br />

fects <strong>of</strong> various amino acids on glycogen synthesis, lipogenesis 72. BENDER, A. S., J. T. NEARY, AND M. D. NORENBERG. Role <strong>of</strong><br />

and ketogenesis in isolated rat hepatocytes. Biochem. J. 273: 57– phosphoinositide hydrolysis in astrocyte volume regulation. J.<br />

62, 1991. Neurochem. 61: 1506–1514, 1993.<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 275<br />

73. BENDER, A. S., AND M. D. NORENBERG. The role <strong>of</strong> K / influx 93. BISHOP, J. M., R. L. MALDONADO, R. F. GARRY, P. T. ALLEN,<br />

on glutamate induced astrocyte swelling: effect <strong>of</strong> temperature. H. R. BOSE, AND M. R. F. WAITE. Effect <strong>of</strong> medium <strong>of</strong> lowered<br />

Acta Neurochir. 60: 28–30, 1994. NaCl concentration on virus release and protein synthesis in cells<br />

74. BEN HAIM, S. A., Y. EDOUTE, G. HAYAM, AND O. S. BETTER. infected with reticuloendotheliosis virus. J. Virol. 17: 446–452,<br />

Sodium modulates inotropic response to hyperosmolarity in iso- 1976.<br />

lated working rat heart. Am. J. Physiol. 263 (Heart Circ. Physiol. 94. BIZE, I., AND P. B. DUNHAM. Staurosporine, a protein kinase in-<br />

32): H1154–H1160, 1992. hibitor, activates K-Cl cotransport in LK sheep erythrocytes. Am.<br />

75. BENIS, R. C., AND D. W. LUNDGREN. Sodium-dependent co-trans- J. Physiol. 266 (<strong>Cell</strong> Physiol. 35): C759–C770, 1994.<br />

ported analogues <strong>of</strong> glucose stimulate ornithine decarboxylase 95. BLACKARD, W. G., M. KIKUCHI, A. RABINOVITCH AND A. E. REmRNA<br />

expression in LLC-PK1 cells. Biochem. J. 289: 751–756, NOLD. An effect <strong>of</strong> hyposmolarity on insulin release in vitro. Am.<br />

1993. J. Physiol. 228: 706–713, 1975.<br />

76. BEN-ZE’EV, A. Animal cell shape changes and gene expression. 96. BLACKWELL, J. R., AND D. J. GILMOUR. Physiological response<br />

Bioessays 13: 207–212, 1991. <strong>of</strong> the unicellular green alga Chlorococcum submarinum to rapid<br />

77. BERDIEV, B. K., A. G. PRAT, H. F. CANTIELLO, D. A. AUSIELLO, changes in salinity. Arch. Microbiol. 157: 86–91, 1991.<br />

C. M. FULLER, B. JOVOV, D. J. BENOS, AND I. I. ISMAILOV. Regu- 97. BLAKE, M. S., AND E. C. GOTSCHLICH. <strong>Functional</strong> and immunolation<br />

<strong>of</strong> epithelial sodium channels by short actin filaments. J. logical properties <strong>of</strong> pathogenic Neisseria surface proteins. In:<br />

Biol. Chem. 271: 17704–17710, 1996. Bacterial Outer Membranes as Model Systems, edited by M. In-<br />

78. BERGH, C., S. J. KELLEY, AND P. B. DUNHAM. K-Cl cotransport ouye. New York: Wiley, 1987, p. 377–400.<br />

in LK sheep erythrocytes: kinetics <strong>of</strong> stimulation by cell swelling. 98. BLAUSTEIN, M. P. Physiological effects <strong>of</strong> endogenous ouabain:<br />

J. Membr. Biol. 117: 177–188, 1990. control <strong>of</strong> intracellular Ca 2/ stores and cell responsiveness. Am.<br />

79. BERGSTRÖM, J. P., J. LARSSON, H. NORDSTRÖM, E. VINNARS, J. Physiol. 264 (<strong>Cell</strong> Physiol. 33): C1367–C1387, 1993.<br />

J. ASKANAZI, D. H. ELWYN, J. M. KINNEY, AND P. J. FÜRST. In- 99. BLUMENFELD, J. D., S. C. HEBERT, C. W. HEILIG, J. A.<br />

fluence <strong>of</strong> injury and nutrition on muscle water and electrolytes: BALSCHI, M. E. STROMSKI, AND S. R. GULLANS. Organic osmoeffect<br />

<strong>of</strong> severe injury, burns and sepsis. Acta Chir. Scand. 153: lytes in inner medulla <strong>of</strong> Brattleboro rat: effects <strong>of</strong> ADH and dehy-<br />

261–266, 1987. dration. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25):<br />

80. BERRY, G. T. The role <strong>of</strong> polyols in the pathophysiology <strong>of</strong> hyper- F916–F922, 1989.<br />

galactosemia. Eur. J. Pediatr. 154, Suppl.: S53–S64, 1995. 100. BODE, B. P., AND M. S. KILBERG. Amino acid-dependent increase<br />

81. BERRY, G. T., J. J. MALLEE, H. M. KWON, J. S. RIM, W. R. in hepatic system N activity is linked to cell swelling. J. Biol.<br />

MULLA, M. MUENKE, AND N. B. SPINNER. The human osmoregulatory<br />

Na / /myo-inositol cotransporter gene (SLC5A3): molecular<br />

cloning and localization to chromosome 21. Genomics 25: 507–<br />

513, 1995.<br />

82. BEST, L., H. E. MILEY, AND A. P. YATES. Activation <strong>of</strong> an anion<br />

conductance and beta cell depolarization during hypotonically induced<br />

insulin release. Exp. Physiol. 81: 927–933, 1996.<br />

83. BESTERMAN, J. M., S. J. TYREY, E. J. CRAGOE, JR., AND P. CUA-<br />

TRECASAS. Inhibition <strong>of</strong> epidermal growth factor-induced mito-<br />

genesis by amiloride and an analog: evidence against a require-<br />

ment for Na / /H / exchange. Proc. Natl. Acad. Sci. USA 81: 6762–<br />

Chem. 266: 7376–7381, 1991.<br />

101. BOE, R., B. T. GJERTSEN, O. K. VINTERMYR, G. HOUGE, M.<br />

LANOTTE, AND S. O. DOSKELAND. The protein phosphatase inhibitor<br />

okadaic acid induces morphological changes typical <strong>of</strong><br />

apoptosis in mammalian cells. Exp. <strong>Cell</strong> Res. 195: 237–246, 1991.<br />

102. BOESE, S. H., F. WEHNER, AND R. K. H. KINNE. Taurine perme-<br />

ation through swelling activated anion conductance in rat IMCD<br />

cells in primary culture. Am. J. Physiol. 271 (Renal Fluid Electrolyte<br />

Physiol. 40): F498–F507, 1996.<br />

103. BONANNO, J. A. K / -H / exchange, a fundamental cell acidifier in<br />

6766, 1984.<br />

84. BEYENBACH, K. W. (Editor). <strong>Cell</strong> <strong>Volume</strong> Regulation. Comparative<br />

Physiology, edited by R. K. H. Kinne and E. Kinne-Saffran.<br />

Basel: Karger, 1990, vol. 4.<br />

85. BIANCHINI, L., AND S. GRINSTEIN. Regulation <strong>of</strong> volume-modulating<br />

ion transport systems by growth promoters. In: Advances<br />

in Comparative and Environmental Physiology, edited by F.<br />

Lang and D. Häussinger. Berlin: Springer-Verlag, 1993, vol. 14, p.<br />

249–270.<br />

86. BIANCHINI, L., A. KAPUS, G. LUKACS, S. WASAN, S. WAKABA-<br />

corneal epithelium. Am. J. Physiol. 260 (<strong>Cell</strong> Physiol. 29): C618–<br />

C625, 1991.<br />

104. BONDY, C. A., AND S. L. LIGHTMAN. Developmental and physio-<br />

logical regulation <strong>of</strong> aldose reductase mRNA expression in renal<br />

medulla. Mol. Endocrinol. 3: 1409–1416, 1989.<br />

105. BOOKCHIN, R. M., O. E. ORTIZ, AND V. L. LEW. Activation <strong>of</strong> cal-<br />

cium-dependent potassium channels in deoxygenated sickled red<br />

cells. Prog. Clin. Biol. Res. 240: 193–200, 1987.<br />

106. BOOKSTEIN, C., M. W. MUSCH, A. DEPAOLI, Y. XIE, K. RABE-<br />

NAU, M. VILEREAL, M. C. RAO, AND E. B. CHANG. Characterization<br />

<strong>of</strong> the rat Na / /H / YASHI, J. POUYSSEGUR, F. H. YU, J. ORLOWSKI, AND S.<br />

GRINSTEIN. Responsiveness <strong>of</strong> mutants <strong>of</strong> NHE-1 is<strong>of</strong>orm <strong>of</strong> the<br />

Na<br />

exchanger is<strong>of</strong>orm NHE4 and localization<br />

in rat hippocampus. Am. J. Physiol. 271 (<strong>Cell</strong> Physiol. 40): C1629–<br />

C1638, 1996.<br />

/ /H / antiport to osmotic stress. Am. J. Physiol. 269 (<strong>Cell</strong> Physiol.<br />

38): C998–C1007, 1995.<br />

87. BIANCHINI, L., AND J. POUYSSEGUR. Molecular structure and<br />

regulation <strong>of</strong> vertebrate Na<br />

107. BOOKSTEIN, C., M. W. MUSCH, A. DEPAOLI, Y. XIE, M. VILLER-<br />

EAL, M. C. RAO, AND E. B. CHANG. A unique sodium-hydrogen<br />

exchange is<strong>of</strong>orm (NHE-4) <strong>of</strong> the inner medulla <strong>of</strong> the rat kidney<br />

/ /H / exchangers. J. Exp. Biol. 196:<br />

337–45, 1994.<br />

88. BIANCHINI, L., M. WOODSIDE, C. SARDET, J. POUYSSEGUR, A.<br />

TAKAI, AND S. GRINSTEIN. Okadaic acid, a phosphatase inhibitor,<br />

induces activation and phosphorylation <strong>of</strong> the Na<br />

is induced by hyperosmolarity. J. Biol. Chem. 269: 29704–29709,<br />

1994.<br />

108. BORON, W. F., E. M. HOGAN, AND B. A. DAVIS. Involvement <strong>of</strong> a<br />

G protein in the shrinkage-induced activation <strong>of</strong> Na-H exchange<br />

/ /H / antiport. J.<br />

Biol. Chem. 266: 15406–15413, 1991.<br />

89. BIBBY, K. J., AND C. A. G. MCCULLOCH. Regulation <strong>of</strong> cell volume<br />

and [Ca<br />

in barnacle muscle fibres. In: <strong>Cell</strong>ular and Molecular Physiology<br />

<strong>of</strong> <strong>Cell</strong> <strong>Volume</strong> Regulation, edited by K. Strange. Boca Raton, FL:<br />

CRC, 1994, p. 299–310.<br />

2/ ] i in attached human fibroblasts responding to anisosmotic<br />

buffers. Am. J. Physiol. 266 (<strong>Cell</strong> Physiol. 35): C1639–<br />

C1649, 1994.<br />

90. BICHET, D. G., R. KLUGE, R. L. HOWARD, AND R. W. SCHRIER.<br />

Hyponatremic states. In: The Kidney: Physiology and Pathophysiology<br />

(2nd ed.), edited by D. W. Seldin and G. Giebisch. New York:<br />

Raven, 1992, p. 1727–1751.<br />

91. BICKLER, P. E. Cerebral anoxia tolerance in turtles: regulation <strong>of</strong><br />

109. BORTNER, C. D., AND J. A. CIDLOWSKI. Absence <strong>of</strong> volume regu-<br />

latory mechanisms contributes to the rapid activation <strong>of</strong> apoptosis<br />

in thymocytes. Am. J. Physiol. 271 (<strong>Cell</strong> Physiol. 40): C950–C961,<br />

1996.<br />

110. BOSTROM, T. E., M. J. FIELD, A. Z. GYORY, M. DYNE, AND D. J.<br />

COCKAYNE. Electron probe X- ray microanalysis <strong>of</strong> intracellular<br />

element concentrations in cryosections in the presence <strong>of</strong> changes<br />

intracellular calcium and pH. Am. J. Physiol. 263 (<strong>Regulatory</strong> in cell volume. J. Microsc. 162: 319–333, 1991.<br />

Integrative Comp. Physiol. 32): R1298–R1302, 1992.<br />

111. BOUCHER, R. C. Human airway ion transport (part II). Am. J.<br />

92. BIJMAN, J., AND P. M. QUINTON. Influence <strong>of</strong> abnormal Cl Respir. Crit. Care Med. 150: 581–593, 1994.<br />

0 impermeability<br />

on sweating in cystic fibrosis. Am. J. Physiol. 247 (<strong>Cell</strong> 112. BOULANGER, Y., P. LEGAULT, A. TEJEDOR, P. VINAY, AND Y.<br />

Physiol. 16): C3–C9, 1984. THERIAULT. Biochemical characterization and osmolytes in pap-<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


276<br />

LANG ET AL. <strong>Volume</strong> 78<br />

illary collecting ducts from pig and dog kidneys. Can. J. Physiol. exocytosis in isolated perfused rat liver. Am. J. Physiol. 262 (Gas-<br />

Pharmacol. 66: 1282–1290, 1988.<br />

trointest. Liver Physiol. 25): G806–G812, 1992.<br />

113. BOULTON, T. G., G. D. YANCOPOULOS, J. S. GREGORY, C. 133. BRUGNARA, C., H. F. BUNN, AND D. C. TOSTESON. Regulation<br />

SLAUGHTER, C. MOOMAW, J. HSU, AND M. H. COBB. An insulin- <strong>of</strong> erythrocyte cation and water content in sickle cell anemia.<br />

stimulated protein kinase similar to yeast kinases involved in cell Science 232: 388–390, 1986.<br />

cycle control. Science 249: 64–67, 1990. 134. BRUGNARA, C., L. DE FRANCESCHI, AND S. L. ALPER. Inhibition<br />

<strong>of</strong> Ca 2/ -dependent K / 114. BOYER, J. L., J. GRAF, AND P. J. MEIER. Hepatic transport sys-<br />

transport and cell dehydration in sickle<br />

tems regulating pHi, cell volume, and bile secretion. Annu. Rev. erythrocytes by clotrimazole and other imidazole derivatives. J.<br />

Physiol. 54: 415–438, 1992.<br />

Clin. Invest. 92: 520–526, 1993.<br />

115. BRANDI, G., L. ROSSI, G. F. SCHIAVANO, L. SALVAGGIO, A. AL- 135. BRUGNARA, C., A. S. KOPIN, H. F. BUNN, AND D. C. TOSTESON.<br />

BANO, AND M. MAGNANI. In vitro toxicity and metabolism <strong>of</strong> Regulation <strong>of</strong> cation content and cell volume in hemoglobin eryth-<br />

2�,3�-dideoxycytidine. Chem. Biol. Interact. 79: 53–64, 1991. rocytes from patients with homozygous hemoglobin C disease. J.<br />

116. BRAUN, A. P., AND H. SCHULMAN. A non-selective cation current Clin. Invest. 75: 1608–1617, 1985.<br />

activated via the multifunctional Ca 2/ -calmodulin-dependent pro- 136. BRUNDAGE, R. A., K. E. FOGARTY, R. A. TUFT, AND F. S. FAY.<br />

tein kinase in human epithelial cells. J. Physiol. (Lond.) 488: 37– Calcium gradients underlying polarization and chemotaxis <strong>of</strong> eo-<br />

55, 1995. sinophils. Science 254: 703–706, 1991.<br />

117. BRAY, D., N. P. MONEY, F. M. HAROLD, AND J. R. BAMBURG. 137. BRUNNER, M., E. M. SCHRANER, AND P. WILD. <strong>Cell</strong>ular changes<br />

Responses <strong>of</strong> growth cones to changes in osmolality <strong>of</strong> the sur- in rat parathyroids provoked by progesterone and testosterone.<br />

rounding medium. J. <strong>Cell</strong> Sci. 98: 507–515, 1991.<br />

<strong>Cell</strong> Tissue Res. 268: 283–286, 1992.<br />

118. BREDEL-GEISSLER, A., U. KARBACH, S. WALENTA, L. VOLL- 138. BUCHE, A., P. COLSON, AND C. HOUSSIER. Organic osmotic ef-<br />

RATH, AND W. MUELLER-KLIESER. Proliferation associated oxyfectors and chromatin structure. J. Biomol. Struct. Dyn. 8: 601–<br />

gen consumption and morphology <strong>of</strong> tumor cells in monolayer 618, 1990.<br />

and spheroid culture. J. <strong>Cell</strong>. Physiol. 153: 44–52, 1992. 139. BUCHE, A., P. COLSON, AND C. HOUSSIER. Effect <strong>of</strong> organic<br />

119. BREITWIESER, G. E., A. A. ALTAMIRANO, AND J. M. RUSSELL. effectors on chromatin solubility, DNA-histone H1 interactions,<br />

Osmotic stimulation <strong>of</strong> Na / -K / -Cl 0 cotransport in squid giant axon DNA and histone H1 structures. J. Biomol. Struct. Dyn. 11: 95–<br />

is [Cl 119, 1993.<br />

0 ] i dependent. Am. J. Physiol. 258 (<strong>Cell</strong> Physiol. 27): C749–<br />

C753, 1990. 140. BURG, M. B. Role <strong>of</strong> aldose reductase and sorbitol in maintaining<br />

120. BRENNAN, J. K., K. S. LEE, M. A. FRAZEL, P. C. KENG, AND D. A. the medullary intracellular milieu. Kidney Int. 33: 635–641, 1988.<br />

YOUNG. Interactions <strong>of</strong> dimethyl sulfoxide and granulocyte-mac- 141. BURG, M. B. Molecular basis for osmoregulation <strong>of</strong> organic osmorophage<br />

colony stimulating factor on the cell cycle kinetics and lytes in renal medullary cells. J. Exp. Zool. 268: 171–175, 1994.<br />

phosphoproteins <strong>of</strong> G1-enriched HL-60 cells: evidence <strong>of</strong> early ef- 142. BURG, M. B. Molecular basis <strong>of</strong> osmotic regulation. Am. J. Physfects<br />

on lamin B phosphorylation. J. <strong>Cell</strong>. Physiol. 146: 425–434, iol. 268 (Renal Fluid Electrolyte Physiol. 37): F983–F996, 1995.<br />

1991. 143. BURG, M. B., AND P. F. KADOR. Sorbitol, osmoregulation, and the<br />

121. BRENNER, B., E. GULBINS, K. SCHLOTTMAN, U. KOPPEN- complications <strong>of</strong> diabetes. J. Clin. Invest. 81: 635–640, 1988.<br />

HÖFER, G. L. BUSCH, B. WALZOG, M. STEINHAUSEN, K. M. 144. BURG, M. B., E. D. KWON, AND D. KULTZ. Osmotic regulation <strong>of</strong><br />

COGGESHALL, O. LINDERKAMP, AND F. LANG. L-selectin acti- gene expression. FASEB J. 10: 1598–1606, 1996.<br />

vates the Ras pathway via the tyrosine kinase p56lck. Proc. Natl. 145. BURG, M. B., E. D. KWON, AND E. M. PETERS. Glycerophospho-<br />

Acad. Sci. USA 93: 15376–15381, 1996. choline and betaine counteract the effect <strong>of</strong> urea on pyruvate<br />

122. BRETON, S., M. MARSOLAIS, J. Y. LAPOINTE, AND R. LAPRADE. kinase. Kidney Int. 50, Suppl.: S100–S104, 1996.<br />

<strong>Cell</strong> volume increases <strong>of</strong> physiologic amplitude activate basolat- 146. BURGER, C., M. WICK, S. BRUSSELBACH, AND R. MULLER. Diferal<br />

K and Cl conductances in the rabbit proximal convoluted ferential induction <strong>of</strong> ‘‘metabolic genes’’ after mitogen stimulation<br />

tubule. J. Am. Soc. Nephrol. 7: 2072–2087, 1996. and during normal cell cycle progression. J. <strong>Cell</strong> Sci. 107: 241–<br />

123. BREUR, G. J., B. A. VANENKEVORT, C. E. FARNUM, AND N. J. 252, 1994.<br />

WILSMAN. Linear relationship between the volume <strong>of</strong> hypertro- 147. BURGOYNE, R. D., AND T. R. CHEEK. Reorganisation <strong>of</strong> periphphic<br />

chondrocytes and the rate <strong>of</strong> longitudinal bone growth in eral actin filaments as a prelude to exocytosis. Biosci. Rep. 7:<br />

growth plates. J. Orthop. Res. 9: 348–359, 1991. 281–288, 1987.<br />

124. BRITSCH, S., P. KRIPPEIT-DREWS, M. GREGOR, F. LANG, AND 148. BURNASHEV, N. Recombinant ionotropic glutamate receptors:<br />

G. DREWS. Effects <strong>of</strong> osmotic changes in extracellular solution on functional distinctions imparted by different subunits. <strong>Cell</strong>. Physelectrical<br />

activity <strong>of</strong> mouse pancreatic B-cells. Biochem. Biophys. iol. Biochem. 3: 318–331, 1993.<br />

Res. Commun. 204: 641–645, 1994. 149. BURNHAM, C. E., B. BUERK, C. SCHMIDT, AND J. C. BUCUVA-<br />

125. BRIZZOLARA, A., M. P. BARBIERI, L. ADEZATI, AND G. L. VIVI- LAS. A liver specific is<strong>of</strong>orm <strong>of</strong> the betaine/GABA transporter in<br />

ANI. Water distribution in insulin dependent diabetes mellitus in the rat: cDNA sequence and organ distribution. Biochim. Biophys.<br />

various states <strong>of</strong> metabolic control. Eur. J. Endocrinol. 135: 609– Acta 1284: 4–8, 1996.<br />

615, 1996. 150. BUSCH, A. E., AND J. MAYLIE. MinK channels: a minimal channel<br />

126. BRODIN, B., AND R. NIELSEN. Small transepithelial osmotic gradi- protein with a maximal impact. <strong>Cell</strong>. Physiol. Biochem. 3: 270–<br />

ents affect apical sodium permeability in frog skin. Pflügers Arch. 276, 1993.<br />

423: 411–417, 1993. 151. BUSCH, A. E., M. VARNUM, J. P. ADELMAN, AND R. A. NORTH.<br />

127. BROSNAN, J. T., AND D. QIAN. Endotoxin-induced increase in Hypotonic solution increases the slowly activating potassium curliver<br />

mass and hepatocyte volume. Biochem. Soc. Trans. 22: 529– rent IsK expressed in Xenopus oocytes. Biochem. Biophys. Res.<br />

532, 1994. Commun. 184: 804–810, 1992.<br />

128. BROWN, A. D. Microbial water stress. Bacteriol. Rev. 40: 803– 152. BUSCH, A. E., S. WALDEGGER, T. HERZER, G. RABER, E. GUL-<br />

846, 1976. BINS, T. TAKUMI, K. MORIYOSHI, S. NAKANISHI, AND F. LANG.<br />

129. BROWN, A. D., AND J. SIMPSON. Water relations <strong>of</strong> sugar-tolerant Molecular basis <strong>of</strong> IsK protein regulation by oxidation or chelayeasts:<br />

the role <strong>of</strong> intracellular polyols. J. Gen. Microbiol. 72: 589– tion. J. Biol. Chem. 270: 3638–3641, 1995.<br />

591, 1972. 153. BUSCH, G. L., H. WIESINGER, E. GULBINS, H. F. WAGNER, B.<br />

130. BROWN, D. Membrane recycling and epithelial cell function. Am. HAMPRECHT, AND F. LANG. Effect <strong>of</strong> astroglial cell swelling on<br />

J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F1–F12, pH <strong>of</strong> acidic intracellular compartments. Biochim. Biophys. Acta<br />

1989.<br />

1285: 212–218, 1996.<br />

131. BROWN, G. C. Total cell protein concentration as an evolutionary 154. BUSCH, G. L., E. GÜNTHER, B. HEWIG, E. ZRENNER, AND F.<br />

constraint on the metabolic control distribution in cells. J. Theor.<br />

Biol. 153: 195–203, 1991.<br />

LANG. Effect <strong>of</strong> cell swelling, NH4Cl and glutamate on acridine<br />

orange fluorescence in retinal ganglion cells. <strong>Cell</strong>. Physiol. Bio-<br />

132. BRUCK, R., P. HADDAD, J. GRAF, AND J. L. BOYER. <strong>Regulatory</strong> chem. 6: 185–194, 1996.<br />

volume decrease stimulates bile flow, bile acid excretion, and 155. BUSCH, G. L., H.-J. LANG, AND F. LANG. Studies on the mecha-<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 277<br />

nism <strong>of</strong> swelling-induced lysosomal alkalinization in vascular cardiac myocytes during chemical hypoxia: a multiparameter digi-<br />

smooth muscle cells. Pflügers Arch. 431: 690–696, 1996.<br />

tized confocal microscopic study. Biophys. J. 66: 942–952, 1994.<br />

156. BUSCH, G. L., R. SCHREIBER, P. C. DARTSCH, H. VÖLKL, S. VOM 175. CHAMBERLIN, M. E., AND K. STRANGE. Anisosmotic cell volume<br />

DAHL, D. HÄUSSINGER, AND F. LANG. Involvement <strong>of</strong> microtu- regulation: a comparative view. Am. J. Physiol. 257 (<strong>Cell</strong> Physiol.<br />

bules in the link between cell volume and pH <strong>of</strong> acidic cellular 26): C159–C173, 1989.<br />

compartments in rat and human hepatocytes. Proc. Natl. Acad. 176. CHAN, H. C., W. O. FU, Y. W. CHUNG, S. J. HUANG, P. S. F.<br />

Sci. USA 91: 9165–9169, 1994.<br />

CHAN, AND P. Y. D. WONG. Swelling-induced anion and cation<br />

157. BUSCH, G. L., H. VÖLKL, M. HALLER, D. SIEMEN, J. MOEST, F. conductances in human epididymal cells. J. Physiol. (Lond.) 478:<br />

KOCH, AND F. LANG. Vesicular pH is sensitive to changes in cell 449–460, 1994.<br />

volume. <strong>Cell</strong>. Physiol. Biochem. 7: 25–34, 1997.<br />

177. CHAN, H. C., AND D. J. NELSON. Chloride-dependent cation con-<br />

158. BUYSE, G., C. DE GREEF, L. RAEYMAEKERS, G. DROOGMANS, ductance activated during cellular shrinkage. Science 257: 669–<br />

B. NILIUS, AND J. EGERMONT. The ubiquitously expressed pICln 671, 1992.<br />

protein forms homomeric complexes in vitro. Biochem. Biophys. 178. CHAN, P. H., AND R. A. FISHMAN. Brain edema: induction in corti-<br />

Res. Commun. 218: 822–827, 1996.<br />

cal slices by polyunsaturated fatty acids. Science 201: 358–360,<br />

159. CABADO, A. G., M. R. VIEYTES, AND L. M. BOTANA. Effect <strong>of</strong> ion 1978.<br />

composition on the changes in membrane potential induced with 179. CHASE, H. S., JR., AND Q. AL-AWQATI. Regulation <strong>of</strong> the sodium<br />

several stimuli in rat mast cells. J. <strong>Cell</strong>. Physiol. 158: 309–316,<br />

1994.<br />

160. CAHALAN, M. D., G. R. EHRING, Y. V. OSIPCHUK, AND P. E.<br />

ROSS. <strong>Volume</strong>-sensitive Cl<br />

permeability <strong>of</strong> the luminal border <strong>of</strong> toad bladder by intracellular<br />

sodium and calcium: role <strong>of</strong> sodium-calcium exchange in the basolateral<br />

membrane. J. Gen. Physiol. 77: 693–712, 1981.<br />

180. CHAUNCEY, B., M. V. LEITE, AND L. GOLDSTEIN. Renal sorbitol<br />

0 channels in lymphocytes and multidrug-resistant<br />

cell lines. Jpn. J. Physiol. 44, Suppl. 2: S25–S30,<br />

1994.<br />

161. CALA, P. M. <strong>Volume</strong> regulation by Amphiuma red blood cells:<br />

characteristics <strong>of</strong> volume-sensitive K/H and Na/H exchange. Mol.<br />

Physiol. 8: 199–214, 1985.<br />

162. CALABRESSE, C., L. VENTURINI, G. RONCO, P. VILLA, C. CHO-<br />

MIENNE, AND D. BELPOMME. Butyric acid and its monosaccharide<br />

ester induce apoptosis in the HL-60 cell line. Biochem. Biophys.<br />

Res. Commun. 195: 31–38, 1993.<br />

163. CANESSA, M., M. E. FABRY, N. BLUMENFELD, AND R. L. NAGEL.<br />

<strong>Volume</strong>-stimulated, Cl<br />

accumulation and associated enzyme activities in diabetes. En-<br />

zyme 39: 231–234, 1988.<br />

181. CHEN, J. G., AND S. A. KEMPSON. Osmoregulation <strong>of</strong> neutral<br />

amino acid transport. Proc. Soc. Exp. Biol. Med. 210: 1–6, 1995.<br />

182. CHEN, J. G., L. R. KLUS, D. K. STEENBERGEN, AND S. A. KEMP-<br />

SON. Hypertonic upregulation <strong>of</strong> amino acid transport system A<br />

in vascular smooth muscle cells. Am. J. Physiol. 267 (<strong>Cell</strong> Physiol.<br />

36): C529–C536, 1994.<br />

183. CHEN, S., R. INOUE, H. INOMATA, AND Y. ITO. Role <strong>of</strong> cyclic<br />

AMP-induced Cl conductance in aqueous humour formation by<br />

the dog ciliary epithelium. Br. J. Pharmacol. 112: 1137–1145, 1994.<br />

0 dependent K / efflux is highly expressed<br />

in young human red cells containing normal hemoglobin or HbS.<br />

J. Membr. Biol. 97: 97–105, 1987.<br />

164. CANESSA, M., M. E. FABRY, AND R. L. NAGEL. Deoxygenation<br />

inhibits the volume-stimulated, Cl<br />

184. CHESNEY, R. W. Taurine: its biological role and clinical implica-<br />

tions. Adv. Pediatr. 32: 1–42, 1985.<br />

185. CHOI, D. W. Glutamate neurotoxicity and diseases <strong>of</strong> the nervous<br />

system. Neuron 1: 623–634, 1988.<br />

0 dependent K / efflux in SS and<br />

young AA cells: a cytosolic Mg<br />

186. CHOI, D. W., AND S. M. ROTHMAN. The role <strong>of</strong> glutamate neuro-<br />

2/ modulation. Blood 70: 1861–<br />

1866, 1987.<br />

165. CANESSA, M., M. E. FABRY, S. M. SUZUKA, K. MORGAN, AND<br />

toxicity in hypoxic ischemic neuronal death. Annu. Rev. Neurosci.<br />

13: 171–182, 1990.<br />

187. CHRISTENSEN, O. Mediation <strong>of</strong> cell volume regulation by Ca 2/<br />

R. L. NAGEL. Na / /H / exchange is increased in sickle cell anemia<br />

and young normal red cells. J. Membr. Biol. 116: 107–115, 1990.<br />

166. CANTIELLO, H. F., A. G. PRAT, J. V. BONVENTRE, C. C. CUN-<br />

NINGHAM, J. H. HARTWIG, AND D. A. AUSIELLO. Actin-binding<br />

influx through stretch-activated channels. Nature 330: 66–68,<br />

1987.<br />

188. CHRISTENSEN, O., AND E. K. HOFFMANN. <strong>Cell</strong> swelling activates<br />

K / - and Cl 0 protein contributes to cell volume regulatory ion channel activa-<br />

tion in melanoma cells. J. Biol. Chem. 268: 4596–4599, 1993.<br />

167. CAPLAN, M. J., J. L. STOW, A. P. NEWMAN, J. MADRI, H. C. AN-<br />

DERSON, M. G. FARQUHAR, G. E. PALADE, AND J. D.<br />

-channels as well as nonselective stretch-activated<br />

cation channels in Ehrlich ascites tumor cells. J. Membr. Biol.<br />

129: 13–36, 1992.<br />

189. CHURCH, J. G., G. B. MILLS, AND R. N. BUICK. Activation <strong>of</strong> the<br />

Na / /H / JAMIESON. Dependence on pH <strong>of</strong> polarized sorting <strong>of</strong> secreted<br />

proteins. Nature 329: 632–635, 1987.<br />

168. CARPENTER, D. O., M. FEJTL, S. AYRAPETYAN, D. H. SZAROW-<br />

SKI, AND J. N. TURNER. Dynamic changes in neuronal volume<br />

resulting from osmotic and sodium transport manipulations. Acta<br />

Biol. Hung. 43: 39–48, 1992.<br />

antiport is not required for epidermal growth factor-dependent<br />

gene expression, growth inhibition or proliferation in<br />

human breast cancer cells. Biochem. J. 257: 151–157, 1989.<br />

190. CHURCHWELL, K. B., S. H. WRIGHT, F. EMMA, P. A. ROSEN-<br />

BERG, AND K. STRANGE. NMDA receptor activation inhibits neu-<br />

ronal volume regulation after swelling induced by veratridine stimulated<br />

Na / influx in rat cortical cultures. J. Neurosci. 16: 7447–<br />

169. CARPENTER, J. F., AND J. H. CROWE. Modes <strong>of</strong> stabilization <strong>of</strong> 7457, 1996.<br />

a protein by organic solutes during desiccation. Cryobiology 25: 191. CIVAN, M. M., M. COCA-PRADOS, AND K. PETERSON-YANT-<br />

459–470, 1988. ORNO. Pathways signaling the regulatory volume decrease <strong>of</strong> cul-<br />

170. CARROLL, T. P., I. MCINTOSH, M. E. EGAN, P. L. ZEITLIN, G. R. tured nonpigmented ciliary epithelial cells. Invest. Ophthalmol.<br />

CUTTING, AND W. B. GUGGINO. Transmembrane mutations alter Visual Sci. 35: 2876–2886, 1994.<br />

the channel characteristics <strong>of</strong> the cystic fibrosis transmembrane 192. CLARK, M. E. Non-Donnan effects <strong>of</strong> organic osmolytes in cell<br />

conductance regulator expressed in Xenopus oocytes. <strong>Cell</strong>. Phys- volume changes. In: Current Topics in Membranes and Transiol.<br />

Biochem. 4: 10–18, 1994. port, edited by A. Kleinzeller. New York: Academic, 1987, vol. 30,<br />

171. CARROLL, T. P., E. M. SCHWIEBERT, AND W. B. GUGGINO. p. 251–272.<br />

CFTR: structure and function. <strong>Cell</strong>. Physiol. Biochem. 3: 388–399, 193. CLARK, M. E., J. A. M. HINKE, AND M. E. TODD. Studies on water<br />

1993. in barnacle muscle fibres. II. Role <strong>of</strong> ions and organic solutes in<br />

172. CARTER, L. C., AND P. A. NICKERSON. Effect <strong>of</strong> nitrendipine, a swelling <strong>of</strong> chemically-skinned fibres. J. Exp. Biol. 90: 43–63,<br />

calcium antagonist, on cell volume in rat salivary glands after 1981.<br />

isoproterenol stimulation. Histol. Histopathol. 6: 339–343, 1991. 194. CLEGG, J. S. Properties and metabolism <strong>of</strong> the aqueous cytoplasm<br />

173. CEMERIKIC, D., AND H. SACKIN. Substrate activation <strong>of</strong> mechano- and its boundaries. Am. J. Physiol. 246 (<strong>Regulatory</strong> Integrative<br />

sensitive, whole cell currents in renal proximal tubule. Am. J. Comp. Physiol. 15): R133–R151, 1984.<br />

Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F697–F714, 195. CLEGG, J. S. L-929 cells under hyperosmotic conditions: water,<br />

1993. Na / , and K / . <strong>Cell</strong> Biophys. 13: 119–132, 1988.<br />

174. CHACON, E., J. M. REECE, A. L. NIEMINEN, G. ZAHREBELSKI, 196. CLEGG, J. S., S. A. JACKSON, AND K. FENDL. Effects <strong>of</strong> reduced<br />

B. HERMAN, AND J. J. LEMASTERS. Distribution <strong>of</strong> electrical po- cell volume and water content on glycolysis in L-929 cells. J. <strong>Cell</strong>.<br />

tential, pH, free Ca Physiol. 142: 386–391, 1990.<br />

2/ , and volume inside cultured adult rabbit<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


278<br />

LANG ET AL. <strong>Volume</strong> 78<br />

197. CLEMENTS, R. S., S. A. BLUMENTHAL, A. D. MORRISON, AND K. HORIUCHI. The mechanism <strong>of</strong> chlorpromazine-induced red<br />

A. I. WINEGRAD. Increased cerebrospinal fluid pressure during blood cell swelling. Gen. Pharmacol. 25: 205–210, 1994.<br />

treatment <strong>of</strong> diabetic ketosis. Lancet 2: 671–675, 1971.<br />

220. CORNET, M., E. DELPIRE, AND R. GILLES. Relations between<br />

198. CLEMO, H. F., AND C. M. BAUMGARTEN. Atrial natriuretic factor cell volume control, micr<strong>of</strong>ilaments and microtubule networks in<br />

decreases cell volume <strong>of</strong> rabbit atrial and ventricular myocytes. T2 and PC12 cultured cells. J. Physiol. (Paris) 83: 43–49, 1988.<br />

Am. J. Physiol. 260 (<strong>Cell</strong> Physiol. 29): C681–C690, 1991.<br />

221. CORNET, M., E. DELPIRE, AND R. GILLES. Study <strong>of</strong> micr<strong>of</strong>ila-<br />

199. CLEMO, H. F., AND C. M. BAUMGARTEN. cGMP and atrial natri- ments network during volume regulation process <strong>of</strong> cultured PC12<br />

uretic factor regulate cell volume <strong>of</strong> rabbit atrial myocytes. Circ. cells. Pflügers Arch. 410: 223–225, 1987.<br />

Res. 77: 741–749, 1995.<br />

222. CORNET, M., Y. ISOBE, AND L. F. LEMANSKI. Effects <strong>of</strong> anisos-<br />

200. CLEMO, H. F., AND C. M. BAUMGARTEN. Nitroprusside shrinks motic conditions on the cytoskeletal architecture <strong>of</strong> cultured PC12<br />

cardiac cell volume by inhibiting Na cells. J. Morphol. 222: 269–286, 1994.<br />

/ /K / /2Cl 0 cotransport and<br />

improves cardiac compliance (Abstract). Circulation 84: 168, 223. CORNET, M., I. H. LAMBERT, AND E. K. HOFFMANN. Relation<br />

1991.<br />

between cytoskeleton, hypo-osmotic treatment and volume regu-<br />

201. CLEMO, H. F., J. J. FEHER, AND C. M. BAUMGARTEN. Modula- lation in Ehrlich ascites tumor cells. J. Membr. Biol. 131: 55–66,<br />

tion <strong>of</strong> rabbit ventricular cell volume and Na 1993.<br />

/ /K / /2Cl 0 cotransport<br />

by cGMP and atrial natriuretic factor. J. Gen. Physiol. 100: 89– 224. CORNET, M., J. UBL, AND H. A. KOLB. Cytoskeleton and ion move-<br />

114, 1992.<br />

202. COATES, T. D., R. G. WATTS, R. HARTMAN, AND T. H. HOWARD.<br />

Relationship <strong>of</strong> F-actin distribution to development <strong>of</strong> polar shape<br />

in human polymorphonuclear neutrophils. J. <strong>Cell</strong> Biol. 117: 765–<br />

774, 1992.<br />

203. COELHO-SAMPAIO, T., S. T. FERREIRA, E. J. CASTRO, AND A.<br />

VIEYRA. Betaine counteracts urea-induced conformational<br />

changes and uncoupling <strong>of</strong> the human erythrocyte Ca<br />

ments during volume regulation in cultured PC12 cells. J. Membr.<br />

Biol. 133: 161–170, 1993.<br />

225. COSTA, C. J., S. K. PIERCE, AND M. K. WARREN. The intracellular<br />

mechanism <strong>of</strong> salinity tolerance in polychaetes: volume regulation<br />

by isolated Glycera dibranchiata red coelomocytes. Biol. Bull.<br />

159: 626–638, 1980.<br />

226. COSTA, P. M., P. L. FERNANDES, H. G. FERREIRA, K. T. FER-<br />

REIRA, AND F. GIRALDEZ. Effects <strong>of</strong> cell volume changes on<br />

2/ pump.<br />

Eur. J. Biochem. 221: 1103–1110, 1994.<br />

204. COHEN, B. J., AND C. LECHENE. Alanine stimulation <strong>of</strong> passive<br />

membrane ionic permeabilities and sodium transport in frog skin<br />

(Rana ridibunda). J. Physiol. (Lond.) 393: 1–17, 1987.<br />

227. COSTA-CASNELLIE, M. R., G. B. SEGEL, E. J. CRAGOE, JR., AND<br />

potassium efflux in hepatocytes is independent <strong>of</strong> Na / -K / pump<br />

M. A. LICHTMAN. Characterization <strong>of</strong> the Na / /H / exchanger dur-<br />

activity. Am. J. Physiol. 258 (<strong>Cell</strong> Physiol. 27): C24–C29, 1990.<br />

205. COHEN, D. M., W. W. CHIN, AND S. R. GULLANS. Hyperosmotic<br />

urea increases transcritption and synthesis <strong>of</strong> Egr-1 in murine<br />

inner medullary collecting duct (mIMCD3) cells. J. Biol. Chem.<br />

ing maturation <strong>of</strong> HL-60 cells induced by dimethyl sulfoxide. J.<br />

Biol. Chem. 262: 9093–9097, 1987.<br />

228. COSTA-CASNELLIE, M. R., G. B. SEGEL, AND M. A. LICHTMAN.<br />

The Na / /H / 269: 25865–25870, 1994.<br />

206. COHEN, D. M., AND S. R. GULLANS. Urea induces Egr-1 and c-fos<br />

expression in renal epithelial cells. Am. J. Physiol. 264 (Renal<br />

exchanger in immature and mature granulocytic HL-<br />

60 cells. J. Biol. Chem. 263: 11851–11855, 1988.<br />

229. COTTON, C. U., AND L. REUSS. Effects <strong>of</strong> changes in mucosal<br />

solution Cl 0 or K / Fluid Electrolyte Physiol. 33): F593–600, 1993.<br />

207. COHEN, G. M., X. M. SUN, R. T. SNOWDEN, D. DINSDALE, AND<br />

D. N. SKILLETER. Key morphological features <strong>of</strong> apoptosis may<br />

occur in the absence <strong>of</strong> internucleosomal DNA fragmentation.<br />

Biochem. J. 286: 331–334, 1992.<br />

208. COHEN, D. M., J. C. WASSERMAN, AND S. R. GULLANS. Immediate<br />

early gene and HSP70 expression in hyperosmotic stress in<br />

MDCK cells. Am. J. Physiol. 261 (<strong>Cell</strong> Physiol. 30): C594–C601,<br />

1991.<br />

209. COLCLASURE, G. C., AND J. C. PARKER. Cytosolic protein concentration<br />

is the primary volume signal in dog red cells. J. Gen.<br />

Physiol. 98: 881–892, 1991.<br />

210. COLCLASURE, G. C., AND J. C. PARKER. Cytosolic protein concentration<br />

is the primary volume signal for swelling-induced [K-<br />

Cl] cotransport in dog red cells. J. Gen. Physiol. 100: 1–10, 1992.<br />

211. COLLINS, K. D., AND M. W. WASHABAUGH. The H<strong>of</strong>meister effect<br />

and the behaviour <strong>of</strong> water at interfaces. Q. Rev. Biophys. 18:<br />

323–422, 1985.<br />

212. COLOMBE, B. W., AND R. I. MACEY. Effects <strong>of</strong> calcium on potassium<br />

and water transport in human erythrocyte ghosts. Biochim.<br />

Biophys. Acta 363: 226–239, 1974.<br />

213. COMBES, D., W. N. YE, A. ZWICK, AND P. MONSAN. Effect <strong>of</strong><br />

salts on enzyme stability. Ann. NY Acad. Sci. 542: 7–10, 1988.<br />

214. CONNOLLY, D. L., C. M. SHANAHAN, AND P. L. WEISSBERG. Water<br />

channels in health and disease. Lancet 347: 210–212, 1996.<br />

215. COOPER, J. A. The role <strong>of</strong> actin polymerization in cell motility.<br />

Annu. Rev. Physiol. 53: 585–605, 1991.<br />

216. CORASANTI, J. G., D. GLEESON, AND J. L. BOYER. Effects <strong>of</strong><br />

osmotic stresses on isolated rat hepatocytes. I. Ionic mechanisms<br />

<strong>of</strong> cell volume regulation. Am. J. Physiol. 258 (Gastrointest. Liver<br />

Physiol. 21): G290–G298, 1990.<br />

217. CORDER, C. N., J. G. COLLINS, T. S. BRANNAN, AND J. SHARMA.<br />

Aldose reductase and sorbitol dehydrogenase distribution in rat<br />

kidney. J. Histochem. Cytochem. 25: 1–8, 1977.<br />

concentration on cell water volume <strong>of</strong> Necturus<br />

gallbladder epithelium. J. Gen. Physiol. 97: 667–686, 1991.<br />

230. COWLEY, B. D., J. D. FERRARIS, D. CARPER, AND M. B. BURG.<br />

In vivo osmoregulation <strong>of</strong> aldose reductase mRNA, protein, and<br />

sorbitol in renal medulla. Am. J. Physiol. 258 (Renal Fluid Electrolyte<br />

Physiol. 27): F154–F161, 1990.<br />

231. CRICHTON, E. G., B. T. HINTON, T. L. PALLONE, AND R. H. HAM-<br />

MERSTEDT. Hyperosmolality and sperm storage in hibernating<br />

bats: prolongation <strong>of</strong> sperm life by dehydration. Am. J. Physiol.<br />

267 (<strong>Regulatory</strong> Integrative Comp. Physiol. 36): R1363–R1370,<br />

1994.<br />

232. CROWE, J. H., F. A. HOEKSTRA, AND L. M. CROWE. Anhydrobiosis.<br />

Annu. Rev. Physiol. 54: 579–599, 1992.<br />

233. CROWE, W. E., J. ALTAMIRANO, L. HUERTO, AND F. J. ALVAREZ-<br />

LEEFMANS. <strong>Volume</strong> changes in single N1E-115 neuroblastoma<br />

cells measured with a fluorescent probe. Neuroscience 69: 283–<br />

296, 1995.<br />

234. CROWE, W. E., J. EHRENFELD, E. BROCHIERO, AND N. K.<br />

WILLS. Apical membrane sodium and chloride entry during osmotic<br />

swelling <strong>of</strong> renal (A6) epithelial cells. J. Membr. Biol. 144:<br />

81–91, 1995.<br />

235. CSERR, H. F., M. DE PASQUALE, C. NICHOLSON, C. S. PATLAK,<br />

K. D. PETTIGREW, AND M. E. RICE. Extracellular volume de-<br />

creases while cell volume is maintained by ion uptake in rat brain<br />

during acute hypernatremia. J. Physiol. (Lond.) 442: 277–295,<br />

1991.<br />

236. CSONKA, L. N., AND A. D. HANSON. Prokaryotic osmoregulation:<br />

genetics and physiology. Annu. Rev. Microbiol. 45: 569–606, 1991.<br />

237. CUNNINGHAM, C. C., T. P. STOSSEL, AND D. J. KWIATKOWSKI.<br />

Enhanced motility in NIH 3T3 fibroblasts that overexpress gel-<br />

solin. Science 251: 1233–1236, 1991.<br />

238. DALL’ASTA, V., P. A. ROSSI, O. BUSSOLATI, AND G. C. GAZZOLA.<br />

<strong>Regulatory</strong> volume decrease <strong>of</strong> cultured human fibroblasts involves<br />

changes in intracellular amino-acid pool. Biochim. Bio-<br />

phys. Acta 1220: 139–145, 1994.<br />

218. CORDOBA, J., J. GOTTSTEIN, AND A. T. BLEI. Glutamine, myo- 239. DALL’ASTA, V., P. A. ROSSI, O. BUSSOLATI, AND G. C. GAZZOLA.<br />

inositol, and organic brain osmolytes after portacaval anastomosis Response <strong>of</strong> human fibroblasts to hypertonic stress. <strong>Cell</strong> shrinkage<br />

in the rat: implications for ammonia induced brain edema. Hepa- is counteracted by an enhanced active transport <strong>of</strong> neutral amino<br />

tology 24: 919–923, 1996. acids. J. Biol. Chem. 269: 10485–10491, 1994.<br />

219. CORNELIUS, A. S., M. P. REILLY, M. SUZUKI, T. ASAKURA, AND 240. DANKER, T., B. GASSNER, H. OBERLEITHNER, AND A. SCHWAB.<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 279<br />

Extracellular detection <strong>of</strong> K / release during migration <strong>of</strong> trans- 262. DELLIPIZZI, A. M., J. C. MCGIFF, AND B. ESCALANTE. Cyt<strong>of</strong>ormed<br />

Madin-Darby canine kidney cells. Pflügers Arch. 433: 71– chrome P-450 inhibitors attenuate the hypotonic shock-induced<br />

76, 1996. increases in K / efflux in LLC-PK 1 cells. Pharmacology 50: 348–<br />

241. DARTSCH, P. C., H. A. KOLB, M. BECKMANN, AND F. LANG. Mor- 356, 1995.<br />

phological alterations and cytoskeletal reorganization in opossum 263. DELPIRE, E., M. CORNET, AND R. GILLES. <strong>Volume</strong> regulation in<br />

kidney (OK) cells during osmotic swelling and volume regulation. rat pheochromocytoma cultured cells submitted to hyposmotic<br />

Histochemistry 102: 69–75, 1994. conditions. Arch. Int. Physiol. Biochim. 99: 71–76, 1991.<br />

242. DARTSCH, P. C., M. RITTER, M. GSCHWENTNER, H.-J. LANG, 264. DELPIRE, E., AND S. R. GULLANS. <strong>Cell</strong> volume and K / transport<br />

AND F. LANG. Effects <strong>of</strong> calcium channel blockers on NIH 3T3 during differentiation <strong>of</strong> mouse erythroleukemia cells. Am. J.<br />

fibroblasts expressing the Ha-ras oncogene. Eur. J. <strong>Cell</strong> Biol. 67: Physiol. 266 (<strong>Cell</strong> Physiol. 35): C515–C523, 1994.<br />

372–378, 1995. 265. DELPIRE, E., M. J. RAUCHMANN, D. R. BEIER, S. C. HEBERT,<br />

243. DARTSCH, P. C., M. RITTER, D. HÄUSSINGER, AND F. LANG. AND S. R. GULLANS. Molecular cloning and chromosome localiza-<br />

Cytoskeletal reorganization in NIH 3T3 fibroblasts expressing the tion <strong>of</strong> a putative basolateral Na / -K / -2Cl 0 cotransporter from<br />

ras oncogene. Eur. J. <strong>Cell</strong> Biol. 63: 316–325, 1994. mouse inner medullary collecting duct (mIMCD-3) cells. J. Biol.<br />

244. DASCALU, A., Z. NEVO, AND R. KORENSTEIN. Hyperosmotic acti- Chem. 269: 25677–25683, 1994.<br />

vation <strong>of</strong> the Na / -H / exchanger in a rat bone cell line: temperature 266. DEMAUREX, N., AND S. GRINSTEIN. Na / /H / antiport: modulation<br />

dependence and activation pathways. J. Physiol. (Lond.) 456: by ATP and role in cell volume regulation. J. Exp. Biol. 196: 389–<br />

503–518, 1992. 404, 1994.<br />

245. DASGUPTA, S., T. C. HOHMAN, AND D. CARPER. Hypertonic 267. DE MEIS, L., AND G. INESI. Effects <strong>of</strong> organic solvents, methylstress<br />

induces alpha B-crystallin expression. Exp. Eye Res. 54: amines, and urea on the affinity for Pi <strong>of</strong> the Ca 2/ -ATPase <strong>of</strong><br />

461–470, 1992. sarcoplasmic reticulum. J. Biol. Chem. 263: 157–161, 1988.<br />

246. DAUKAS, G., AND S. H. ZIGMOND. Inhibition <strong>of</strong> receptor-mediated 269. DEMERDASH, T. M., N. SEYREK, M. SMOGORZEWSKI, W. MARbut<br />

not fluid-phase endocytosis in polymorphonuclear leukocytes. CINKOWSKI, S. NASSERMOADELLI, AND S. G. MASSRY. Path-<br />

J. <strong>Cell</strong> Biol. 101: 1673–1679, 1985. ways through which glucose induces a rise in [Ca 2/ ] i <strong>of</strong> polymor-<br />

247. DAUSCH, R., AND K. R. SPRING. Regulation <strong>of</strong> NaCl entry into phonuclear leukocytes <strong>of</strong> rats. Kidney Int. 50: 2032–2040, 1996.<br />

Necturus gallbladder epithelium by protein kinase C. Am. J. Physiol.<br />

266 (<strong>Cell</strong> Physiol. 35): C531–C535, 1994.<br />

248. DAUTRY-VARSAT, A., A. CIECHANOVER, AND H. F. LODISH. pH<br />

and the recycling <strong>of</strong> transferrin during receptor-mediated endocy-<br />

tosis. Proc. Natl. Acad. Sci. USA 80: 2258–2262, 1983.<br />

270. DENKER, B. M., B. L. SMITH, F. P. KUHAJDA, AND P. AGRE. Iden-<br />

tification, purification, and partial characterization <strong>of</strong> a novel Mr 28,000 integral membrane protein from erythrocytes and renal<br />

tubules. J. Biol. Chem. 263: 15634–15642, 1988.<br />

271. DENOLLE, T., AND P. F. PLOUIN. The Na / /H / 249. DAVIS, B. A., E. M. HOGAN, AND W. F. BORON. Role <strong>of</strong> G proteins<br />

in stimulation <strong>of</strong> Na-H exchange by cell shrinkage. Am. J. Physiol.<br />

262 (<strong>Cell</strong> Physiol. 31): C533–C536, 1992.<br />

250. DAVIS, B. A., E. M. HOGAN, AND W. F. BORON. Shrinkage-induced<br />

activation <strong>of</strong> Na<br />

antiport: a target<br />

for new antihypertensive agents. Therapie 44: 215–217, 1989.<br />

272. DERMIETZEL, R., T.-K. HWANG, R. BUETTNER, A. HOFER, E.<br />

DOTZLER, M. KREMER, R. DEUTZMANN, F. P. THINNES, G. I.<br />

FISHMAN, D. C. SPRAY, AND D. SIEMEN. Cloning and in situ<br />

/ /H / exchange in barnacle muscle fibers.<br />

Am. J. Physiol. 266 (<strong>Cell</strong> Physiol. 35): C1744–1753, 1994.<br />

251. DAVIS, C. W., AND A. L. FINN. Effects <strong>of</strong> mucosal sodium removal<br />

on cell volume in Necturus gallbladder epithelium. Am. J. Physiol.<br />

249 (<strong>Cell</strong> Physiol. 18): C304–C312, 1985.<br />

252. DAVIS, C. W., AND A. L. FINN. Interactions <strong>of</strong> sodium transport,<br />

localization <strong>of</strong> a brain derived porin that constitutes a large conductance<br />

anion channel in astrocytic plasma membranes. Proc.<br />

Natl. Acad. Sci. USA 91: 499–503, 1994.<br />

272a.DE SMET, P., J. SIMAELS, AND W. VAN DRIESSCHE. <strong>Regulatory</strong><br />

volume decrease in a renal distal tubular cell line (A6). I. Role <strong>of</strong><br />

K / and Cl 0 cell volume, and calcium in frog urinary bladder. J. Gen. Physiol.<br />

89: 687–702, 1987.<br />

. Pflügers Arch. 430: 936–944, 1995.<br />

273. DEUTSCH, C., AND L. Q. CHEN. Heterologous expression <strong>of</strong> specific<br />

K / 253. DAY, M. L., S. J. PICKERING, M. H. JOHNSON, AND D. I. COOK.<br />

<strong>Cell</strong>-cycle control <strong>of</strong> a large-conductance K<br />

channels in T lymphocytes: functional consequences for<br />

volume regulation. Proc. Natl. Acad. Sci. USA 90: 10036–10040,<br />

/ channel in mouse<br />

early embryos. Nature 365: 560–562, 1993.<br />

254. DE CAMILLI, P., AND R. JAHN. Pathways to regulated exocytosis<br />

in neurons. Annu. Rev. Physiol. 52: 625–645, 1990.<br />

255. DECKERS, C. L. P., A. B. LYONS, K. SAMUEL, A. SANDERSON,<br />

AND A. H. MADDY. Alternative pathways <strong>of</strong> apoptosis induced by<br />

methylprednisolone and valinomycin analyzed by flow cytometry.<br />

Exp. <strong>Cell</strong> Res. 208: 362–370, 1993.<br />

256. DE GREEF, C., J. SEHRER, F. VIANA, K. VAN ACKER, J. EGGER-<br />

MONT, L. MERTENS, L. RAEYMAEKERS, G. DROOGMANS, AND<br />

B. NILIUS. <strong>Volume</strong>-activated chloride currents are not correlated<br />

with P-glycoprotein expression. Biochem. J. 307: 713–718, 1995.<br />

257. DE GREEF, C., S. VAN DER HEYDEN, F. VIANA, J. EGGERMONT,<br />

1993.<br />

274. DEVIN A., B. GUERIN, AND M. RIGOULET. Dependence <strong>of</strong> flux<br />

size and efficiency <strong>of</strong> oxidative phosphorylation on external osmo-<br />

larity in isolated rat liver: role <strong>of</strong> adenine nucleotide carrier. Biochim.<br />

Biophys. Acta 127: 13–20, 1996.<br />

275. DEW, L. A., R. G. OWEN, JR., AND M. J. MULROY. Changes in size<br />

and shape <strong>of</strong> auditory hair cells in vivo during noise induced<br />

temporary threshold shift. Hear. Res. 66: 99–107, 1993.<br />

276. DIENER, M. Segmental differences along the crypt axis in the<br />

response <strong>of</strong> cell volume to secretagogues or hypotonic medium<br />

in the rat colon. Pflügers Arch. 426: 462–464, 1994.<br />

277. DIENER, M., AND V. GARTMANN. Effect <strong>of</strong> somatostatin on cell<br />

volume, Cl 0 currents, and transepithelial Cl 0 E. A. DE BRUIJN, L. RAEYMAEKERS, G. DROOGMANS, AND B.<br />

NILIUS. Lack <strong>of</strong> correlation between mdr-1 expression and volume<br />

activation <strong>of</strong> chloride currents in rat colon cancer cells. Pflügers<br />

Arch. 430: 296–298, 1995.<br />

258. DELACUEVA, F. I. C., T. RIGAU, S. BONET, J. MIRO, M. BRIZ,<br />

AND M. B. J. E. RODRIGUEZGIL. Subjecting horse spermatozoa to<br />

hypoosmotic incubation: effects <strong>of</strong> oubain. Theriogenology 47:<br />

transport in rat distal<br />

colon. Am. J. Physiol. 266 (Gastrointest. Liver Physiol. 29):<br />

G1043–G1052, 1994.<br />

278. DIENER, M., C. HELMLE-KOLB, H. MURER, AND E. SCHARRER.<br />

Effect <strong>of</strong> short-chain fatty acids on cell volume and intracellular<br />

pH in rat distal colon. Pflügers Arch. 424: 216–223, 1993.<br />

279. DIENER, M., M. NOBLES, AND W. RUMMEL. Activation <strong>of</strong> basolat-<br />

eral Cl 0 765–784, 1997.<br />

259. DEL BIGIO, M. R., S. FEDOROFF, AND L. F. QUALTIERE. Morphology<br />

<strong>of</strong> astroglia in colony cultures following transient expo-<br />

channels in the rat colonic epithelium during regulatory<br />

volume decrease. Pflügers Arch. 421: 530–538, 1992.<br />

280. DIENER, M., A. PETER, AND E. SCHARRER. The role <strong>of</strong> volumesensitive<br />

Cl 0 sure to potassium ion, hyposmolarity and vasopressin. J. Neurocy-<br />

tol. 21: 7–18, 1992.<br />

260. DEL BUFALO, D., B. BUCCI, I. D’AGNANO, AND G. ZUPI. N-methchannels<br />

in the stimulation <strong>of</strong> chloride absorption<br />

by short-chain fatty acids in the rat colon. Acta Physiol. Scand.<br />

151: 385–394, 1994.<br />

ylformamide as a potential therapeutic approach in colon cancer.<br />

Dis. Colon Rectum 37, Suppl.: S133–S137, 1994.<br />

281. DIENER, M., AND E. SCHARRER. The leukotriene D4 receptor<br />

blocker, SK&F 104353, inhibits volume regulation in isolated<br />

261. DELLASEGA, M., AND J. J. GRANTHAM. Regulation <strong>of</strong> renal tu- crypts from the rat distal colon. Eur. J. Pharmacol. 238: 217–222,<br />

bule cell volume in hypotonic media. Am. J. Physiol. 224: 1288– 1993.<br />

1294, 1973. 282. DIENER, M., AND E. SCHARRER. The effect <strong>of</strong> short-chain fatty<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


280<br />

LANG ET AL. <strong>Volume</strong> 78<br />

acids on Cl 0 and K / conductance in rat colonic crypts. Pflügers in rat kidney, urine, blood and lens with sorbinil and galactose<br />

Arch. 426: 472–480, 1994.<br />

feeding. Kidney Int. 48: 344–353, 1995.<br />

283. DING, G., N. FRANKI, J. CONDEELIS, AND R. M. HAYS. Vasopres- 303. EDMANDS, S., AND P. H. YANCEY. Effects on rat renal osmolytes<br />

sin depolymerizes F-actin in toad bladder epithelial cells. Am. J. <strong>of</strong> extended treatment with an aldose reductase inhibitor. Comp.<br />

Physiol. 260 (<strong>Cell</strong> Physiol. 29): C9–C16, 1991.<br />

Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 103: 499–<br />

284. DINGLEY, A. J., N. J. KING, AND G. F. KING. An NMR investigation 502, 1992.<br />

<strong>of</strong> the changes in plasma membrane triglyceride and phospholipid 304. EDMONDS, B., A. J. GIBB, AND D. COLQUHOUN. <strong>Mechanisms</strong> <strong>of</strong><br />

precursors during the activation <strong>of</strong> T-lymphocytes. Biochemistry activation <strong>of</strong> muscle nicotinic acetylcholine receptors and the time<br />

31: 9098–9106, 1992.<br />

course <strong>of</strong> endplate currents. Annu. Rev. Physiol. 57: 469–493,<br />

285. DINGLEY, A. J., M. F. VEALE, N. J. KING, AND G. F. KING. Two- 1995.<br />

305. ELLIOT, S. J., AND W. P. SCHILLING. Oxidant stress alters Na /<br />

dimensional 1 H NMR studies <strong>of</strong> membrane changes during the<br />

pump and Na / -K / -Cl 0 activation <strong>of</strong> primary T lymphocytes. Immunomethods 4: 127–<br />

cotransporter activities in vascular endothe-<br />

138, 1994.<br />

lial cells. Am. J. Physiol. 263 (Heart Circ. Physiol. 32): H96–<br />

286. DONG, J. M., AND L. LIM. Selective up regulation <strong>of</strong> alpha 1 chi- H102, 1992.<br />

maerin mRNA in SK N SH neuroblastoma by K 306. ELWYN, D. H., C. W. BRYAN-BROWN, AND W. C. SHOEMAKER.<br />

/ induced depolarisation.<br />

Eur. J. Biochem. 236: 820–826, 1996.<br />

Nutritional aspects <strong>of</strong> body water dislocations in postoperative<br />

287. DOROSHENKO, P., AND E. NEHER. <strong>Volume</strong>-sensitive chloride<br />

conductance in bovine chromaffin cell membrane. J. Physiol.<br />

(Lond.) 449: 197–218, 1992.<br />

288. DORUP, I., AND T. CLAUSEN. Characterization <strong>of</strong> bumetanide sensitive<br />

Na<br />

and depleted patients. Ann. Surg. 182: 76–85, 1975.<br />

307. ENGSTRÖM, K. G., AND L. OHLSSON. Acute and long-term bipha-<br />

sic volume alterations in rat type-II somatotrophs during GH secretory<br />

stimulation. Biochim. Biophys. Acta 1135: 318–322, 1992.<br />

308. ENGSTRÖM, K. G., P.-E. SANDSTRÖM, AND J. SEHLIN. <strong>Volume</strong><br />

/ and K / transport in rat skeletal muscle. Acta Physiol.<br />

Scand. 158: 119–127, 1996.<br />

289. DOWNEY, G. P., S. GRINSTEIN, A. SUE-A-QUAN, B. CZABAN,<br />

AND C. K. CHAN. <strong>Volume</strong> regulation in leukocytes: requirement<br />

for an intact cytoskeleton. J. <strong>Cell</strong>. Physiol. 163: 96–104, 1995.<br />

289a.DREWS, G., G. ZEMPEL, P. KRIPPEIT-DREWS, S. BRITSCH, G. L.<br />

BUSCH, N. K. KABA, AND F. LANG. Ion channels involved in<br />

insulin release are activated by osmotic swelling <strong>of</strong> pancreatic b-<br />

cells. Biochim. Biophys. Acta. In press.<br />

290. DUBE, L., L. PARENT, AND R. SAUVE. Hypotonic shock activates<br />

a maxi K<br />

regulation in mouse pancreatic beta-cells is mediated by a furosemide-sensitive<br />

mechanism. Biochim. Biophys. Acta 1091: 145–<br />

150, 1991.<br />

309. EPSTEIN, W. Osmoregulation by potassium transport in Esche-<br />

richia coli. FEMS Microbiol. Rev. 39: 73–78, 1986.<br />

310. ERIKSSON, L. E. G., AND H. BEVING. Calcium- and lead-activated<br />

morphological changes in human erythrocytes: a spin label study<br />

<strong>of</strong> the cytoplasm. Arch. Biochem. Biophys. 303: 296–301, 1993.<br />

311. ERZURUM, S. C., M. L. KUS, C. BOHSE, E. L. ELSON, AND G. S.<br />

WORTHEN. Mechanical properties <strong>of</strong> HL60 cells: role <strong>of</strong> stimula-<br />

/ channel in primary cultured proximal tubule cells. Am.<br />

J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F348–F356,<br />

1990.<br />

291. DUHM, J., AND B. O. GÖBEL. Na<br />

tion and differentiation in retention in capillary sized pores. Am.<br />

J. Respir. <strong>Cell</strong>. Mol. Biol. 5: 230–241, 1991.<br />

312. FAFF-MICHALAK, L., A. REICHENBACH, D. DETTMER, K. KELL-<br />

/ -K / transport and volume <strong>of</strong> rat<br />

NER, AND J. ALBRECHT. K / -, hypoosmolarity-, and NH / erythrocytes under dietary K 4 -induced<br />

/ deficiency. Am. J. Physiol. 246 (<strong>Cell</strong><br />

taurine release from cultured rabbit Müller cells: role <strong>of</strong> Na / Physiol. 15): C20–C29, 1984.<br />

and<br />

Cl 0 292. DUMAN, J. G., D. W. WU, L. XU, D. TURSMAN, AND T. M. OLSEN.<br />

Adaptations <strong>of</strong> insects to subzero temperatures. Q. Rev. Biol. 66:<br />

387–410, 1991.<br />

293. DUNHAM, P. B. Effects <strong>of</strong> urea on K-Cl cotransport in LK sheep<br />

red blood cells: evidence for two signals <strong>of</strong> swelling. Am. J. Physiol.<br />

268 (<strong>Cell</strong> Physiol. 37): C1026–C1032, 1995.<br />

294. DUNHAM, P. B., F. JESSEN, AND E. K. HOFFMANN. Inhibition <strong>of</strong><br />

Na-K-Cl cotransport in Ehrlich ascites cells by antiserum against<br />

purified proteins <strong>of</strong> the cotransporter. Proc. Natl. Acad. Sci. USA<br />

ions and relation to cell volume changes. Glia 10: 114–120,<br />

1994.<br />

313. FALKE, L. C., AND S. MISLER. Activity <strong>of</strong> ion channels during<br />

volume regulation by clonal N1E115 neuroblastoma cells. Proc.<br />

Natl. Acad. Sci. USA 86: 3919–3923, 1989.<br />

314. FEIG, P. U., M. A. D’OCCHIO, AND J. W. BOYLAN. Lymphocyte<br />

membrane sodium-proton exchange in spontaneously hypertensive<br />

rats. Hypertension 9: 282–288, 1987.<br />

315. FELDMAN, G. M., F. N. ZIYADEH, J. W. MILLS, G. W. BOOZ, AND<br />

A. KLEINZELLER. Proprionate induces cell swelling and K / 87: 6828–6832, 1990.<br />

295. DUNHAM, P. B., J. KLIMCZAK, AND P. J. LOGUE. Swelling activation<br />

<strong>of</strong> K-Cl cotransport in LK sheep erythrocytes: a three state<br />

process. J. Gen. Physiol. 101: 733–766, 1993.<br />

accumulation<br />

in shark rectal gland. Am. J. Physiol. 257 (<strong>Cell</strong> Physiol.<br />

26): C377–C384, 1989.<br />

316. FELIPE, A., D. J. SNYDERS, K. K. DEAL, AND M. M. TAMKUN.<br />

Influence <strong>of</strong> cloned voltage-gated K / 296. DUNN, F. W., M. H. ROUX, F. FARHADIAN, K. SABRI, C. OSSART,<br />

channel expression on alanine<br />

transport, Rb / J. L. SAMUEL, L. RAPPAPORT, AND G. HAMON. HR 720, a novel<br />

angiotensin receptor antagonist inhibits the angiotensin II induced<br />

trophic effects, fibronectin release and fibronectin EIIIA(/) exuptake,<br />

and cell volume. Am. J. Physiol. 265<br />

(<strong>Cell</strong> Physiol. 34): C1230–C1238, 1993.<br />

317. FELTES, T. F., C. L. SEIDEL, D. K. DENNISON, S. AMICK, AND<br />

J. C. ALLEN. Relationship between functional Na / pression in rat aortic vascular smooth muscle cells in vitro. J.<br />

Pharmacol. Exp. Ther. 280: 447–453, 1997.<br />

297. EATON, W. A., AND J. HOFRICHTER. Hemoglobin S gelation and<br />

sickle cell disease. Blood 70: 1245–1266, 1987.<br />

298. EATON, W. A., J. HOFRICHTER, AND P. D. ROSS. Editorial: delay<br />

time <strong>of</strong> gelation: a possible determinant <strong>of</strong> clinical severity in<br />

sickle cell disease. Blood 47: 621–627, 1976.<br />

299. ECHEVARRIA, M., AND A. S. VERKMAN. Optical measurement <strong>of</strong><br />

osmotic water transport in cultured cells. Role <strong>of</strong> glucose transporters.<br />

J. Gen. Physiol. 99: 573–589, 1992.<br />

300. ECHEVARRIA, M., E. E. WINDHAGER, S. S. TATE, AND G.<br />

FRINDT. Cloning and expression <strong>of</strong> AQP3, a water channel from<br />

the medullary collecting duct <strong>of</strong> rat kidney. Proc. Natl. Acad. Sci.<br />

USA 91: 10997–11001, 1994.<br />

301. EDELMAN, J. L., G. SACHS, AND J. S. ADORANTE. Ion transport<br />

pumps and mi-<br />

togenesis in cultured coronary artery smooth muscle cells. Am.<br />

J. Physiol. 264 (<strong>Cell</strong> Physiol. 33): C169–C178, 1993.<br />

318. FERNANDES, P. R., AND M. J. DEWEY. Genetic control <strong>of</strong> erythro-<br />

cyte volume regulation: effect <strong>of</strong> a single gene (rol) on cation<br />

metabolism. Am. J. Physiol. 267 (<strong>Cell</strong> Physiol. 36): C211–C219,<br />

1994.<br />

319. FERRARIS, J. D., M. B. BURG, C. K. WILLIAMS, E. M. PETERS,<br />

AND A. GARCIA-PEREZ. Betaine transporter cDNA cloning and<br />

effect <strong>of</strong> osmolytes on its mRNA induction. Am. J. Physiol. 270<br />

(<strong>Cell</strong> Physiol. 39): C650–C654, 1996.<br />

320. FERRARIS, J. D., C. K. WILLIAMS, K. Y. JUNG, J. J. BEDFORD,<br />

M. B. BURG, AND A. GARCIA-PEREZ. ORE, a eukaryotic minimal<br />

essential osmotic response element. The aldose reductase gene<br />

in hyperosmotic stress. J. Biol. Chem. 271: 18318–18321, 1996.<br />

321. FERRARIS, J. D., C. K. WILLIAMS, B. M. MARTIN, M. B. BURG,<br />

asymmetry and functional coupling in bovine pigmented and non- AND A. GARCIA-PEREZ. Cloning, genomic organization, and ospigmented<br />

ciliary epithelial cells. Am. J. Physiol. 266 (<strong>Cell</strong> Phys- motic response <strong>of</strong> the aldose reductase gene. Proc. Natl. Acad.<br />

iol. 35): C1210–C1221, 1994. Sci. USA 91: 10742–10746, 1994.<br />

302. EDMANDS, S. D., K. S. HUGHS, S. Y. LEE, S. D. MEYER, E. SAARI, 322. FERRER-MARTINEZ, A., F. J. CASADO, A. FELIPE, AND M. PAS-<br />

TORANGLADA. Regulation <strong>of</strong> Na / ,K / ATPase and the Na / /K / AND P. H. YANCEY. Time-dependent aspects <strong>of</strong> osmolyte changes<br />

/Cl<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 281<br />

cotransporter in the renal epithelial cell line NBL 1 under osmotic volume regulation in rat brain astrocyte culture. Am. J. Physiol.<br />

stress. Biochem. J. 319: 337–342, 1996.<br />

267 (<strong>Cell</strong> Physiol. 36): C909–C914, 1994.<br />

323. FIEVET, B., H. GUIZOUARN, B. PELLISSIER, F. GARCIA ROMEU, 345. FREDERIKSEN, O., P. P. LEYSSAC, AND S. L. SKINNER. Sensitive<br />

AND R. MOTAIS. Evidence for a K osmometer function <strong>of</strong> juxtaglomerular cells in vitro. J. Physiol.<br />

/ -H / exchange in trout red blood<br />

cells. J. Physiol. (Lond.) 462: 597–607, 1993.<br />

(Lond.) 252: 669–679, 1975.<br />

324. FIEVET, B., N. GABILLAT, F. BORGESE, AND R. MOTAIS. Expres- 346. FREEMAN, C. J., R. M. BOOKCHIN, O. E. ORTIZ, AND V. L. LEW.<br />

sion <strong>of</strong> band 3 anion exchanger induces chloride current and tau- K-permeabilized human red cells lose an alkaline, hypertonic fluid<br />

containing excess K / rine transport: structure-function analysis. EMBO J. 14: 5158–<br />

over diffusible anions. J. Membr. Biol. 96:<br />

5169, 1995.<br />

235–241, 1987.<br />

347. FRIEDMAN, J. E., AND G. G. HADDAD. Major differences in [Ca 2/ 325. FINBERG, L. Hypernatremic (hypertonic) dehydration in infants.<br />

N. Engl. J. Med. 289: 196–198, 1973.<br />

] i<br />

response to anoxia between neonatal and adult rat CA1 neurons:<br />

role <strong>of</strong> [Ca 2/ ] o and [Na / 326. FINEGOLD, D., S. A. LATTIMER, S. NOLLE, M. BERNSTEIN, AND<br />

D. A. GREENE. Polyol pathway activity and myo-inositol metabolism:<br />

a suggested relationship in the pathogenesis <strong>of</strong> diabetic neu-<br />

ropathy. Diabetes 32: 988–992, 1983.<br />

327. FINK, K., J. ZENTNER, AND M. GOTHERT. Increased GABA release<br />

in the human brain cortex as a potential pathogenetic basis<br />

<strong>of</strong> hyperosmolar diabetic coma. J. Neurochem. 62: 1476–1481,<br />

1994.<br />

328. FINKENZELLER, G., W. NEWSOME, F. LANG, AND D. HÄUS-<br />

SINGER. Increase <strong>of</strong> c-jun mRNA upon hypoosmotic cell swelling<br />

<strong>of</strong> rat hepatoma cells. FEBS Lett. 340: 163–166, 1994.<br />

329. FINN, A. L., AND L. REUSS. Effects <strong>of</strong> changes in the composition<br />

<strong>of</strong> the serosal solution on the electrical properties <strong>of</strong> the toad<br />

urinary bladder epithelium. J. Physiol. (Lond.) 250: 541–558,<br />

1975.<br />

330. FISCHER, H., B. ILLEK, P. A. NEGULESCU, W. CLAUSS, AND T. E.<br />

MACHEN. Carbachol-activated calcium entry into HT-29 cells is<br />

regulated by both membrane potential and cell volume. Proc. Natl.<br />

Acad. Sci. USA 89: 1438–1442, 1992.<br />

331. FISHER, R. S., AND K. R. SPRING. Intracellular activities during<br />

volume regulation by Necturus gallbladder. J. Membr. Biol. 78:<br />

187–199, 1984.<br />

332. FLATMAN, P. W. The effects <strong>of</strong> magnesium on potassium transport<br />

in ferret red cells. J. Physiol. (Lond.) 397: 471–487, 1988.<br />

333. FLIEGEL, L., AND O. FRÖHLICH. The Na<br />

] o. J. Neurosci. 13: 63–72, 1993.<br />

348. FRIEDMAN, S. M. The relation <strong>of</strong> cell volume, cell sodium and<br />

the transmembrane sodium gradient to blood pressure. J. Hypertens.<br />

8: 67–73, 1990.<br />

349. FRIGERI, A., M. A. GROPPER, F. UMENISHI, M. KAWASHIMA,<br />

D. BROWN, AND A. S. VERKMAN. Localization <strong>of</strong> MIWC and GLIP<br />

water channel homologs in neuromuscular, epithelial and glandu-<br />

lar tissues. J. <strong>Cell</strong> Sci. 108: 2993–3002, 1995.<br />

350. FRIZZELL, R. A., G. RECHKEMMER AND R. L. SHOEMAKER. Altered<br />

regulation <strong>of</strong> airway epithelial cell chloride channels in cystic<br />

fibrosis. Science 233: 558–560, 1986.<br />

351. FU, W. J., M. KUWAHARA, E. J. CRAGOE, JR., AND F. MARUMO.<br />

<strong>Mechanisms</strong> <strong>of</strong> regulatory volume increase in collecting duct cells.<br />

Jpn. J. Physiol. 43: 745–757, 1993.<br />

352. FUJITA, Y., Y. IWASA, AND Y. NODA. The effect <strong>of</strong> polyhydric<br />

alcohols on the thermal denaturation <strong>of</strong> lysozyme as measured<br />

by differential scanning calorimetry. Bull. Chem. Soc. Jpn. 55:<br />

1896–1900, 1982.<br />

353. FULTON, A. B. How crowded is the cytoplasm? <strong>Cell</strong> 30: 345–347,<br />

1982.<br />

354. FURLONG, T. J., T. MORIYAMA, AND K. R. SPRING. Activation <strong>of</strong><br />

osmolyte efflux from cultured renal papillary epithelial cells. J.<br />

Membr. Biol. 123: 269–277, 1991.<br />

355. FURLONG, T. J., AND K. R. SPRING. <strong>Mechanisms</strong> underlying vol-<br />

ume regulatory decrease by Necturus gallbladder epithelium. Am.<br />

/ /H / exchanger: an update<br />

on structure, regulation, and cardiac physiology. Biochem.<br />

J. 296: 273–285, 1993.<br />

334. FLOCK, S., R. LABARBE, AND C. HOUSSIER. Osmotic effectors<br />

and DNA structure: effect <strong>of</strong> glycine on precipitation <strong>of</strong> DNA by<br />

multivalent cations. J. Biomol. Struct. Dyn. 13: 87–102, 1995.<br />

335. FLOUR, M. P., X. RONOT, F. VINCENT, B. BENOIT, AND M. ADOL-<br />

PHE. Differential temperature sensitivity <strong>of</strong> cultured cells from<br />

cartilaginous or bone origin. Biol. <strong>Cell</strong>. 75: 83–87, 1992.<br />

336. FLOWERS, T. J., P. F. TROKE, AND A. R. YEO. The mechanism <strong>of</strong><br />

salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28: 89–<br />

121, 1977.<br />

337. FONDACARO, J. D. Intestinal ion transport and diarrheal disease.<br />

Am. J. Physiol. 250 (Gastrointest. Liver Physiol. 13): G1–G8,<br />

1986.<br />

338. FOSKETT, J. K. [Ca<br />

J. Physiol. 258 (<strong>Cell</strong> Physiol. 27): C1016–C1024, 1990.<br />

356. FUSHIMI, K., S. UCHIDA, Y. HARA, Y. HIRATA, F. MARUMO, AND<br />

S. SASAKI. Cloning and expression <strong>of</strong> apical membrane water<br />

channel <strong>of</strong> rat kidney collecting tubule. Nature 361: 549–552, 1993.<br />

357. FUSHIMI, K., AND A. S. VERKMAN. Low viscosity in the aqueous<br />

domain <strong>of</strong> cell cytoplasm measured by picosecond polarization<br />

micr<strong>of</strong>luorimetry. J. <strong>Cell</strong> Biol. 112: 719–725, 1991.<br />

358. GABBAY, K. H., AND J. B. O’SULLIVAN. The sorbitol pathway. En-<br />

zyme localization and content in normal and diabetic nerve and<br />

cord. Diabetes 17: 239–243, 1968.<br />

359. GAGNON, J., D. OUIMET, H. NGUYEN, R. LAPRADE, C. LE<br />

GRIMELLEC, S. CARRIÉRE, AND J. CARDINAL. <strong>Cell</strong> volume regulation<br />

in the proximal convoluted tubule. Am. J. Physiol. 243<br />

(Renal Fluid Electrolyte Physiol. 12): F408–F415, 1982.<br />

360. GALCHEVA-GARGOVA, Z., B. DERIJARD, I. H. WU, AND R. J.<br />

2/ ] i modulation <strong>of</strong> Cl 0 content controls cell<br />

DAVIS. An osmosensing signal transduction pathway in mamma-<br />

volume in single salivary acinar cells during fluid secretion. Am. lian cells. Science 265: 806–808, 1994.<br />

J. Physiol. 259 (<strong>Cell</strong> Physiol. 28): C998–C1004, 1990. 361. GALIETTA, L. J. V., A. RASOLA, M. RUGOLO, M. ZOTTINI, T.<br />

339. FOSKETT, J. K., AND J. E. MELVIN. Activation <strong>of</strong> salivary secre- MASTROCOLA, D. C. GRUENERT, AND G. ROMEO. Extracellular<br />

tion: coupling <strong>of</strong> cell volume and [Ca 2/ ] i in single cells. Science 2-chloroadenosine and ATP stimulate volume-sensitive Cl 0 cur-<br />

244: 1582–1585, 1989. rent and calcium mobilization in human tracheal 9HTEo- cells.<br />

340. FOSKETT, J. K., AND K. R. SPRING. Involvement <strong>of</strong> calcium and FEBS Lett. 304: 61–65, 1992.<br />

cytoskeleton in gallbladder epithelial cell volume regulation. Am. 362. GALIETTA, L. J. V., G. ROMEO, AND O. ZEGARRAMORAN. Vol-<br />

J. Physiol. 248 (<strong>Cell</strong> Physiol. 17): C27–C36, 1985. ume regulatory taurine release in human tracheal 9HTEo and mul-<br />

341. FOSKETT, J. K., M. M. WONG, G. SUE A QUAN, AND M. A. ROB- tidrug resistant 9HTEo/Dx cells. Am. J. Physiol. 271 (<strong>Cell</strong> Physiol.<br />

ERTSON. Isosmotic modulation <strong>of</strong> cell volume and intracellular 40): C728–C735, 1996.<br />

ion activities during stimulation <strong>of</strong> single exocrine cells. J. Exp. 363. GALKIN, A. A., AND B. I. KHODOROV. The involvement <strong>of</strong> furose-<br />

Zool. 268: 104–110, 1994. mide-sensitive ion counter transport system in the autoregulation<br />

342. FOSSE, M., T. O. BERG, D. S. O’REILLY, AND P. O. SEGLEN. Vana- <strong>of</strong> macrophage volume: role <strong>of</strong> cytoskeleton. Biol. Membr. 5: 302–<br />

date inhibition <strong>of</strong> hepatocytic autophagy. Calcium-modulated and 307, 1988.<br />

osmolality-modulated antagonism by asparagine. Eur. J. Biochem. 364. GAMBA, G., A. MIYANOSHITA, M. LOMBARDI, J. LYTTON,<br />

230: 17–24, 1995. W.-S. LEE, M. A. HEDIGER, AND S. C. HEBERT. Molecular cloning,<br />

343. FRANCO, R. S., M. PALASCAK, H. THOMPSON, D. L. RUCKNA- primary structure and characterization <strong>of</strong> two members <strong>of</strong> the<br />

GEL, AND C. H. JOINER. Dehydration <strong>of</strong> transferrin receptor posi- mammalian electroneutral sodium-(potassium)-chloride cotranstive<br />

sickle reticulocytes during continuous or cyclic deoxygen- porter family expressed in kidney. J. Biol. Chem. 269: 17713–<br />

ation: role <strong>of</strong> KCl cotransport and extracellular calcium. Blood 88: 17722, 1994.<br />

4359–4365, 1996. 365. GAMBA, G., S. N. SALTZBERG, M. LOMBARDI, A. MIYANO-<br />

344. FRASER, C. L., AND R. A. SWANSON. Female sex hormones inhibit SHITA, J. LYTTON, M. A. HEDIGER, B. M. BRENNER, AND S. C.<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


282<br />

LANG ET AL. <strong>Volume</strong> 78<br />

HEBERT. Primary structure and functional expression <strong>of</strong> a cDNA 387. GILLES, R. Comparative aspects <strong>of</strong> cell osmoregulation and vol-<br />

encoding the thiazide-sensitive, electroneutral sodium chloride coume control. Renal Physiol. Biochem. 11: 277–288, 1988.<br />

transporter. Proc. Natl. Acad. Sci. USA 90: 2749–2753, 1993. 388. GILLES, R. <strong>Volume</strong> regulation in cells <strong>of</strong> euryhaline invertebrates.<br />

366. GAO, D. Y., J. LIU, C. LIU, L. E. MCGANN, P. F. WATSON, F. W. Curr. Top. Membr. Transp. 30: 205–248, 1987.<br />

KLEINHANS, P. MAZUR, E. S. CRITSER, AND J. K. CRITSER. Pre- 389. GILLES, R., AND M. GILLES-BALLIEN. Transport Processes, Iono-<br />

vention <strong>of</strong> osmotic injury to human spermatozoa during addition and Osmoregulation. Heidelberg, Germany: Springer-Verlag,<br />

and removal <strong>of</strong> glycerol. Hum. Reprod. 10: 1109–1122, 1995. 1985, p. 483.<br />

367. GAO, Y., AND P. M. VANHOUTTE. Hypotonic solutions induce epi- 390. GILLES, R., A. KLEINZELLER, AND L. BOLIS. <strong>Cell</strong> volume control:<br />

thelium-dependent relaxation <strong>of</strong> isolated canine bronchi. Lung fundamental and comparative aspects in animal care. In: Current<br />

170: 339–347, 1992.<br />

Topics in Membranes and Transport, edited by A. Kleinzeller.<br />

368. GARCIA-PEREZ, A. Organic osmolytes in the kidney. Semin. New York: Academic, 1987, vol. 30.<br />

Nephrol. 13: 182–190, 1993.<br />

391. GILLES, R., AND A. PEQUEUX. <strong>Cell</strong> volume regulation in crusta-<br />

369. GARCIA-PEREZ, A., AND M. B. BURG. Importance <strong>of</strong> organic os- ceans: relationship between mechanisms for controlling the osmo-<br />

molytes for osmoregulation by renal medullary cells. Hypertenlarity <strong>of</strong> extracellular and intracellular fluids. J. Exp. Zool. 215:<br />

sion 16: 595–602, 1990. 351–362, 1981.<br />

370. GARCIA-PEREZ, A., AND M. B. BURG. Renal medullary organic 392. GILLIN, A. G., AND J. M. SANDS. Characteristics <strong>of</strong> osmolarityosmolytes.<br />

Physiol. Rev. 71: 1081–1115, 1991. stimulated urea transport in rat IMCD. Am. J. Physiol. 262 (Renal<br />

371. GARCIA-PEREZ, A., AND M. B. BURG. Role <strong>of</strong> organic osmolytes Fluid Electrolyte Physiol. 31): F1061–F1067, 1992.<br />

in adaptation <strong>of</strong> renal cells to high osmolality. J. Membr. Biol. 393. GILLIN, A. G., R. A. STAR, AND J. M. SANDS. Osmolarity-stimu-<br />

119: 1–13, 1991.<br />

lated urea transport in rat terminal IMCD: role <strong>of</strong> intracellular<br />

372. GARCIA-PEREZ, A., AND J. D. FERRARIS. Aldose reductase gene calcium. Am. J. Physiol. 265 (Renal Fluid Electrolyte Physiol.<br />

expression and osmoregulation in mammalian renal cells. In: Cel- 34): F272–F277, 1993.<br />

lular and Molecular Physiology <strong>of</strong> <strong>Cell</strong> <strong>Volume</strong> Regulation, edited 394. GILMORE, J. A., L. E. MCGANN, J. LIU, D. Y. GAO, A. T. PETER,<br />

by K. Strange. Boca Raton, FL: CRC, 1994, p. 373–382.<br />

F. W. KLEINHANS, AND J. K. CRITSER. The effect <strong>of</strong> cryoprotec-<br />

373. GARCIA-PEREZ, A., B. MARTIN, H. R. MURPHY, S. UCHIDA, H. tant solutes on water permeability <strong>of</strong> human spermatozoa. Biol.<br />

MURER, B. D. COWLEY, J. S. HANDLER, AND M. B. BURG. Molec- Reprod. 53: 985–995, 1995.<br />

ular cloning <strong>of</strong> cDNA coding for kidney aldose reductase: regula- 395. GINZBURG, M. Dunaliella: a green alga adapted to salt. Adv. Bot.<br />

tion <strong>of</strong> specific mRNA accumulation by NaCl-mediated osmotic Res. 14: 93–185, 1987.<br />

stress. J. Biol. Chem. 264: 16815–16821, 1989. 396. GIOVANNELLI, L., P. J. SHIROMANI, G. F. JIRIKOWSKI, AND F. E.<br />

374. GARCIA-ROMEU, F., F. BORGESE, H. GUIZOUARN, B. FIEVET, BLOOM. Expression <strong>of</strong> c-Fos protein by immunohistochemically<br />

AND R. MOTAIS. A role for the anion exchanger AE1 (band 3 identified oxytocin neurons in the rat hypothalamus upon osmotic<br />

protein) in cell volume regulation. <strong>Cell</strong>. Mol. Biol. 42: 985–994, stimulation. Brain Res. 588: 41–48, 1992.<br />

1996. 397. GLEESON, D., J. G. CORASANTI, AND J. L. BOYER. Effects <strong>of</strong><br />

375. GARLAND, A., J. E. JORDAN, J. NECHELES, L. E. ALGER, M. M. osmotic stresses on isolated rat hepatocytes. II. Modulation <strong>of</strong><br />

SCULLY, R. J. MILLER, D. W. RAY, S. R. WHITE, AND J. SOLWAY. intracellular pH. Am. J. Physiol. 258 (Gastrointest. Liver Physiol.<br />

Hypertonicity, but not hypothermia, elicits substance P release 21): G299–G307, 1990.<br />

from rat c fiber neurons in primary culture. J. Clin. Invest. 95: 398. GODT, R. E., R. T. FOGACA, M. A. ANDREWS, AND T. M. NOSEK.<br />

2359–2366, 1995. Influence <strong>of</strong> ionic strength on contractile force and energy con-<br />

376. GARNER, M. M., AND M. B. BURG. Macromolecular crowding and sumption <strong>of</strong> skinned fibers from mammalian and crustacean striconfinement<br />

in cells exposed to hypertonicity. Am. J. Physiol. ated muscle. Adv. Exp. Med. Biol. 332: 763–774, 1993.<br />

266 (<strong>Cell</strong> Physiol. 35): C877–C892, 1994. 399. GOLDSTEIN, L. Organic solute pr<strong>of</strong>iles and transport in the rat<br />

377. GARTY, H., T. J. FURLONG, D. E. ELLIS, AND K. R. SPRING. Sorbi- renal medulla. Am. J. Kidney Dis. 14: 310–312, 1989.<br />

tol permease: an apical membrane transporter in cultured renal 400. GOLDSTEIN, L., AND A. KLEINZELLER. <strong>Cell</strong> volume regulation in<br />

papillary epithelial cells. Am. J. Physiol. 260 (Renal Fluid Electro- lower vertebrates. Curr. Top. Membr. Transp. 30: 181–204, 1987.<br />

lyte Physiol. 29): F650-F656, 1991. 401. GOLLNICK, F., R. MEYER, AND W. STOCKEM. Visualization and<br />

378. GARVIN, J. L., AND K. R. SPRING. Regulation <strong>of</strong> apical membrane measurement <strong>of</strong> calcium transients in Amoeba proteus by fura-2<br />

ion transport in Necturus gallbladder. Am. J. Physiol. 263 (<strong>Cell</strong> fluorescence. Eur. J. <strong>Cell</strong> Biol. 55: 262–271, 1991.<br />

Physiol. 32): C187–C193, 1992. 402. GORODESKI, G. I., B. J. DE SANTIS, J. GOLDFARB, W. H. UTIAN,<br />

379. GAUSSIN, V., A. BAQUET, AND L. HUE. <strong>Cell</strong> shrinkage follows, AND U. HOPFER. Osmolar changes regulate the paracellular perrather<br />

than mediates, the short-term effects <strong>of</strong> glucagon on carbo- meability <strong>of</strong> cultured human cervical epithelium. Am. J. Physiol.<br />

hydrate metabolism. Biochem. J. 287: 17–20, 1992. 269 (<strong>Cell</strong> Physiol. 38): C870–C877, 1995.<br />

380. GAZZOLA, G. C., V. DALL’ASTA, F. A. NUCCI, P. A. ROSSI, O. 403. GOSLING, M., D. R. POYNER, AND J. W. SMITH. Effects <strong>of</strong> arachi-<br />

BUSSOLATI, E. K. HOFFMANN, AND G. G. GUIDOTTI. Role <strong>of</strong> donic acid upon the volume sensitive chloride current in rat osteoamino<br />

acid transport system A in the control <strong>of</strong> cell volume in blast like (ROS 17/2.8) cells. J. Physiol. (Lond.) 493: 613–623,<br />

cultured human fibroblasts. <strong>Cell</strong>. Physiol. Biochem. 1: 131–142, 1996.<br />

1991. 404. GOSS, G. G., M. WOODSIDE, S. WAKABAYASHI, J. POUYS-<br />

381. GECK, P., AND B. PFEIFFER. Na / K / 2Cl 0 cotransport in animal SEGUR, T. WADDELL, G. P. DOWNEY, AND S. GRINSTEIN. ATP<br />

cells: its role in volume regulation. Ann. NY Acad. Sci. 456: 166– dependence <strong>of</strong> NHE-1, the ubiquitous is<strong>of</strong>orm <strong>of</strong> the Na / /H / anti-<br />

182, 1985. porter. Analysis <strong>of</strong> phosphorylation and subcellular localization.<br />

382. GEIGER, B. Membrane-cytoskeleton interaction. Biochim. Bio- J. Biol. Chem. 269: 8741–8748, 1994.<br />

phys. Acta 737: 305–341, 1983. 405. GOTTLIEB, R. A., J. NORDBERG, E. SKOWRONSKI, AND B. M.<br />

383. GEKKO, K., AND T. MORIKAWA. Thermodynamics <strong>of</strong> polyol-in- BABIOR. Apoptosis induced in Jurkat cells by several agents is<br />

duced thermal stabilization <strong>of</strong> chymotrypsinogen. J. Biochem. 90: preceded by intracellular acidification. Proc. Natl. Acad. Sci. USA<br />

51–60, 1981.<br />

93: 654–658, 1996.<br />

384. GERLSMA, S. Y. Reversible denaturation <strong>of</strong> ribonuclease in aque- 406. GRAF, J., P. HADDAD, D. HÄUSSINGER, AND F. LANG. <strong>Cell</strong> vol-<br />

ous solutions as influenced by polyhydric alcohols and some other ume regulation in liver. Renal Physiol. Biochem. 11: 202–220,<br />

additives. J. Biol. Chem. 243: 957–961, 1968. 1988.<br />

385. GHANAYEM, B. I., AND C. A. SULLIVAN. Assessment <strong>of</strong> the 407. GRANITZER, M., I. MOUNTIAN, P. DE SMET, AND W. VAN<br />

haemolytic activity <strong>of</strong> 2-butoxyethanol and its major metabolite, DRIESSCHE. Effect <strong>of</strong> ouabain on membrane conductances and<br />

butoxyacetic acid, in various mammals including humans. Hum. volume in A6 cells. Renal. Physiol. Biochem. 17: 223–231, 1994.<br />

Exp. Toxicol. 12: 305–311, 1993. 408. GRANT, A., AND A. BURCHELL. GTP and ATP increase the trans-<br />

386. GIBSON, J. S., AND A. C. HALL. Stimulation <strong>of</strong> the KCl co-transport port capacity <strong>of</strong> the T1 transport protein <strong>of</strong> the microsomal gluin<br />

equine erythrocytes by hydrostatic pressure: effects <strong>of</strong> kinase/ cose-6-phosphatase complex. Biochem. Soc. Trans. 18: 1251–<br />

phosphatase inhibition. Pflügers Arch. 429: 446–448, 1995.<br />

1252, 1990.<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 283<br />

409. GRANT, A., D. TOSH, AND A. BURCHELL. Liver perfusion with ume regulation in human lymphocytes. Inhibition by charybdo-<br />

hyper-osmotic media stimulates microsomal glucose-6-phosphatoxin. J. Gen. Physiol. 95: 97–120, 1990.<br />

tase activity (Abstract). Biochem. Soc. Trans. 21: 39S, 1993. 430. GRINSTEIN, S., M. WOODSIDE, C. SARDET, J. POUYSSÉGUR,<br />

AND D. ROTIN. Activation <strong>of</strong> the Na / /H / 410. GREEN, R. B., M. J. SLATTERY, E. GIANFERRARI, N. L. KIZER,<br />

antiporter during cell<br />

D. E. MCCOY, AND B. A. STANTON. Hyperosmolality inhibits so- volume regulation. Evidence for a phosphorylation-independent<br />

dium absorption and cloride secretion in mIMCD K2 cells. Am. J. mechanism. J. Biol. Chem. 267: 23823–23828, 1992.<br />

Physiol. 271 (Renal Fluid Electrolyte Physiol. r0): F1248–F1254, 431. GRINSTEIN, S., M. WOODSIDE, T. K. WADDELL, G. P. DOWNEY,<br />

1996.<br />

J. ORLOWSKI, J. POUYSSÉGUR, D. C. P. WONG, AND J. K.<br />

411. GREENE, D. A., S. A. LATTIMER, AND A. A. SIMA. Sorbitol, phos- FOSKETT. Focal localization <strong>of</strong> the NHE-1 is<strong>of</strong>orm <strong>of</strong> the Na / /<br />

H / phoinositides and sodium-potassium-ATPase in the pathogenesis<br />

antiport: assessment <strong>of</strong> effects on intracellular pH. EMBO J.<br />

<strong>of</strong> diabetic complications. N. Engl. J. Med. 316: 599–606, 1987. 12: 5209–5218, 1993.<br />

412. GREENWALD, J. E., M. APKON, K. A. HRUSKA, AND P. NEE- 432. GROENEVELD, A. B., A. A. VAN-LAMBALGEN, G. C. VAN-DEN-<br />

DLEMAN. Stretch-induced atriopeptin secretion in the isolated rat BOS, J. J. NAUTA, AND L. G. THIJS. Metabolic vasodilatation with<br />

myocyte and its negative modulation by calcium. J. Clin. Invest. glucose-insulin-potassium does not change the heterogeneous dis-<br />

83: 1061–1065, 1989. tribution <strong>of</strong> coronary blood flow in the dog. Cardiovasc. Res. 26:<br />

413. GREENWAY, H., AND C. B. OSMOND. Salt responses <strong>of</strong> enzymes 757–764, 1992.<br />

from species differing in salt tolerance. Plant Physiol. 49: 256– 433. GROSSMAN, E. B., AND S. C. HEBERT. Renal inner medullary cho-<br />

259, 1972.<br />

line dehydrogenase activity: characterization and modulation. Am.<br />

414. GREER, M. A., S. E. GREER, AND S. MARUTA. Hyposmolar stimu- J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F107–F112,<br />

lation <strong>of</strong> secretion <strong>of</strong> thyrotropin, prolactin, and luteinizing hor- 1989.<br />

mone does not require extracellular calcium and is not inhibited 434. GROSSO, A., P. MEDA, AND R. C. DE SOUSA. Effects <strong>of</strong> anions<br />

by colchicine, cytochalasin B, ouabain, or tetrodotoxin. Proc. Soc. and/or cell volume on the permeance <strong>of</strong> an apical water pathway<br />

Exp. Biol. Med. 193: 203–209, 1990. induced by Hg in toad skin epithelium. J. Membr. Biol. 134: 41–<br />

415. GREER, M. A., S. E. GREER, Z. OPSAHL, L. MCCAFFERTY, AND 52, 1993.<br />

S. MARUTA. Hyposmolar stimulation <strong>of</strong> in vitro pituitary secretion 435. GRÜNDER, S., A. THIEMANN, M. PUSCH, AND T. J. JENTSCH.<br />

<strong>of</strong> luteinizing hormone: a potential clue to the secretory process. Regions involved in the opening <strong>of</strong> the CIC-2 chloride channel by<br />

Endocrinology 113: 1531–1533, 1983. voltage and cell volume. Nature 360: 759–762, 1992.<br />

416. GREGER, R. Ion transport mechanisms in thick ascending limb 436. GRUNEWALD, J. M., R. W. GRUNEWALD, AND R. K. H. KINNE.<br />

<strong>of</strong> Henle’s loop <strong>of</strong> mammalian nephron. Physiol. Rev. 65: 760– Ion content and cell volume in isolated collecting duct cells: effect<br />

797, 1985. <strong>of</strong> hypotonicity. Kidney Int. 44: 509–517, 1993.<br />

417. GREGER, R., N. ALLERT, U. FRÖBE, AND C. NORMANN. Increase 437. GRUNEWALD, J. M., R. W. GRUNEWALD, AND R. K. H. KINNE.<br />

in cytosolic Ca 2/ regulates exocytosis and Cl 0 conductance in Regulation <strong>of</strong> ion content and cell volume in isolated rat renal<br />

HT29 cells. Pflügers Arch. 424: 329–334, 1993. IMCD cells under hypertonic conditions. Am. J. Physiol. 267 (Re-<br />

418. GRINSTEIN, S., C. A. CLARKE, A. DUPRÉ, AND A. ROTHSTEIN. nal Fluid Electrolyte Physiol. 36): F13–F19, 1994.<br />

<strong>Volume</strong>-induced increase <strong>of</strong> anion permeability in human lympho- 438. GSCHWENTNER, M., A. JUNGWIRTH, S. HOFER, E. WÖLL, M.<br />

cytes. J. Gen. Physiol. 80: 801–823, 1982. RITTER, A. SUSANNA, A. SCHMARDA, G. REIBNEGGER, G. M.<br />

419. GRINSTEIN, S., C. A. CLARKE, AND A. ROTHSTEIN. Increased PINGGERA, M. LEITINGER, J. FRICK, P. DEETJEN, AND M.<br />

anion permeability during volume regulation in human lympho- PAULMICHL. Blockade <strong>of</strong> swelling-induced chloride channels by<br />

cytes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 299: 509–518, 1982. phenol derivatives. Br. J. Pharmacol. 118: 41–48, 1996.<br />

420. GRINSTEIN, S., C. A. CLARKE, AND A. ROTHSTEIN. Activation <strong>of</strong> 439. GSCHWENTNER, M., U. O. NAGL, A. SCHMARDA, E. WÖLL, M.<br />

Na / /H / exchange in lymphocytes by osmotically induced volume RITTER, W. WAITZ, P. DEETJEN, AND M. PAULMICHL. Structurechanges<br />

and by cytoplasmic acidification. J. Gen. Physiol. 82: function relation <strong>of</strong> a cloned epithelial chloride channel. Renal<br />

619–638, 1983. Physiol. Biochem. 17: 148–152, 1994.<br />

421. GRINSTEIN, S., C. A. CLARKE, A. ROTHSTEIN, AND E. W. GEL- 440. GSCHWENTNER, M., U. O. NAGL, E. WÖLL, A. SCHMARDA, M.<br />

FAND. <strong>Volume</strong>-induced anion conductance in human B lympho- RITTER, AND M. PAULMICHL. Antisense oligonucleotides supcytes<br />

is cation independent. Am. J. Physiol. 245 (<strong>Cell</strong> Physiol. press cell-volume-induced activation <strong>of</strong> chloride channels. Pflüg-<br />

14): C160–C163, 1983. ers Arch. 430: 464–470, 1995.<br />

422. GRINSTEIN, S., S. COHEN, J. D. GOETZ, A. ROTHSTEIN, A. MEL- 441. GSCHWENTNER, M., A. SUSANNA, E. WÖLL, M. RITTER, U. O.<br />

LORS, AND E. W. GELFAND. Activation <strong>of</strong> the Na / -H / antiport by NAGL, A. SCHMARDA, A. LAICH, G. M. PINGGERA, H. ELLEchanges<br />

in cell volume and by phorbol esters: possible role <strong>of</strong> MUNTER, H. HUEMER, P. DEETJEN, AND M. PAULMICHL. Antiviprotein<br />

kinase. In: Current Topics in Membranes and Transport. ral drugs from the nucleoside analog family block volume-acti-<br />

New York: Academic, 1986, vol. 26, p. 115–134. vated chloride channels. Mol. Med. 1: 407–417, 1995.<br />

423. GRINSTEIN, S., S. COHEN, B. SARKADI, AND A. ROTHSTEIN. 442. GUDER, W. G., F. X. BECK, AND M. SCHMOLKE. Regulation and<br />

Induction <strong>of</strong> 86 Rb fluxes by Ca 2/ and volume changes in thymo- localization <strong>of</strong> organic osmolytes in mammalian kidney. Klin. Wocytes<br />

and their isolated membranes. J. <strong>Cell</strong>. Physiol. 116: 352– chenschr. 68: 1091–1095, 1990.<br />

362, 1983. 443. GUGGINO, W. B. <strong>Functional</strong> heterogeneity in the early distal tu-<br />

424. GRINSTEIN, S., A. DUPRÉ, AND A. ROTHSTEIN. <strong>Volume</strong> regula- bule <strong>of</strong> the Amphiuma kidney: evidence for two modes <strong>of</strong> Cl 0<br />

tion by human lymphocytes. Role <strong>of</strong> calcium. J. Gen. Physiol. 79: and K / transport across the basolateral cell membrane. Am. J.<br />

849–868, 1982. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F430–F440,<br />

425. GRINSTEIN, S., AND J. K. FOSKETT. Ionic mechanisms <strong>of</strong> cell 1986.<br />

volume regulation in leukocytes. Annu. Rev. Physiol. 52: 399– 444. GUGGINO, W. B., H. OBERLEITHNER, AND G. GIEBISCH. Rela-<br />

414, 1990. tionship between cell volume and ion transport in the early distal<br />

426. GRINSTEIN, S., J. D. GOETZ-SMITH, D. STEWART, B. J. BERES- tubule <strong>of</strong> the Amphiuma kidney. J. Gen. Physiol. 86: 31–58, 1985.<br />

FORD, AND A. MELLORS. Protein phosphorylation during activa- 445. GUHARAY, F., AND F. SACHS. Stretch-activated single ion channel<br />

tion <strong>of</strong> Na / /H / exchange by phorbol esters and by osmotic shrink- currents in tissue-cultured embryonic chick skeletal muscle. J.<br />

ing. Possible relation to cell pH and volume regulation. J. Biol. Physiol. (Lond.) 352: 685–701, 1984.<br />

Chem. 261: 8009–8016, 1986. 446. GULBINS, E., R. BISSONNETTE, A. MAHBOUBI, S. MARTIN, W.<br />

427. GRINSTEIN, S., E. MACK, AND G. B. MILLS. Osmotic activation NISHIOKA, T. BRUNNER, G. BAIER, G. BAIER-BITTERLICH, C.<br />

<strong>of</strong> the Na / /H / antiport in protein kinase C-depleted lymphocytes. BYRD, F. LANG, R. KOLESNICK, A. ALTMAN, AND D. GREEN.<br />

Biochem. Biophys. Res. Commun. 134: 8–13, 1986. Fas-induced apoptosis is mediated via a ceramide-initiated RAS<br />

428. GRINSTEIN, S., D. ROTIN, AND M. J. MASON. Na signaling pathway. Immunity 2: 341–351, 1995.<br />

/ /H / exchange<br />

and growth factor induced cystolic pH changes. Role in cellular 447. GULBINS, E., B. BRENNER, K. SCHLOTTMANN, J. WELSCH, H.<br />

proliferation. Biochim. Biophys. Acta 988: 73–97, 1989. HEINLE, U. KOPPENHÖFER, O. LINDERKAMP, K. M. COGGES-<br />

429. GRINSTEIN, S., AND J. D. SMITH. Calcium-independent cell vol- HALL, AND F. LANG. Fas-induced programmed cell death is medi-<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


284<br />

LANG ET AL. <strong>Volume</strong> 78<br />

ated by a ras-regulated O2-synthesis. Immunology 89: 205–212, 468. HALL, S. K., J. P. ZHANG, AND M. LIEBERMAN. Cyclic AMP pre-<br />

1996.<br />

vents activation <strong>of</strong> a swelling-induced chloride-sensitive conduc-<br />

448. GULBINS, E., K. M. COGGESHALL, B. BRENNER, K. SCHLOTT- tance in chick heart cells. J. Physiol. (Lond.) 488: 359–369, 1995.<br />

MANN, O. LINDERKAMP, AND F. LANG. Fas-induced apoptosis is 469. HALLBRUCKER, C., F. LANG, W. GEROK, AND D. HÄUSSINGER.<br />

mediated by activation <strong>of</strong> a ras and rac-protein regulated signaling <strong>Cell</strong> swelling increases bile flow and taurocholate excretion into<br />

pathway. J. Biol. Chem. 271: 26389–26394, 1996.<br />

bile in isolated perfused rat liver. Biochem. J. 281: 593–595, 1992.<br />

449. GULBINS, E., I. SZABO, K. BALTZER, AND F. LANG. Ceramide 470. HALLBRUCKER, C., M. RITTER, F. LANG, W. GEROK, AND D.<br />

HÄUSSINGER. Hydroperoxide metabolism in rat liver. K / induced inhibition <strong>of</strong> T-lymphocyte voltage gated potassium chan-<br />

channel<br />

nel is mediated by tyrosine kinases. Proc. Natl. Acad. Sci USA 94: activation, cell volume changes and eicosanoid formation. Eur.<br />

7661–7666, 1997.<br />

J. Biochem. 211: 449–458, 1993.<br />

450. GULBINS, E., I. SZABO, AND F. LANG. Physiology <strong>of</strong> Fas-induced 471. HALLBRUCKER, C., S. VOM DAHL, F. LANG, AND D. HÄUSprogrammed<br />

cell death. <strong>Cell</strong>. Physiol. Biochem. 6: 361–375, 1996. SINGER. Control <strong>of</strong> hepatic proteolysis by amino acids. The role<br />

451. GULBINS, E., J. WELSCH, A. LEPPLE-WIENHUES, H. HEINLE, <strong>of</strong> cell volume. Eur. J. Biochem. 197: 717–724, 1991.<br />

AND F. LANG. Inhibition <strong>of</strong> Fas-induced apoptotic cell death by 472. HALLBRUCKER, C., S. VOM DAHL, F. LANG, W. GEROK, AND D.<br />

osmotic cell shrinkage. Biochem. Biophys. Res. Commun. 236: HÄUSSINGER. Inhibition <strong>of</strong> hepatic proteolysis by insulin. Role<br />

<strong>of</strong> hormone-induced alterations <strong>of</strong> the cellular K / 517–521, 1997.<br />

balance. Eur.<br />

452. GULLANS, S. R., J. D. BLUMENFELD, J. A. BALSCHI, M. KALETA, J. Biochem. 199: 467–474, 1991.<br />

R. M. BRENNER, C. W. HEILIG, AND S. C. HEBERT. Accumulation 473. HALLBRUCKER, C., S. VOM DAHL, F. LANG, W. GEROK, AND D.<br />

<strong>of</strong> major organic osmolytes in renal inner medulla in dehydration. HÄUSSINGER. Modification <strong>of</strong> liver cell volume by insulin and<br />

Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F626– glucagon. Pflügers Arch. 418: 519–521, 1991.<br />

F634, 1988. 474. HALLBRUCKER, C., S. VOM DAHL, M. RITTER, F. LANG, AND D.<br />

HÄUSSINGER. Effects <strong>of</strong> urea on K / 453. GULLANS, S. R., AND J. G. VERBALIS. Control <strong>of</strong> brain volume<br />

fluxes and cell volume in<br />

during hyperosmolar and hypoosmolar conditions. Annu. Rev. perfused rat liver. Pflügers Arch. 428: 552–560, 1994.<br />

Med. 44: 289–301, 1993.<br />

475. HALLOWS, K. R., AND R. S. FRANK. Changes in mechanical prop-<br />

454. GUPTA, S., M. SHIMIZU, K. OHIRA, AND B. VAYUVEGULA. T cell erties with DMSO-induced differentiation <strong>of</strong> HL-60 cells. Biorheolactivation<br />

via the T cell receptor: a comparison between WT31 ogy 29: 295–309, 1992.<br />

(defining alpha/beta TcR)-induced and anti-CD3-induced activa- 476. HALLOWS, K. R., AND P. A. KNAUF. <strong>Regulatory</strong> volume decrease<br />

in HL-60 cells: importance <strong>of</strong> rapid changes in permeability <strong>of</strong> Cl 0<br />

tion <strong>of</strong> human T lymphocytes. <strong>Cell</strong>. Immunol. 132: 26–44, 1991.<br />

455. GUSTAFSON, L. A., M. N. JUMELLELACLAU, G. M. VAN WOER- and organic solutes. Am. J. Physiol. 267 (<strong>Cell</strong> Physiol. 36): C1045–<br />

KOM, A. B. P. VAN KUILENBURG, AND A. J. MEIJER. <strong>Cell</strong> swelling C1056, 1994.<br />

and glycogen metabolism in hepatocytes from fasted rats. Bio- 477. HALLOWS, K. R., F. Y. LAW, C. H. PACKMAN, AND P. A. KNAUF.<br />

chim. Biophys. Acta 1318: 184–190, 1997.<br />

Changes in cytoskeletal actin content, F-actin distribution, and<br />

456. GUSTAFSON, L. A., N. ROMP, G. M. VAN WOERKOM, AND A. J. surface morphology during HL-60 cell volume regulation. J. <strong>Cell</strong>.<br />

MEIJER. Carbamoyl phosphate and ureagenesis are not involved Physiol. 167: 60–71, 1996.<br />

in amino-acid-stimulated glycogenesis. Eur. J. Biochem. 223: 553– 478. HALLOWS, K. R., C. H. PACKMAN, AND P. A. KNAUF. Acute cell<br />

556, 1994.<br />

volume changes in anisotonic media affect F-actin content <strong>of</strong> HL-<br />

457. GUZMAN, M., G. VELASCO, J. CASTRO, AND V. A. ZAMMIT. Inhibi- 60 cells. Am. J. Physiol. 261 (<strong>Cell</strong> Physiol. 30): C1154–C1161,<br />

tion <strong>of</strong> carnitine palmitoyltransferase I by hepatocyte swelling. 1991.<br />

FEBS Lett. 344: 239–241, 1994.<br />

479. HALLOWS, K. R., D. RESTREPO, AND P. A. KNAUF. Control <strong>of</strong><br />

458. HAAS, A. L. Ubiquitin-mediated processes in erythroid cell matu- intracellular pH during regulatory volume decrease in HL-60 cells.<br />

ration. Adv. Exp. Med. Biol. 307: 191–205, 1991.<br />

Am. J. Physiol. 267 (<strong>Cell</strong> Physiol. 36): C1057–C1066, 1994.<br />

459. HAAS, M., AND T. J. MCMANUS. Effect <strong>of</strong> norepinephrine on swell- 480. HAMMERMAN, M. R., B. SACKTOR, AND W. H. DAUGHADAY.<br />

ing-induced potassium transport in duck red cells. Evidence Myo-inositol transport in renal brush border vesicles and its inhibi-<br />

against a volume-regulatory decrease under physiological condi- tion by D-glucose. Am. J. Physiol. 239 (Renal Fluid Electrolyte<br />

tions. J. Gen. Physiol. 85: 649–667, 1985.<br />

Physiol. 8): F113–F120, 1980.<br />

460. HABERICH, F. J., O. AZIZ, AND P. E. NOWACKI. Über einen os- 481. HAMPTON, M. B., S. T. CHAMBERS, M. C. VISSERS, AND C. C.<br />

moreceptorisch tätigen Mechanismus in der Leber. Pflügers Arch. WINTERBOURN. Bacterial killing by neutrophils in hypertonic<br />

285: 73–89, 1965.<br />

environments. J. Infect. Dis. 169: 839–846, 1994.<br />

461. HACKENTHAL, E., AND R. TAUGNER. Hormonal signals and intra- 482. HAN, J., J. D. LEE, L. BIBBS, AND R. J. ULEVITCH. A MAP kinase<br />

cellular messengers for renin secretion. Mol. <strong>Cell</strong>. Endocrinol. 47: targeted by endotoxin and hyperosmolarity in mammalian cells.<br />

1–12, 1986.<br />

Science 265: 808–811, 1994.<br />

462. HAGMANN, J., D. DAGAN, AND M. M. BURGER. Release <strong>of</strong> endo- 483. HAND, S. C., AND G. N. SOMERO. Urea and methylamine effects<br />

somal content induced by plasma membrane tension: video image on rabbit muscle phosph<strong>of</strong>ructokinase catalytic stability and ag-<br />

intensification time lapse analysis. Exp. <strong>Cell</strong> Res. 198: 298–304, gregation state as a function <strong>of</strong> pH and temperature. J. Biol. Chem.<br />

1992.<br />

257: 734–741, 1982.<br />

463. HAHN, K., R. DE BIASIO, AND D. L. TAYLOR. Patterns <strong>of</strong> elevated 484. HANDLER, J. S., AND H. M. KWON. Regulation <strong>of</strong> renal cell organic<br />

free calcium and calmodulin activation in living cells. Nature 359: osmolyte transport by tonicity. Am. J. Physiol. 265 (<strong>Cell</strong> Physiol.<br />

736–738, 1992.<br />

34): C1449–C1455, 1993.<br />

464. HAINSWORTH, A. H., R. M. HENDERSON, M. E. HICKMAN, S. B. 485. HANSEN, S. H., K. SANDVIG, AND B. VAN DEURS. Clathrin and<br />

HLADKY, T. ROWLANDS, P. R. TWENTYMAN, AND M. A. BAR- HA2 adaptors: effects <strong>of</strong> potassium depletion, hypertonic medium,<br />

RAND. Hypotonicity-induced anion fluxes in cells expressing the and cytosol acidification. J. <strong>Cell</strong> Biol. 121: 61–72, 1993.<br />

multidrug-resistance-associated protein, MRP. Pflügers Arch. 432: 486. HANSSON, E. Metabotropic glutamate receptor activation induces<br />

234–240, 1996.<br />

astroglial swelling. J. Biol. Chem. 269: 21955–21961, 1994.<br />

465. HALESTRAP, A. P. Regulation <strong>of</strong> mitochondrial metabolism 487. HANSSON, E., B. B. JOHANSSON, I. WESTERGREN, AND L.<br />

through changes in matrix volume. Biochem. Soc. Trans. 22: 522– RONNBACK. <strong>Mechanisms</strong> <strong>of</strong> glutamate induced swelling in astro-<br />

529, 1994.<br />

glial cells. Acta Neurochir. Suppl. Wien. 60: 12–14, 1994.<br />

466. HALESTRAP, A. P. The regulation <strong>of</strong> the matrix volume <strong>of</strong> mam- 488. HANSSON, E., AND L. RONNBACK. Receptor-mediated volume<br />

malian mitochondria in vivo and in vitro and its role in the control regulation in astrocytes in primary culture. Neuropharmacology<br />

<strong>of</strong> mitochondrial metabolism. Biochim. Biophys. Acta 973: 355– 31: 85–87, 1992.<br />

382, 1989. 489. HARBAK, H., AND L. O. SIMONSEN. The K / channels activated<br />

467. HALESTRAP, A. P., A. M. DAVIDSON, AND W. D. POTTER. Mecha- during regulatory volume decrease (RVD) are distinct from those<br />

activated by Ca 2/ nisms involved in the hormonal regulation <strong>of</strong> mitochondrial func-<br />

-mobilizing agonists in Ehrlich mouse ascites<br />

tion through changes in the matrix volume. Biochim. Biophys. tumor cells. (Abstract). J. Physiol. (Lond.) 482: 12P, 1995.<br />

Acta 1018: 278–281, 1990. 490. HARDY, S. P., H. R. GOODFELLOW, M. A. VALVERDE, D. R. GILL,<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 285<br />

V. SEPULVEDA, AND C. F. HIGGINS. Protein kinase C-mediated 512. HAWKINS, R. A., J. JESSY, A. M. MANS, AND M. R. DE JOSEPH.<br />

phosphorylation <strong>of</strong> the human multidrug resistance P-glycoprotein Effect <strong>of</strong> reducing brain glutamine synthesis on metabolic symp-<br />

regulates cell volume-activated chloride channels. EMBO J. 14: toms <strong>of</strong> hepatic encephalopathy. J. Neurochem. 60: 1000–1006,<br />

68–75, 1995.<br />

1993.<br />

491. HART, R. A., D. M. GILTINAN, P. M. LESTER, H. REIFSNYDER, 513. HAYAMA, N., W. WANG, T. V. ROBINSON, R. E. KRAMER, AND<br />

J. R. OGEZ, AND S. E. BUILDER. Effect <strong>of</strong> environment on insulin- E. G. SCHNEIDER. Osmolality and potassium cause alterations in<br />

like growth factor I refolding selectivity. Biotechnol. Appl. Bio- the volume <strong>of</strong> glomerulosa cells. Endocrinology 132: 1230–1234,<br />

chem. 20: 217–232, 1994.<br />

1993.<br />

492. HARTWIG, J. H. <strong>Mechanisms</strong> <strong>of</strong> actin rearrangements mediating 514. HAYAMA, N., W. WANG, AND E. G. SCHNEIDER. Osmolality-inplatelet<br />

activation. J. <strong>Cell</strong> Biol. 118: 1421–1442, 1992.<br />

duced changes in aldosterone secretion involve a chloride-depen-<br />

493. HARVEY, B. J. Cross-talk and epithelial ion transport. Curr. Opin. dent process. Am. J. Physiol. 268 (<strong>Regulatory</strong> Integrative Comp.<br />

Nephrol. Hypertens. 3: 523–528, 1994.<br />

Physiol. 37): R8–R13, 1995.<br />

494. HASEGAWA, H., T. MA, W. SKACH, M. A. MATTHAY, AND A. S. 515. HAYES, M. R., AND J. D. MCGIVAN. Differential effects <strong>of</strong> starva-<br />

VERKMAN. Molecular cloning <strong>of</strong> a mercurial-insensitive water tion on alanine and glutamine transport in isolated rat hepatochannel<br />

expressed in selected water-transporting tissues. J. Biol. cytes. Biochem. J. 204: 365–368, 1982.<br />

516. HAZAMA, A., AND Y. OKADA. Biphasic rises in cytosolic free Ca 2/<br />

Chem. 269: 5497–5500, 1994.<br />

495. HÄUSSINGER, D. The role <strong>of</strong> cellular hydration for the regulation in association with activation <strong>of</strong> K / and Cl 0 conductance during<br />

<strong>of</strong> cell function. Biochem. J. 313: 697–710, 1996.<br />

the regulatory volume decrease in cultured human epithelial cells.<br />

496. HÄUSSINGER, D., W. GEROK, AND F. LANG. <strong>Cell</strong> volume and Pflügers Arch. 416: 710–714, 1990.<br />

517. HAZAMA, A., AND Y. OKADA. Ca 2/ hepatic metabolism. Adv. Comp. Environ. Physiol. 14: 33–65,<br />

sensitivity <strong>of</strong> volume-regulatory<br />

1993. K / and Cl 0 channels in cultured human epithelial cells. J. Physiol.<br />

497. HÄUSSINGER, D., C. HALLBRUCKER, N. SAHA, F. LANG, AND (Lond.) 402: 687–702, 1988.<br />

W. GEROK. <strong>Cell</strong> volume and bile acid excretion. Biochem. J. 288: 518. HAZAMA, A., AND Y. OKADA. Involvement <strong>of</strong> Ca 2/ -induced Ca 2/<br />

681–689, 1992.<br />

release in the volume regulation <strong>of</strong> human epithelial cells exposed<br />

498. HÄUSSINGER, D., C. HALLBRUCKER, S. VOM DAHL, S. to a hypotonic medium. Biochem. Biophys. Res. Commun. 167:<br />

DECKER, U. SCHWEIZER, F. LANG, AND W. GEROK. <strong>Cell</strong> volume 287–293, 1990.<br />

is a major determinant <strong>of</strong> proteolysis control in liver. FEBS Lett. 519. HEBERT, S. C. Hypertonic cell volume regulation in mouse thick<br />

283: 70–72, 1991.<br />

limbs. I. ADH dependency and nephron heterogeneity. Am. J.<br />

499. HÄUSSINGER, D., C. HALLBRUCKER, S. VOM DAHL, F. LANG, Physiol. 250 (<strong>Cell</strong> Physiol. 19): C907–C919, 1986.<br />

AND W. GEROK. <strong>Cell</strong> swelling inhibits proteolysis in perfused rat 520. HEBERT, S. C. Hypertonic cell volume regulation in mouse thick<br />

limbs. II. Na / /H / and Cl 0 /HCO 0 liver. Biochem. J. 272: 239–242, 1990.<br />

500. HÄUSSINGER, D., AND F. LANG. Exposure <strong>of</strong> perfused liver to<br />

3 exchange in basolateral mem-<br />

branes. Am. J. Physiol. 250 (<strong>Cell</strong> Physiol. 19): C920–C931, 1986.<br />

hypotonic conditions modifies cellular nitrogen metabolism. J. 521. HEBERT, S. C., AND T. E. ANDREOLI. Effects <strong>of</strong> antidiuretic hor-<br />

<strong>Cell</strong>. Biochem. 43: 355–361, 1990.<br />

mone on cellular conductive pathways in mouse medullary thick<br />

501. HÄUSSINGER, D., AND F. LANG. <strong>Cell</strong> volume and hormone action. ascending limbs <strong>of</strong> Henle. II. Determinants <strong>of</strong> the ADH-mediated<br />

increases in transepithelial voltage and in net Cl 0 Trends Pharmacol. Sci. 13: 371–373, 1992.<br />

absorption. J.<br />

502. HÄUSSINGER, D., F. LANG, K. BAUERS, AND W. GEROK. Interac- Membr. Biol. 80: 221–233, 1984.<br />

tions between glutamine metabolism and cell-volume regulation 522. HEBERT, S. C., AND A. M. SUN. Hypotonic cell volume regulation<br />

in perfused rat liver. Eur. J. Biochem. 188: 689–695, 1990.<br />

in mouse medullary thick ascending limb: effects <strong>of</strong> ADH. Am. J.<br />

503. HÄUSSINGER, D., F. LANG, K. BAUERS, AND W. GEROK. Control Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F962–F969,<br />

<strong>of</strong> hepatic nitrogen metabolism and glutathione release by cell 1988.<br />

volume regulatory mechanisms. Eur. J. Biochem. 193: 891–898, 523. HEDIGER, M. A., AND Y. KANAI. Expression cloning and charac-<br />

1990.<br />

terization <strong>of</strong> the glutamate transporter in neurons. Renal Physiol.<br />

504. HÄUSSINGER, D., F. LANG, AND W. GEROK. Regulation <strong>of</strong> cell Biochem. 17: 161–164, 1994.<br />

function by the cellular hydration state. Am. J. Physiol. 267 (Endo- 524. HEILIG, C. W., M. E. STROMSKI, J. D. BLUMENFELD, J. P. LEE,<br />

crinol. Metab. 30): E343–E355, 1994.<br />

AND S. R. GULLANS. Characterization <strong>of</strong> the major brain osmo-<br />

505. HÄUSSINGER, D., J. LAUBENBERGER, S. VOM DAHL, T. ERNST, lytes that accumulate in salt-loaded rats. Am. J. Physiol. 257 (Re-<br />

S. BAYER, M. LANGER, W. GEROK, AND J. HENNIG. Proton mag- nal Fluid Electrolyte Physiol. 26): F1108–F1116, 1989.<br />

netic resonance spectroscopy studies on human brain myo-inosi- 525. HEILIG, C. W., M. E. STROMSKI, AND S. R. GULLANS. Methyl-<br />

tol in hypo-osmolarity and hepatic encephalopathy. Gastroenter- amine and polyol responses to salt loading in renal inner medulla.<br />

ology 107: 1475–1480, 1994.<br />

Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F1117–<br />

506. HÄUSSINGER, D., W. NEWSOME, S. VON DAHL, B. STOLL, B. F1123, 1989.<br />

NOE, R. SCHREIBER, M. WETTSTEIN, AND F. LANG. Control <strong>of</strong> 526. HENDERSON, L. M., J. B. CHAPPELL, AND O. T. JONES. Superoxliver<br />

cell function by the hydration state. Biochem. Soc. Trans.<br />

22: 497–502, 1994.<br />

507. HÄUSSINGER, D., E. ROTH, F. LANG, AND W. GEROK. <strong>Cell</strong>ular<br />

ide generation is inhibited by phospholipase A2 inhibitors. Role<br />

for phospholipase A2 in the activation <strong>of</strong> the NADPH oxidase.<br />

Biochem. J. 264: 249–255, 1989.<br />

hydration state: an important determinant <strong>of</strong> protein catabolism 527. HENSON, J. H., AND G. SCHATTEN. Calcium regulation <strong>of</strong> the<br />

in health and disease. Lancet 341: 1330–1332, 1993.<br />

actin-mediated cytoskeletal transformation <strong>of</strong> sea urchin coelomo-<br />

508. HÄUSSINGER, D., N. SAHA, C. HALLBRUCKER, F. LANG, AND cytes. <strong>Cell</strong>. Motil. 3: 525–534, 1983.<br />

W. GEROK. Involvement <strong>of</strong> microtubules in the swelling-induced 528. HERMANSSON, K., AND K. R. SPRING. Potassium induced<br />

stimulation <strong>of</strong> transcellular taurocholate transport in perfused rat changes in cell volume <strong>of</strong> gallbladder epithelium. Pflügers Arch.<br />

liver. Biochem. J. 291: 355–360, 1993.<br />

407, Suppl.: S90–S99, 1986.<br />

509. HÄUSSINGER, D., T. STEHLE, AND F. LANG. <strong>Volume</strong> regulation in 529. HESKETH, J. E., AND I. F. PRYME. Interaction between mRNA,<br />

liver: further characterization by inhibitors and ionic substitutions. ribosomes and the cytoskeleton. Biochem. J. 277: 1–10, 1991.<br />

Hepatology 11: 243–254, 1990.<br />

530. HEUSER, J. E. Effects <strong>of</strong> cytoplasmic acidification on clathrin<br />

510. HÄUSSINGER, D., B. STOLL, Y. MORIMOTO, F. LANG, AND W. lattice morphology. J. <strong>Cell</strong> Biol. 108: 401–411, 1989.<br />

GEROK. Anisoosmotic liver perfusion: redox shifts and modula- 531. HEUSER, J. E., AND R. G. W. ANDERSON. Hypertonic media intion<br />

<strong>of</strong> alpha-ketoisocaproate and glycine metabolism. Biol. hibit receptor-mediated endocytosis by blocking clathrin-coated<br />

Chem. Hoppe-Seyler 373: 723–734, 1992.<br />

pit formation. J. <strong>Cell</strong> Biol. 108: 389–400, 1989.<br />

511. HÄUSSINGER, D., B. STOLL, S. VOM DAHL, P. A. THEODORO- 532. HIGGINS, C. F. <strong>Volume</strong>-activated chloride currents associated<br />

POULOS, E. MARKOGIANNAKIS, A. GRAVANIS, F. LANG, AND with the multidrug resistance P-glycoprotein. J. Physiol. (Lond.)<br />

C. STOURNARAS. Effect <strong>of</strong> hepatocyte swelling on microtubule 482, Suppl.: 31S–36S, 1995.<br />

stability and tubulin mRNA levels. Biochem. <strong>Cell</strong>. Biol. 72: 12–19, 533. HIGGINS, C. F., J. CAIRNEY, D. A. STIRLING, L. SUTHERLAND,<br />

1994.<br />

AND I. R. BOOTH. Osmotic regulation <strong>of</strong> gene expression: ionic<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


286<br />

LANG ET AL. <strong>Volume</strong> 78<br />

strength as an intracellular signal? Trends Biochem. Sci. 12: 339– physiology (2nd ed.), edited by D. W. Seldin and G. Giebisch. New<br />

344, 1987.<br />

York: Raven, 1992, p. 1753–1778.<br />

534. HIGGINS, J., N. A. HODGES, C. J. OLLIFF, AND A. J. PHILLIPS. A 554. HUDSON, D. A. Constitutive protein secretion by guinea-pig semicomparative<br />

investigation <strong>of</strong> glycinebetaine and dimethyl sulfox- nal vesicle epithelial cells. Comp. Biochem. Physiol. 102: 701–<br />

ide as liposome cryoprotectants. J. Pharm. Pharmacol. 39: 577– 706, 1992.<br />

582, 1987.<br />

555. HUE, L. Control <strong>of</strong> liver carbohydrate and fatty acid metabolism<br />

535. HILAL-DANDAN, R., AND L. L. BRUNTON. Transmembrane mech- by cell volume. Biochem. Soc. Trans. 22: 505–508, 1994.<br />

anochemical coupling in cardiac myocytes: novel activation <strong>of</strong> Gi by hyposmotic swelling. Am. J. Physiol. 269 (Heart Circ. Physiol.<br />

38): H798–H804, 1995.<br />

536. HILL, A. E. Osmotic flow in membrane pores <strong>of</strong> molecular size.<br />

J. Membr. Biol. 137: 197–203, 1994.<br />

537. HJELLE, J. T., A. K. HO, M. A. MILLER-HJELLE, M. REITH, K. R.<br />

STEIDLEY, R. DUFFIELD, T. BUTLER, AND J. W. DOBBIE. Multiple<br />

drug classes and hyperosmolarity alter binding <strong>of</strong> muscarinic<br />

556. HUNTLEY, J. S., A. C. HALL, V. SATHYAMOORTHY, AND R. H.<br />

HALL. Cation flux studies <strong>of</strong> the lesion induced in human erythro-<br />

cyte membranes by the thermostable direct hemolysin <strong>of</strong> Vibrio<br />

parahaemolyticus. Infect. Immun. 61: 4326–4332, 1993.<br />

557. HUNZIKER, E. B., J. WAGNER, AND J. ZAPF. Differential effects <strong>of</strong><br />

insulin-like growth factor I and growth hormone on developmental<br />

stages <strong>of</strong> rat growth plate chondrocytes in vivo. J. Clin. Invest.<br />

93: 1078–1086, 1994.<br />

558. HUOT, S. J., AND P. S. ARONSON. Na / /H / drugs to mesothelial cells in vitro. Adv. Perit. Dial. 11: 3–6, 1995.<br />

538. HOCHMAN, D. W., S. C. BARABAN, J. W. OWENS, AND P. A.<br />

SCHWARTZKROIN. Dissociation <strong>of</strong> synchronization and excitability<br />

in furosemide blockade <strong>of</strong> epileptiform activity. Science 270:<br />

99–102, 1995.<br />

539. HOFFMANN, E. K., AND P. B. DUNHAM. Membrane mechanisms<br />

and intracellular signalling in cell volume regulation. Int. Rev.<br />

Cytol. 161: 173–262, 1995.<br />

540. HOFFMANN, E. K., AND K. B. HENDIL. The role <strong>of</strong> amino acids<br />

and taurine in isosmotic intracellular regulation in Ehrlich ascites<br />

mouse tumour cells. J. Comp. Physiol. 108: 279–286, 1976.<br />

541. HOFFMANN, E. K., F. JESSEN, AND P. B. DUNHAM. The Na-K-<br />

2Cl cotransporter is in a permanently activated state in cytoplasts<br />

from Ehrlich ascites tumor cells. J. Membr. Biol. 138: 229–239,<br />

1994.<br />

542. HOFFMANN, E. K., N. K. JORGENSEN, S. M. THOROED, S. PED-<br />

ERSEN, AND I. H. LAMBERT. Role <strong>of</strong> phospholipase A2, leuko-<br />

trienes, and calcium in volume regulation in Ehrlich ascites tumor<br />

cells. J. Physiol. (Lond.) In press.<br />

543. HOFFMANN, E. K., I. H. LAMBERT, AND L. O. SIMONSEN. Separate,<br />

Ca<br />

exchanger and its role<br />

in essential hypertension and diabetes mellitus. Diabetes Care 14:<br />

521–535, 1991.<br />

559. HUTTON, J. C., P. J. SCHOFIELD, J. F. WILLIAMS, AND F. C. HOL-<br />

LOWS. The localisation <strong>of</strong> sorbitol pathway activity in the rat<br />

renal cortex and its relationship to the pathogenesis <strong>of</strong> the renal<br />

complications <strong>of</strong> diabetes mellitus. Aust. J. Exp. Biol. Med. Sci.<br />

53: 49–57, 1975.<br />

560. HUXTABLE, R. J. Physiological actions <strong>of</strong> taurine. Physiol. Rev.<br />

72: 101–163, 1992.<br />

561. IIMURA, O., E. KUSANO, F. ISHIDA, S. OONO, Y. ANDO, AND Y.<br />

ASANO. Hyperosmolality rapidly reduces atrial-natriuretic-peptide-dependent<br />

cyclic guanosine monophosphate production in<br />

cultured rat inner medullary collecting duct cells. Pflügers Arch.<br />

430: 81–87, 1995.<br />

562. INGBER, D. E., D. PRUSTY, J. V. FRANGIONI, E. J. CRAGOE, JR.,<br />

C. LECHENE, AND M. A. SCHWARTZ. Control <strong>of</strong> intracellular pH<br />

and growth by fibronectin in capillary endothelial cells. J. <strong>Cell</strong><br />

Biol. 110: 1803–1811, 1990.<br />

563. INUKAI, T., X. WANG, S. E. GREER, AND M. A. GREER. <strong>Cell</strong> swelling<br />

induced by medium hyposmolarity or isosmolar urea stimu-<br />

2/ -activated K / and Cl 0 transport pathways in Ehrlich<br />

ascites tumor cells. J. Membr. Biol. 91: 227–244, 1986.<br />

544. HOFFMANN, E. K., I. H. LAMBERT, AND L. O. SIMONSEN. <strong>Mechanisms</strong><br />

in volume regulation in Ehrlich ascites tumor cells. Renal<br />

Physiol. Biochem. 11: 221–247, 1988.<br />

545. HOFFMANN, E. K., AND L. O. SIMONSEN. Membrane mechanisms<br />

in volume and pH regulation in vertebrate cells. Physiol. Rev. 69:<br />

315–382, 1989.<br />

546. HOFFMANN, E. K., L. O. SIMONSEN, AND I. H. LAMBERT. Vol-<br />

ume-induced increase <strong>of</strong> K<br />

lates gonadotropin-releasing hormone secretion from perifused<br />

rat median eminence. Brain Res. 599: 161–164, 1992.<br />

564. IRVING, T. C., B. M. MILLMAN. Z-line/I-band and A-band lattices<br />

<strong>of</strong> intact frog sartorius muscle at altered interfilament spacing. J.<br />

Muscle Res. <strong>Cell</strong>. Motil. 13: 100–105, 1992.<br />

565. ISHIBASHI, K., S. SASAKI, K. FUSHIMI, S. UCHIDA, M. KUWA-<br />

HARA, H. SAITO, T. FURUKAWA, K. NAKAJIMA, Y. YAMAGUCHI,<br />

T. GOJOBORI, AND F. MARUMO. Molecular cloning and expression<br />

<strong>of</strong> a member <strong>of</strong> the aquaporin family with permeability to<br />

/ and Cl 0 permeabilities in Ehrlich<br />

ascites tumor cells. Role <strong>of</strong> internal Ca<br />

glycerol and urea in addition to water expressed at the basolateral<br />

2/ . J. Membr. Biol. 78: 211–<br />

222, 1984.<br />

547. HOFFMANN, E. K., L. O. SIMONSEN, AND I. H. LAMBERT. <strong>Cell</strong><br />

volume regulation: intracellular transmission. In: Advances in<br />

Comparative and Environmental Physiology. Interaction, <strong>Cell</strong><br />

<strong>Volume</strong>, <strong>Cell</strong> Function, edited by F. Lang and D. Häussinger. Berlin:<br />

Springer, 1993, vol. 14, p. 187–248.<br />

548. HOFFMANN, E. K., C. SJOHOLM, AND L. O. SIMONSEN. Na<br />

membrane <strong>of</strong> kidney collecting duct cells. Proc. Natl. Acad. Sci.<br />

USA 91: 6269–6273, 1994.<br />

566. ITO, T., A. SUZUKI, AND T. P. STOSSEL. Regulation <strong>of</strong> water flow<br />

by actin-binding protein-induced actin gelation. Biophys. J. 61:<br />

1301–1305, 1992.<br />

567. ITO, T., K. S. ZANER, AND T. P. STOSSEL. Nonideality <strong>of</strong> volume<br />

flows and phase transitions <strong>of</strong> F-actin solutions in response to<br />

/ ,Cl 0<br />

cotransport in Ehrlich ascites tumor cells activated during volume<br />

regulation (regulatory volume increase). J. Membr. Biol. 76: 269–<br />

280, 1983.<br />

549. HOFFMANN, E. K., AND H. H. USSING. Membrane mechanisms in<br />

volume regulation in vertebrate cells and epithelia. In: Membrane<br />

Transport in Biology, edited by G. H. Giebisch, J. A. Schafer, H. H.<br />

Ussing, and P. Kristensen. Heidelberg, Germany: Springer-Verlag,<br />

1992, vol. 5, p. 317–399.<br />

550. HOLLMANN, M., J. BOULTER, C. MARON, AND S. HEINEMANN.<br />

Molecular biology <strong>of</strong> glutamate receptors. Potentiation <strong>of</strong> N-<br />

methyl-D-aspartate receptor splice variants by zinc. Renal Physiol.<br />

Biochem. 17: 182–183, 1994.<br />

551. HORN, T., L. BAUCE, R. LANDGRAF, AND Q. J. PITTMAN. Microdialysis<br />

with high NaCl causes central release <strong>of</strong> amino acids and<br />

osmotic stress. Biophys. J. 51: 745–753, 1987.<br />

568. ITOH, T., A. YAMAUCHI, E. IMAI, N. UEDA, AND T. KAMADA.<br />

Phosphatase toward MAP kinase is regulated by osmolarity in<br />

Madin-Darby canine kidney (MDCK) cells. FEBS Lett. 373: 123–<br />

126, 1995.<br />

569. ITOH, T., A. YAMAUCHI, A. MIYAI, K. YOKOYAMA, T. KAMADA,<br />

N. UEDA, AND Y. FUJIWARA. Mitogen-activated protein kinase<br />

and its activator are regulated by hypertonic stress in Madin-Darby<br />

canine kidney cells. J. Clin. Invest. 93: 2387–2392, 1994.<br />

570. ITZHAK, Y., A. S. BENDER, AND M. D. NORENBERG. Effect <strong>of</strong><br />

hypoosmotic stress on peripheral-type benzodiazepine receptors<br />

in cultured astrocytes. Brain Res. 644: 221–225, 1994.<br />

571. ITZHAK, Y., AND M. D. NORENBERG. Ammonia-induced upregulation<br />

<strong>of</strong> peripheral-type benzodiazepine receptors in cultured astro-<br />

cytes labeled with [ 3 dopamine. J. Neurochem. 64: 1632–1644, 1995.<br />

H]PK 11195. Neurosci. Lett. 177: 35–38, 1994.<br />

572. ITZHAK, Y., AND M. D. NORENBERG. Regulation <strong>of</strong> peripheral-<br />

552. HORTON, J. W. Cardiac contractile effects <strong>of</strong> ethanolism and hem- type benzodiazepine receptors in cultured astrocytes by monoorrhagic<br />

shock. Am. J. Physiol. 262 (Heart Circ. Physiol. 31): amine and amino acid neurotransmitters. Brain Res. 660: 346–<br />

H1096–H1103, 1992. 348, 1994.<br />

553. HOWARD, R. L., D. G. BICHET, AND R. W. SCHRIER. Hyperna- 573. IYER, S. S., D. W. PEARSON, W. M. NAUSEEF, AND R. A. CLARK.<br />

tremic and polyuric states. In: The Kidney: Physiology and Patho- Evidence for a readily dissociable complex <strong>of</strong> p47phox and<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 287<br />

p67phox in cytosol <strong>of</strong> unstimulated human neutrophils. J. Biol. to differentiate among effects <strong>of</strong> various ischemia factors on<br />

Chem. 269: 22405–22411, 1994. astrocytic cell volume. Can. J. Physiol. Pharmacol. 70, Suppl.:<br />

574. JACK, R. S. An unusually stable DNA binding protein can locate S344–S349, 1992.<br />

its specific binding site in the presence <strong>of</strong> high concentrations <strong>of</strong> 595. KAJI, D. M., J. DIAZ, AND J. C. PARKER. Urea inhibits Na-K-2Cl<br />

urea. Biochem. Biophys. Res. Commun. 169: 840–845, 1990. cotransport in medullary thick ascending limb cells. Am. J. Phys-<br />

575. JACKSON, P. S., R. MORRISON, AND K. STRANGE. The volume- iol. 272 (<strong>Cell</strong> Physiol. 41): C615–C621, 1997.<br />

sensitive organic osmolyte-anion channel VSOAC is regulated by 596. KAJI, D. M., AND C. GASSON. Urea activation <strong>of</strong> K-Cl transport in<br />

nonhydrolytic ATP binding. Am. J. Physiol. 267 (<strong>Cell</strong> Physiol. 36): human erythrocytes. Am. J. Physiol. 268 (<strong>Cell</strong> Physiol. 37):<br />

C1203–C1209, 1994.<br />

576. JACKSON, P. S., AND K. STRANGE. <strong>Volume</strong>-sensitive anion channels<br />

mediate swelling-activated inositol and taurine efflux. Am. J.<br />

Physiol. 265 (<strong>Cell</strong> Physiol. 34): C1489–C1500, 1993.<br />

577. JACOBSON, B. S. Interaction <strong>of</strong> the plasma membrane with the<br />

cytoskeleton: an overview. Tissue <strong>Cell</strong> 15: 829–852, 1983.<br />

C1018–C1025, 1995.<br />

597. KAJI, D. M., AND Y. TSUKITANI. Role <strong>of</strong> protein phosphatase in<br />

activation <strong>of</strong> KCl cotransport in human erythrocytes. Am. J. Physiol.<br />

260 (<strong>Cell</strong> Physiol. 29): C178–C182, 1991.<br />

598. KAKINUMA, Y., Y. SAKAMAKI, K. ITO, E. J. CRAGOE, JR., AND K.<br />

IGARASHI. Relationship among activation <strong>of</strong> the Na / /H / 578. JAKUBOVICZ, D. E., S. GRINSTEIN, AND A. KLIP. <strong>Cell</strong> swelling<br />

following recovery from acidification in C6 glioma cells: an in<br />

vitro model <strong>of</strong> postischemic brain edema. Brain Res. 435: 138–<br />

146, 1987.<br />

579. JARABAK, J., A. E. SEEDS, JR., AND P. TALALAY. Reversible cold<br />

inactivation <strong>of</strong> a 17b-hydroxysteroid dehydrogenase <strong>of</strong> human placenta:<br />

protective effect <strong>of</strong> glycerol. Biochemistry 5: 1269–1278,<br />

1966.<br />

580. JENNINGS, M. L., AND N. AL-ROHIL. Kinetics <strong>of</strong> activation and<br />

inactivation <strong>of</strong> swelling-stimulated K<br />

antiporter,<br />

ornithine decarboxylase induction, and DNA synthesis. Arch.<br />

Biochem. Biophys. 259: 171–178, 1987.<br />

599. KANEKO, M., D. CARPER, C. NISHIMURA, J. MILLEN, M. BOCK,<br />

AND T. C. HOHMAN. Induction <strong>of</strong> aldose reductase expression in<br />

rat kidney mesangial cells and Chinese hamster ovary cells under<br />

hypertonic conditions. Exp. <strong>Cell</strong> Res. 188: 135–140, 1990.<br />

600. KANLI, H., AND D. A. TERREROS. Acute ethanol effects on cell<br />

volume regulation. Ann. Clin. Lab. Sci. 20: 205–213, 1990.<br />

601. KAPUS, A., S. GRINSTEIN, S. WASAN, R. KANDASAMY, AND J.<br />

/ /Cl 0 transport. The volumesensitive<br />

parameter is the rate constant for inactivation. J. Gen.<br />

ORLOWSKI. <strong>Functional</strong> characterization <strong>of</strong> three is<strong>of</strong>orms <strong>of</strong> the<br />

Na / /H / exchanger stably expressed in Chinese hamster ovary<br />

Physiol. 95: 1021–1040, 1990.<br />

581. JENNINGS, M. L., AND R. K. SCHULZ. Okadaic acid inhibition <strong>of</strong><br />

KCl cotransport. Evidence that protein dephosphorylation is nec-<br />

essary for activation <strong>of</strong> transport by either cell swelling or N-<br />

ethylmaleimide. J. Gen. Physiol. 97: 799–817, 1991.<br />

582. JENSEN, B. L., AND O. SKØTT. Osmotically sensitive renin release<br />

from permeabilized juxtaglomerular cells. Am. J. Physiol. 265<br />

(Renal Fluid Electrolyte Physiol. 34): F87–F95, 1993.<br />

583. JENSEN, B. S., F. JESSEN, AND E. K. HOFFMANN. Na<br />

cells. J. Biol. Chem. 269: 23544–23552, 1994.<br />

602. KATAOKA, S., AND Y. FUJITA. Basal experiments <strong>of</strong> active oxygen<br />

generation in urinary polymorphonuclear leukocytes. Nippon.<br />

Hinyokika. Gakkai. Zasshi. 82: 16–23, 1991.<br />

603. KATAYAMA, S., M. ABE, K. TANAKA, A. OMOTO, K. NEGISHI,<br />

A. ITABASHI, AND J. ISHII. High glucose concentration suppresses<br />

mesangial laminin B2 gene expression. J. Diabetic Complications<br />

5: 118–120, 1991.<br />

/ ,K / ,Cl 0<br />

cotransport and its regulation in Ehrlich ascites tumor cells. Ca<br />

604. KATZ, U. Strategies <strong>of</strong> adaptation to osmotic stress in anuran<br />

2/ /<br />

calmodulin and protein kinase C dependent pathways. J. Membr.<br />

Biol. 131: 161–178, 1993.<br />

584. JENTSCH, T. J. Chloride channels: a molecular perspective. Curr.<br />

Opin. Neurobiol. 6: 303–310, 1996.<br />

585. JENTSCH, T. J. Molecular physiology <strong>of</strong> anion channels. Curr.<br />

Opin. <strong>Cell</strong>. Biol. 6: 600–606, 1994.<br />

586. JESSEN, F., AND E. K. HOFFMANN. Activation <strong>of</strong> the Na<br />

amphibia under salt and burrowing conditions. Comp. Biochem.<br />

Physiol. A Physiol. 93: 499–503, 1989.<br />

605. KAWAHARA, K., A. OGAWA, AND M. SUZUKI. Hyposmotic activation<br />

<strong>of</strong> Ca-activated K channels in cultured rabbit kidney proximal<br />

tubule cells. Am. J. Physiol. 260 (Renal Fluid Electrolyte Physiol.<br />

29): F27–F33, 1991.<br />

606. KEATING, J. P., G. J. SHEARS, AND P. R. DODGE. Oral water in-<br />

/ /K / /Cl 0<br />

cotransport system by reorganization <strong>of</strong> the actin filaments in<br />

Ehrlich ascites tumor cells. Biochim. Biophys. Acta 1110: 199–<br />

201, 1992.<br />

587. JIANG, L. W., M. N. CHERNOVA, AND S. L. ALPER. Secondary reg-<br />

ulatory volume increase conferred in Xenopus oocytes by expres-<br />

sion <strong>of</strong> AE2 anion exchanger. Am. J. Physiol. 272 (<strong>Cell</strong> Physiol.<br />

41): C191–C202, 1997.<br />

588. JIANG, L.-W., V. M. MAHER, J. J. MCCORMICK, AND M. SCHIND-<br />

LER. Alkalinization <strong>of</strong> the lysosomes is correlated with ras transformation<br />

<strong>of</strong> murine and human fibroblasts. J. Biol. Chem. 265:<br />

4775–4777, 1990.<br />

589. JIRSCH, J., R. G. DEELEY, S. P. C. COLE, A. J. STEWART, AND D.<br />

FEDIDA. Inwardly rectifying K<br />

toxication in infants: an American epidemic. Am. J. Dis. Child.<br />

145: 985–990, 1991.<br />

607. KELLEY, L. L., M. J. KOURY, M. C. BONDURANT, S. T. KOURY,<br />

S. T. SAWYER, AND A. WICKREMA. Survival or death <strong>of</strong> individual<br />

proerythroblasts results from differing erythropoietin sensitivities:<br />

a mechanism for controlled rates <strong>of</strong> erythrocyte production. Blood<br />

82: 2340–2352, 1993.<br />

608. KELLY, S. M., AND P. T. MACKLEM. Direct measurement <strong>of</strong> intracellular<br />

pressure. Am. J. Physiol. 260 (<strong>Cell</strong> Physiol. 29): C652–<br />

C657, 1991.<br />

609. KEMPSKI, O., L. CHAUSSY, U. GROSS, M. ZIMMER, AND A.<br />

BAETHMANN. <strong>Volume</strong> regulation and metabolism <strong>of</strong> suspended<br />

C6 glioma cells: an in vitro model to study cytotoxic brain edema.<br />

/ channels and volume-regulated<br />

anion channels in multidrug-resistant small cell lung cancer cells.<br />

Cancer Res. 53: 4156–4160, 1993.<br />

590. JIRSCH, J. D., D. W. LOE, S. P. C. COLE, R. G. DEELEY, AND D.<br />

FEDIDA. ATP is not required for anion current activated by cell<br />

swelling in multidrug-resistant lung cancer cells. Am. J. Physiol.<br />

267 (<strong>Cell</strong> Physiol. 36): C688–C699, 1994.<br />

591. JOINER, C. H. Cation transport and volume regulation in sickle<br />

red blood cells. Am. J. Physiol. 264 (<strong>Cell</strong> Physiol. 33): C251–C270,<br />

1993.<br />

592. JÖRGENSEN, N. K., I. H. LAMBERT, AND E. K. HOFFMANN. Role<br />

<strong>of</strong> LTD4 in the regulatory volume decrease response in Ehrlich<br />

ascites tumor cells. J. Membr. Biol. 151: 159–173, 1996.<br />

593. JURKOWITZ-ALEXANDER, M. S., R. A. ALTSCHULD, C. M.<br />

HOHL, J. D. JOHNSON, J. S. MCDONALD, T. D. SIMMONS, AND<br />

L. A. HORROCKS. <strong>Cell</strong> swelling, blebbing, and death are depen-<br />

Brain Res. 279: 217–228, 1983.<br />

610. KEMPSKI, O., M. SPATZ, G. VALET, AND A. BAETHMANN. <strong>Cell</strong><br />

volume regulation <strong>of</strong> cerebrovascular endothelium in vitro. J. <strong>Cell</strong>.<br />

Physiol. 123: 51–54, 1985.<br />

611. KEMPSKI, O., F. STAUB, M. JANSEN, F. SCHÖDEL, AND A.<br />

BAETHMANN. Glial swelling during extracellular acidosis in vitro.<br />

Stroke 19: 385–392, 1988.<br />

612. KEMPSKI, O., S. VON ROSEN, H. WEIGT, F. STAUB, J. PETERS,<br />

AND A. BAETHMANN. Glial ion transport and volume control.<br />

Ann. NY Acad. Sci. 633: 306–317, 1991.<br />

613. KEMPSKI, O., M. ZIMMER, A. NEU, F. VON ROSEN, M. JANSEN,<br />

AND A. BAETHMANN. Control <strong>of</strong> glial cell volume in anoxia. In<br />

vitro studies on ischemic cell swelling. Stroke 18: 623–628, 1987.<br />

614. KERN, T. S., AND R. L. ENGERMAN. Immunohistochemical distribution<br />

<strong>of</strong> aldose reductase. Histochem. J. 14: 507–515, 1982.<br />

dent on ATP depletion and independent <strong>of</strong> calcium during chemi- 615. KERSTING, U., S. NAPATHORN, AND K. R. SPRING. Necturus<br />

cal hypoxia in a glial cell line (ROC-1). J. Neurochem. 59: 344– gallbladder epithelial cell volume regulation and inhibitors <strong>of</strong> ara-<br />

352, 1992.<br />

chidonic acid metabolism. J. Membr. Biol. 135: 11–18, 1993.<br />

594. JUURLINK, B. H., Y. CHEN, AND L. HERTZ. Use <strong>of</strong> cell cultures 616. KERSTING, U., L. WOJNOWSKI, W. STEIGNER, AND H. OBER-<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


288<br />

LANG ET AL. <strong>Volume</strong> 78<br />

LEITHNER. Hypotonic stress-induced release <strong>of</strong> KHCO3 in fused pCMBS-induced swelling <strong>of</strong> the dogfish (Squalus acanthias) rectal<br />

gland cells: role <strong>of</strong> the Na / ,K / renal epitheloid (MDCK) cells. Kidney Int. 39: 891–900, 1991.<br />

-ATPase and the cytoskeleton.<br />

617. KERR, J. F., A. H. WYLLIE, AND A. R. CURRIE. Apoptosis: a basic Biochim. Biophys. Acta 1025: 21–31, 1990.<br />

638. KLEINZELLER, A., AND J. W. MILLS. K / biological phenomenon with wide ranging implications in tissue<br />

-induced swelling <strong>of</strong> the<br />

kinetics. Br. J. Cancer 26: 239–257, 1972. dogfish shark (Squalus acanthias) rectal gland cells is associated<br />

618. KHALBUSS, W. E., AND R. WONDERGEM. An electrophysiological with changes <strong>of</strong> the cytoskeleton. Biochim. Biophys. Acta 1014:<br />

technique to measure change in hepatocyte water volume. Bio- 40–52, 1989.<br />

chim. Biophys. Acta 1029: 51–60, 1990.<br />

639. KOCH-JENSEN, P., R. S. FISHER, AND K. R. SPRING. Feedback<br />

619. KHALBUSS, W. E., AND R. WONDERGEM. Involvement <strong>of</strong> cell inhibition <strong>of</strong> NaCl entry in Necturus gallbladder epithelial cells.<br />

calcium and transmembrane potential in control <strong>of</strong> hepatocyte J. Membr. Biol. 82: 95–104, 1984.<br />

volume. Hepatology 13: 962–969, 1991. 640. KOHAN, D. E., AND E. PADILLA. Osmolar regulation <strong>of</strong> endothelin-1<br />

620. KIKKAWA, R., M. HANEDA, M. TOGAWA, D. KOYA, N. KAJI- production by rat inner medullary collecting duct. J. Clin. Invest. 91:<br />

WARA, AND Y. SHIGETA. Differential modulation <strong>of</strong> mitogenic and 1235–1240, 1993.<br />

metabolic actions <strong>of</strong> insulin like growth factor I in rat glomerular 641. KOLB, H. A., AND J. UBL. Activation <strong>of</strong> anion channels by zymosan<br />

mesangial cells in high glucose culture. Diabetologia 36: 276–281, particles in membranes <strong>of</strong> peritoneal macrophages. Biochim. Bio-<br />

1993.<br />

phys. Acta 899: 239–246, 1987.<br />

621. KILBOURNE, E. J., A. MCMAHON, AND E. L. SABBAN. Membrane 642. KOLENA, J., K. MATEJCIKOVA, AND G. SRENKELOVA. Osmolytes<br />

depolarization by isotonic or hypertonic KCl: differential effects improve the reconstitution <strong>of</strong> luteinizing hormone/human chori-<br />

on mRNA levels <strong>of</strong> tyrosine hydroxylase and dopamine beta-hy- onic gonadotropin receptors into proteoliposomes. Mol. <strong>Cell</strong>. En-<br />

droxylase mRNA in PC12 cells. J. Neurosci. Methods 40: 193–202, docrinol. 83: 201–209, 1992.<br />

1991. 643. KOPELMAN, H., C. GAUTHIER, AND M. BORNSTEIN. Antisense<br />

622. KIM, D., C. D. SLADEK, C. AGUADO-VELASCO, AND J. R. MATHI- oligodeoxynucleotide to the cystic fibrosis transmembrane con-<br />

ASEN. Arachidonic acid activation <strong>of</strong> a new family <strong>of</strong> K / channels ductance regulator inhibits cyclic AMP-activated but not calcium-<br />

in cultured rat neuronal cells. J. Physiol. (Lond.) 484: 643–660, activated cell volume reduction in a human pancreatic duct cell<br />

1995. line. J. Clin. Invest. 91: 1253–1257, 1993.<br />

623. KIM, Y.-J., R. L. Y. SAH, A. J. GRODZINSKY, A. H. K. PLAAS, AND 644. KRÄMER-GUTH, A., S. SCHWEDLER, G. L. BUSCH, B. KÜPPER,<br />

J. D. SANDY. Mechanical regulation <strong>of</strong> cartilage biosynthetic be- F. LANG, AND C. WANNER. Effect <strong>of</strong> osmolarity on LDL binding<br />

havior: physical stimuli. Arch. Biochem. Biophys. 311: 1–12, 1994. and internalization in hepatocytes. Am. J. Physiol. 273 (<strong>Cell</strong> Phys-<br />

624. KIMELBERG, H. K. Current concepts <strong>of</strong> brain edema. Review <strong>of</strong> iol. 42): C1409–C1415, 1997.<br />

Laboratory Investigations. J. Neurosurg. 83: 1051–1059, 1995.<br />

625. KIMELBERG, H. K. Swelling and volume control in brain astroglial<br />

645. KRAMHØFT, B., E. K. HOFFMANN, AND L. O. SIMONSEN. pHi regulation in Ehrlich mouse ascites tumor cells: role <strong>of</strong> sodiumcells.<br />

In: Advances in Comparative and Environmental Physiol- dependent and sodium-independent chloride-bicarbonate ex-<br />

ogy: <strong>Volume</strong> and Osmolality Control in Animal <strong>Cell</strong>s, edited by change. J. Membr. Biol. 138: 121–132, 1994.<br />

R. Gilles, E. K. H<strong>of</strong>fmann, and L. Bolis. Berlin: Springer-Verlag, 646. KRANE, E. J., M. A. ROCKOFF, J. K. WALLMAN, AND J. I. WOLFS-<br />

1991, vol. 9, p. 81–117.<br />

DORF. Subclinical brain swelling in children during treatment <strong>of</strong><br />

626. KIMELBERG, H. K., S. K. GODERIE, S. HIGMAN, S. PANG, AND diabetic ketoacidosis. N. Engl. J. Med. 312: 1147–1151, 1985.<br />

R. A. WANIEWSKI. Swelling-induced release <strong>of</strong> glutamate, aspar- 647. KRAPIVINSKY, G. B., M. J. ACKERMAN, E. A. GORDON, L. D.<br />

tate, and taurine from astrocyte cultures. J. Neurosci. 10: 1583– KRAPIVINSKY, AND D. E. CLAPHAM. Molecular characterization<br />

1591, 1990. <strong>of</strong> a swelling induced chloride conductance regulatory protein,<br />

627. KIMELBERG, H. K., AND E. R. O’CONNOR. Swelling <strong>of</strong> astrocytes plCln <strong>Cell</strong> 76: 439–448, 1994.<br />

causes membrane potential depolarization. Glia 1: 219–224, 1988. 648. KREGENOW, F. M., D. E. ROBBIE, AND J. ORLOFF. Effect <strong>of</strong> nor-<br />

628. KIMELBERG, H. K., E. RUTLEDGE, S. GODERIE, AND C. CHARepinephrine and hypertonicity on K influx and cyclic AMP in duck<br />

NIGA. Astrocytic swelling due to hypotonic or high K erythrocytes. Am. J. Physiol. 231: 306–311, 1976.<br />

/ medium<br />

causes inhibition <strong>of</strong> glutamate and aspartate uptake and increases 649. KREIS, R., N. FARROW, AND B. D. ROSS. Localized 1 H NMR sprectheir<br />

release. J. Cereb. Blood Flow Metab. 15: 409–416, 1995.<br />

troscopy in patients with chronic hepatic encephalopathy. Analy-<br />

629. KINNE, R. K. H. The role <strong>of</strong> organic osmolytes in osmoregulation: sis <strong>of</strong> changes in cerebral glutamine, choline and inositols. NMR<br />

from bacteria to mammals. J. Exp. Zool. 265: 346–355, 1993.<br />

Biomed. 4: 109–116, 1991.<br />

630. KINNE, R. K. H., R. P. CZEKAY, J. M. GRUNEWALD, F. C. 650. KREIS, R., B. D. ROSS, N. A. FARROW, AND Z. ACKERMAN. Meta-<br />

MOOREN, AND E. KINNE-SAFFRAN. Hypotonicity-evoked release bolic disorders <strong>of</strong> the brain in chronic hepatic encephalopathy<br />

<strong>of</strong> organic osmolytes from distal renal cells: systems, signals, and detected with H-1 MR spectroscopy. Radiology 182: 19–27, 1992.<br />

sidedness. Renal Physiol. Biochem. 16: 66–78, 1993. 651. KRIPPEIT-DREWS, P., C. HABERLAND, J. FINGERLE, G.<br />

631. KIRK, K. L., D. R. DIBONA, AND J. A. SCHAFER. <strong>Regulatory</strong> vol- DREWS, AND F. LANG. Effects <strong>of</strong> H2O2 on membrane potential<br />

and [Ca 2/ ume decrease in perfused proximal nephron: evidence for a dumping<br />

<strong>of</strong> cell K<br />

]i <strong>of</strong> cultured rat arterial smooth muscle cells. Biochem.<br />

Biophys. Res. Commun. 209: 139–145, 1995.<br />

/ . Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol.<br />

21): F933–F942, 1987. 652. KRIPPEIT-DREWS, P., F. LANG, D. HÄUSSINGER, AND G.<br />

632. KIRK, K., J. C. ELLORY, AND J. D. YOUNG. Transport <strong>of</strong> organic<br />

substrates via a volume-activated channel. J. Biol. Chem. 267:<br />

DREWS. H2O2 induced hyperpolarization <strong>of</strong> pancreatic B-cells.<br />

Pflügers Arch. 426: 552–554, 1994.<br />

23475–23478, 1992. 653. KRISTENSEN, L. O. Associations between transports <strong>of</strong> alanine<br />

633. KIRK, K., AND H. A. HORNER. Novel anion dependence <strong>of</strong> induced and cations across cell membrane in rat hepatocytes. Am. J. Physcation<br />

transport in malaria-infected erythrocytes. J. Biol. Chem. iol. 251 (Gastrointest. Liver Physiol. 14): G575–G584, 1986.<br />

270: 24270–24275, 1995. 654. KRISTENSEN, L. O., AND M. FOLKE. <strong>Volume</strong>-regulatory K / efflux<br />

634. KIRK, K. L., J. A. SCHAFER, AND D. R. DIBONA. <strong>Cell</strong> volume regu- during concentrative uptake <strong>of</strong> alanine in isolated rat hepatocytes.<br />

lation in rabbit proximal straight tubule perfused in vitro. Am. J. Biochem. J. 221: 265–268, 1984.<br />

Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F922–F932, 655. KRÖNKE, M., S. SCHÜTZE, K. WIEGMANN, AND T. MACHLEIDT.<br />

1987.<br />

Sphingomyelinases and TNF-induced apoptosis. <strong>Cell</strong>. Physiol.<br />

635. KLEIN, J. D., AND W. C. O’NEILL. <strong>Volume</strong>-sensitive myosin phos- Biochem. 6: 337–344, 1996.<br />

phorylation in vascular endothelial cells: correlation with Na-K- 656. KRUPPA, J., AND M. J. CLEMENS. Differential kinetics <strong>of</strong> changes<br />

2Cl cotransport. Am. J. Physiol. 269 (<strong>Cell</strong> Physiol. 38): C1524– in the state <strong>of</strong> phosphorylation <strong>of</strong> ribosomal protein S6 and in the<br />

1531, 1995. rate <strong>of</strong> protein synthesis in MPC 11 cells during tonicity shifts.<br />

636. KLEIN, J. D., P. B. PERRY, AND W. C. O’NEILL. Regulation by cell EMBO J. 3: 95–100, 1984.<br />

volume <strong>of</strong> Na / -K / -2Cl 0 cotransport in vascular endothelial cells: 657. KUBO, M., AND Y. OKADA. <strong>Volume</strong>-regulatory Cl 0 channel current<br />

role <strong>of</strong> protein phosphorylation. J. Membr. Biol. 132: 243–252, in cultured human epithelial cells. J. Physiol. (Lond.) 456: 351–<br />

1993. 371, 1992.<br />

637. KLEINZELLER, A., G. W. BOOZ, J. W. MILLS, AND F. N. ZIYADEH. 658. KUCHKINA, N. V., S. N. ORLOV, N. I. POKUDIN, AND A. G. CHU-<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 289<br />

CHALIN. Effect <strong>of</strong> osmolarity <strong>of</strong> the medium on the chemilumines- 681. LANG, F., G. L. BUSCH, AND E. GULBINS. Physiology <strong>of</strong> cell surcence<br />

<strong>of</strong> human neutrophils. Biul. Eksp. Biol. Med. 115: 360–362, vival and cell death: implications for organ conservation. Nephrol.<br />

1993. Dial. Transplant. 10: 1551–1555, 1995.<br />

659. KUCHKINA, N. V., S. N. ORLOV, N. I. POKUDIN, AND A. G. CHU- 682. LANG, F., G. L. BUSCH, AND H. VÖLKL. The diversity <strong>of</strong> volume<br />

CHALIN. <strong>Volume</strong>-dependent regulation <strong>of</strong> the respiratory burst <strong>of</strong> regulatory mechanisms. <strong>Cell</strong>. Physiol. Biochem. 8: 1–45, 1998.<br />

activated human neutrophils. Experientia 49: 995–997, 1993. 683. LANG, F., G. L. BUSCH, H. VÖLKL, AND D. HÄUSSINGER. Lyso-<br />

660. KUHLENSCHMIDT, M. S., W. E. HOFFMANN, AND M. K. RIPPY. somal pH: a link between cell volume and metabolism. Biochem.<br />

Glucocorticoid hepatopathy: effect on receptor-mediated endocy- Soc. Trans. 22: 502–505, 1994.<br />

tosis <strong>of</strong> asialoglycoproteins. Biochem. Med. Metab. Biol. 46: 152–<br />

168, 1991.<br />

661. KUHN, J. L., J. H. DELACY, AND E. E. LEENELLETT. Relationship<br />

between bone growth rate and hypertrophic chondrocyte volume<br />

in New Zealand White rabbits <strong>of</strong> varying ages. J. Orthoped. Res.<br />

14: 706–711, 1996.<br />

684. LANG, F., G. L. BUSCH, H. VÖLKL, AND D. HÄUSSINGER. <strong>Cell</strong><br />

volume: a second message in regulation <strong>of</strong> cellular function. News<br />

Physiol. Sci. 10: 18–22, 1995.<br />

685. LANG, F., G. L. BUSCH, G. ZEMPEL, J. DITLEVSEN, M. HOCH,<br />

U. EMERICH, D. AXEL, J. FINGERLE, S. MEIERKORD, H. APFEL,<br />

P. KRIPPEIT-DREWS, AND H. HEINLE. Ca 2/ 662. KUMAZAWA, Y., AND K. ARAI. Suppressive effect <strong>of</strong> sorbitol on<br />

denaturation <strong>of</strong> carp myosin B induced by neutral salts. Nippon<br />

Suisan Gakkaishi. 56: 679–686, 1990.<br />

663. KUNZELMANN, K., I. N. SLOTKI, P. KLEIN, T. KOSLOWSKY, D. A.<br />

AUSIELLO, R. GREGER, AND Z. I. CABANTCHIK. Effects <strong>of</strong> P-<br />

glycoprotein expression on cyclic AMP and volume-activated ion<br />

fluxes and conductances in HT-29 colon adenocarcinoma cells. J.<br />

<strong>Cell</strong>. Physiol. 161: 393–406, 1994.<br />

664. KURIYAMA, S., Y. KAGUCHI, K. NAKAMURA, T. HASHIMOTO,<br />

AND O. SAKAI. Effect <strong>of</strong> serum on cell membrane Na-K transport <strong>of</strong><br />

vascular smooth muscle in culture—a comparative study between<br />

normotensive and hypertensive rats. Pharmacol. Res. 25: 155–<br />

165, 1992.<br />

665. KURTZ, A. Do calcium-activated chloride channels control renin<br />

secretion? News Physiol. Sci. 5: 43–46, 1990.<br />

666. KWON, H. M. Molecular regulation <strong>of</strong> mammalian osmolyte transporters.<br />

In: <strong>Cell</strong>ular and Molecular Physiology <strong>of</strong> <strong>Cell</strong> <strong>Volume</strong><br />

Regulation, edited by K. Strange. Boca Raton, FL: CRC, 1994, p.<br />

383–394.<br />

667. KWON, H. M. Osmoregulation <strong>of</strong> Na-coupled organic osmolyte<br />

transporters. Renal Physiol. Biochem. 17: 205–207, 1994.<br />

668. KWON, H. M., AND J. S. HANDLER. <strong>Cell</strong> volume regulated transporters<br />

<strong>of</strong> compatible osmolytes. Curr. Opin. <strong>Cell</strong> Biol. 7: 465–<br />

471, 1995.<br />

669. KWON, H. M., T. ITOH, J. S. RIM, AND J. S. HANDLER. The MAP<br />

kinase cascade is not essential for transcriptional stimulation <strong>of</strong><br />

osmolyte transporter genes. Biochem. Biophys. Res. Commun.<br />

213: 975–979, 1995.<br />

670. KWON, H. M., A. YAMAUCHI, S. UCHIDA, A. S. PRESTON, A.<br />

GARCIA-PEREZ, M. B. BURG, AND J. S. HANDLER. Cloning <strong>of</strong> the<br />

cDNA for a Na<br />

entry and vasoconstriction<br />

during osmotic swelling <strong>of</strong> vascular smooth muscle cells.<br />

Pflügers Arch. 431: 253–258, 1995.<br />

686. LANG, F., F. FRIEDRICH, E. KAHN, E. WÖLL, M. HAMMERER, S.<br />

WALDEGGER, K. MALY, AND H. GRUNICKE. Bradykinin-induced<br />

oscillations <strong>of</strong> cell membrane potential in cells expressing the Ha-<br />

ras oncogene. J. Biol. Chem. 266: 4938–4942, 1991.<br />

686a.LANG, F., J. MADLUNG, AND E. GULBINS. Stimulation <strong>of</strong> taurine<br />

release during Fas-(CD95)-induced apoptotic cell death (Abstract).<br />

Pflügers Arch. In press.<br />

687. LANG, F., G. MESSNER, AND W. REHWALD. Electrophysiology<br />

<strong>of</strong> sodium-coupled transport in proximal renal tubules. Am. J.<br />

Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F953–F962,<br />

1986.<br />

688. LANG, F., G. MESSNER, W. WANG, AND H. OBERLEITHNER.<br />

Interaction <strong>of</strong> intracellular electrolytes and tubular transport.<br />

Klin. Wochenschr. 61: 1029–1037, 1983.<br />

689. LANG, F., H. OBERLEITHNER, H. A. KOLB, M. PAULMICHL, H.<br />

VÖLKL, AND W. WANG. Interaction <strong>of</strong> intracellular pH and cell<br />

membrane potential. In: pH Homeostasis: <strong>Mechanisms</strong> and Control,<br />

edited by D. Häussinger. San Diego, CA: Academic, 1988, p.<br />

27–42.<br />

690. LANG, F., AND M. PAULMICHL. Properties and regulation <strong>of</strong> ion<br />

channels in MDCK cells. Kidney Int. 48: 1200–1205, 1995.<br />

691. LANG, F., M. PAULMICHL, H. VÖLKL, E. GSTREIN, AND F.<br />

FRIEDRICH. Electrophysiology <strong>of</strong> cell volume regulation. In: Mo-<br />

lecular Physiology: Biochemical Aspects <strong>of</strong> Kidney Function, ed-<br />

ited by Z. Kovacevic and W. G. Guder. Berlin: de Gruyter, 1987,<br />

p. 133–139.<br />

692. LANG, F., AND W. REHWALD. Potassium channels in renal epithelial<br />

transport regulation. Physiol. Rev. 72: 1–32, 1992.<br />

/ /myo-inositol cotransporter, a hypertonicity stress<br />

protein. J. Biol. Chem. 267: 6297–6301, 1992.<br />

671. LAMBERT, I. H. Na<br />

693. LANG, F., M. RITTER, H. VÖLKL, AND D. HÄUSSINGER. The bio-<br />

logical significance <strong>of</strong> cell volume. Renal Physiol. Biochem. 16:<br />

/ -dependent taurine uptake in Ehrlich ascites<br />

tumor cells. Mol. Physiol. 6: 233–246, 1984.<br />

672. LAMBERT, I. H. Taurine transport in Ehrlich ascites tumor cells.<br />

Specificity and chloride dependence. Mol. Physiol. 7: 323–332,<br />

1985.<br />

673. LAMBERT, I. H. Effect <strong>of</strong> arachidonic acid, fatty acids, prostaglandins,<br />

and leukotrienes on volume regulation in Ehrlich ascites<br />

tumor cells. J. Membr. Biol. 98: 207–221, 1987.<br />

674. LAMBERT, I. H. Leukotriene-D4 induced cell shrinkage in Ehrlich<br />

ascites tumor cells. J. Membr. Biol. 108: 165–176, 1989.<br />

48–65, 1993.<br />

694. LANG, F., M. RITTER, E. WÖLL, I. BICHLER, D. HÄUSSINGER,<br />

F. OFFNER, AND H. GRUNICKE. Ion transport in the regulation<br />

<strong>of</strong> cell proliferation in ras oncogene expressing 3T3 NIH fibroblasts.<br />

<strong>Cell</strong>. Physiol. Biochem 2: 213–224, 1992.<br />

695. LANG, F., M. RITTER, E. WÖLL, H. WEISS, D. HÄUSSINGER, J.<br />

HOFLACHER, K. MALY, AND H. GRUNICKE. Altered cell volume<br />

regulation in ras oncogene expressing NIH fibroblasts. Pflügers<br />

Arch. 420: 424–427, 1992.<br />

696. LANG, F., T. STEHLE, AND D. HÄUSSINGER. Water, K / ,H / 675. LAMBERT, I. H. Eicosanoids and cell volume regulation. In: <strong>Cell</strong>u-<br />

lar and Molecular Physiology <strong>of</strong> <strong>Cell</strong> <strong>Volume</strong> Regulation, edited<br />

by K. Strange. Boca Raton, FL: CRC, 1994, p. 279–298.<br />

676. LAMBERT, I. H., AND E. K. HOFFMANN. Amino acid metabolism<br />

and protein turnover under different osmotic conditions in Ehrlich<br />

ascites tumor cells. Mol. Physiol. 2: 273–286, 1982.<br />

677. LAMBERT, I. H., AND E. K. HOFFMANN. <strong>Cell</strong> swelling activates<br />

separate taurine and chloride channels in Ehrlich mouse ascites<br />

tumor cells. J. Membr. Biol. 142: 289–298, 1994.<br />

678. LAMBERT, I. H., AND E. K. HOFFMANN. Regulation <strong>of</strong> taurine<br />

transport in Ehrlich ascites tumor cells. J. Membr. Biol. 131: 67–<br />

79, 1993.<br />

679. LAMBERT, I. H., E. K. HOFFMANN, AND P. CHRISTENSEN. Role<br />

, lactate<br />

and glucose fluxes during cell volume regulation in perfused<br />

rat liver. Pflügers Arch. 413: 209–216, 1989.<br />

697. LANG, F., S. WALDEGGER, E. WÖLL, M. RITTER, K. MALY, AND<br />

H. GRUNICKE. Effects <strong>of</strong> inhibitors and ion substitutions on oscil-<br />

lations <strong>of</strong> cell membrane potential in cells expressing the ras onco-<br />

gene. Pflügers Arch. 421: 416–424, 1992.<br />

698. LANYI, J. K. Salt-dependent properties <strong>of</strong> proteins from extremely<br />

halophilic bacteria. Bacteriol. Rev. 38: 272–290, 1974.<br />

699. LARCOMBE-MCDOUALL, J. B., Y. SEO, AND M. C. STEWARD.<br />

Continuous measurement <strong>of</strong> cell volume changes in perfused rat<br />

salivary glands by proton NMR. Magn. Reson. Med. 31: 131–138,<br />

1994.<br />

<strong>of</strong> prostaglandins and leukotrienes in volume regulation by Ehr- 700. LARKIN, J. M., M. S. BROWN, J. L. GOLDSTEIN, AND R. G. AN-<br />

lich ascites tumor cells. J. Membr. Biol. 98: 247–256, 1987.<br />

DERSON. Depletion <strong>of</strong> intracellular potassium arrests coated pit<br />

680. LAMBERT, I. H., E. K. HOFFMANN, AND F. JØRGENSEN. Mem- formation and receptor-mediated endocytosis in fibroblasts. <strong>Cell</strong><br />

brane potential, anion and cation conductances in Ehrlich ascites 33: 273–285, 1983.<br />

tumor cells. J. Membr. Biol. 111: 113–131, 1989. 701. LARKIN, J. M., W. C. DONZELL, AND R. G. ANDERSON. Potas-<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


290<br />

LANG ET AL. <strong>Volume</strong> 78<br />

sium-dependent assembly <strong>of</strong> coated pits: new coated pits form as 725. LEJBKOWICZ, F., AND S. SALZBERG. Biological effects <strong>of</strong> photoplanar<br />

clathrin lattices. J. <strong>Cell</strong> Biol. 103: 2619–2627, 1986.<br />

activated-HPD and cholesteryl hemisuccinate on erythroid differ-<br />

702. LARSEN, A. K., B. S. JENSEN, AND E. K. HOFFMANN. Activation entiation. Biomater. Artif. <strong>Cell</strong>s Immobil. Biotechnol. 20: 1111–<br />

<strong>of</strong> protein kinase C during cell volume regulation in Ehrlich mouse 1120, 1992.<br />

ascites tumor cells. Biochim. Biophys. Acta 1222: 477–482, 1994. 726. LEONARD, R. J., M. L. GARCIA, R. S. SLAUGHTER, AND J. P. REU-<br />

BEN. Selective blockers <strong>of</strong> voltage-gated K / 703. LASSING, I., AND U. LINDBERG. Specific interaction between<br />

channels depolarize<br />

phosphatidylinositol 4,5-bisphosphate and pr<strong>of</strong>ilactin. Nature 314: human T lymphocytes: mechanism <strong>of</strong> the antiproliferative effect<br />

472–474, 1985.<br />

<strong>of</strong> charybdotoxin. Proc. Natl. Acad. Sci. USA 89: 10094–10098,<br />

704. LASSING, I., AND U. LINDBERG. Specificity <strong>of</strong> the interaction 1992.<br />

between phosphatidylinositol 4,5-bisphosphate and the pr<strong>of</strong>ilin- 727. LEPIDI, H., A. M. BENOLIEL, J. L. MEGE, P. BONGRAND, AND C.<br />

actin complex. J. <strong>Cell</strong> Biochem. 37: 255–267, 1988. CAPO. Double localization <strong>of</strong> F-actin in chemoattractant-stimu-<br />

705. LATZKOVITS, L., H. F. CSERR, J. T. PARK, C. S. PATLAK, K. D. lated polymorphonuclear leucocytes. J. <strong>Cell</strong> Sci. 103: 145–156,<br />

PETTIGREW, AND A. RIMANOCZY. Effects <strong>of</strong> arginine vasopres- 1992.<br />

sin and atriopeptin on glial cell volume measured as 3-MG space. 727a.LEPPLE-WIENHUES, A., I. SZABO, T. LAUN, N. K. KABA, E. GUL-<br />

Am. J. Physiol. 264 (<strong>Cell</strong> Physiol. 33): C603–C608, 1993. BINS, AND F. LANG. The tyrosine kinase p56 lck mediates activation<br />

706. LAU, K. R., R. L. HUDSON, AND S. G. SCHULTZ. <strong>Cell</strong> swelling in- <strong>of</strong> swelling-induced chloride channels in lymphocytes (Abstract).<br />

creases a barium-inhibitable potassium conductance in the baso- Pflügers Arch. In press.<br />

lateral membrane <strong>of</strong> Necturus small intestine. Proc. Natl. Acad. 728. LEUNG, S., M. E. O’DONNELL, A. MARTINEZ, AND H. C. PAL-<br />

Sci. USA 81: 3591–3594, 1984. FREY. Regulation by nerve growth factor and protein phosphory-<br />

707. LAUER, G., AND W. W. MINUTH. Apico-basal osmotic gradient lation <strong>of</strong> Na/K/2Cl cotransport and cell volume in PC12 cells. J.<br />

induces transcytosis in cultured renal collecting duct epithelium. Biol. Chem. 269: 10581–10589, 1994.<br />

J. Membr. Biol. 101: 93–101, 1988.<br />

729. LEUNIG, A., F. STAUB, J. PETERS, A. HEIMANN, C. CSAPO, O.<br />

708. LAUF, P. K. K:Cl cotransport: emerging molecular aspects <strong>of</strong> a KEMPSKI, AND A. E. GOETZ. Relation <strong>of</strong> early Phot<strong>of</strong>rin uptake<br />

ouabain-resistant, volume-responsive transport system in red to photodynamically induced phototoxicity and changes <strong>of</strong> cell<br />

blood cells. Renal Physiol. Biochem. 11: 248–259, 1988. volume in different cell lines. Eur. J. Cancer 30: 78–83, 1994.<br />

709. LAUF, P. K. On the relationship between volume- and thiol-stimu- 730. LEUNIG, A., F. STAUB, J. PETERS, R. LEIDERER, J. FEYH, AND<br />

lated K / Cl 0 fluxes in red cell membranes. Mol. Physiol. 8: 215– A. GOETZ. Die Schädigung von Tumorzellen durch die photody-<br />

234, 1985.<br />

namische Therapie. Laryngorhinootologie 73: 102–107, 1994.<br />

710. LAUF, P. K. Passive K / -Cl 0 fluxes in low-K / sheep erythrocytes: 731. LEVI, G., AND M. PATRIZIO. Astrocyte heterogeneity: endogenous<br />

modulation by A23187 and bivalent cations. Am. J. Physiol. 249 amino acid levels and release evoked by non-N-methyl-D-aspartate<br />

(<strong>Cell</strong> Physiol. 18): C271–C278, 1985. receptor agonists and by potassium-induced swelling in type-1<br />

711. LAUF, P. K., A. ERDMANN, AND N. C. ADRAGNA. K-Cl cotrans- and type-2 astrocytes. J. Neurochem. 58: 1943–1952, 1992.<br />

port, pH, and role <strong>of</strong> Mg in volume-clamped low-K sheep erythro- 732. LEVIEL, F., M. FROISSART, H. SOUALMIA, J. POGGIOLI, M. PAILcytes:<br />

three equilibrium states. Am. J. Physiol. 266 (<strong>Cell</strong> Physiol. LARD, AND M. BICHARA. Control <strong>of</strong> H / -HCO 0 3 plasma membrane<br />

35): C95–C103, 1994. transporters by urea hyperosmolality in rat medullary thick as-<br />

712. LAURITZEN, L., E. K. HOFFMANN, H. S. HANSEN, AND B. JEN- cending limb. Am. J. Physiol. 266 (<strong>Cell</strong> Physiol. 35): C1157–<br />

SEN. Dietary n-3 and n-6 fatty acids are equipotent in stimulating C1164, 1994.<br />

volume regulation in Ehrlich ascites tumor cells. Am. J. Physiol. 733. LEVIN, E. G., L. SANTELL, AND F. SALJOOQUE. Hyperosmotic<br />

264 (<strong>Cell</strong> Physiol. 33): C109–C117, 1993. stress stimulates tissue plasminogen activator expression by a<br />

713. LAVOINNE, A., A. HUSSON, M. QUILLARD, A. CHEDEVILLE, AND PKC-independent pathway. Am. J. Physiol. 265 (<strong>Cell</strong> Physiol. 34):<br />

A. FAIRAND. Glutamine inhibits the lowering effect <strong>of</strong> glucose C387–C396, 1993.<br />

on the level <strong>of</strong> phosphoenolpyruvate carboxykinase mRNA in iso- 734. LEVINSON, C. <strong>Regulatory</strong> volume increase in Ehrlich ascites tulated<br />

rat hepatocytes. Eur. J. Biochem. 242: 537–543, 1996. mor cells. Biochim. Biophys. Acta 1021: 1–8, 1990.<br />

714. LAW, R. O. Amino acids as volume-regulatory osmolytes in mam- 735. LEVINSON, C. Inability <strong>of</strong> Ehrlich ascites tumor cells to volume<br />

malian cells. Comp. Biochem. Physiol. A Physiol. 99: 263–277, regulate following a hyperosmotic challenge. J. Membr. Biol. 121:<br />

1991. 279–288, 1991.<br />

715. LAW, R. O. Effects <strong>of</strong> extracellular bicarbonate ions and pH on 736. LEVITAN, I., C. ALMONTE, P. MOLLARD, AND S. S. GARBER.<br />

volume-regulatory taurine efflux from rat cerebral cortical slices Modulation <strong>of</strong> a volume-regulated chloride current by F-actin. J.<br />

in vitro: evidence for separate neutral and anionic transport mech- Membr. Biol. 147: 283–294, 1995.<br />

anisms. Biochim. Biophys. Acta 1224: 377–383, 1994. 737. LEW, V. L., AND R. M. BOOKCHIN. Osmotic effects <strong>of</strong> protein poly-<br />

716. LAW, R. O. Regulation <strong>of</strong> mammalian brain cell volume. J. Exp. merization: analysis <strong>of</strong> volume changes in sickle cell anemia red<br />

Zool. 268: 90–96, 1994. cells following deoxy-hemoglobin S polymerization. J. Membr.<br />

717. LAW, R. O. Taurine efflux and the regulation <strong>of</strong> cell volume in Biol. 122: 55–67, 1991.<br />

incubated slices <strong>of</strong> rat cerebral cortex. Biochim. Biophys. Acta 738. LEW, V. L., AND R. M. BOOKCHIN. <strong>Volume</strong>, pH, and ion-content<br />

1221: 21–28, 1994. regulation in human red cells: analysis <strong>of</strong> transient behaviour with<br />

718. LAW, R. O. The volume and ionic composition <strong>of</strong> cells in incubated an integrated model. J. Membr. Biol. 92: 57–74, 1986.<br />

slices <strong>of</strong> rat renal cortex, medulla and papilla. Biochim. Biophys. 739. LEWIS, R. S., AND M. D. CAHALAN. The plasticity <strong>of</strong> ion channels:<br />

Acta 931: 276–285, 1987. parallels between the nervous and immune systems. Trends Neu-<br />

719. LAW, R. O., AND M. B. BURG. The role <strong>of</strong> organic osmolytes in rosci. 11: 214–218, 1988.<br />

the regulation <strong>of</strong> mammalian cell volume. In: Advances in Com- 740. LEWIS, S. A., A. G. BUTT, M. J. BOWLER, J. P. LEADER, AND<br />

parative and Environmental Physiology, edited by R. Gilles. Hei- A. D. C. MACKNIGHT. Effects <strong>of</strong> anions on cellular volume and<br />

delberg: Springer-Verlag, 1991, p. 189–225. transepithelial Na / transport across toad urinary bladder. J.<br />

720. LAWITTS, J. A., AND J. D. BIGGERS. Joint effects <strong>of</strong> sodium chlo- Membr. Biol. 83: 119–137, 1985.<br />

ride, glutamine, and glucose in mouse preimplantation embryo 741. LEWIS, S. A., AND J. L. DE MOURA. Incorporation <strong>of</strong> cytoplasmic<br />

culture media. Mol. Reprod. Dev. 31: 189–194, 1992. vesicles into apical membrane <strong>of</strong> mammalian urinary bladder epi-<br />

721. LEAF, A. On the mechanisms <strong>of</strong> fluid exchange <strong>of</strong> tissues in vitro. thelium. Nature 297: 685–688, 1982.<br />

Biochem. J. 62: 241–248, 1956. 742. LEWIS, S. A., D. C. EATON, AND J. M. DIAMOND. The mechanism<br />

<strong>of</strong> Na / 722. LECHENE, C. <strong>Cell</strong>ular volume and cytoplasmic gel. Biol. <strong>Cell</strong> 55:<br />

transport by rabbit urinary bladder. J. Membr. Biol. 28:<br />

177–180, 1985. 41–70, 1976.<br />

723. LEE, J. A., H. A. LEE, AND P. J. SADLER. Uraemia: is urea more 743. LI, Q., V. JUNGMANN, A. KIYATKIN, AND P. S. LOW. Prostaglandin<br />

important than we think? Lancet 338: 1438–1440, 1991. E2 stimulates a Ca 2/ dependent K / channel in human erythrocytes<br />

724. LEE, K. H., S. B. LEE, AND K. C. CHO. Levels <strong>of</strong> organic osmolytes and alters cell volume and filterabilty. J. Biol. Chem. 271: 18651–<br />

in normal and diuretic rat kidneys. Contrib. Nephrol. 95: 279–283, 18656, 1996.<br />

1991. 744. LICHTSTEIN, D., I. GATI, E. HAVER, AND U. KATZ. Digitalis-like<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 291<br />

compounds in the toad Bufo viridis: tissue and plasma levels and localization <strong>of</strong> aldose reductase. II. Rat eye and kidney. Diabetes<br />

significance in osmotic stress. Life Sci. 51: 119–128, 1992.<br />

29: 450–459, 1980.<br />

745. LIEN, Y. H., J. I. SHAPIRO, AND L. CHAN. Effects <strong>of</strong> hypernatremia 766. LUIKEN, J. J., J. M. AERTS, AND A. J. MEIJER. The role <strong>of</strong> the<br />

on organic brain osmoles. J. Clin. Invest. 85: 1427–1435, 1990. intralysosomal pH in the control <strong>of</strong> autophagic proteolytic flux in<br />

746. LIEN, Y. H., J. I. SHAPIRO, AND L. CHAN. Study <strong>of</strong> brain electro- rat hepatocytes. Eur. J. Biochem. 235: 564–573, 1996.<br />

lytes and organic osmolytes during correction <strong>of</strong> chronic hypona- 767. LUIKEN, J. J. F. P., E. F. C. BLOMMAART, L. BOON, G. M. VAN<br />

tremia. Implications for the pathogenesis <strong>of</strong> central pontine my- WOERKOM, AND A. J. MEIJER. <strong>Cell</strong> swelling and the control <strong>of</strong><br />

elinolysis. J. Clin. Invest. 88: 303–309, 1991.<br />

autophagic proteolysis in hepatocytes: involvement <strong>of</strong> phosphory-<br />

747. LIEN, Y. H., H. Z. ZHOU, C. JOB, J. A. BARRY, AND R. J. GILLIES. lation <strong>of</strong> ribosomal protein S6? Biochem. Soc. Trans. 22: 508–511,<br />

In vivo 1994.<br />

31 P NMR study <strong>of</strong> early cellular responses to hyperosmotic<br />

shock in cultured glioma cells. Biochimie 74: 931–939, 1992. 768. LUND, P. E., A. BERTS, AND B. HELLMAN. Stimulation <strong>of</strong> insulin<br />

748. LIN, L. R., V. N. REDDY, F. J. GIBLIN, P. F. KADOR, AND J. H. release by isosmolar addition <strong>of</strong> permeant molecules. Mol. <strong>Cell</strong>.<br />

KINOSHITA. Polyol accumulation in cultured human lens epithe- Biochem. 109: 77–81, 1992.<br />

lial cells. Exp. Eye Res. 52: 93–100, 1991.<br />

769. LUNDGREN, D. W. Effect <strong>of</strong> hypotonic stress on ornithine decar-<br />

749. LIN, M., K. MACLEOD, AND S. GUGGINO. Heat-stable toxin from boxylase mRNA expression in cultured cells. J. Biol. Chem. 267:<br />

Escherichia coli activates chloride current via cGMP-dependent 6841–6847, 1992.<br />

protein kinase. <strong>Cell</strong> Physiol. Biochem. 5: 23–32, 1995. 770. LÜSCHER, T. F. Endothelium in the control <strong>of</strong> vascular tone and<br />

750. LIN, T. Y., AND S. N. TIMASHEFF. Why do some organisms use a growth: role <strong>of</strong> local mediators and mechanical forces. Blood Presurea-methylamine<br />

mixture as osmolyte? Thermodynamic compen- sure 3: 18–22, 1994.<br />

sation <strong>of</strong> urea and trimethylamine N-oxide interactions with pro- 771. LYNCH, E. C., M. S. BLAKE, E. C. GOTSCHLICH, AND A. MAURO.<br />

tein. Biochemistry 33: 12695–12701, 1994. Studies on porins: spontaneously transferred from whole cells and<br />

751. LING, B. N., C. L. WEBSTER, AND D. C. EATON. Eicosanoids mod- from purified proteins <strong>of</strong> Neisseria gonorrhoeae and Neisseria<br />

ulate apical Ca 2/ -dependent K / channels in cultured rabbit princi- meningitidis. Biophys. J. 45: 104–107, 1984.<br />

pal cells. Am. J. Physiol. 263 (Renal Fluid Electrolyte Physiol. 772. LYTLE, C., AND B. FORBUSH III. The Na-K-Cl cotransport protein<br />

32): F116–F126, 1992. <strong>of</strong> shark rectal gland. II. Regulation by direct phosphorylation. J.<br />

752. LING, H., S. VAMVAKAS, G. L. BUSCH, J. DÄMMRICH, L. Biol. Chem. 267: 25438–25443, 1992.<br />

SCHRAMM, F. LANG, AND A. HEIDLAND. Suppressing role <strong>of</strong> 773. MA, T., A. FRIGERI, H. HASEGAWA, AND A. S. VERKMAN. Cloning<br />

transforming growth factor-b1 on cathepsin activity in cultured <strong>of</strong> a water channel homolog expressed in brain meningeal cells<br />

kidney tubule cells. Am. J. Physiol. 269 (Renal Fluid Electrolyte and kidney collecting duct that functions as a stilbene-sensitive<br />

Physiol. 38): F911–F917, 1995.<br />

glycerol transporter. J. Biol. Chem. 269: 21845–21849, 1994.<br />

753. LINSHAW, M. A. Effect <strong>of</strong> metabolic inhibitors on renal tubule 774. MACDONALD, R. L., AND T. P. ANGELOTTI. Native and recombicell<br />

volume. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol.<br />

8): F571–F577, 1980.<br />

nant GABAA receptor channels. <strong>Cell</strong>. Physiol. Biochem. 3: 352–<br />

373, 1993.<br />

754. LINSHAW, M. A., C. A. FOGEL, G. P. DOWNEY, E. W. KOO, AND 775. MACKERT, B. M., F. STAUB, J. PETERS, A. BAETHMANN, AND<br />

A. I. GOTLIEB. Role <strong>of</strong> cytoskeleton in volume regulation <strong>of</strong> rabbit O. KEMPSKI. Anoxia in vitro does not induce neuronal swelling<br />

proximal tubules in dilute medium. Am. J. Physiol. 262 (Renal or death. J. Neurol. Sci. 139: 39–47, 1996.<br />

Fluid Electrolyte Physiol. 31): F144–F150, 1992. 776. MACKNIGHT, A. D. C. Principles <strong>of</strong> cell volume regulation. Renal<br />

755. LINSHAW, M. A., AND J. J. GRANTHAM. Effect <strong>of</strong> collagenase and Physiol. Biochem. 11: 114–141, 1988.<br />

ouabain on renal cell volume in hypotonic media. Am. J. Physiol. 777. MACKNIGHT, A. D. C. The role <strong>of</strong> anions in cellular volume regu-<br />

238 (Renal Fluid Electrolyte Physiol. 7): F491–F498, 1980.<br />

lation. Pflügers Arch. 405, Suppl.: S12–S16, 1985.<br />

756. LIPSCOMBE, D., D. V. MADISON, M. POENIE, H. REUTER, R. Y. 778. MACKNIGHT, A. D. C., L. G. M. GORDON, AND R. D. PURVES.<br />

TSIEN, AND R. W. TSIEN. Spatial distribution <strong>of</strong> calcium channels Problems in the understanding <strong>of</strong> cell volume regulation. J. Exp.<br />

and cytosolic calcium transients in growth cones and cell bodies Zool. 268: 80–89, 1994.<br />

<strong>of</strong> sympathetic neurons. Proc. Natl. Acad. Sci. USA 85: 2398–2402, 779. MACKNIGHT, A. D. C., AND A. LEAF. Regulation <strong>of</strong> cellular vol-<br />

1988. ume. Physiol. Rev. 57: 510–573, 1977.<br />

757. LIVNE, A., AND E. K. HOFFMANN. Cytoplasmic acidification and 780. MACKNIGHT, A. D. C., AND R. J. SCOTT. Effects <strong>of</strong> impermeant<br />

activation <strong>of</strong> Na / /H / exchange during regulatory volume decrease medium ions on the composition <strong>of</strong> rabbit renal cortical slices.<br />

in Ehrlich ascites tumor cells. J. Membr. Biol. 114: 153–157, 1990. Renal Physiol. Biochem. 12: 118–136, 1989.<br />

758. LOHR, J. W., AND M. ACARA. Effect <strong>of</strong> dimethylaminoethanol, an 781. MACLEAN-FLETCHER, S. D., AND T. D. POLLARD. Viscometric<br />

inhibitor <strong>of</strong> betaine production on the disposition <strong>of</strong> choline in analysis <strong>of</strong> the gelation <strong>of</strong> Acanthamoeba extracts and purification<br />

the rat kidney. J. Pharmacol. Exp. Ther. 252: 154–158, 1990. <strong>of</strong> two gelation factors. J. <strong>Cell</strong> Biol. 85: 414–428, 1980.<br />

759. LOOMIS, S. H., J. F. CARPENTER, AND J. H. CROWE. Identifica- 782. MACLEOD, R. J. How an epithelial cell swells is a determinant <strong>of</strong><br />

tion <strong>of</strong> strombine and taurine as cryoprotectants in the intertidal the signaling pathways that activate RVD. In: <strong>Cell</strong>ular and Molecubivalve<br />

Mytilus edulis. Biochim. Biophys. Acta 943: 113–118, lar Physiology <strong>of</strong> <strong>Cell</strong> <strong>Volume</strong> Regulation, edited by K. Strange.<br />

1988. Boca Raton, FL: CRC, 1994, p. 191–200.<br />

760. LORENZ, L., M. PUSCH, AND T. J. JENTSCH. Heteromultimeric 783. MACLEOD, R. J., AND J. R. HAMILTON. Activation <strong>of</strong> Na / /H / ex-<br />

CLC chloride channels with novel properties. Proc. Natl. Acad. change is required for regulatory volume decrease after modest<br />

Sci. USA 93: 13362–13366, 1996. physiological volume increases in jejunal villus epithelial cells. J.<br />

761. LOVKVIST-WALLSTROM, E., L. STJERNBORG-ULVSBACK, I. E. Biol. Chem. 271: 23138–23145, 1996.<br />

SCHEFFLER, AND L. PERSSON. Regulation <strong>of</strong> mammalian orni- 784. MACLEOD, R. J., AND J. R. HAMILTON. Separate K / and Cl 0 transthine<br />

decarboxylase. Studies on the induction <strong>of</strong> the enzyme by port pathways are activated for regulatory volume decrease in<br />

hypotonic stress. Eur. J. Biochem. 231: 40–44, 1995. jejunal villus cells. Am. J. Physiol. 260 (Gastrointest. Liver Phys-<br />

762. LOW, S. Y., M. J. RENNIE, AND P. M. TAYLOR. Modulation <strong>of</strong> glyiol. 23): G405–G415, 1991.<br />

cogen synthesis in rat skeletal muscle by changes in cell volume. 785. MACLEOD, R. J., AND J. R. HAMILTON. <strong>Volume</strong> regulation initi-<br />

J. Physiol. (Lond.) 495: 299–303, 1996. ated by Na / -nutrient cotransport in isolated mammalian villus<br />

763. LUCHT, J. M., AND E. BREMER. Adaptation <strong>of</strong> Escherichia coli to enterocytes. Am. J. Physiol. 260 (Gastrointest. Liver Physiol. 23):<br />

high osmolarity environments: osmoregulation <strong>of</strong> the high affinity G26–G33, 1991.<br />

glycine betaine transport system proU. FEMS Microbiol. Rev. 14: 786. MACLEOD, R. J., J. R. HAMILTON, A. BATEMAN, D. BELCOURT,<br />

3–20, 1994. J. HU, H. P. BENNETT, AND S. SOLOMON. Corticostatic peptides<br />

764. LUCKIE, D. B., M. E. KROUSE, T. C. LAW, B. I. SIKIC, AND F. J. cause nifedipine-sensitive volume reduction in jejunal villus en-<br />

WINE. Doxorubicin selection for MDR1/P-glycoprotein reduces terocytes. Proc. Natl. Acad. Sci. USA 88: 552–556, 1991.<br />

swelling-activated K / and Cl 0 currents in MES-SA cells. Am. J. 787. MACLEOD, R. J., J. R. HAMILTON, H. KOPELMAN, AND N. B.<br />

Physiol. 270 (<strong>Cell</strong> Physiol. 39): C1029–C1036, 1996. SWEEZEY. Developmental differences <strong>of</strong> cystic fibrosis trans-<br />

765. LUDVIGSON, M. A., AND R. L. SORENSON. Immunohistochemical membrane conductance regulator functional expression in iso-<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


292<br />

LANG ET AL. <strong>Volume</strong> 78<br />

lated rat fetal distal airway epithelial cells. Pediatr. Res. 35: 45– 809. MATSUDA, S., H. KAWASAKI, T. MORIGUCHI, Y. GOTOH, AND<br />

49, 1994. E. NISHIDA. Activation <strong>of</strong> protein kinase cascades by osmotic<br />

788. MACLEOD, R. J., P. LEMBESSIS, AND J. R. HAMILTON. Differ- shock. J. Biol. Chem.: 270: 12781–12786, 1995.<br />

ences in Ca 2/ -mediation <strong>of</strong> hypotonic and Na / -nutrient regulatory 810. MATSUMOTO, T., P. VAN DER AUWERA, Y. WATANABE, M.<br />

volume decrease in suspensions <strong>of</strong> jejunal enterocytes. J. Membr. TANAKA, N. OGATA, S. NAITO, AND J. KUMAZAWA. Neutrophil<br />

Biol. 130: 23–31, 1992. function in hyperosmotic NaCl is preserved by phosphoenolpyr-<br />

789. MACROBBIE, E. A. C., AND H. H. USSING. Osmotic behaviour <strong>of</strong> uvate. Urol. Res. 19: 223–227, 1991.<br />

the epithelial cells <strong>of</strong> frog skin. Acta Physiol. Scand. 53: 348–365, 811. MATTHEWS, C. C., AND E. L. FELDMAN. Insulin-like growth fac-<br />

1961. tor I rescues SH-SY5Y human neuroblastoma cells from hyperos-<br />

790. MADARA, J. L., C. PARKOS, S. COLGAN, R. J. MACLEOD, S. motic induced programmed cell death. J. <strong>Cell</strong>. Physiol. 166: 323–<br />

NASH, J. MATTHEWS, C. DELP, AND W. LENCER. Cl 0 secretion 331, 1996.<br />

in a model intestinal epithelium induced by a neutrophil-derived 812. MATTHEWS, J. B., C. S. AWTREY, AND J. L. MADARA. Micr<strong>of</strong>ilasecretagogue.<br />

J. Clin. Invest. 89: 1938–1944, 1992. ment-dependent activation <strong>of</strong> Na / /K / /2Cl 0 cotransport by cAMP<br />

791. MAEDA, T., S. M. WURGLER-MURPHY, AND H. SAITO. A two in intestinal epithelial monolayers. J. Clin. Invest. 90: 1608–1613,<br />

component system that regulates an osmosensing MAP kinase 1992 (published erratum appears in J. Clin. Invest. 91: 1855, 1993).<br />

cascade in yeast. Nature 369: 242–245, 1994. 813. MATTHEWS, J. B., J. A. SMITH, AND B. J. HRNJEZ. Effects <strong>of</strong> F-<br />

792. MAGER, W. H., AND J. C. VARELA. Osmostress response <strong>of</strong> the actin stabilization or disassembly on epithelial Cl secretion and<br />

yeast Saccharomyces. Mol. Microbiol. 10: 253–258, 1993. Na-K-2Cl cotransport. Am. J. Physiol. 272 (<strong>Cell</strong> Physiol. 41):<br />

793. MAHNENSMITH, R. L., AND P. S. ARONSON. The plasma mem- C254–C262, 1997.<br />

brane sodium-hydrogen exchanger and its role in physiological 814. MATTHEWS, J. B., J. A. SMITH, K. J. TALLY, C. S. AWTREY, H.<br />

and pathophysiological processes. Circ. Res. 56: 773–788, 1985. NGUYEN, J. RICH, AND J. L. MADARA. Na-K-2Cl cotransport in<br />

794. MAIRBÄURL, H., AND J. F. HOFFMANN. Internal magnesium, 2,3- intestinal epithelial cells. Influence <strong>of</strong> chloride efflux and F-actin<br />

diphosphoglycerate, and the regulation <strong>of</strong> the steady-state volume on regulation <strong>of</strong> cotransporter activity and bumetanide binding.<br />

<strong>of</strong> human red blood cells by the Na/K/2Cl cotransport system. J. J. Biol. Chem. 269: 15703–15709, 1994.<br />

Gen. Physiol. 99: 721–746, 1992. 815. MCCARTY, N. A., AND R. G. O’NEIL. Calcium signaling in cell vol-<br />

795. MANARA, F. S., J. CHIN, AND D. L. SCHNEIDER. Role <strong>of</strong> degranu- ume regulation. Physiol. Rev. 72: 1037–1061, 1992.<br />

lation in activation <strong>of</strong> the respiratory burst in human neutrophils.<br />

J. Leukoc. Biol. 49: 489–498, 1991.<br />

796. MANGANEL, M., AND R. J. TURNER. Agonist-induced activation<br />

<strong>of</strong> Na<br />

816. MCMANUS, M. L., AND K. B. CHURCHWELL. Clinical significance<br />

<strong>of</strong> cellular osmoregulation. In: <strong>Cell</strong>ular and Molecular Physiology<br />

<strong>of</strong> <strong>Cell</strong> <strong>Volume</strong> Regulation, edited by K. Strange. Boca Raton, FL:<br />

/ /H / exchange in rat parotid acinar cells is dependent on<br />

calcium but not on protein kinase C. J. Biol. Chem. 265: 4284–<br />

4289, 1990.<br />

797. MANGANEL, M. AND R. J. TURNER. Rapid secretagogue-induced<br />

activation <strong>of</strong> Na<br />

CRC, 1994, p. 63–77.<br />

817. MCMANUS, M. L., K. B. CHURCHWELL, AND K. STRANGE. Regulation<br />

<strong>of</strong> cell volume in health and disease. N. Engl. J. Med. 333:<br />

1260–1266, 1995.<br />

/ /H / exchange in rat parotid acinar cells. Possible<br />

interrelationship between volume regulation and stimulus-secretion<br />

coupling. J. Biol. Chem. 266: 10182–10188, 1991.<br />

798. MARGALIT, A., AND A. A. LIVNE. Lipoxygenase product controls<br />

the regulatory volume decrease <strong>of</strong> human platelets. Platelets 2:<br />

207–214, 1991.<br />

799. MARGALIT, A., AND A. A. LIVNE. Human platelets exposed to<br />

mechanical stresses express a potent lipoxygenase product.<br />

Thromb. Haemostasis 68: 589–594, 1992.<br />

800. MARGALIT, A., A. A. LIVNE, J. FUNDER, AND Y. GRANOT. Initiation<br />

<strong>of</strong> RVD response in human platelets: mechanical-biochemical<br />

transduction involves pertussis-toxin-sensitive G protein and<br />

phospholipase A2. J. Membr. Biol. 136: 303–311, 1993.<br />

801. MARGALIT, A., Y. SOFER, S. GROSSMAN, D. REYNAUD, C. R.<br />

PACE-ASCIAK, AND A. A. LIVNE. Hepoxilin A3 is the endogenous<br />

lipid mediator opposing hypotonic swelling <strong>of</strong> intact human platelets.<br />

Proc. Natl. Acad. Sci. USA 90: 2589–2592, 1993.<br />

818. MCMANUS, M. L., C. SERHAN, P. JACKSON, AND K. STRANGE.<br />

Ketoconazole blocks organic osmolyte efflux independently <strong>of</strong> its<br />

effect on arachidonic acid conversion. Am. J. Physiol. 267 (<strong>Cell</strong><br />

Physiol. 36): C266–C271, 1994.<br />

819. MEIJER, A. J., A. BAQUET, L. GUSTAFSON, G. M. VAN WOER-<br />

KOM, AND L. HUE. Mechanism <strong>of</strong> activation <strong>of</strong> liver glycogen<br />

synthase by swelling. J. Biol. Chem. 267: 5823–5828, 1992.<br />

820. MEIJER, A. J., L. A. GUSTAFSON, J. J. F. P. LUIKEN, P. J. E.<br />

BLOMMAART, L. H. P. CARO, G. M. VAN WOERKOM, C.<br />

SPRONK, AND L. BOON. <strong>Cell</strong> swelling and the sensitivity <strong>of</strong> autoph-<br />

agic proteolysis to inhibition by amino acids in isolated rat hepato-<br />

cytes. Eur. J. Biochem. 215: 449–454, 1993.<br />

821. MELMED, R. N., P. J. KARANIAN, AND R. D. BERLIN. Control <strong>of</strong><br />

cell volume in the J774 macrophage by microtubule disassembly<br />

and cyclic AMP. J. <strong>Cell</strong> Biol. 90: 761–768, 1981.<br />

822. MELTON, J. E., C. S. PATLAK, K. D. PETTIGREW, AND H. F.<br />

CSERR. <strong>Volume</strong> regulatory loss <strong>of</strong> Na / ,Cl 0 , and K / 802. MARTIN, D. L., AND W. SHAIN. Beta-adrenergic-agonist stimulated<br />

taurine release from astroglial cells is modulated by extracellular<br />

[K<br />

from rat brain<br />

during acute hyponatremia. Am. J. Physiol. 252 (Renal Fluid Elec-<br />

trolyte Physiol. 21): F661–F669, 1987.<br />

/ ] and osmolarity. Neurochem. Res. 18: 437–444, 1993.<br />

803. MARTINEZ-MALDONADO, M., J. E. BENABE, AND H. R. COR-<br />

DOVA. Chronic clinical intrinsic renal failure. In: The Kidney:<br />

Physiology and Pathophysiology (2nd ed.), edited by D. W. Seldin<br />

and G. Giebisch. New York: Raven, 1992, p. 3227–3288.<br />

823. Meng, X. J., AND S. A. Weinman. cAMP- and swelling-activated<br />

chloride conductance in rat hepatocytes. Am. J. Physiol. 271 (<strong>Cell</strong><br />

Physiol. 40): C112–C120, 1996.<br />

824. MEYER, M., K. MALY, F. UBERALL, J. HOFLACHER, AND H.<br />

GRUNICKE. Stimulation <strong>of</strong> K / 804. MARTINS, E. A., AND R. MENEGHINI. <strong>Cell</strong>ular DNA damage by<br />

hydrogen peroxide is attenuated by hypotonicity. Biochem. J. 299:<br />

137–140, 1994.<br />

805. MARUNAKA, Y., Y. SHINTANI, E. SUGIMOTO, AND N. NIISATO.<br />

Roles <strong>of</strong> the tyrosine kinase in insulin action on cell volume <strong>of</strong><br />

fetal rat type II pneumocytes. Pflügers Arch. 432: 571–573, 1996.<br />

806. MARX, G., A. BLANKENFELD, R. PANET, AND R. GORODETSKY.<br />

Model for the regulation <strong>of</strong> platelet volume and responsiveness<br />

by the transmembrane Na<br />

transport systems by Ha-ras. J.<br />

Biol. Chem. 266: 8230–8235, 1991.<br />

825. MILLAR, I. D., M. C. BARBER, M. A. LOMAX, M. T. TRAVERS, AND<br />

D. B. SHENNAN. Mammary protein synthesis is acutely regulated<br />

by the cellular hydration state. Biochem. Biophys. Res. Commun.<br />

230: 351–355, 1997.<br />

826. MILLER, R. T., L. COUNILLON, G. PAGES, R. P. LIFTON, C. SAR-<br />

DET, AND J. POUYSSEGUR. Structure <strong>of</strong> the 5�-flanking regulatory<br />

region and gene for the human growth factor-activatable Na/H<br />

/ /K / -pump. J. <strong>Cell</strong>. Physiol. 151: 249–<br />

254, 1992.<br />

807. MASHINO, T., AND I. FRIDOVICH. Effects <strong>of</strong> urea and trimethylamine-N-oxide<br />

on enzyme activity and stability. Arch. Biochem.<br />

exchanger NHE-1. J. Biol. Chem. 266: 10813–10819, 1991.<br />

827. MILLS, G. B., E. J. CRAGOE, JR., E. W. GELFAND, AND S.<br />

GRINSTEIN. Interleukin 2 induces a rapid increase in intracellular<br />

pH through activation <strong>of</strong> a Na / /H / Biophys. 258: 356–360, 1987.<br />

antiport. J. Biol. Chem. 260:<br />

808. MASTROCOLA, T., I. H. LAMBERT, B. KRAMHØFT, M. RUGOLO, 12500–12507, 1985.<br />

AND E. K. HOFFMANN. <strong>Volume</strong> regulation in human fibroblasts: 828. MILLS, J. W. The cell cytoskeleton: possible role in volume conrole<br />

<strong>of</strong> Ca trol. Curr. Top. Membr. Transp. 30: 75–101, 1987.<br />

2/ and 5-lipoxygenase products in the activation <strong>of</strong> the<br />

Cl 0 efflux. J. Membr. Biol. 136: 55–62, 1993. 829. MILLS, J. W., AND M. LUBIN. Effect <strong>of</strong> adenosine 3�,5�-cyclic mono-<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 293<br />

phosphate on volume and cytoskeleton <strong>of</strong> MDCK cells. Am. J. MCGLAUGHIN, AND P. A. WATSON. Stretch-anabolism transduc-<br />

Physiol. 250 (<strong>Cell</strong> Physiol. 19): C319–C324, 1986.<br />

tion. J. Appl. Cardiol. 4: 415–422, 1989.<br />

830. MILLS, J. W., E. M. SCHWIEBERT, AND B. A. STANTON. Evidence 852. MORGAN, J. M. Osmoregulation and water stress in higher plants.<br />

for the role <strong>of</strong> actin filaments in regulating cell swelling. J. Exp. Annu. Rev. Plant Physiol. 35: 299–319, 1984.<br />

Zool. 268: 111–120, 1994.<br />

853. MORIGUCHI, T., H. KAWASAKI, S. MATSUDA, Y. GOTOH, AND<br />

831. MILLS, J. W., E. M. SCHWIEBERT, AND B. A. STANTON. The cy- E. NISHIDA. Evidence for multiple activators for stress-activated<br />

toskeleton and cell volume regulation. In: <strong>Cell</strong>ular and Molecular protein kinase/c-Jun amino-terminal kinases. Existence <strong>of</strong> novel<br />

Physiology <strong>of</strong> <strong>Cell</strong> <strong>Volume</strong> Regulation, edited by K. Strange. Boca activators. J. Biol. Chem. 270: 12969–12972, 1995.<br />

Raton, FL: CRC, 1994, p. 241–258.<br />

854. MORIYAMA, T., A. GARCIA-PÉREZ, AND M. B. BURG. Osmotic<br />

832. MILLS, J. W., E. M. SCHWIEBERT, AND B. A. STANTON. The cy- regulation <strong>of</strong> aldose reductase protein synthesis in renal medullary<br />

toskeleton and membrane transport. Curr. Opin. Nephrol. Hyper- cells. J. Biol. Chem. 264: 16810–16814, 1989.<br />

tens. 3: 529–534, 1994.<br />

855. MORIYAMA, T., A. GARCIA-PÉREZ, AND M. B. BURG. Factors<br />

833. MILLS, J. W., AND D. L. SKIEST. Role <strong>of</strong> cyclic AMP and the cy- affecting the ratio <strong>of</strong> different organic osmolytes in renal medultoskeleton<br />

in volume control in MDCK cells. Mol. Physiol. 8: 247– lary cells. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol.<br />

262, 1985.<br />

28): F847–F858, 1990.<br />

834. MINTON, A. P. Excluded volume as a determinant <strong>of</strong> macromolecular<br />

structure and reactivity. Biopolymers 20: 2093–2120, 1981.<br />

835. MINTON, A. P. Influence <strong>of</strong> macromolecular crowding on intracellular<br />

association reactions: possible role in volume regulation. In:<br />

<strong>Cell</strong>ular and Molecular Physiology <strong>of</strong> <strong>Cell</strong> <strong>Volume</strong> Regulation,<br />

edited by K. Strange. Boca Raton, FL: CRC, 1994, p. 181–190.<br />

836. MINTON, A. P. Macromolecular crowding and molecular recognition.<br />

J. Mol. Recognit. 6: 211–214, 1993.<br />

837. MINTON, A. P. The effect <strong>of</strong> volume occupancy upon the thermodynamic<br />

activity <strong>of</strong> proteins: some biochemical consequences.<br />

Mol. <strong>Cell</strong>. Biochem. 55: 119–140, 1983.<br />

838. MINTON, A. P., G. C. COLCLASURE, AND J. C. PARKER. Model<br />

for the role <strong>of</strong> macromolecular crowding in regulation <strong>of</strong> cellular<br />

volume. Proc. Natl. Acad. Sci. USA 89: 10504–10506, 1992.<br />

839. MISGELD, U., R. A. DEISZ, H. U. DODT, AND H. D. LUX. The role<br />

<strong>of</strong> chloride transport in postsynaptic inhibition <strong>of</strong> hippocampal<br />

neurons. Science 232: 1413–1415, 1986.<br />

840. MIYOSHI, K., H. FUNAHASHI, K. OKUDA, AND K. NIWA. Development<br />

<strong>of</strong> rat one-cell embryos in a chemically defined medium:<br />

effects <strong>of</strong> glucose, phosphate and osmolarity. J. Reprod. Fertil.<br />

100: 21–26, 1994.<br />

841. MOIR, A. M., AND V. A. ZAMMIT. Insulin-independent and extremely<br />

rapid switch in the partitioning <strong>of</strong> hepatic fatty acids from<br />

oxidation to esterification in starved-refed diabetic rats. Possible<br />

roles for changes in cell pH and volume. Biochem. J. 305: 953–<br />

958, 1995.<br />

842. MOLSKI, T. F., P. H. NACCACHE, P. BORGEAT, AND R. I.<br />

SHA’AFI. Similarities in the mechanisms by which formyl-methionyl-leucyl-phenylalanine,<br />

arachidonic acid, and leukotriene B4 in-<br />

856. MORIYAMA, T., H. R. MURPHY, B. M. MARTIN, AND A. GARCIA-<br />

PÉREZ. Detection <strong>of</strong> specific mRNAs in single nephron segments<br />

by use <strong>of</strong> the polymerase chain reaction. Am. J. Physiol. 258<br />

(Renal Fluid Electrolyte Physiol. 27): F1470–F1474, 1990.<br />

857. MORRIS, C. E. Mechanosensitive ion channels. J. Membr. Biol.<br />

113: 93–107, 1990.<br />

858. MORRIS-JONES, P. H., I. B. HOUSTON, AND R. C. EVANS. Prognosis<br />

<strong>of</strong> the neurological complications <strong>of</strong> acute hypernatremia. Lan-<br />

cet 2: 1385–1389, 1967.<br />

859. MORTIMORE, G. E., AND A. R. PÖSÖ. Intracellular protein catabo-<br />

lism and its control during nutrient deprivation and supply. Annu.<br />

Rev. Nutr. 7: 539–564, 1987.<br />

860. MORTIMORE, G. E., AND A. R. PÖSÖ. Lysosomal pathways in he-<br />

patic protein degradation: regulatory role <strong>of</strong> amino acids. Federa-<br />

tion Proc. 43: 1289–1294, 1984.<br />

861. MOTAIS, R., B. FIEVET, F. BORGESE, AND F. GARCIA-ROMEU.<br />

Association <strong>of</strong> the band 3 protein with a volume activated anion<br />

and amino acid channel, a molecular approach. J. Exp. Biol. 200:<br />

361–367, 1997.<br />

862. MOTAIS, R., H. GUIZOUARN, AND F. GARCIA-ROMEU. Red cell<br />

volume regulation: the pivotal role <strong>of</strong> ionic strength in controlling<br />

swelling-dependent transport systems. Biochim. Biophys. Acta<br />

1075: 169–180, 1991.<br />

863. MOYES, C. D., AND T. W. MOON. Solute effects on the glycine<br />

cleavage system <strong>of</strong> two osmoconformers Raja erinacea and Mya<br />

arenaria and an osmoregulator Pseudopleuronectes americanus.<br />

J. Exp. Zool. 242: 1–8, 1987.<br />

864. MUALLEM, S., B. X. ZHANG, P. A. LOESSBERG, AND R. A. STAR.<br />

Simultaneous recording <strong>of</strong> cell volume changes and intracellular<br />

pH or Ca 2/ crease calcium and sodium influxes in rabbit neutrophils. Biochem.<br />

Biophys. Res. Commun. 103: 227–232, 1981.<br />

843. MONTROSE-RAFIZADEH, C., AND W. B. GUGGINO. <strong>Cell</strong> volume<br />

regulation in the nephron. Annu. Rev. Physiol. 52: 761–772, 1990.<br />

844. MOOLENAAR, W. H. Effects <strong>of</strong> growth factors on intracellular pH<br />

regulation. Annu. Rev. Physiol. 48: 363–376, 1986.<br />

concentration in single osteosarcoma cells UMR-106–<br />

01. J. Biol. Chem. 267: 17658–17664, 1992.<br />

865. MÜLLER, D. Long-term potentiation and glutamate receptors: a<br />

role for protein kinases. Renal Physiol. Biochem. 17: 157–160,<br />

1994.<br />

866. MURPHY, D., AND D. CARTER. Vasopressin gene expression in<br />

the rodent hypothalamus: transcriptional and posttranscriptional<br />

845. MOORMAN, J. R., S. J. ACKERMAN, G. C. KOWDLEY, M. P. GRIF- responses to physiological stimulation. Mol. Endocrinol. 4: 1051–<br />

FIN, J. P. MOUNSEY, Z. CHEN, S. E. CALA, J. J. O’BRIEN, G. 1059, 1990.<br />

SZABO, AND L. R. JONES. Unitary anion currents through phos- 867. MURPHY, M. G., C. JOLLIMORE, J. F. CROCKER, AND H. HER.<br />

pholemman channel molecules. Nature 377: 737–740, 1995. Beta-oxidation <strong>of</strong> [1- 14 C]palmitic acid by mouse astrocytes in pri-<br />

846. MORAN, A., AND R. J. TURNER. Secretagogue-induced RVD in mary culture: effects <strong>of</strong> agents implicated in the encephalopathy<br />

HSY cells is due to K / channels activated by Ca 2/ and protein <strong>of</strong> Reye’s syndrome. J. Neurosci. Res. 33: 445–454, 1992.<br />

kinase C. Am. J. Physiol. 265 (<strong>Cell</strong> Physiol. 34): C1405–C1411, 868. MUSCH, M. W., AND L. GOLDSTEIN. High affinity binding <strong>of</strong> an-<br />

1993. kyrin induced by volume expansion in skate erythrocytes. J. Biol.<br />

847. MORAN, J., S. HURTADO, AND H. PASANTES MORALES. Similar Chem. 271: 21221–21225, 1996.<br />

properties <strong>of</strong> taurine release induced by potassium and hyposmo- 869. MUSCH, M. W., T. R. LEFFINGWELL, AND L. GOLDSTEIN. Band<br />

larity in the rat retina. Exp. Eye Res. 53: 347–352, 1991. 3 modulation and hypotonic-stimulated taurine efflux in skate<br />

848. MORAN, J., M. SABANERO, I. MEZA, AND H. PASANTES-MO- erythrocytes. Am. J. Physiol. 266 (<strong>Regulatory</strong> Integrative Comp.<br />

RALES. Changes <strong>of</strong> actin cytoskeleton during swelling and regula- Physiol. 35): R65–R74, 1994.<br />

tory volume decrease in cultured astrocytes. Am. J. Physiol. 271 870. NACCACHE, P. H., H. J. SHOWELL, E. L. BECKER, AND R. I.<br />

(<strong>Cell</strong> Physiol. 40): C1901–C1907, 1996. SHA’AFI. Transport <strong>of</strong> sodium, potassium, and calcium across<br />

849. MORATINOS, J., AND M. REVERTE. Effects <strong>of</strong> catecholamines rabbit polymorphonuclear leukocyte membranes: effect <strong>of</strong> chemoon<br />

plasma potassium: the role <strong>of</strong> alpha and beta adrenoceptors. tactic factor. J. <strong>Cell</strong> Biol. 73: 428–444, 1977.<br />

Fundam. Clin. Pharmacol. 7: 143–153, 1993. 871. NACCACHE, P. H., H. J. SHOWELL, E. L. BECKER, AND R. I.<br />

850. MORETTI, R., M. MARTIN, T. PROVERBIO, F. PROVERBIO, AND SHA’AFI. Changes in ionic movements across rabbit polymorpho-<br />

R. MARIN. Ouabain-insensitive Na-ATPase activity in homoge- nuclear leukocyte membranes during lysosomal enzyme release.<br />

nates from different animal tissues. Comp. Biochem. Physiol. 98: Possible ionic basis for lysosomal enzyme release. J. <strong>Cell</strong> Biol.<br />

623–626, 1991. 75: 635–649, 1977.<br />

851. MORGAN, H. E., X. P. XENOPHONTOS, T. HANEDA, S. 872. NAKAHARI, T., M. MURAKAMI, Y. SASAKI, T. KATAOKA, Y. IMAI,<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


294<br />

LANG ET AL. <strong>Volume</strong> 78<br />

Y. SHIBA, AND Y. KANNO. Dose effects <strong>of</strong> acetylcholine on the 893. NILIUS, B., AND W. WOHLRAB. Potassium channels and regulation<br />

cell volume <strong>of</strong> rat mandibular salivary acini. Jpn. J. Physiol. 41: <strong>of</strong> proliferation <strong>of</strong> human melanoma cells. J. Physiol. (Lond.) 445:<br />

153–168, 1991. 537–548, 1992.<br />

873. NAKAHARI, T., M. MURAKAMI, H. YOSHIDA, M. MIYAMOTO, Y. 894. NISHINA, H., K. D. FISCHER, L. RADVANYI, A. SHAHINIAN, R.<br />

SOHMA, AND Y. IMAI. Decrease in rat submandibular acinar cell HAKEM, E. A. RUBIE, A. BERNSTEIN, T. W. MAK, J. R. WOODvolume<br />

during ACh stimulation. Am. J. Physiol. 258 (Gastrointest. GETT, AND J. M. PENNINGER. Stress signalling kinase Sek1 pro-<br />

Liver Physiol. 21): G878–G886, 1990. tects thymocytes from apoptosis mediated by CD95 and CD3.<br />

874. NAKAHARI, T., M. C. STEWARD, H. YOSHIDA, AND Y. IMAI. Os- Nature 385: 350–353, 1997.<br />

motic flow transients during acetylcholine stimulation in the per- 895. NOE, B., F. SCHLIESS, M. WETTSTEIN, S. HEINRICH, AND D.<br />

fused rat submandibular gland. Exp. Physiol. 82: 55–70, 1997.<br />

HÄUSSINGER. Regulation <strong>of</strong> taurocholate excretion by a hypoos-<br />

875. NAKANISHI, T., R. S. BALABAN, AND M. B. BURG. Survey <strong>of</strong> os- molarity-activated signal transduction pathway in rat liver. Gas-<br />

molytes in renal cell lines. Am. J. Physiol. 255 (<strong>Cell</strong> Physiol. 24): troenterology 110: 858–865, 1996.<br />

C181–C191, 1988. 896. NORENBERG, M. D. Astrocyte responses to CNS injury. J. Neuro-<br />

876. NAKANISHI, T., AND M. B. BURG. Osmoregulatory fluxes <strong>of</strong> myopathol. Exp. Neurol. 53: 213–220, 1994.<br />

inositol and betaine in renal cells. Am. J. Physiol. 257 (<strong>Cell</strong> Phys- 897. NORENBERG, M. D., L. BAKER, L. O. NORENBERG, J. BLICHARiol.<br />

26): C964–C970, 1989.<br />

SKA, J. H. BRUCE-GREGORIOS, AND J. T. NEARY. Ammonia-in-<br />

877. NAKANISHI, T., R. J. TURNER, AND M. B. BURG. Osmoregulatory duced astrocyte swelling in primary culture. Neurochem. Res. 16:<br />

changes in myo-inositol transport by renal cells. Proc. Natl. Acad. 833–836, 1991.<br />

Sci. USA 86: 6002–6006, 1989. 898. NORENBERG, M. D., AND A. S. BENDER. Astrocyte swelling in<br />

878. NAKANISHI, T., R. J. TURNER, AND M. B. BURG. Osmoregulation liver failure: role <strong>of</strong> glutamine and benzodiazepines. Acta Neu<strong>of</strong><br />

betaine transport in mammalian renal medullary cells. Am. J. rochir. 60: 24–27, 1994.<br />

Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F1061–F1067, 899. NORRIE, D. H., J. WOLSTENHOLME, H. HOWCROFT, AND J. STE-<br />

1990. PHEN. Vaccinia virus-induced changes in [Na / ] and [K / ] in HeLa<br />

879. NAKANISHI, T., O. UYAMA, H. NAKAHAMA, Y. TAKAMITSU, AND cells. J. Gen. Virol. 62: 127–136, 1982.<br />

M. SUGITA. Determinants <strong>of</strong> relative amounts <strong>of</strong> medullary or- 900. OBERLEITHNER, H., G. GIEBISCH, F. LANG, AND W. WANG.<br />

ganic osmolytes: effects <strong>of</strong> NaCl and urea differ. Am. J. Physiol. <strong>Cell</strong>ular mechanism <strong>of</strong> the furosemide sensitive transport system<br />

264 (Renal Fluid Electrolyte Physiol. 33): F472–F479, 1993.<br />

in the kidney. Klin. Wochenschr. 60: 1173–1179, 1982.<br />

880. NAKANISHI, T., A. YAMAUCHI, H. NAKAHAMA, Y. YAMAMURA, 901. O’BRIEN, J. A., R. J. WALTERS, M. A. VALVERDE, AND F. V. SEP-<br />

Y. YAMADA, Y. ORITA, Y. FUJIWARA, N. UYEDA, Y. TAKAMITSU, ULVEDA. <strong>Regulatory</strong> volume increase after hypertonicity- or vaso-<br />

AND M. SUGITA. Organic osmolytes in rat renal inner medulla are active-intestinal-peptide-induced cell-volume decrease in small-intestinal<br />

crypts is dependent on Na / -K / -2Cl 0 modulated by vasopressin V1 and/or V2 antagonists. Am. J. Phys-<br />

cotransport. Pflügers<br />

iol. 267 (Renal Fluid Electrolyte Physiol. 36): F146–F152, 1994. Arch. 423: 67–73, 1993.<br />

881. NATARAJAN, R., N. GONZALES, L. XU, AND J. L. NADLER. Vascu- 902. O’CONNOR, E. R., H. K. KIMELBERG, C. R. KEESE, AND I.<br />

lar smooth muscle cells exhibit increased growth in response to GIAEVER. Electrical resistance method for measuring volume<br />

elevated glucose. Biochem. Biophys. Res. Commun. 187: 552– changes in monolayer cultures applied to primary astrocyte cul-<br />

560, 1992. tures. Am. J. Physiol. 264 (<strong>Cell</strong> Physiol. 33): C471–C478, 1993.<br />

882. NAUNTOFTE, B. Regulation <strong>of</strong> electrolyte and fluid secretion in 903. O’DONNELL, M. E., A. MARTINEZ, AND D. SUN. Endothelial Nasalivary<br />

acinar cells. Am. J. Physiol. 263 (Gastrointest. Liver K-Cl cotransport regulation by tonicity and hormones: phosphory-<br />

Physiol. 26): G823–G837, 1992.<br />

lation <strong>of</strong> cotransport protein. Am. J. Physiol. 269 (<strong>Cell</strong> Physiol.<br />

883. NEARY, J. T., Q. FU, A. S. BENDER, AND M. D. NORENBERG. 38): C1513–C1523, 1995.<br />

Effect <strong>of</strong> external acidosis on basal and ATP-evoked calcium in- 904. OFFENSPERGER, W. B., S. OFFENSPERGER, B. STOLL, W.<br />

flux in cultured astrocytes. Brain Res. 604: 211–216, 1993.<br />

GEROK, AND D. HÄUSSINGER. Effects <strong>of</strong> anisotonic exposure on<br />

884. NEEDHAM, D. Possible role <strong>of</strong> cell cycle-dependent morphology, duck hepatitis B virus replication. Hepatology 20: 1–7, 1994.<br />

geometry, and mechanical properties in tumor cell metastasis. 905. OH, M. S., AND H. J. CARROLL. Disorders <strong>of</strong> sodium metabolism:<br />

<strong>Cell</strong>. Biophys. 18: 99–121, 1991.<br />

hypernatremia and hyponatremia. Crit. Care Med. 20: 94–103,<br />

885. NEGULESCU, P. A., B. MUNCK, AND T. E. MACHEN. <strong>Volume</strong>-sen- 1992.<br />

sitive Ca influx and release from intracellular pools in gastric 906. OHNISHI, S., M. HARA, C. INAGAKI, T. YAMASHITA, AND T. KU-<br />

MAZAWA. Regulation <strong>of</strong> Cl 0 parietal cells. Am. J. Physiol. 263 (<strong>Cell</strong> Physiol. 32): C584–C589,<br />

conductance in delayed shortening<br />

1992. and shrinkage <strong>of</strong> outer hair cells. Acta Otolaryngol. Suppl. 500:<br />

886. NEWSOME, W. P., U. WARSKULAT, B. NOE, M. WETTSTEIN, B. 42–45, 1993.<br />

STOLL, W. GEROK, AND D. HÄUSSINGER. Modulation <strong>of</strong> phos- 907. OHTSUYAMA, M., Y. SUZUKI, G. SAMMAN, F. SATO, AND K.<br />

phoenolpyruvate carboxykinase mRNA levels by the hepatocellu- SATO. <strong>Cell</strong> volume analysis <strong>of</strong> gramicidin-treated eccrine clear<br />

lar hydration state. Biochem. J. 304: 555–560, 1994. cells to study regulation <strong>of</strong> Cl channels. Am. J. Physiol. 265 (<strong>Cell</strong><br />

887. NG, L. L., C. DUDLEY, J. BOMFORD, AND D. HAWLEY. Leukocyte Physiol. 34): C1090–C1099, 1993.<br />

intracellular pH and Na / /H / antiport activity in human hyperten- 908. OIKI, S., M. KUBO, AND Y. OKADA. Mg 2/ and ATP-dependence <strong>of</strong><br />

volume-sensitive Cl 0 sion. J. Hypertens. 7: 471–475, 1989.<br />

channels in human epithelial cells. Jpn. J.<br />

888. NG, L. L., D. SIMMONS, V. FRIGHI, M. C. GARRIDO, AND J. BOM- Physiol. 44, Suppl.: S77–S79, 1994.<br />

FORD. Effect <strong>of</strong> protein kinase C modulators on the leucocyte 909. OKA, J. A., M. D. CHRISTENSEN, AND P. H. WEIGEL. Hyperosmo-<br />

Na larity inhibits galactosyl receptor-mediated but not fluid phase<br />

/ /H / antiport in type 1 (insulin-dependent) diabetic subjects<br />

with albuminuria. Diabetologia 33: 278–284, 1990. endocytosis in isolated rat hepatocytes. J. Biol. Chem. 264: 12016–<br />

889. NG, L. L., D. SIMMONS, V. FRIGHI, M. C. GARRIDO, J. BOM- 12024, 1989.<br />

FORD, AND T. D. R. HOCKADAY. Leukocyte Na / /H / antiport activ- 910. OKADA, H., K. ISHII, K. NUNOKI, AND N. TAIRA. Cloning <strong>of</strong> a<br />

ity in type 1 (insulin-dependent) diabetic patients with nephropa- swelling-induced chloride current related protein from rabbit<br />

thy. Diabetologia 33: 371–377, 1990. heart. Biochim. Biophys. Acta 1234: 145–148, 1995.<br />

890. NGEZAHAYO, A., AND H.-A. KOLB. Gap junctional permeability is 911. OKADA, M., Y. SAITO, E. SAWADA, AND A. NISHIYAMA. Miaffected<br />

by cell volume changes and modulates volume regulation. cr<strong>of</strong>luorimetric imaging study <strong>of</strong> the mechanism <strong>of</strong> activation <strong>of</strong><br />

the Na / /H / FEBS Lett. 276: 6–8, 1990.<br />

antiport by muscarinic agonist in rat mandibular aci-<br />

891. NICOLL, R. A., R. C. MALENKA, AND J. A. KAUER. <strong>Functional</strong> nar cells. Pflügers Arch. 419: 338–348, 1991.<br />

comparison <strong>of</strong> neurotransmitter receptor subtypes in mammalian 911a.OKADA, Y. <strong>Volume</strong> expansion-sensing outward-rectifier Cl 0 chan-<br />

central nervous system. Physiol. Rev. 70: 514–565, 1990.<br />

nel: fresh start to the molecular identity and volume sensor. Am.<br />

892. NIELSEN, B. W., T. BJERKE, T. M. DAMSGAARD, T. HERLIN, J. Physiol. 273 (<strong>Cell</strong> Physiol. 42): C755–C789, 1997.<br />

K. THESTRUP-PEDERSEN, AND P. O. SCHIOTZ. Hyperosmolarity 912. OKADA, Y., A. HAZAMA, A. HASHIMOTO, Y. MARUYAMA, AND<br />

selectively enhances IgE-receptor-mediated histamine release M. KUBO. Exocytosis upon osmotic swelling in human epithelial<br />

from human basophils. Agents Actions 35: 170–178, 1992. cells. Biochim. Biophys. Acta 1107: 201–205, 1992.<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 295<br />

913. OLIET, S. H., AND C. W. BOURQUE. Mechanosensitive channels blood cells. Am. J. Physiol. 244 (<strong>Cell</strong> Physiol. 13): C324–C330,<br />

transduce osmosensitivity in supraoptic neurons. Nature 364: 1983.<br />

341–343, 1993. 934. PARKER, J. C. Glutaraldehyde fixation <strong>of</strong> sodium transport in dog<br />

914. OLIVIERI, O., D. VITOUX, F. GALACTEROS, D. BACHIR, Y. BLOU- red blood cells. J. Gen. Physiol. 84: 789–803, 1984.<br />

QUIT, Y. BEUZARD, AND C. BRUGNARA. Hemoglobin variants 935. PARKER, J. C. Interactions <strong>of</strong> lithium and protons with the soand<br />

activity <strong>of</strong> the (K / Cl 0 ) cotransport system in human erythro- dium-proton exchanger <strong>of</strong> dog red blood cells. J. Gen. Physiol.<br />

cytes. Blood 79: 793–797, 1992. 87: 189–200, 1986.<br />

915. OLSON, J. E., J. A. EVERS, AND M. BANKS. Brain osmolyte content 936. PARKER, J. C. Urea alters set point volume for K-Cl cotransport,<br />

and blood-brain barrier water permeability surface area product Na-H exchange, and Ca-Na exchange in dog red blood cells. Am.<br />

in osmotic edema. Acta Neurochir. Suppl. 60: 571–573, 1994. J. Physiol. 265 (<strong>Cell</strong> Physiol. 34): C447–C452, 1993.<br />

916. O’NEILL, W. C., AND D. F. STEINBERG. <strong>Functional</strong> coupling <strong>of</strong> 937. PARKER, J. C. In defense <strong>of</strong> cell volume? Am. J. Physiol. 265<br />

Na / -K / -2Cl 0 cotransport and Ca 2/ -dependent K / channels in vas- (<strong>Cell</strong> Physiol. 34): C1191–C1200, 1993.<br />

cular endothelial cells. Am. J. Physiol. 269 (<strong>Cell</strong> Physiol. 38): 938. PARKER, J. C. Coordinated regulation <strong>of</strong> volume-activated trans-<br />

C267–274, 1995. port pathways. In: <strong>Cell</strong>ular and Molecular Physiology <strong>of</strong> <strong>Cell</strong> Vol-<br />

917. ORDWAY, R. W., S. PETROU, M. T. KIRBER, JR., J. V. WALSH, ume Regulation, edited by K. Strange. Boca Raton, FL: CRC, 1994,<br />

AND J. J. SINGER. Two distinct mechanisms <strong>of</strong> ion channel activa- p. 311–324.<br />

tion by membrane stretch: evidence that endogenous fatty acids 939. PARKER, J. C., AND G. C. COLCLASURE. Actions <strong>of</strong> thiocyanate<br />

mediate stretch activation <strong>of</strong> K / channels (Abstract). Biophys. J. and N-phenylmaleimide on volume-responsive Na and K transport<br />

61: A391, 1992. in dog red cells. Am. J. Physiol. 262 (<strong>Cell</strong> Physiol. 31): C418–<br />

918. ORFALI, K. A., AND M. C. SUGDEN. Interactive effects <strong>of</strong> alpha- C421, 1992.<br />

adrenergic agonists and increased cell volume on deoxyglucose 940. PARKER, J. C., AND G. C. COLCLASURE. Macromolecular crowduptake<br />

and phosphorylation in isolated ventricular myocytes (Ab- ing and volume perception in dog red cells. Mol. <strong>Cell</strong>. Biochem.<br />

stract). Biochem. Soc. Trans. 22: 162S, 1994. 114: 9–11, 1992.<br />

919. ORLOV, S. N., T. J. RESINK, J. BERNHARDT, AND F. R. BUHLER. 941. PARKER, J. C., G. C. COLCLASURE, AND T. J. MCMANUS. Coordi-<br />

<strong>Volume</strong>-dependent regulation <strong>of</strong> sodium and potassium fluxes in nated regulation <strong>of</strong> shrinkage-induced Na/H exchange and swellcultured<br />

vascular smooth muscle cells: dependence on medium ing-induced [K-Cl] cotransport in dog red cells. Further evidence<br />

osmolality and regulation by signalling systems. J. Membr. Biol. from activation kinetics and phosphatase inhibition. J. Gen. Phys-<br />

129: 199–210, 1992. iol. 98: 869–880, 1991.<br />

920. ORRINGER, E. P., J. S. BROCKENBROUGH, J. A. WHITNEY, P. S. 942. PARKER, J. C., P. B. DUNHAM, AND A. P. MINTON. Effects <strong>of</strong><br />

GLOSSON, AND J. C. PARKER. Okadaic acid inhibits activation <strong>of</strong> ionic strength on the regulation <strong>of</strong> Na/H exchange and K-Cl co-<br />

K-Cl cotransport in red blood cells containing hemoglobins S and<br />

C. Am. J. Physiol. 261 (<strong>Cell</strong> Physiol. 30): C591–C593, 1991.<br />

921. OSEHOBO, E. P., AND R. D. ANDREW. Osmotic effects upon the<br />

theta rhythm, a natural brain oscillation in the hippocampal slice.<br />

Exp. Neurol. 124: 192–199, 1993.<br />

922. OSHIMI, Y., AND S. MIYAZAKI. Fas antigen-mediated DNA fragmentation<br />

and apoptotic morphologic changes are regulated by<br />

elevated cytosolic Ca<br />

transport in dog red blood cells. J. Gen. Physiol. 105: 677–699,<br />

1995.<br />

943. PARKER, J. C., H. J. GITELMAN, AND T. J. MCMANUS. Role <strong>of</strong> Mg<br />

in the activation <strong>of</strong> Na-H exchange in dog red cells. Am. J. Physiol.<br />

257 (<strong>Cell</strong> Physiol. 26): C1038–C1041, 1989.<br />

944. PARKER, J. C., T. J. MCMANUS, L. C. STARKE, AND H. J. GITEL-<br />

MAN. Coordinated regulation <strong>of</strong> Na/H exchange and [K-Cl] co-<br />

2/ level. J. Immunol. 154: 599–609, 1995.<br />

923. OSSWALD, H., AND U. QUAST. Ion channels and renin secretion<br />

from juxtaglomerular cells. In: The Electrophysiology <strong>of</strong> Neuroendocrine<br />

<strong>Cell</strong>s, edited by H. Scherübl and J. Hescheler. Boca Raton,<br />

FL: CRC, 1995, p. 301–314.<br />

924. OUAHBI, A., C. DUCHENE, AND R. GILLES. Comparative studies<br />

<strong>of</strong> volume restoration following cold-stress induced swelling in<br />

renal tissues. I. Effects <strong>of</strong> ouabain, K<br />

transport in dog red cells. J. Gen. Physiol. 96: 1141–1152, 1990.<br />

945. PARRY-BILLINGS, M., S. J. BEVAN, E. OPARA, AND E. A. NEWS-<br />

HOLME. Effects <strong>of</strong> changes in cell volume on the rates <strong>of</strong> gluta-<br />

mine and alanine release from rat skeletal muscle in vitro. Biochem.<br />

J. 276: 559–561, 1991.<br />

946. PARSONS, D. F. Tumor cell interactions with stromal elastin and<br />

type I collagen: the consequences <strong>of</strong> specific adhesion and proteo-<br />

/ free medium, colchicine<br />

and cytochalasin B on rat and rabbit kidney cortex slices. Comp.<br />

Biochem. Physiol. A Physiol. 97: 265–273, 1990.<br />

925. PAGLIACCI, M. C., F. SPINOZZI, G. MIGLIORATI, G. FUMI, M.<br />

SMACCHIA, F. GRIGNANI, C. RICCARDI, AND I. NICOLETTI. Genistein<br />

inhibits tumour cell growth in vitro but enhances mitochondrial<br />

reduction <strong>of</strong> tetrazolium salts: a further pitfall in the use <strong>of</strong><br />

the MTT assay for evaluating cell growth and survival. Eur. J.<br />

Cancer 29: 1573–1577, 1993.<br />

926. PALEG, L. G., T. J. DOUGLAS, A. VAN DAAL, AND D. B. KEECH.<br />

Proline, betaine and other organic solutes protect enzymes against<br />

heat inactivation. Aust. J. Plant Physiol. 8: 107–114, 1981.<br />

927. PALFREY, H. C. Protein phosphorylation control in the activity<br />

<strong>of</strong> volume-sensitive transport systems. In: <strong>Cell</strong>ular and Molecular<br />

Physiology <strong>of</strong> <strong>Cell</strong> <strong>Volume</strong> Regulation, edited by K. Strange. Boca<br />

Raton, FL: CRC, 1994, p. 201–214.<br />

928. PALFREY, H. C., AND M. E. O’DONNELL. Characteristics and regu-<br />

lation <strong>of</strong> the Na/K/2Cl cotransporter. <strong>Cell</strong>. Physiol. Biochem. 2:<br />

293–307, 1992.<br />

lysis. Tumor Biol. 14: 137–143, 1993.<br />

947. PAULMICHL, M., F. FRIEDRICH, K. MALY, AND F. LANG. The<br />

effect <strong>of</strong> hyposmolarity on the electrical properties <strong>of</strong> Madin-<br />

Darby canine kidney cells. Pflügers Arch. 413: 456–462, 1989.<br />

948. PAULMICHL, M., M. GSCHWENTNER, E. WÖLL, A. SCHMARDA,<br />

M. RITTER, G. KANIN, H. ELLEMUNTER, W. WAITZ, AND P.<br />

DEETJEN. Insight into the structure-function relation <strong>of</strong> chloride<br />

channels. <strong>Cell</strong>. Physiol. Biochem. 3: 374–387, 1993.<br />

949. PAULMICHL, M., Y. LI, K. WICKMAN, M. ACKERMAN, E. PER-<br />

ALTA, AND D. CLAPHAM. New mammalian chloride channel identified<br />

by expression cloning. Nature 356: 238–241, 1992.<br />

950. PAULMICHL, M., E. WÖLL, H. WEISS, S. WALDEGGER, AND F.<br />

LANG. Effect <strong>of</strong> trifluoperazine on renal epitheloid Madin-Darby<br />

canine kidney cells. J. <strong>Cell</strong>. Physiol. 148: 314–319, 1991.<br />

951. PAYNE, J. A., AND B. FORBUSH III. Alternatively spliced is<strong>of</strong>orms<br />

<strong>of</strong> the putative renal Na-K-Cl cotransporter are differentially distributed<br />

within the rabbit kidney. Proc. Natl. Acad. Sci. USA 91:<br />

4544–4548, 1994.<br />

929. PAOLETTI, P., AND P. ASCHER. Mechanosensitivity <strong>of</strong> NMDA re- 952. PAYNE, J. A., AND B. FORBUSH III. Molecular characterization <strong>of</strong><br />

ceptors in cultured mouse central neurons. Neuron 13: 645–655, the epithelial Na-K-Cl cotransporter is<strong>of</strong>orms. Curr. Opin. <strong>Cell</strong><br />

1994.<br />

Biol. 7: 493–503, 1995.<br />

930. PAPPENHEIMER, J. R., AND K. VOLPP. Transmucosal impedance 953. PEAK, M., M. AL-HABORI, AND L. AGIUS. Regulation <strong>of</strong> glycogen<br />

<strong>of</strong> small intestine: correlation with transport <strong>of</strong> sugars and amino synthesis and glycolysis by insulin, pH and cell volume. Interac-<br />

acids. Am. J. Physiol. 263 (<strong>Cell</strong> Physiol. 32): C480–C493, 1992. tions between swelling and alkalinization in mediating the effects<br />

931. PARCZYK, K., AND C. KONDOR-KOCH. The influence <strong>of</strong> pH on <strong>of</strong> insulin. Biochem. J. 282: 797–805, 1992.<br />

the vesicular traffic to the surface <strong>of</strong> the polarized epithelial cell, 954. PEARL, M., AND A. TAYLOR. Role <strong>of</strong> the cytoskeleton in the con-<br />

MDCK. Eur. J. <strong>Cell</strong> Biol. 48: 353–359, 1989.<br />

trol <strong>of</strong> transcellular water flow by vasopressin in amphibian uri-<br />

932. PARKER, J. C. Sodium and calcium movements in dog red blood nary bladder. Biol. <strong>Cell</strong> 55: 163–172, 1985.<br />

cells. J. Gen. Physiol. 71: 1–17, 1978. 955. PECSVARADY, Z., T. C. FISHER, A. FABOK, T. D. COATES, AND<br />

933. PARKER, J. C. <strong>Volume</strong>-responsive sodium movements in dog red H. J. MEISELMAN. Kinetics <strong>of</strong> granulocyte deformability follow-<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


296<br />

LANG ET AL. <strong>Volume</strong> 78<br />

ing exposure to chemotactic stimuli. Blood <strong>Cell</strong>s 18: 333–352, 976. PORONNIK, P., S. Y. SCHUMANN, AND D. I. COOK. HCO 0 3 depen-<br />

dent ACh-activated Na / 1992.<br />

influx in sheep parotid secretory end-<br />

956. PEDERSEN, S. F., B. KRAMHOFT, N. K. JORGENSEN, AND E. K. pieces. Pflügers Arch. 429: 852–858, 1995.<br />

HOFFMANN. Shrinkage-induced activation <strong>of</strong> the Na 977. POULIN, R., R. S. WECHTER, AND A. E. PEGG. An early enlarge-<br />

/ /H / exchanger<br />

in Ehrlich ascites tumor cells: mechanisms involved in the ment <strong>of</strong> the putrescine pool is required for growth in L1210 mouse<br />

activation and a role for the exchanger in cell volume regulation. J. leukemia cells under hyposmotic stress. J. Biol. Chem. 266: 6142–<br />

Membr. Biol. 149: 141–159, 1996. 6151, 1991.<br />

957. PEÑA-RASGADO, C., V. A. KIMLER, K. D. MCGRUDER, J. TIE, 978. PRAKASH, V., C. LOUCHEUX, S. SCHEUFELE, M. J. GORBU-<br />

AND H. RASGADO-FLORES. Opposite roles <strong>of</strong> cAMP and cGMP NOFF, AND S. N. TIMASHEFF. Interactions <strong>of</strong> proteins with sol-<br />

on volume loss in muscle cells. Am. J. Physiol. 267 (<strong>Cell</strong> Physiol. vent components in 8 M urea. Arch. Biochem. Biophys. 210: 455–<br />

36): C1319–C1328, 1994. 464, 1981.<br />

958. PEÑA-RASGADO, C., K. D. MCGRUDER, J. C. SUMMERS, AND H. 979. PREDEL, H. G., Z. YANG, L. VON SEGESSER, M. TURINA, F. R.<br />

RASGADO-FLORES. Effect <strong>of</strong> isosmotic removal <strong>of</strong> extracellular BÜHLER, AND T. F. LÜSCHER. Implications <strong>of</strong> pulsatile stretch<br />

Ca on growth <strong>of</strong> saphenous vein and mammary artery smooth muscle.<br />

2/ and <strong>of</strong> membrane potential on cell volume in muscle cells.<br />

Am. J. Physiol. 267 (<strong>Cell</strong> Physiol. 36): C768–C775, 1994. Lancet 340: 878–879, 1992.<br />

959. PEÑA-RASGADO, C., J. C. SUMMERS, K. D. MCGRUDER, J. DE- 980. PRESTON, G. M., T. P. CARROLL, W. P. GUGGINO, AND P. AGRE.<br />

SANTIAGO, AND H. RASGADO-FLORES. Effect <strong>of</strong> isosmotic re- Appearance <strong>of</strong> water channels in Xenopus oocytes expressing red<br />

moval <strong>of</strong> extracellular Na cell CHIP28 protein. Science 256: 385–387, 1992.<br />

/ on cell volume and membrane potential<br />

in muscle cells. Am. J. Physiol. 267 (<strong>Cell</strong> Physiol. 36): C759–C767, 981. PURO, D. G., F. ROBERGE, AND C. C. CHAN. Retinal glial cell<br />

1994.<br />

proliferation and ion channels: a possible link. Invest. Ophthal-<br />

960. PENDERGRASS, W. R., J. C. ANGELLO, M. D. KIRSCHNER, AND mol. Visual Sci. 30: 521–529, 1989.<br />

T. H. NORWOOD. The relationship between the rate <strong>of</strong> entry into 982. RABKIN, R., M. PALATHUMPAT, AND T. TSAO. Ammonium chlo-<br />

S phase, concentration <strong>of</strong> DNA polymerase alpha, and cell volume ride alters renal tubular cell growth and protein turnover. Lab.<br />

in human diploid fibroblast-like monokaryon cells. Exp. <strong>Cell</strong> Res. Invest. 68: 427–438, 1993.<br />

192: 418–425, 1991. 983. RADKE, K. J., R. E. CLENDENIN III, R. E. TAYLOR, JR., AND E. G.<br />

961. PENDERGRASS, W. R., J. C. ANGELLO, A. C. SAULEWICZ, AND SCHNEIDER. Calcium dependence <strong>of</strong> osmolality-, potassium-, and<br />

T. H. NORWOOD. DNA polymerase alpha and the regulation <strong>of</strong> angiotensin II-induced aldosterone secretion. Am. J. Physiol. 256<br />

entry into S phase in heterokaryons. Exp. <strong>Cell</strong> Res. 192: 426–432, (Endocrinol. Metab. 19): E760–E764, 1989.<br />

1991. 984. RAJAGOPALAN, K. V., I. FRIDOVICH, AND P. HANDLER. Compet-<br />

962. PEREZ, M., A. BARBER, AND F. PONZ. Effect <strong>of</strong> osmolarity on itive inhibition <strong>of</strong> enzyme activity by urea. J. Biol. Chem. 236:<br />

the epithelial paracellular permeabilty in rat jejunum. J. Physiol. 1059–1065, 1961.<br />

Biochem. 52: 103–112, 1996. 985. RAND, R. P., AND A. C. BURTON. Mechanical properties <strong>of</strong> the red<br />

963. PERRY, P. B., AND W. C. O’NEILL. Swelling-activated K fluxes in cell membrane. I. Membrane stiffness and intracellular pressure.<br />

vascular endothelial cells: volume regulation via K-Cl cotransport Biophys. J. 4: 115–135, 1964.<br />

and K channels. Am. J. Physiol. 265 (<strong>Cell</strong> Physiol. 34): C763– 986. RAO, G. N., N. DEROUX, C. SARDET, J. POUYSSEGUR, AND B.<br />

C769, 1993. BERK. Na / /H / antiporter gene expression precedes monocytic<br />

964. PERSSON, A. E., M. SALOMONSSON, P. WESTERLUND, R. differentiation <strong>of</strong> HL60 cells (Abstract). FASEB J. 5: A671, 1991.<br />

GREGER, E. SCHLATTER, AND E. GONZALEZ. Macula densa cell 987. RASGADO-FLORES, H., C. PEÑA-RASGADO, AND S. EHRENfunction.<br />

Kidney Int. 32, Suppl.: S39–S44, 1991. PREIS. <strong>Cell</strong> volume and drug action: some interactions and per-<br />

965. PESKIN, C. S., G. M. ODELL, AND G. F. OSTER. <strong>Cell</strong>ular motions spectives. Drug Dev. Res. 36: 61–80, 1995.<br />

and thermal fluctuations: the Brownian ratchet. Biophys. J. 65: 988. RASOLA, A., L. J. GALIETA, D. C. GRUENERT, AND G. ROMEO.<br />

316–324, 1993. <strong>Volume</strong>-sensitive chloride currents in four epithelial cell lines are<br />

966. PETERSON, D. P., K. M. MURPHY, R. URSINO, K. STREETER, not directly correlated to the expression <strong>of</strong> the MDR-1 gene. J.<br />

AND P. H. YANCEY. Effects <strong>of</strong> dietary protein and salt on rat renal Biol. Chem. 269: 1432–1436, 1994.<br />

osmolytes: covariation in urea and GPC contents. Am. J. Physiol. 989. RAYMOND, J. A. Glycerol is a colligative antifreeze in some north-<br />

263 (Renal Fluid Electrolyte Physiol. 32): F594–F600, 1992. ern fishes. J. Exp. Zool. 262: 347–352, 1992.<br />

967. PETRONINI, P. G., E. M. DE-ANGELIS, P. BORGHETTI, A. F. 990. REDDY, V. N., L. R. LIN, F. J. GIBLIN, B. CHAKRAPANI, AND T.<br />

BORGHETTI, AND K. P. WHEELER. Modulation by betaine <strong>of</strong> cel- YOKOYAMA. Study <strong>of</strong> the polyol pathway and cell permeability<br />

lular responses to osmotic stress. Biochem. J. 282: 69–73, 1992. changes in human lens and retinal pigment epithelium in tissue<br />

968. PEWITT, E. B., R. S. HEGDE, M. HAAS, AND H. C. PALFREY. The culture. Invest. Ophthalmol. Visual Sci. 33: 2334–2339, 1992.<br />

regulation <strong>of</strong> Na/K/2Cl cotransport and bumetanide binding in 991. REEVES, W. B., AND R. W. GURICH. Calcium-dependent chloride<br />

avian erythrocytes by protein phosphorylation and dephosphory- channels in endosomes from rabbit kidney cortex. Am. J. Physiol.<br />

lation. J. Biol. Chem. 265: 20747–20756, 1990. 266 (<strong>Cell</strong> Physiol. 35): C741–C750, 1994.<br />

969. PFALLER, W., C. WILLINGER, B. STOLL, C. HALLBRUCKER, F. 992. REINACH, P. S., J. T. TARVIN, AND M. HIRSCH. Changes in cellu-<br />

LANG, AND D. HÄUSSINGER. Structural reaction pattern <strong>of</strong> hepa- lar membrane and paracellular conductances by amphotericin B<br />

tocytes following exposure to hypotonicity. J. <strong>Cell</strong>. Physiol. 154: in the epithelium <strong>of</strong> the bullfrog cornea. Biochim. Biophys. Acta<br />

248–253, 1993. 1066: 115–123, 1991.<br />

970. PIERCE, S. K. Invertebrate cell volume control mechanisms: a 993. REUNER, K. H., K. SCHLEGEL, I. JUST, K. AKTORIES, AND N.<br />

coordinated use <strong>of</strong> intracellular amino acids and inorganic ions KATZ. Autoregulatory control <strong>of</strong> actin synthesis in cultured rat<br />

as osmotic solute. Biol. Bull. 163: 405–419, 1982. hepatocytes. FEBS Lett. 286: 100–104, 1991.<br />

971. PIERCE, S. K., AND A. D. POLITIS. Ca 2/ -activated cell volume re- 994. REUSS, L., AND G. A. ALTENBERG. cAMP-activated Cl 0 channels:<br />

covery mechanisms. Annu. Rev. Physiol. 52: 27–42, 1990. regulatory role in gallbladder and other absorptive epithelia. News<br />

972. PINE, M. B., W. W. BROOKS, J. J. NOSTA, AND W. H. ABELMANN. Physiol. Sci. 10: 86–91, 1995.<br />

Hydrostatic forces limit swelling <strong>of</strong> rat ventricular myocardium. 995. REUSS, L., AND C. U. COTTON. <strong>Volume</strong> regulation in epithelia:<br />

Am. J. Physiol. 241 (Heart Circ. Physiol. 10): H740–H747, 1981. transcellular transport and cross-talk. In: <strong>Cell</strong>ular and Molecular<br />

973. PINE, M. B., D. RHODES, K. THORP, AND Y. TSAI. Anion exchange Physiology <strong>of</strong> <strong>Cell</strong> <strong>Volume</strong> Regulation, edited by K. Strange. Boca<br />

and volume regulation during metabolic blockade <strong>of</strong> renal cortical Raton, FL: CRC, 1994, p. 31–47.<br />

slices. J. Physiol. (Lond.) 297: 387–403, 1979. 996. REY, O., J. P. F. C. ROSSI, R. LOPEZ, S. J. IAPALUCCI-ESPINOZA,<br />

974. PINTO, L. H., L. J. HOLSINGER, AND R. A. LAMB. Influenza virus<br />

AND M. T. FRANZE-FERNANDEZ. Tacaribe virus infection may<br />

M2 protein has ion channel activity. <strong>Cell</strong> 69: 517–528, 1992. induce inhibition <strong>of</strong> the activity <strong>of</strong> the host cell Ca 2/ and Na / /K /<br />

975. POLISCHUK, T. M., AND R. D. ANDREW. Real time imaging <strong>of</strong> pumps. J. Gen. Virol. 69: 951–954, 1988.<br />

intrinsic optical signals during early excitotoxicity evoked by do- 997. RICHTER, E. A., P. J. CLELAND, S. RATTIGAN, AND M. G. CLARK.<br />

moic acid in the rat hippocampal slice. Can. J. Physiol. Pharma- Contraction-associated translocation <strong>of</strong> protein kinase C in rat<br />

col. 74: 712–722, 1996. sceletal muscle. FEBS Lett. 217: 232–236, 1987.<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 297<br />

998. RICK, R. Ion concentration changes in renal cells during regula- 1019. ROSENGREN, S., P. M. HENSON, AND G. S. WORTHEN. Migratory<br />

volume decrease. Am. J. Physiol. 265 (Renal Fluid Electrotion-associated volume changes in neutrophils facilitate the migralyte<br />

Physiol. 34): F77–F86, 1993. tory process in vitro. Am. J. Physiol. 267 (<strong>Cell</strong> Physiol. 36):<br />

999. RIEPE, M., AND D. O. CARPENTER. Delayed increase <strong>of</strong> cell vol- C1623–C1632, 1994.<br />

ume <strong>of</strong> single pyramidal cells in live rat hippocampal slices upon 1020. ROSETTE, C., AND M. KARIN. Ultraviolet light and osmotic stress:<br />

kainate application. Neurosci. Lett. 191: 35–38, 1995.<br />

activation <strong>of</strong> the JNK cascade through multiple growth factor and<br />

1000. RITTER, M., AND E. WÖLL. Modification <strong>of</strong> cellular ion transport cytokine receptors. Science 274: 1194–1197, 1996.<br />

by the Ha-ras oncogene: steps towards malignant transformation. 1021. ROSS, B. D., S. JACOBSON, F. VILLAMIL, J. KORULA, R. KREIS,<br />

<strong>Cell</strong>. Physiol. Biochem. 6: 245–270, 1996. T. ERNST, T. SHONK, AND R. A. MOATS. Subclinical hepatic en-<br />

1001. RITTER, M., P. DARTSCH, S. WALDEGGER, T. HALLER, H. cephalopathy: proton MR spectroscopic abnormalities. Radiology<br />

ZWIERZINA, H. J. LANG, AND F. LANG. Effects <strong>of</strong> bradykinin on 193: 457–463, 1994.<br />

NIH 3T3 fibroblasts pretreated with lithium-mimicking events <strong>of</strong> 1022. ROSSKOPF, D., R. DÜSING, AND W. SIFFERT. Membrane sodium-<br />

Ha-ras oncogene expression. Biochim. Biophys. Acta 1358: 20– proton exchange and primary hypertension. Hypertension 21:<br />

30, 1997.<br />

607–617, 1993.<br />

1002. RITTER, M., M. PAULMICHL, AND F. LANG. Further characteriza- 1023. ROSSKOPF, D., E. FRÖMTER, AND W. SIFFERT. Hypertensive<br />

tion <strong>of</strong> volume regulatory decrease in cultured renal epitheloid sodium-proton exchanger phenotype persists in immortalized<br />

(MDCK) cells. Pflügers Arch. 418: 35–39, 1991. lymphoblasts from essential hypertensive patients. A cell culture<br />

1003. RITTER, M., P. SCHRATZBERGER, E. WÖLL, CH. KÄHLER, N. model for human hypertension. J. Clin. Invest. 92: 2553–2559,<br />

REINISCH, F. LANG, AND C. H. WIEDERMANN. <strong>Cell</strong> volume regu- 1993.<br />

latory ion transport mechanisms involved in the regulation <strong>of</strong> neu- 1024. ROSSKOPF, D., N. HAIDER, B. QUEDNAU, AND W. SIFFERT.<br />

trophil leucocyte migration (Abstract). Pflügers Arch. 431S: P227, Expression and activity <strong>of</strong> the Na / /H / exchanger NHE-1 in various<br />

1996.<br />

tissues <strong>of</strong> spontaneously hypertensive rats and normotensive<br />

1004. RITTER, M., E. WÖLL, T. HALLER, P. C. DARTSCH, H. ZWIER- Wistar-Kyoto rats. <strong>Cell</strong>. Physiol. Biochem. 5: 276–285, 1995.<br />

ZINA, AND F. LANG. Activation <strong>of</strong> the Na / /H / exchanger by the 1025. ROSSKOPF, D., W. SCHOLZ, H. J. LANG, B. A. SCHÖLKENS, AND<br />

transforming Ha-ras requires stimulated cellular calcium influx W. SIFFERT. HOE 694 blocks Na / /H / exchange in human B<br />

and is associated with rearrangement <strong>of</strong> the actin cytoskeleton. lymphoblasts without influencing proliferation. <strong>Cell</strong> Physiol. Bio-<br />

Eur. J. <strong>Cell</strong> Biol. 72: 222–228, 1997. chem. 5: 269–275, 1995.<br />

1005. RITTER, M., E. WÖLL, D. HÄUSSINGER, AND F. LANG. Effects 1026. ROSSKOPF, D., K.-J. SCHRÖDER, AND W. SIFFERT. Role <strong>of</strong> so<strong>of</strong><br />

bradykinin on cell volume and intracellular pH in NIH 3T3 dium-hydrogen exchange in the proliferation <strong>of</strong> immortalised<br />

fibroblasts expressing the ras oncogene. FEBS Lett. 307: 367–370, lymphoblasts from patients with essential hypertension and nor-<br />

1992. motensive subjects. Cardiovasc. Res. 29: 254–259, 1995.<br />

1006. RITTER, M., E. WÖLL, S. WALDEGGER, D. HÄUSSINGER, H. J. 1027. ROTH, E., G. ZÖCH, F. SCHULZ, J. KARNER, F. MÜHLBACHER,<br />

LANG, W. SCHOLZ, B. SCHÖLKENS, AND F. LANG. <strong>Cell</strong> shrinkage G. HAMILTON, W. MAURITZ, P. SPORN, AND J. FUNOVICS.<br />

stimulates bradykinin induced cell membrane potential oscilla- Amino acid concentrations in plasma and skeletal muscle <strong>of</strong> pations<br />

in NIH 3T3 fibroblasts expressing the ras-oncogene. Pflügers tients with acute hemorrhagic necrotizing pancreatitis. Clin.<br />

Arch. 423: 221–224, 1993. Chem. 31: 1305–1309, 1985.<br />

1007. RIVAS, T., E. URCELAY, C. MANCHON-GONZALEZ, R. PARILLA, 1028. ROTHSTEIN, A., AND E. MACK. Actions <strong>of</strong> mercurials on cell<br />

AND M. S. AYUSO. Role <strong>of</strong> amino acid-induced changes in ion volume regulation <strong>of</strong> dissociated MDCK cells. Am. J. Physiol. 260<br />

fluxes in the regulation <strong>of</strong> hepatic protein synthesis. J. <strong>Cell</strong>. Phys- (<strong>Cell</strong> Physiol. 29): C113–C121, 1991.<br />

iol. 163: 277–284, 1995. 1029. ROTHSTEIN, A., AND E. MACK. <strong>Volume</strong>-activated K / and Cl 0 path-<br />

1008. ROBBINS, E., T. PEDERSON, AND P. KLEIN. Comparison <strong>of</strong> mi- ways <strong>of</strong> dissociated epithelial cells (MDCK): role <strong>of</strong> Ca 2/ . Am. J.<br />

totic phenomena and effects induced by hyperonic solutions in Physiol. 258 (<strong>Cell</strong> Physiol. 27): C827–C834, 1990.<br />

HeLa cells. J. <strong>Cell</strong> Biol. 44: 400–416, 1970. 1030. ROTOLI, B. M., O. BUSSOLATI, V. DALLASTA, E. K. HOFFMANN,<br />

1009. ROBERTSON, M. A., AND J. K. FOSKETT. Na / transport pathways G. CABRINI, AND G. C. GAZZOLA. CFTR expression in C127 cells<br />

in secretory acinar cells: membrane cross talk mediated by [Cl 0 ] i. is associated with enhanced cell shrinkage and ATP extrusion in<br />

Am. J. Physiol. 267 (<strong>Cell</strong> Physiol. 36): C146–C156, 1994. Cl-free medium. Biochem. Biophys. Res. Commun. 227: 755–761,<br />

1010. ROBINSON, A. G., AND J. N. LOEB. Ethanol ingestion: commonest 1996.<br />

cause <strong>of</strong> elevated plasma osmolality? N. Engl. J. Med. 284: 1253– 1031. ROUGIER, J. P., P. MOULLIER, R. PIEDAGNEL, AND P. M.<br />

1255, 1971. RONCO. Hyperosmolality suppresses but TGF beta 1 increases<br />

1011. ROBINSON, C. R., AND S. G. SLIGAR. Molecular recognition medi- MMP9 in human peritoneal mesothelial cells. Kidney Int. 51: 337–<br />

ated by bound water. A mechanism for star activity <strong>of</strong> the restric- 347, 1997.<br />

tion endonuclease EcoRI. J. Mol. Biol. 234: 302–306, 1993. 1032. ROWE, W. A., D. L. BLACKMON, AND M. H. MONTROSE. Propio-<br />

1012. ROBSON, L., AND M. HUNTER. <strong>Volume</strong> regulatory responses in nate activates multiple ion transport mechanisms in the HT29–<br />

frog isolated proximal cells. Pflügers Arch. 428: 60–68, 1994. 18-Cl human colon cell line. Am. J. Physiol. 265 (Gastrointest.<br />

1013. ROBSON, L., AND M. HUNTER. Role <strong>of</strong> cell volume and protein Liver Physiol. 28): G564–G571, 1993.<br />

kinase C in regulation <strong>of</strong> a Cl 0 conductance in single proximal 1033. ROY, D. R., H. E. LAYTON, AND R. L. JAMISON. Countercurrent<br />

tubule cells <strong>of</strong> Rana temporaria. J. Physiol. (Lond.) 480: 1–7, mechanism and its regulation. In: The Kidney: Physiology and<br />

1994. Pathophysiology (2nd ed.), edited by D. W. Seldin and G. Giebisch.<br />

1014. ROBSON, L., AND M. HUNTER. Regulation <strong>of</strong> an outwardly rectify- New York: Raven, 1992, p. 1649–1692.<br />

ing Cl conductance in single proximal tubule cells isolated from 1034. ROY, G., AND U. BANDERALI. Channels for ions and amino acids<br />

frog kidney. J. Physiol. (Lond.) 498: 409–417, 1997.<br />

in kidney cultured cells (MDCK) during volume regulation. J. Exp.<br />

1015. ROEPE, P. D., J. H. WEISBURG, J. G. LUZ, M. M. HOFFMAN, AND Zool. 268: 121–126, 1994.<br />

L.-Y. WEI. Novel Cl 0 dependent intracellular pH regulation in mu- 1035. RUDEL, T., A. SCHMIDT, R. BENZ, H. A. KOLB, F. LANG, AND<br />

rine MDR 1 transfectants and potential implications. Biochemistry T. F. MEYER. Modulation <strong>of</strong> Neisseria porin (PorB) by cytosolic<br />

33: 11008–11015, 1994. ATP/GTP <strong>of</strong> target cells: parallels between pathogen accommoda-<br />

1016. ROME, L., C. LECHENE, V. SAVIN, AND J. GRANTHAM. Critical tion and mitochondrial endosymbiosis. <strong>Cell</strong> 85: 391–402, 1996.<br />

role <strong>of</strong> short-chain fatty acids in isovolumetric regulation (IVR) 1036. RUEPP, B., K. M. BOHREN, AND K. H. GABBAY. Characterization<br />

<strong>of</strong> proximal S2 segments in hyperosmotic media (Abstract). Kid- <strong>of</strong> the osmotic response element <strong>of</strong> the human aldose reductase<br />

ney Int. 33: 438, 1988. gene promoter. Proc. Natl. Acad. Sci. USA 93: 8624–8629, 1996.<br />

1017. ROSALES, O. R., AND B. E. SUMPIO. Changes in cyclic strain in- 1037. RUHFUS, B., H. TINEL, AND R. K. H. KINNE. Role <strong>of</strong> G proteins<br />

crease inositol triphosphate and diacylglycerol in endothelial in the regulation <strong>of</strong> organic osmolyte efflux from isolated rat renal<br />

cells. Am. J. Physiol. 262 (<strong>Cell</strong> Physiol. 31): C956–C962, 1992.<br />

inner medullary collecting duct cells. Pflügers Arch. 433: 35–41,<br />

1018. ROSEN, S. D., AND C. R. BERTOZZI. The selectins and their li- 1996.<br />

gands. Curr. Opin. <strong>Cell</strong> Biol. 6: 663–673, 1994. 1038. RUSSO, M. A., S. A. ERNST, S. C. KAPOOR, AND G. D. V. VAN ROS-<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


298<br />

LANG ET AL. <strong>Volume</strong> 78<br />

SUM. Morphological and physiological studies <strong>of</strong> rat kidney cortex 1057. SANTELL, L., R. L. RUBIN, AND E. G. LEVIN. Enhanced phosphorslices<br />

undergoing isosmotic swelling and its reversal: a possible ylation and dephosphorylation <strong>of</strong> a histone-like protein in re-<br />

mechanism for ouabain-resistant control <strong>of</strong> cell volume. J. Membr. sponse to hyperosmotic and hyposmotic conditions. J. Biol.<br />

Biol. 85: 1–24, 1985.<br />

Chem. 268: 21443–21447, 1993.<br />

1039. RUSSO, M. A., E. MORGANTE, M. F. MARIANI, H. I. YEH, J. L. 1058. SANTORO, M. M., Y. LIU, S. M. A. KHAN, L.-X. HOU, AND D. W.<br />

FARBER, AND G. D. VAN ROSSUM. Effects <strong>of</strong> ouabain and chlo- BOLEN. Increased thermal stability <strong>of</strong> proteins in the presence<br />

ride-free medium on isosmotic volume control and ultrastructure <strong>of</strong> naturally occurring osmolytes. Biochemistry 31: 5278–5283,<br />

<strong>of</strong> hepatocytes in primary culture. Eur. J. <strong>Cell</strong> Biol. 64: 229–242, 1992.<br />

1994. 1059. SARANSAARI, P., AND S. S. OJA. Excitatory amino acids evoke<br />

1040. SACHS, F. Mechanical transduction by membrane ion channels: taurine release from cerebral cortex slices from adult and devela<br />

mini review. Mol. <strong>Cell</strong>. Biochem. 104: 57–60, 1991. oping mice. Neuroscience 45: 451–459, 1991.<br />

1041. SACHS, J. R., AND D. W. MARTIN. The role <strong>of</strong> ATP in swelling- 1060. SARKADI, B., E. MACK, AND A. ROTHSTEIN. Ionic events during<br />

stimulated K-Cl cotransport in human red cell ghosts. Phosphory- the volume response <strong>of</strong> human peripheral blood lymphocytes to<br />

hypotonic media. I. Distinctions between volume-activated Cl 0<br />

lation-dephosphorylation events are not in the signal transduction<br />

pathway. J. Gen. Physiol. 102: 551–573, 1993. and K / conductance pathways. J. Gen. Physiol. 83: 497–512, 1984.<br />

1042. SACKIN, H. Stretch-activated potassium channels in renal proxi- 1061. SARKADI, B., AND J. C. PARKER. Activation <strong>of</strong> ion transport pathmal<br />

tubule. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. ways by changes in cell volume. Biochim. Biophys. Acta 1071:<br />

22): F1253–F1262, 1987.<br />

407–427, 1991.<br />

1043. SACKIN, H. Stretch-activated ion channels. In: <strong>Cell</strong>ular and Molec- 1062. SATO, N., M. MURAKAMI, X. WANG, AND M. A. GREER. The conular<br />

Physiology <strong>of</strong> <strong>Cell</strong> <strong>Volume</strong> Regulation, edited by K. Strange. trasting role <strong>of</strong> calcium influx in secretion induced by cell swelling<br />

Boca Raton, FL: CRC, 1994, p. 215–240.<br />

can differentiate normal and tumor-derived rat pituitary cells. En-<br />

1044. SADOSHIMA, J., Z. H. QUI, J. P. MORGAN, AND S. IZUMO. Tyro- docrinology 129: 2541–2546, 1991.<br />

sine kinase activation is an immediate and essential step in hypo- 1063. SATO, N., X. WANG, AND M. A. GREER. Hormone secretion stimutonic<br />

cell swelling induced ERK activation and c-Fos gene expreslated by ethanol-induced cell swelling in normal rat adenohypo-<br />

sion in cardiac myocytes. EMBO J. 15: 5535–5546, 1996.<br />

physial cells. Am. J. Physiol. 260 (Endocrinol. Metab. 23): E946–<br />

1045. SAHA, N., R. SCHREIBER, S. VOM DAHL, F. LANG, W. GEROK, E950, 1991.<br />

AND D. HÄUSSINGER. Endogenous hydroperoxide formation, cell 1064. SATO, N., X. WANG, AND M. A. GREER. Dopamine inhibits cell<br />

volume and cellular K swelling-induced prolactin secretion in MMQ cells by blocking<br />

/ balance in perfused rat liver. Biochem. J.<br />

Ca 2/ 296: 701–707, 1993.<br />

influx. Mol. <strong>Cell</strong>. Endocrinol. 82: 99–106, 1991.<br />

1046. SAHA, N., B. STOLL, F. LANG, AND D. HÄUSSINGER. Effect <strong>of</strong> 1065. SATO, N., X. WANG, AND M. A. GREER. Medium hyperosmolarity<br />

depresses thyrotropin-releasing hormone-induced Ca 2/ anisotonic cell volume modulation on glutathione-S-conjugate re-<br />

influx and<br />

lease, t-butylhydroperoxide metabolism and the pentose-phosphate<br />

shunt in perfused rat liver. Eur. J. Biochem. 209: 437–444,<br />

prolactin secretion in GH4C1 cells. Mol. <strong>Cell</strong>. Endocrinol. 77: 193–<br />

198, 1991.<br />

1992.<br />

1066. SATO, N., X. WANG, AND M. A. GREER. Protein kinase C modulates<br />

cell swelling-induced Ca 2/ 1047. SAKAI, H., B. KAKINOKI, M. DIENER, AND N. TAKEGUCHI. En-<br />

influx and prolactin secretion in<br />

dogenous arachidonic acid inhibits hypotonically activated Cl<br />

channels in isolated rat hepatocytes. Jpn. J. Physiol. 46: 311–318,<br />

GH4C1 cells. Mol. <strong>Cell</strong>. Endocrinol. 86: 137–142, 1992.<br />

1067. SATO, N., X. WANG, AND M. A. GREER. The rate <strong>of</strong> increase not<br />

the amplitude <strong>of</strong> cytosolic Ca 2/ 1996.<br />

regulates the degree <strong>of</strong> prolactin<br />

secretion induced by depolarizing K / 1048. SALTIN, B., G. SJØGAARD, S. STRANGE, AND C. JUEL. Redistri-<br />

bution <strong>of</strong> K<br />

or hyposmolarity in GH4C1 cells. Biochem. Biophys. Res. Commun. 170: 968–972, 1990.<br />

/ in the human body during muscular exercise: its<br />

role to maintain whole body homeostasis. In: Man in Stressful 1068. SATO, N., X. WANG, M. A. GREER, S. E. GREER, AND S.<br />

Environments: Thermal and Work Physiology, edited by K. Shir- MCADAMS. Evidence that ethanol induces prolactin secretion in<br />

aki and M. K. Yousef. Springfield, IL: Thomas, 1987, p. 247–267.<br />

1049. SANCHEZ-OLEA, R., C. FULLER, D. BENOS, AND H. PASANTES-<br />

GH4C1 cells by producing cell swelling with resultant calcium in-<br />

flux. Endocrinology 127: 3079–3086, 1990.<br />

MORALES. <strong>Volume</strong>-associated osmolyte fluxes in cell lines with 1069. SATO, N., X. WANG, M. A. GREER, S. E. GREER, AND S.<br />

or without the anion exchanger. Am. J. Physiol. 269 (<strong>Cell</strong> Physiol. MCADAMS. The permeant molecule urea stimulates prolactin se-<br />

cretion in GH4C1 cells by inducing Ca 2/ 38): C1280–C1286, 1995.<br />

influx through dihydropyridine-sensitive<br />

Ca 2/ 1050. SANCHEZ-OLEA, R., J. MORAN, A. SCHOUSBOE, AND H. PA-<br />

channels. Mol. <strong>Cell</strong>. Endocrinol. 70: 273–279,<br />

SANTES-MORALES. Hyposmolarity-activated fluxes <strong>of</strong> taurine in 1990.<br />

astrocytes are mediated by diffusion. Neurosci. Lett. 130: 233– 1070. SATO, N., X. WANG, M. A. GREER, S. E. GREER, S. MCADAMS,<br />

236, 1991.<br />

AND T. OSHIMA. Medium hyposmolarity stimulates prolactin se-<br />

1051. SANCHEZ-OLEA, R., M. MORALES-MULIA, J. MORAN, AND H.<br />

PASANTES-MORALES. Inhibition by dihydropyridines <strong>of</strong> regulacretion<br />

in GH4C1 cells by inducing an increase in cytosolic free<br />

calcium. Endocrinology 127: 957–964, 1990.<br />

tory volume decrease and osmolyte fluxes in cultured astrocytes 1071. SCHIEBINGER, R. J., AND J. LINDEN. The influence <strong>of</strong> resting<br />

is unrelated to extracellular calcium. Neurosci. Lett. 193: 165– tension on immunoreactive atrial natriuretic peptide secretion by<br />

168, 1995.<br />

rat atria superfused in vitro. Circ. Res. 59: 105–109, 1986.<br />

1052. SANCHEZ-OLEA, R., M. MORALES-MULIA, J. MORAN, AND H. 1072. SCHLIESS, F., R. SCHREIBER, AND D. HÄUSSINGER. Activation<br />

PASANTES-MORALES. Inhibition <strong>of</strong> polyunsaturated fatty acids <strong>of</strong> extracellular signal-regulated kinases Erk-1 and Erk-2 by cell<br />

<strong>of</strong> cell volume regulation and osmolyte fluxes in astrocytes. Am. swelling in H4IIE hepatoma cells. Biochem. J. 309: 13–17, 1995.<br />

J. Physiol. 269 (<strong>Cell</strong> Physiol. 38): C96–C102, 1995. 1073. SCHLIESS, F., R. SINNING, R. FISCHER, C. SCHMALENBACH,<br />

1053. SANDS, J. M. Regulation <strong>of</strong> intracellular polyols and sugars in<br />

AND D. HÄUSSINGER. Calcium dependent activation <strong>of</strong> ERK 1<br />

response to osmotic stress. In: <strong>Cell</strong>ular and Molecular Physiology and ERK 2 after hypoosmotic astrocyte swelling. Biochem. J. 320:<br />

<strong>of</strong> <strong>Cell</strong> <strong>Volume</strong> Regulation, edited by K. Strange. Boca Raton, FL: 167–171, 1996.<br />

CRC, 1994, p. 133–146. 1074. SCHLOTTMANN, K., AND K. M. COGGESHALL. CD95/Fas/Apo-1-<br />

1054. SANDS, J. M., AND D. C. SCHRADER. Coordinated response <strong>of</strong> mediated signal transduction. <strong>Cell</strong>. Physiol. Biochem. 6: 345–360,<br />

renal medullary enzymes regulating net sorbitol production in di- 1996.<br />

uresis and antidiuresis. J. Am. Soc. Nephrol. 1: 58–65, 1990. 1075. SCHMOLKE, M., F. X. BECK, AND W. G. GUDER. Effect <strong>of</strong> antidi-<br />

1055. SANDS, J. M., Y. TERADA, L. M. BERNARD, AND M. A. KNEPPER. uretic hormone on renal organic osmolytes in Brattleboro rats.<br />

Aldose reductase activities in microdissected rat renal tubule seg- Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F732–<br />

ments. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F737, 1989.<br />

F563–F569, 1989. 1076. SCHMOLKE, M., A. BORNEMANN, AND W. G. GUDER. Polyol de-<br />

1056. SANDVIG, K., S. OLSNES, O. W. PETERSEN, AND B. VAN DEURS. termination along the rat nephron. Biol. Chem. Hoppe-Seyler 371:<br />

Acidification <strong>of</strong> the cytosol inhibits endocytosis from coated pits. 909–916, 1990.<br />

J. <strong>Cell</strong> Biol. 105: 679–689, 1987. 1077. SCHMOLKE, M., A. BORNEMANN, AND W. G. GUDER. Distribu-<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 299<br />

tion and regulation <strong>of</strong> organic osmolytes along the nephron. In: 1098. SCHWAB, A., F. FINSTERWALDER, U. KERSTING, T. DANKER,<br />

AND H. OBERLEITHNER. Intracellular Ca 2/ <strong>Cell</strong>ular and Molecular Biology <strong>of</strong> the Kidney, edited by H. Koide,<br />

distribution in migrat-<br />

H. Endou, and K. Kurokawa. Basel: Karger, 1991, p. 255–263. ing transformed renal epithelial cells. Pflügers Arch. 434: 70–76,<br />

1078. SCHMOLKE, M., AND W. G. GUDER. Metabolic regulation <strong>of</strong> or- 1997.<br />

ganic osmolytes in tubules from rat renal inner and outer medulla. 1099. SCHWAB, A., K. GABRIEL, F. FINSTERWALDER, G. FOL-<br />

Renal Physiol. Biochem. 12: 347–358, 1989.<br />

PRECHT, R. GREGER, A. KRAMER, AND H. OBERLEITHNER.<br />

1079. SCHMOLKE, M., E. SCHLEICHER, AND W. G. GUDER. Renal sorbi- Polarized ion transport during migration <strong>of</strong> transformed Madintol,<br />

myo-inositol and glycerophosphorylcholine in streptozotocin- Darby canine kidney cells. Pflügers Arch. 430: 802–807, 1995.<br />

diabetic rats. Eur. J. Clin. Chem. Clin. Biochem. 30: 607–614, 1100. SCHWAB, A., AND H. OBERLEITHNER. Plasticity <strong>of</strong> renal epithe-<br />

1992.<br />

lial cells: the way a potassium channel supports migration. Pflüg-<br />

1080. SCHNEIDER, E. G. In water deprivation, osmolality becomes an ers Arch. 432 Suppl.: R87–R93, 1996.<br />

important determinant <strong>of</strong> aldosterone secretion. News Physiol. 1101. SCHWAB, A., L. WOJNOWSKI, K. GABRIEL, AND H. OBER-<br />

Sci. 5: 197–201, 1990. LEITHNER. Oscillating activity <strong>of</strong> a Ca 2/ -sensitive K / channel.<br />

1081. SCHNEIDER, E. G., AND R. E. KRAMER. Effect <strong>of</strong> osmolality on A prerequisite for migration <strong>of</strong> transformed Madin-Darby canine<br />

angiotensin-stimulated aldosterone production by primary cul- kidney focus cell. J. Clin. Invest. 93: 1631–1636, 1994.<br />

tures <strong>of</strong> bovine adrenal glomerulosa cells. Biochem. Biophys. Res. 1102. SCHWARTZ, G. J., B. J. ZAVILOWITZ, A. D. RADICE, A. GARCIA-<br />

Commun. 139: 46–51, 1986. PÉREZ, AND J. M. SANDS. Maturation <strong>of</strong> aldose reductase expres-<br />

1082. SCHNEIDER, E. G., K. J. RADKE, D. ULDERICH, AND R. E. TAY- sion in the neonatal rat inner medulla. J. Clin. Invest. 90: 1275–<br />

LOR, JR. Effect <strong>of</strong> osmolality on aldosterone secretion. Endocri- 1283, 1992.<br />

nology 116: 1621–1626, 1985.<br />

1103. SCHWARTZ, M. A., G. BOTH, AND C. LECHENE. The effect <strong>of</strong> cell<br />

1083. SCHNEIDER, E. G., R. E. TAYLOR, JR., K. J. RADKE, AND P. G. spreading on cytoplasmic pH in normal and transformed fibro-<br />

DAVIS. Effect <strong>of</strong> sodium concentration on aldosterone secretion blasts. Proc. Natl. Acad. Sci. USA 86: 4525–4529, 1989.<br />

by isolated perfused canine adrenal glands. Endocrinology 115: 1104. SCHWARTZ, M. A., E. J. CRAGOE, JR., AND C. LECHENE. pH regu-<br />

2195–2204, 1984.<br />

lation in spread cells and round cells. J. Biol. Chem. 265: 1327–<br />

1084. SCHNEIDER, G.-H., A. BAETHMANN, AND O. KEMPSKI. Mecha- 1332, 1990.<br />

nisms <strong>of</strong> glial swelling induced by glutamate. Can. J. Physiol. 1105. SCHWARTZ, M. A., AND C. LECHENE. Adhesion is required for<br />

protein kinase C-dependent activation <strong>of</strong> the Na / /H / Pharmacol. 70, Suppl.: S334–S343, 1992.<br />

antiporter<br />

1085. SCHOLZ, W., U. ALBUS, H. J. LANG, W. LINZ, P. A. MARTORANA, by platelet-derived growth factor. Proc. Natl. Acad. Sci. USA 89:<br />

H. C. ENGLERT, AND B. A. SCHÖLKENS. HOE 694, a new Na 6138–6141, 1992.<br />

/ /<br />

H / exchange inhibitor and its effects in cardiac ischaemia. Br. J. 1106. SCHWARTZ, M. A., C. LECHENE, AND D. E. INGBER. Insoluble<br />

Pharmacol. 109: 562–568, 1993.<br />

fibronectin activates the Na/H antiporter by clustering and immo-<br />

1086. SCHOUSBOE, A., AND H. PASANTES-MORALES. Role <strong>of</strong> taurine bilizing integrin a5b1, independent <strong>of</strong> cell shape. Proc. Natl. Acad.<br />

in neural cell volume regulation. Can. J. Physiol. Pharmacol. 70, Sci. USA 88: 7849–7853, 1991.<br />

Suppl.: S356–S361, 1992. 1107. SCHWIEBERT, E. M., K. H. KARLSON, P. A. FRIEDMAN, P.<br />

1087. SCHOUSBOE, A., R. SANCHEZ-OLEA, J. MORAN, AND H. PA- DIETL, W. S. SPIELMAN, AND B. A. STANTON. Adenosine regu-<br />

SANTES-MORALES. Hyposmolarity-induced taurine release in lates a chloride channel via protein kinase C and a G protein in<br />

cerebellar granule cells is associated with diffusion and not with a rabbit cortical collecting duct cell line. J. Clin. Invest. 89: 834–<br />

high-affinity transport. J. Neurosci. Res. 30: 661–665, 1991.<br />

841, 1992.<br />

1088. SCHREIBER, R., AND D. HÄUSSINGER. Characterization <strong>of</strong> the 1108. SCHWIEBERT, E. M., J. W. MILLS, AND B. A. STANTON. Actinswelling-induced<br />

alkalinization <strong>of</strong> endocytotic vesicles in fluores- based cytoskeleton regulates a chloride channel and cell volume<br />

cein isothiocyanate-dextran-loaded rat hepatocytes. Biochem. J. in a renal cortical collecting duct cell line. J. Biol. Chem. 269:<br />

309: 19–24, 1995.<br />

7081–7089, 1994.<br />

1089. SCHREIBER, R., B. STOLL, F. LANG, AND D. HÄUSSINGER. Ef- 1109. SEMPLICINI, A., M. MARZOLA, G. MOZZATO, G. CEOLOTTO,<br />

AND A. C. PESSINA. Red blood cell Li / /Na / fects <strong>of</strong> aniso-osmolarity and hydroperoxides on intracellular pH<br />

exchange in patients<br />

in isolated rat hepatocytes as assessed by (2�,7�)-bis(carboxye- with diabetic nephropathy and essential hypertension: therapeutic<br />

thyl)-5(6)-carboxyfluorescein and fluorescein isothiocyanate-deximplications. Renal Failure 15: 331–338, 1993.<br />

tran fluorescence. Biochem. J. 303: 113–120, 1994. 1110. SEN, C. K., O. HANNINEN, AND S. N. ORLOV. Unidirectional so-<br />

1090. SCHREIBER, R., F. ZHANG, AND D. HÄUSSINGER. Regulation dium and potassium flux in myogenic L6 cells: mechanisms and<br />

<strong>of</strong> vesicular pH in liver macrophages and parenchymal cells by volume dependent regulation. J. Appl. Physiol. 78: 272–281, 1995.<br />

ammonia and anisotonicity as assessed by fluorescein isothiocya- 1111. SEO, J. T., J. B. LARCOMBE-MCDOUALL, R. M. CASE, AND M. C.<br />

STEWARD. Modulation <strong>of</strong> Na / -H / nate-dextran fluorescence. Biochem. J. 315: 385–392, 1996.<br />

exchange by altered cell vol-<br />

1091. SCHULLER, H. M., M. ORLOFF, AND G. K. REZNIK. Antiprolifera- ume in perfused rat mandibular salivary gland. J. Physiol. (Lond.)<br />

tive effects <strong>of</strong> the Ca 487: 185–195, 1995.<br />

2/ /calmodulin antagonist B859–35 and the<br />

Ca 2/ -channel blocker verapamil on human lung cancer cell lines. 1112. SERGEEV, I. I. U., O. S. TARASOVA, AND N. A. MEDVEDEVA. An<br />

Carcinogenesis 12: 2301–2303, 1991.<br />

analysis <strong>of</strong> the components <strong>of</strong> the hyperosmotic vasomotor effect.<br />

1092. SCHULTZ, S. G. Homocellular regulatory mechanisms in sodium- Fiziol. Zh. 38: 36–42, 1992.<br />

transporting epithelia: avoidance <strong>of</strong> extinction by ‘‘flush-through.’’ 1113. SERNKA, T. J. Direct hyposmotic stimulation <strong>of</strong> gastric acid secre-<br />

Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F579– tion. Membr. Biochem. 9: 1–7, 1990.<br />

F590, 1981. 1114. SETTMACHER, U., H. D. VOLK, R. VON BAEHR, H. WOLFF, AND<br />

1093. SCHULTZ, S. G. Membrane cross-talk in sodium-absorbing epithe- S. JAHN. In vitro stimulation <strong>of</strong> human fetal lymphocytes by mitolial<br />

cells. In: The Kidney: Physiology and Pathophysiology (2nd gens and interleukins. Immunol. Lett. 35: 147–152, 1993.<br />

ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven, 1115. SHEIK-HAMAD, D., J. D. FERRARIS, J. DRAGOLOVICH, H. G.<br />

1992, vol. 11, p. 287. PREUSS, M. B. BURG, and A. GARCIA-PEREZ. CD9 antigen<br />

1094. SCHULTZ, S. G. The ‘‘Pump-Leak’’ parallelism in Necturus entero- mRNA is induced by hypertonicity in two renal epithelial cells<br />

cytes: some cellular and molecular insights. Renal Physiol. Bio- lines. Am. J. Physiol. 270 (<strong>Cell</strong> Physiol. 39): C253–C258, 1996.<br />

chem. 17: 134–137, 1994. 1116. SHEIK-HAMAD, D., A. GARCIA-PEREZ, J. D. FERRARIS, E. M.<br />

1095. SCHULTZ, S. G. <strong>Volume</strong> preservation: then and now. News Phys- PETERS, AND M. B. BURG. Induction <strong>of</strong> gene expression by heat<br />

iol. Sci. 4: 169–172, 1989. shock versus osmotic stress. Am. J. Physiol. 267 (Renal Fluid<br />

1096. SCHULTZ, S. G., R. L. HUDSON, AND J.-Y. LAPOINTE. Electro- Electrolyte Physiol. 36): F28–F34, 1994.<br />

physiological studies <strong>of</strong> sodium cotransport in epithelia: towards 1117. SHEIKOV, N. Immune activation <strong>of</strong> guinea pig lymphocytes type<br />

a cellular model. Ann. NY Acad. Sci. 456: 127–135, 1985.<br />

‘‘cerebriform’’ and type ‘‘hand mirror.’’ An ultrastructural study.<br />

1097. SCHULTZ, W. A., P. EICKELMANN, C. HALLBRUCKER, H. SIES, <strong>Cell</strong> Mol. Biol. 39: 829–833, 1993.<br />

AND D. HÄUSSINGER. Increase <strong>of</strong> b-actin mRNA upon hypotonic 1118. SHEPPARD, D. N., D. P. RICH, L. S. OSTEDGAARD, R. J. GREGperfusion<br />

<strong>of</strong> perfused rat liver. FEBS Lett. 292: 264–266, 1991.<br />

ORY, A. E. SMITH, AND M. J. WELSH. Mutations in CFTR associ-<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


300<br />

LANG ET AL. <strong>Volume</strong> 78<br />

ated with mild-disease-form Cl 0 channels with altered pore prop- pathogenesis and prevention <strong>of</strong> neurologic complications. Clin.<br />

erties. Nature 362: 160–164, 1993.<br />

Nephrol. 46: 149–169, 1996.<br />

1119. SHIFRIN, S., AND C. L. PARROTT. Influence <strong>of</strong> glycerol and other 1142. STAR, R. A. Hyperosmolar states. Am. J. Med. Sci. 300: 402–412,<br />

polyhydric alcohols on the quaternary structure <strong>of</strong> an oligomeric 1990.<br />

protein. Arch. Biochem. Biophys. 166: 426–432, 1975. 1143. STAR, R. A., B. X. ZHANG, P. A. LOESSBERG, AND S. MUALLEM.<br />

<strong>Regulatory</strong> volume decrease in the presence <strong>of</strong> HCO 0 1120. SHIGA, N., AND P. WANGEMANN. Ion selectivity <strong>of</strong> volume regulatory<br />

mechanisms present during a hyposmotic challenge in vestib-<br />

3 by single<br />

osteosarcoma cells UMR-106–01. J. Biol. Chem. 267: 17665–<br />

ular dark cells. Biochim. Biophys. Acta 1240: 48–54, 1995.<br />

17669, 1992.<br />

1121. SHIRVAN, M. H., AND S. ROTTEM. Ion pumps and volume regula- 1144. STARKE, L. C. AND M. L. JENNINGS. K-Cl cotransport in rabbit<br />

tion in mycoplasma. In: Subcellular Biochemistry: Mycoplasma red cells: further evidence for regulation by protein phosphatase<br />

<strong>Cell</strong> Membranes, edited by S. Rottem and I. Kahane. New York: type 1. Am. J. Physiol. 264 (<strong>Cell</strong> Physiol. 33): C118–C124, 1993.<br />

Plenum, 1993, p. 261–292.<br />

1145. STAUB, F., A. BAETHMANN, J. PETERS, AND O. KEMPSKI. Glial<br />

1122. SHONK, T. K., R. A. MOATS, P. GIFFORD, T. MICHAELIS, J. C. cell volume and viability changes by lactacidosis. Acta Physiol.<br />

MANDIGO, J. IZUMI, AND B. D. ROSS. Probable Alzheimer disease: Scand. 136: 85, 1989.<br />

diagnosis with proton MR spectroscopy. Radiology 195: 65–72, 1146. STAUB, F., A. BAETHMANN, J. PETERS, H. WEIGT, AND O.<br />

1995.<br />

KEMPSKI. Effects <strong>of</strong> lactacidosis on glial cell volume and viability.<br />

1123. SHULTZ, P. J., AND L. RAIJ. Inhibition <strong>of</strong> human mesangial cell J. Cereb. Blood Flow Metab. 10: 866–876, 1990.<br />

proliferation by calcium channel blockers. Hypertension 15: 176– 1147. STAUB, F., A. WINKLER, J. PETERS, O. KEMPSKI, AND A. BAETH-<br />

180, 1990. MANN. <strong>Mechanisms</strong> <strong>of</strong> glial swelling by arachidonic acid. Acta<br />

1124. SIFFERT, W., AND R. DÜSING. Sodium-proton exchange and pri- Neurochir. Suppl. 60: 20–23, 1994.<br />

mary hypertension. An update. Hypertension 26: 1–7, 1995. 1148. STAUB, F., A. WINKLER, J. PETERS, O. KEMPSKI, V. KACHEL,<br />

1125. SILVER, S. M., R. H. STERNS, AND M. L. HALPERIN. Brain swell-<br />

AND A. BAETHMANN. Swelling, acidosis, and irreversible damage<br />

ing after dialysis: old urea or new osmoles. Am. J. Kidney Dis. <strong>of</strong> glial cells from exposure to arachidonic acid in vitro. J. Cereb.<br />

28: 1–13, 1996.<br />

Blood Flow Metab. 14: 1030–1039, 1994.<br />

1126. SIMONSEN, L. O., A. M. BROWN, S. CHRISTENSEN, H. HARBAK, 1149. STAUB, F., B. MACKERT, O. KEMPSKI, J. HABERSTOK, J. PE-<br />

P. C. SVANE, AND E. K. HOFFMANN. Thrombin and bradykinin TERS, AND A. BAETHMANN. Schwellung und Schädigung von<br />

mimic the volume response induced by cell swelling in Ehrlich Nerven- und Gliazellen durch Azidose. Anasthesiol. Intensivmed.<br />

mouse ascites tumor cells. Renal Physiol. Biochem. 13: 176, 1990. Notfallmed. Schmerzther. 29: 203–209, 1994.<br />

1127. SINNING, R., F. SCHLIESS, R. KUBITZ, AND D. HÄUSSINGER. 1150. STAUB, F., B. MACKERT, O. KEMPSKI, J. PETERS, AND A.<br />

Osmosignalling in C6 glioma cells. FEBS Lett. 400: 163–167, 1997. BAETHMANN. Swelling and death <strong>of</strong> neuronal cells by lactic acid.<br />

1128. SKØTT, O. Calcium and osmotic stimulation in renin release from J. Neurol. Sci. 119: 79–84, 1993.<br />

isolated rat glomeruli. Pflügers Arch. 406: 485–491, 1986. 1151. STAUB, F., J. PETERS, O. KEMPSKI, G.-H. SCHNEIDER, L.<br />

1129. SKØTT, O. Do osmotic forces play a role in renin secretion? Am. SCHÜRER, AND A. BAETHMANN. Swelling <strong>of</strong> glial cells in lactacidosis<br />

and by glutamate: significance <strong>of</strong> Cl 0 J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F1–F10,<br />

transport. Brain Res.<br />

1988.<br />

610: 69–74, 1993.<br />

1130. SMARDO, F. L., M. B. BURG, AND A. GARCIA-PÉREZ. Kidney al- 1152. STEENBERGEN, J. M., AND H. G. BOHLEN. Sodium hyperosmodose<br />

reductase gene transcription is osmotically regulated. Am. larity <strong>of</strong> intestinal lymph causes arteriolar vasodilation in part<br />

J. Physiol. 262 (<strong>Cell</strong> Physiol. 31): C776–C782, 1992.<br />

mediated by EDRF. Am. J. Physiol. 265 (Heart Circ. Physiol. 34):<br />

1131. SMITH, T. W., R. L. RASMUSSON, L. A. LOBAUGH, AND M. LIEB- H323–H328, 1993.<br />

ERMAN. Na 1153. STEIDL, M., M. RITTER, AND F. LANG. Regulation <strong>of</strong> potassium<br />

/ /K / pump inhibition induces cell shrinkage in cul-<br />

tured chick cardiac myocytes. Basic Res. Cardiol. 88: 411–420, conductance by prostaglandins in cultured renal epitheloid<br />

1993.<br />

(Madin-Darby canine kidney) cells. Pflügers Arch. 418: 431–436,<br />

1132. SOHN, D. H., AND H. D. KIM. Effects <strong>of</strong> adenosine receptor ago- 1991.<br />

nists on volume-activated ion transport in pig red cells. J. <strong>Cell</strong>. 1155. STERNS, R. H., J. BAER, S. EBERSOL, D. THOMAS, J. W. LOHR,<br />

Physiol. 146: 318–324, 1991.<br />

AND D. E. KAMM. Organic osmolytes in acute hyponatremia. Am.<br />

1133. SOKABE, M., F. SACHS, AND Z. JING. Quantitative video micros- J. Physiol. 264 (Renal Fluid Electrolyte Physiol. 33): F833–F836,<br />

copy <strong>of</strong> patch clamped membranes: stress, strain, capacitance, 1993.<br />

and stretch channel activation. Biophys. J. 59: 722–728, 1991. 1156. STERNS, R. H., J. E. RIGGS, AND S. S. SCHOCHET JR. Osmotic<br />

1134. SOLC, C. K., AND J. J. WINE. Swelling-induced and depolarization- demyelination syndrome following correction <strong>of</strong> hyponatremia.<br />

induced Cl channels in normal and cystic fibrosis epithelial cells. N. Engl. J. Med. 314: 1535–1542, 1986.<br />

Am. J. Physiol. 261 (<strong>Cell</strong> Physiol. 30): C658–C674, 1991. 1157. STERNS, R. H., D. J. THOMAS, AND R. M. HERNDON. Brain dehy-<br />

1135. SOLER, C., A. FELIPE, F. J. CASADO, J. D. MCGIVAN, AND M. PAS- dration and neurologic deterioration after rapid correction <strong>of</strong> hy-<br />

TOR-ANGLADA. Hyperosmolarity leads to an increase in dere- ponatremia. Kidney Int. 35: 69–75, 1989.<br />

pressed system A activity in the renal epithelial cell line NBL-1. 1158. STEVENS, M. J., D. N. HENRY, T. P. THOMAS, P. D. KILLEN, AND<br />

Biochem. J. 289: 653–658, 1993.<br />

D. A. GREENE. Aldose reductase gene expression and osmotic<br />

1136. SOMA, M. R., A. CORSINI, AND R. PAOLETTI. Cholesterol and dysregulation in cultured human retinal pigment epithelial cells.<br />

mevalonic acid modulation in cell metabolism and multiplication. Am. J. Physiol. 265 (Endocrinol. Metab. 28)): E428–F438, 1993.<br />

Toxicol. Lett. 64–65: 1–15, 1992.<br />

1159. STOLL, B., W. GEROK, F. LANG, AND D. HÄUSSINGER. Liver cell<br />

1137. SOMERO, G. N. Protons, osmolytes, and fitness <strong>of</strong> internal milieu volume and protein synthesis. Biochem. J. 287: 217–222, 1992.<br />

for protein function. Am. J. Physiol. 251 (<strong>Regulatory</strong> Integrative 1160. STOREY, K. B., AND J. M. STOREY. Freeze tolerance in animals.<br />

Comp. Physiol. 20): R197–R213, 1986.<br />

Physiol. Rev. 68: 27–84, 1988.<br />

1138. SOMERO, G. N., C. B. OSMOND, AND C. L. BOLIS. Water and Life: 1161. STOSSEL, T. P. From signal to pseudopod. How cells control cytoa<br />

Comparative Analysis <strong>of</strong> Water Relationships at the Organis- plasmic actin assembly. J. Biol. Chem. 264: 18261–18264, 1989.<br />

mic, <strong>Cell</strong>ular, and Molecular Levels. Berlin: Springer-Verlag, 1992, 1162. STOSSEL, T. P. On the crawling <strong>of</strong> animal cells. Science 260: 1086–<br />

p. 371.<br />

1094, 1993.<br />

1139. SOROTA, S. Swelling-induced chloride-sensitive current in canine 1164. STRANGE, K. Ouabain-induced cell swelling in rabbit cortical col-<br />

atrial cells revealed by whole-cell patch-clamp method. Circ. Res. lecting tubule: NaCl transport by principal cells. J. Membr. Biol.<br />

70: 679–687, 1992. 107: 249–261, 1989.<br />

1165. STRANGE, K. <strong>Volume</strong> regulatory Cl 0 loss after Na / 1140. SORRENTINO, D., D. D. STUMP, S. L. ZHOU, K. VAN NESS, L. M.<br />

pump inhibi-<br />

ISOLA, AND P. D. BERK. The hepatocellular uptake <strong>of</strong> free fatty tion in CCT principal cells. Am. J. Physiol. 260 (Renal Fluid<br />

acids is selectively preserved during starvation. Gastroenterology Electrolyte Physiol. 29): F225–F234, 1991.<br />

107: 1415–1424, 1994. 1166. STRANGE, K. Regulation <strong>of</strong> solute and water balance and cell<br />

1141. SOUPART, A., AND G. DECAUX. Therapeutic recommendations volume in the central nervous system. J. Am. Soc. Nephrol. 3: 12–<br />

for management <strong>of</strong> severe hyponatremia: current concepts on 27, 1992.<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 301<br />

1167. STRANGE, K. Maintenance <strong>of</strong> cell volume in the central nervous TANAKA, AND J. KUMAZAWA. Direct inactivation <strong>of</strong> human poly-<br />

system. Pediatr. Nephrol. 7: 689–697, 1993.<br />

morphonuclear leukocyte by hyperosmotic urea comparable to<br />

1168. STRANGE, K. (Editor). <strong>Cell</strong>ular and Molecular Physiology <strong>of</strong> <strong>Cell</strong> the renal medulla. J. Urol. 149: 386–389, 1993.<br />

<strong>Volume</strong> Regulation. Boca Raton, FL: CRC, 1994.<br />

1188. TAKEDA, M., T. HOMMA, M. D. BREYER, N. HORIBA, R. L. HOO-<br />

1169. STRANGE, K., AND P. S. JACKSON. Swelling-activated organic os- VER, S. KAWAMOTO, I. ICHIKAWA, AND V. KON. <strong>Volume</strong> and<br />

molyte efflux: a new role for anion channels. Kidney Int. 48: 994– agonist-induced regulation <strong>of</strong> myosin light-chain phosphorylation<br />

1003, 1995. in glomerular mesangial cells. Am. J. Physiol. 264 (Renal Fluid<br />

1170. STRANGE, K., AND R. MORRISON. <strong>Volume</strong> regulation during re- Electrolyte Physiol. 33): F421–F426, 1993.<br />

covery from chronic hypertonicity in brain glial cells. Am. J. Phys- 1189. TAKEMURA, T., F. SATO, K. SAGA, Y. SUZUKI, AND K. SATO.<br />

iol. 263 (<strong>Cell</strong> Physiol. 32): C412–C419, 1992.<br />

Intracellular ion concentrations and cell volume during choliner-<br />

1171. STRANGE, K., R. MORRISON, L. SHRODE, AND R. PUTNAM. gic stimulation <strong>of</strong> eccrine secretory coil cells. J. Membr. Biol. 119:<br />

Mechanism and regulation <strong>of</strong> swelling-activated inositol efflux in 211- 219, 1991.<br />

brain glial cells. Am. J. Physiol. 265 (<strong>Cell</strong> Physiol. 34): C244– 1190. TAKENAKA, M., S. M. BAGNASCO, A. S. PRESTON, S. UCHIDA,<br />

C256, 1993.<br />

A. YAMAUCHI, H. M. KWON, AND J. S. HANDLER. The canine<br />

1172. STRUPP, M., F. STAUB, AND P. GRAFE. A Ca 2/ - and pH-dependent betaine gamma-amino-n-butyric acid transporter gene: diverse<br />

K mRNA is<strong>of</strong>orms are regulated by hypertonicity and are expressed<br />

/ channel <strong>of</strong> rat C6 glioma cells and its possible role in acidosisinduced<br />

cell swelling. Glia 9: 136–145, 1993. in a tissue-specific manner. Proc. Natl. Acad. Sci. USA 92: 1072–<br />

1173. SULEYMANIAN, M. A., H. F. CLEMO, N. M. COHEN, AND C. M. 1076, 1995.<br />

BAUMGARTEN. Stretch-activated channel blockers modulate cell 1191. TAKENAKA, M., A. S. PRESTON, H. M. KWON, AND J. S. HANvolume<br />

in cardiac ventricular myocytes. J. Mol. <strong>Cell</strong>. Cardiol. 27: DLER. The tonicity-sensitive element that mediates increased<br />

721–728, 1995. transcription <strong>of</strong> the betaine transporter gene in response to hyper-<br />

1174. SULLIVAN, L. P., D. P. WALLACE, R. L. CLANCY, C. LECHENE, tonic stress. J. Biol. Chem. 269: 29379–29381, 1994.<br />

AND J. J. GRANTHAM. <strong>Cell</strong>ular electrolyte and volume changes 1192. TANAKA, K., G. JAY, AND K. J. ISSELBACHER. Expression <strong>of</strong> heatinduced<br />

by acidosis in the rabbit proximal straight tubule. J. Am. shock and glucose-regulated genes: differential effects <strong>of</strong> glucose<br />

Soc. Nephrol. 2: 1030–1040, 1991. starvation and hypertonicity. Biochim. Biophys. Acta 950: 138–<br />

1175. SULLIVAN, L. P., D. P. WALLACE, R. L. CLANCY, C. LECHENE, 146, 1988.<br />

AND J. J. GRANTHAM. Effect <strong>of</strong> cellular acidosis on cell volume 1193. TANEJA, S., AND F. AHMAD. Increased thermal stability <strong>of</strong> proin<br />

S2 segments <strong>of</strong> renal proximal tubules. Am. J. Physiol. 258 teins in the presence <strong>of</strong> amino acids. Biochem. J. 303: 147–153,<br />

(Renal Fluid Electrolyte Physiol. 27): F831–F839, 1990. 1994.<br />

1176. SULLIVAN, L. P., D. P. WALLACE, AND J. J. GRANTHAM. Coupling 1194. TANIGUCHI, J., AND W. B. GUGGINO. Membrane stretch: a physi<strong>of</strong><br />

cell volume and membrane potential changes to fluid secretion ological stimulator <strong>of</strong> Ca 2/ -activated K / channels in thick as-<br />

in a model <strong>of</strong> renal cysts. Kidney Int. 45: 1369–1380, 1994. cending limb. Am. J. Physiol. 257 (Renal Fluid Electrolyte Phys-<br />

1177. SUN, A. M., AND S. C. HEBERT. Rapid hypertonic cell volume reguiol. 26): F347–F352, 1989.<br />

lation in the perfused inner medullary collecting duct. Kidney Int. 1195. TARTERA, C., AND E. S. METCALF. Osmolarity and growth phase<br />

36: 831–842, 1989. overlap in regulation <strong>of</strong> Salmonella typhi adherence to and inva-<br />

1178. SUN, A. M., AND S. C. HEBERT. <strong>Volume</strong> regulation in renal medulsion <strong>of</strong> human intestinal cells. Infect. Immun. 61: 3084–3089,<br />

lary nephron segments. In: <strong>Cell</strong>ular and Molecular Physiology <strong>of</strong> 1993.<br />

<strong>Cell</strong> <strong>Volume</strong> Regulation, edited by K. Strange. Boca Raton, FL: 1196. TAWATA, M., M. OHTAKA, Y. HOSAKA, AND T. ONAYA. Aldose<br />

CRC, 1994, p. 49–62. reductase mRNA expression and its activity are induced by glu-<br />

1179. SUN, A. M., E. B. GROSSMAN, M. LOMBARDI, AND S. C. HEBERT. cose in fetal rat aortic smooth muscle (A10) cells. Life Sci. 51:<br />

Vasopressin alters the mechanism <strong>of</strong> apical Cl entry from Na:Cl 719–726, 1992.<br />

to Na:K:2Cl cotransport in mouse medullary thick ascending limb. 1197. TERADA, Y., K. TOMITA, M. K. HOMMA, H. NONOGUCHI, T.<br />

J. Membr. Biol. 120: 83–94, 1991. YANG, T. YAMADA, Y. YUASA, E. G. KREBS, S. SASAKI, AND F.<br />

1180. SUZUKI, M., K. KAWAHARA, A. OGAWA, T. MORITA, Y. KAWA- MARUMO. Sequential activation <strong>of</strong> Raf-1 kinase, mitogen-acti-<br />

GUCHI, S. KURIHARA, AND O. SAKAI. [Ca 2/ ]i rises via G protein vated protein (MAP), kinase kinase, MAP kinase, and S6 kinase<br />

during regulatory volume decrease in rabbit proximal tubule cells. by hyperosmolality in renal cells. J. Biol. Chem. 269: 31296–31301,<br />

Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F690– 1994.<br />

F696, 1990. 1198. TERUBAYASHI, H., S. SATO, C. NISHIMURA, P. F. KADOR, AND<br />

1181. SUZUKI, Y., M. OHTSUYAMA, G. SAMMAN, F. SATA, AND K. J. H. KINOSHITA. Localization <strong>of</strong> aldose and aldehyde reductase<br />

SATO. Ionic basis <strong>of</strong> methacholine-induced shrinkage <strong>of</strong> dissoci- in the kidney. Kidney Int. 36: 843–851, 1989.<br />

ated eccrine clear cells. J. Membr. Biol. 123: 33–41, 1991. 1199. TEULON, J., P. M. RONCO, M. GENITEAU-LEGENDRE, B. BAU-<br />

1182. SWEEZEY, N. B., C. GAUTHIER, S. GAGNON, E. FERRETTI, AND DOUIN, S. ESTRADE, R. CASSINGENA, AND A. VANDEWALLE.<br />

H. KOPELMAN. Progesterone and estradiol inhibit CFTR medi- Transformation <strong>of</strong> renal tubule epithelial cells by simian virus 40<br />

is associated with emergence <strong>of</strong> Ca 2/ -insensitive K / ated ion transport by pancreatic epithelial cells. Am. J. Physiol.<br />

channels and<br />

271 (Gastrointest. Liver Physiol. 34): G747-G754, 1996. altered mitogenic sensitivity to K / channel blockers. J. <strong>Cell</strong>. Phys-<br />

1183. SZABO, I., E. GULBINS, H. APFEL, X. ZHANG, P. BARTH, A. E. iol. 151: 113–125, 1992.<br />

BUSCH, K. SCHLOTTMANN, O. PONGS, AND F. LANG. Tyrosine- 1200. THAKAR, M., A. BILENKO, AND W. J. BECKTEL. Osmolyte mediaphosphorylation<br />

dependent suppression <strong>of</strong> a voltage-gated K tion <strong>of</strong> T7 DNA polymerase and plasmid DNA stability. Biochemis-<br />

/<br />

channel in T-Lymphocytes upon Fas-stimulation. J. Biol. Chem. try 33: 12255–12259, 1994.<br />

271: 20465–20469, 1996. 1201. THATTE, H. S., M. R. KASSCHAU, S. T. FURLONG, M. P. BYAM-<br />

1184. TAGA, K., J. CHRETIEN, B. CHERNEY, L. DIAZ, M. BROWN, SMITH, D. F. WILLIAMS, AND D. E. GOLAN. Schistosoma man-<br />

AND G. TOSATO. Interleukin-10 inhibits apoptotic cell death in soni: membranes from adult worms reversibly perturb shape, vol-<br />

infectious mononucleosis T cells. J. Clin. Invest. 94: 251–260, ume, and membrane organization <strong>of</strong> intact human red blood cells.<br />

1994. Exp. Parasitol. 76: 13–22, 1993.<br />

1185. TAKAHASHI, A., H. YAMAGUCHI, AND H. MIYAMOTO. Change in 1202. THEODOROPOULOS, P. A., C. STOURNARAS, B. STOLL, E. MAR-<br />

K / current <strong>of</strong> HeLa cells with progression <strong>of</strong> the cell cycle studied KOGIANNAKIS, F. LANG, A. GRAVANIS, AND D. HÄUSSINGER.<br />

by patch-clamp technique. Am. J. Physiol. 265 (<strong>Cell</strong> Physiol. 34): Hepatocyte swelling leads to rapid decrease <strong>of</strong> the G-/total actin<br />

C328–C336, 1993. ratio and increases actin mRNA levels. FEBS Lett. 311: 241–245,<br />

1186. TAKAHASHI, K., T. MATSUMOTO, S. KUBO, M. HARAOKA, M. 1992.<br />

TANAKA, AND J. KUMAZAWA. Influence <strong>of</strong> hyperosmotic environ- 1203. THIEMANN, A., S. GRÜNDER, M. PUSCH, AND T. J. JENTSCH. A<br />

ment comparable to the renal medulla upon membrane NADPH chloride channel widely expressed in epithelial and non-epithelial<br />

oxidase <strong>of</strong> human polymorphonuclear leukocytes. J. Urol. 152: cells. Nature 356: 57–60, 1992.<br />

1622–1625, 1994. 1204. THOMAS-YOUNG, R. J., T. C. SMITH, AND C. LEVINSON. Regula-<br />

1187. TAKAHASHI, K., T. MATSUMOTO, N. OGATA, Y. MIZUNOE, M. tory volume decrease in Ehrlich ascites tumor cells is not medi-<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


302<br />

LANG ET AL. <strong>Volume</strong> 78<br />

ated by a rise in intracellular calcium. Biochim. Biophys. Acta space in hyperosmotic suppression <strong>of</strong> potassium-induced electro-<br />

1146: 81–86, 1993.<br />

graphic seizures. J. Neurophysiol. 61: 927–938, 1989.<br />

1205. THOMPSON, A. A., A. S. CORNELIUS, T. ASAKURA, AND K. HORI- 1225. TREZISE, A. E., P. R. ROMANO, D. R. GILL, S. C. HYDE, F. V. SEP-<br />

UCHI. Comparative studies <strong>of</strong> phenothiazine derivatives for their ULVEDA, M. BUCHWALD, AND C. F. HIGGINS. The multidrug reeffects<br />

on swelling <strong>of</strong> normal and sickle erythrocytes. Gen. Phar- sistance and cystic fibrosis genes have complementary patterns<br />

macol. 24: 999–1006, 1993.<br />

<strong>of</strong> epithelial expression. EMBO J. 11: 4291–4303, 1992.<br />

1206. THORNHILL, W. B., AND P. C. LARIS. KCl loss and cell shrinkage 1226. TRUMP, B. F., AND I. K. BEREZESKY. Calcium-mediated cell inin<br />

the Ehrlich ascites tumour cell induced by hypotonic media, 2- jury and cell death. FASEB J. 9: 219–228, 1995.<br />

deoxyglucose and propanolol. Biochim. Biophys. Acta 773: 207– 1227. TSENG, G. N. <strong>Cell</strong> swelling increases membrane conductance <strong>of</strong><br />

218, 1984.<br />

canine cardiac cells: evidence for a volume-sensitive Cl channel.<br />

1207. THOROED, S. M., AND K. FUGELLI. Free amino compounds and Am. J. Physiol. 262 (<strong>Cell</strong> Physiol. 31): C1056–C1068, 1992.<br />

cell volume regulation in erythrocytes from different marine fish 1228. TSUMURA, T., S. OIKI, S. UEDA, M. OKUMA, AND Y. OKADA.<br />

species under hypoosmotic conditions: the role <strong>of</strong> a taurine chan- Sensitivity <strong>of</strong> volume sensitive Cl conductance in human epithelial<br />

nel. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 164: cells to extracellular nucleotides. Am. J. Physiol. 271 (<strong>Cell</strong> Phys-<br />

1–10, 1994.<br />

iol. 40): C1872–C1878, 1996.<br />

1208. THURSTON, J. H., W. R. SHERMAN, R. E. HAUHART, AND R. F.<br />

KLOEPPER. Myo-inositol: a newly identified nonnitrogenous os-<br />

moregulatory molecule in mammalian brain. Pediatr. Res. 26:<br />

482–485, 1989.<br />

1209. TILLY, B. C., M. J. EDIXHOVEN, L. G. J. TERTOOLEN, N. MORII,<br />

Y. SAITO, S. NARUMIYA, AND H. R. DE JONGE. Activation <strong>of</strong> the<br />

osmo-sensitive chloride conductance involves the p21<br />

1229. TURNER, D. A., P. G. AITKEN, AND G. G. SOMJEN. Optical mapping<br />

<strong>of</strong> translucence changes in rat hippocampal slices during<br />

hypoxia. Neurosci. Lett. 195: 209–213, 1995.<br />

1230. TURNHEIM, K. Epithelial sodium transport: basic autoregulatory<br />

mechanisms. Physiol. Res. 43: 211–218, 1994.<br />

1231. TURNHEIM, K. Intrinsic regulation <strong>of</strong> apical sodium entry in epithelia.<br />

Physiol. Rev. 71: 429–445, 1991.<br />

rho and is<br />

accompanied by a transient reorganization <strong>of</strong> the F-actin cytoskel-<br />

eton. Mol. Biol. <strong>Cell</strong> 7: 1419–1427, 1996.<br />

1210. TILLY, B. C., M. J. EDIXHOVEN, N. VAN DEN BERGHE, A. G. M.<br />

BOT, AND H. R. DE JONGE. Ca<br />

1232. TURNHEIM, K., R. A. FRIZZELL, AND S. G. SCHULTZ. Interaction<br />

between cell sodium and the amiloride-sensitive sodium entry step<br />

in rabbit colon. J. Membr. Biol. 39: 233–256, 1978.<br />

1233. TURNHEIM, K., S. M. THOMPSON, AND S. G. SCHULTZ. Relation<br />

2/ -mobilizing hormones potentiate<br />

hypotonicity-induced activation <strong>of</strong> ionic conductances in intestine<br />

407 cells. Am. J. Physiol. 267 (<strong>Cell</strong> Physiol. 36): C1271–C1278,<br />

1994.<br />

1211. TILLY, B. C., N. VAN DEN BERGHE, L. G. J. TERTOOLEN, M. J.<br />

EDIXHOVEN, AND H. R. DE JONGE. Protein tyrosine phosphoryla-<br />

between intracellular sodium and active sodium transport in rab-<br />

bit colon: current-voltage relations <strong>of</strong> the apical sodium entry<br />

mechanism in the presence <strong>of</strong> varying luminal sodium concentrations.<br />

J. Membr. Biol. 76: 299–309, 1983.<br />

1234. UBL, J., H. MURER, AND H.-A. KOLB. Hypotonic shock evokes<br />

opening <strong>of</strong> Ca 2/ tion is involved in osmoregulation <strong>of</strong> ionic conductances. J. Biol.<br />

Chem. 268: 19919–19922, 1993.<br />

1212. TILNEY, L. G., AND S. INOUE. Acrosomal reaction <strong>of</strong> Thyone<br />

sperm. II. The kinetics and possible mechanism <strong>of</strong> acrosomal pro-<br />

cess elongation. J. <strong>Cell</strong> Biol. 93: 820–827, 1982.<br />

1213. TINEL, E., F. WEHNER, AND R. K. H. KINNE. Arachidonic acid as<br />

a second messenger for hypotonicity induced calcium transient<br />

rat IMCD cells. Pflügers Arch. 433: 245–253, 1997.<br />

1214. TOBEY, N. A., E. J. CRAGOE, AND R. C. ORLANDO. HCl-induced<br />

cell edema in rabbit esophageal epithelium: a bumetanide-sensitive<br />

process. Gastroenterology 109: 414–421, 1995.<br />

1215. TOHYAMA, Y., T. KAMEJI, AND S. HAYASHI. <strong>Mechanisms</strong> <strong>of</strong> dra-<br />

matic fluctuations <strong>of</strong> ornithine decarboxylase activity upon tonicity<br />

changes in primary cultured rat hepatocytes. Eur. J. Biochem.<br />

-activated K channels in opossum kidney cells.<br />

Pflügers Arch. 412: 551–553, 1988.<br />

1235. UBL, J., H. MURER, AND H.-A. KOLB. Ion channels activated by<br />

osmotic and mechanical stress in membranes <strong>of</strong> opossum kidney<br />

cells. J. Membr. Biol. 104: 223–232, 1988.<br />

1236. UCHIDA, S., A. GARCIA-PEREZ, H. MURPHY, AND M. BURG. Signal<br />

for induction <strong>of</strong> aldose reductase in renal medullary cells by<br />

high external NaCl. Am. J. Physiol. 256 (<strong>Cell</strong> Physiol. 25): C614–<br />

C620, 1989.<br />

1237. UCHIDA, S., N. GREEN, H. COON, T. TRICHE, S. MIMS, AND<br />

M. BURG. High NaCl induces stable changes in phenotype and<br />

karyotype <strong>of</strong> renal cells in culture. Am. J. Physiol. 253 (<strong>Cell</strong> Physiol.<br />

22): C230–C242, 1987.<br />

1238. UCHIDA, S., H. M. KWON, A. S. PRESTON, AND J. S. HANDLER.<br />

Expression <strong>of</strong> Madin-Darby canine kidney cell Na / - and Cl 0 202: 1327–1331, 1991.<br />

1216. TOKIWA, G., I. DIKIC, S. LEV, AND J. SCHLESINGER. Activation<br />

<strong>of</strong> Pyk2 by stress signals and coupling with JNK signaling pathway.<br />

Science 273: 792–794, 1996.<br />

1217. TOMINAGA, M., T. TOMINAGA, A. MIWA, AND Y. OKADA. Vol-dependent<br />

taurine transporter in Xenopus laevis oocytes. J. Biol.<br />

Chem. 266: 9605–9609, 1991.<br />

1239. UCHIDA, S., H. M. KWON, A. YAMAUCHI, A. S. PRESTON, F.<br />

MARUMO, AND J. S. HANDLER. Molecular cloning <strong>of</strong> the cDNA<br />

for an MDCK cell Na / - and Cl 0 ume-sensitive chloride channel activity does not depend on endog-<br />

enous P-glycoprotein. J. Biol. Chem 270: 27887–27893, 1995.<br />

1218. TOMLINSON, D. R., E. J. STEVENS, AND L. T. DIEMEL. Aldose<br />

-dependent taurine transporter that<br />

is regulated by hypertonicity. Proc. Natl. Acad. Sci. USA 89: 8230–<br />

8234, 1992.<br />

1240. UCHIDA, S., T. NAKANISHI, H. M. KWON, A. S. PRESTON, AND<br />

reductase inhibitors and their potential for the treatment <strong>of</strong> dia- J. S. HANDLER. Taurine behaves as an osmolyte in Madin-Darby<br />

betic complications. Trends. Pharmacol. Sci. 15: 293–297, 1994. canine kidney cells. Protection by polarized, regulated transport<br />

1219. TORCHIA, J., C. LYTLE, D. J. PON, B. FORBUSH III, AND A. K. <strong>of</strong> taurine. J. Clin. Invest. 88: 656–662, 1991.<br />

SEN. The Na-K-Cl cotransporter <strong>of</strong> avian salt gland. Phosphoryla- 1241. UCHIDA, S., S. SASAKI, T. FURUKAWA, M. HIRAOKA, T. IMAI,<br />

tion in response to cAMP-dependent and calcium-dependent se- Y. HIRATA, AND F. MARUMO. Molecular cloning <strong>of</strong> a chloride<br />

cretagogues. J. Biol. Chem. 267: 25444–25450, 1992. channel that is regulated by dehydration and expressed predomi-<br />

1220. TRACHTMAN, H. <strong>Cell</strong> volume regulation: a review <strong>of</strong> cerebral nantly in kidney medulla. J. Biol. Chem. 268: 3821–3824, 1993.<br />

adaptive mechanisms and implications for clinical treatment <strong>of</strong> 1242. UCHIDA, S., A. YAMAUCHI, A. S. PRESTON, H. M. KWON, AND<br />

osmolal disturbances: I. Pediatr. Nephrol. 5: 743–750, 1991. J. S. HANDLER. Medium tonicity regulates expression <strong>of</strong> the Na / -<br />

1221. TRACHTMAN, H. <strong>Cell</strong> volume regulation: a review <strong>of</strong> cerebral and Cl 0 -dependent betaine transporter in Madin-Darby canine kidadaptive<br />

mechanisms and implications for clinical treatment <strong>of</strong> ney cells by increasing transcription <strong>of</strong> the transporter gene. J.<br />

osmolal disturbances: II. Pediatr. Nephrol. 6: 104–112, 1992. Clin. Invest. 91: 1604–1607, 1993.<br />

1222. TRACHTMAN, H., S. FUTTERWEIT, AND J. A. STURMAN. Cere- 1243. ULLRICH, K. J. Glycerylphosphorylcholinumsatz und Glycerylbral<br />

taurine transport is increased during streptozocin-induced phosphorylcholindiesterase in der Säugetier-Niere. Biochem. Z.<br />

diabetes in rats. Diabetes 41: 1130–1140, 1992. 331: 98–102, 1959.<br />

1223. TRACHTMAN, H., S. FUTTERWEIT, W. TONIDANDEL, AND S. R. 1244. URBAN, J. P. G., A. C. HALL, AND K. A. GEHL. Regulation <strong>of</strong> ma-<br />

GULLANS. The role <strong>of</strong> organic osmolytes in the cerebral cell vol- trix synthesis rates by the ionic and osmotic environment <strong>of</strong> articume<br />

regulatory response to acute and chronic renal failure. J. ular chondrocytes. J. <strong>Cell</strong>. Physiol. 154: 262–270, 1993.<br />

Am. Soc. Nephrol. 3: 1913–1919, 1993. 1245. USSING, H. H. <strong>Volume</strong> regulation <strong>of</strong> frog skin epithelium. Acta<br />

1224. TRAYNELIS, S. F., AND R. DINGLEDINE. Role <strong>of</strong> extracellular Physiol. Scand. 114: 363–369, 1982.<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 303<br />

1246. USSING, H. H. <strong>Volume</strong> regulation <strong>of</strong> frog skin epithelium. In: Com- sustained reductions in brain content <strong>of</strong> multiple organic osmo-<br />

parative Physiology. <strong>Cell</strong> <strong>Volume</strong> Regulation, edited by K. W. Beylytes in rats. Brain Res. 567: 274–282, 1991.<br />

enbach. Basel: Karger, 1990, vol. 4, p. 87–113. 1267. VERHEUL, H. B., R. BALAZS, J. W. BERKELBACH VAN DER<br />

1247. UYESAKA, N., S. HASEGAWA, N. ISHIOKA, R. ISHIOKA, H. SHIO, SPRENKEL, C. A. TULLEKEN, K. NICOLAY, AND M. VAN LOOK-<br />

AND A. N. SCHECHTER. Effects <strong>of</strong> superoxide anions on red cell EREN CAMPAGNE. Temporal evolution <strong>of</strong> NMDA-induced excitoxicity<br />

in the neonatal rat brain measured with 1 deformability and membrane proteins. Biorheology 29: 217–229,<br />

H nuclear mag-<br />

1992. netic resonance imaging. Brain Res. 618: 203–212, 1993.<br />

1248. VAIRO, G., A. K. ROYSTON, AND J. A. HAMILTON. Biochemical 1268. VERNACE, M. A., P. F. MENTO, M. E. MAITA, E. P. GIRARDI,<br />

events accompanying macrophage activation and the inhibition M. D. CHANG, E. P. NORD, AND B. M. WILKES. Osmolar regula-<br />

<strong>of</strong> colony-stimulating factor-1-induced macrophage proliferation tion <strong>of</strong> endothelin in rat renal medullary interstitial cells. J. Clin.<br />

by tumor necrosis factor-alpha, interferon-gamma and lipopoly- Invest. 96: 183–191, 1995.<br />

saccharide. J. <strong>Cell</strong>. Physiol. 151: 630–641, 1992.<br />

1269. VIANA, F., K. VAN ACKER, C. DE GREEF, J. EGGERMONT, L.<br />

1249. VALVERDE, M. A., T. D. BOND, S. P. HARDY, J. C. TAYLOR, C. F. RAEYMAEKERS, G. DROOGMANS, AND B. NILIUS. Drug-trans-<br />

HIGGINS, J. ALTAMIRANO, AND F. J. ALVAREZ-LEEFMANS. The port and volume-activated chloride channel functions in human<br />

multidrug resistance P glycoprotein modulates cell regulatory vol- erythroleukemia cells: relation to expression level <strong>of</strong> P-glycopro-<br />

ume decrease. EMBO J. 15: 4460–4468, 1996.<br />

tein. J. Membr. Biol. 145: 87–98, 1995.<br />

1250. VALVERDE, M. A., M. DIAZ, F. V. SEPULVEDA, D. R. GILL, S. C. 1270. VIDEEN, J. S., T. MICHAELIS, P. PINTO, AND B. D. ROSS. Human<br />

HYDE, AND C. F. HIGGINS. <strong>Volume</strong>-regulated chloride channels cerebral osmolytes during chronic hyponatremia. A proton magassociated<br />

with the human multidrug-resistant P-glycoprotein. Na- net resonance spectroscopy study. J. Clin. Invest. 95: 788–793,<br />

ture 355: 830–833, 1992.<br />

1995.<br />

1251. VALVERDE, M. A., J. A. O’BRIEN, F. V. SEPULVEDA, R. RAT- 1271. VIEYRA, A., AND C. CARUSO-NEVES. Interactions <strong>of</strong> the regulatory<br />

ligands Mg 2/ and MgATP 20 CLIFF, M. J. EVANS, AND W. H. COLLEDGE. Inactivation <strong>of</strong> the<br />

with the renal plasma membrane<br />

murine cftr gene abolishes cAMP-mediated but not Ca 2/ -mediated Ca 2/ -ATPase: effects <strong>of</strong> osmolytes that stabilize or destabilize pro-<br />

secretagogue-induced volume decrease in small-intestinal crypts. tein structure. Braz. J. Med. Biol. Res. 26: 373–381, 1993.<br />

Pflügers Arch. 425: 434–438, 1993. 1272. VIEYRA, A., C. CARUSO-NEVES, AND J. R. MEYER-FERNANDES.<br />

ATP in equilibrium with 32 1252. VALVERDE, M. A., J. A. O’BRIEN, F. V. SEPULVEDA, R. A. RAT-<br />

CLIFF, M. J. EVANS, AND W. H. COLLEDGE. Impaired cell volume<br />

Pi exchange catalyzed by plasma membrane<br />

Ca 2/ -ATPase from kidney proximal tubules. J. Biol. Chem.<br />

regulation in intestinal crypt epithelia <strong>of</strong> cystic fibrosis mice. Proc. 266: 10324–10330, 1991.<br />

Natl. Acad. Sci. USA 92: 9038–9041, 1995. 1273. VILLAZ, M., J. C. CINNINGER, AND W. J. MOODY. A voltage-gated<br />

1253. VANDENBERG, J. I., A. YOSHIDA, K. KIRK, AND T. POWELL. chloride channel in ascidian embryos modulated by both the cell<br />

Swelling-activated and isoprenaline-activated chloride currents in cycle clock and cell volume. J. Physiol. (Lond.) 488: 689–699,<br />

guinea pig cardiac myocytes have distinct electrophysiology and 1995.<br />

pharmacology. J. Gen. Physiol. 104: 997–1017, 1994. 1274. VILLEREAL, M. L., L. L. MIX-MULDOON, L. M. VICENTINI, G. A.<br />

1254. VANDEN BROECK, J., A. DE LOOF, AND P. CALLAERTS. Electri- JAMIESON, JR., AND N. E. OWEN. <strong>Mechanisms</strong> <strong>of</strong> growth factor<br />

cal-ionic control <strong>of</strong> gene expression. Int. J. Biochem. 24: 1907– stimulation <strong>of</strong> Na / /H / exchange in cultured fibroblasts. Curr. Top.<br />

1916, 1992.<br />

Membr. Transp. 26: 175–192, 1986.<br />

1255. VAN DER MEULEN, J. A., A. KLIP, AND S. GRINSTEIN. Possible 1275. VINIEGRA, S., E. J. CRAGOE, JR., AND C. A. RABITO. Heterogeneity<br />

<strong>of</strong> the Na / /H / mechanism for cerebral edema in diabetic ketoacidosis. Lancet<br />

antiport systems in renal cells. Biochim. Bio-<br />

2: 306–308, 1987. phys. Acta 1106: 99–109, 1992.<br />

1256. VANDEWALLE, A., T. VUILLEMIN, J. TEULON, B. BOUDOUIN, 1276. VITOUX, D., O. OLIVIERI, R. P. GARAY, E. J. CRAGOE, JR., F.<br />

F. WAHBE, M. BENS, R. CASSINGENA, AND P. RONCO. K / fluxes GALACTEROS, AND Y. BEUZARD. Inhibition <strong>of</strong> K / efflux and de-<br />

mediated by Na hydration <strong>of</strong> sickle cells by [(dihydroindenyl)oxy]alkanoic acid:<br />

/ /K / /Cl 0 cotransport and Na / /K / -ATPase pumps<br />

in renal tubule cell lines transformed by wild-type and tempera- an inhibitor <strong>of</strong> the K / Cl 0 cotransport system. Proc. Natl. Acad.<br />

ture-sensitive strains <strong>of</strong> simian virus 40. J. <strong>Cell</strong>. Physiol. 154: 466– Sci. USA 86: 4273–4276, 1989.<br />

477, 1993. 1277. VOLK, K. A., C. ZHANG, R. F. HUSTED, AND J. B. STOKES. Cl<br />

1257. VAN ROSSUM, G. D. V., S. A. ERNST, AND M. A. RUSSO. Relative current in IMCD cells activated by hypotonicity: time course, ATP<br />

effects <strong>of</strong> furosemide and ethacrynic acid on ion transport and dependence, and inhibitors. Am. J. Physiol. 271 (Renal Fluid Elec-<br />

energy metabolism in slices <strong>of</strong> rat kidney cortex. Naunyn-Schmietrolyte Physiol. 40): F552–F559, 1996.<br />

debergs Arch. Pharmacol. 317: 90–96, 1981. 1278. VOLK, T., E. FRÖMTER, AND C. KORBMACHER. Hypertonicity<br />

1258. VAN ROSSUM, G. D. V., AND M. A. RUSSO. Ouabain-resistant activates nonselective cation channels in mouse cortical collecting<br />

mechanism <strong>of</strong> volume control and the ultrastructural organization duct cells. Proc. Natl. Acad. Sci. USA 92: 8478–8482, 1995.<br />

<strong>of</strong> liver slices recovering from swelling in vitro. J. Membr. Biol. 1279. VÖLKL, H., G. L. BUSCH, D. HÄUSSINGER, AND F. LANG. Alkalin-<br />

59: 191–209, 1981. ization <strong>of</strong> acidic cellular compartments following cell swelling.<br />

1259. VAN ROSSUM, G. D. V., AND M. A. RUSSO. Requirement <strong>of</strong> Cl FEBS Lett. 338: 27–30, 1994.<br />

0<br />

and Na / for the ouabain-resistant control <strong>of</strong> cell volume in slices 1280. VÖLKL, H., F. FRIEDRICH, D. HÄUSSINGER, AND F. LANG. Effect<br />

<strong>of</strong> rat liver. J. Membr. Biol. 77: 63–76, 1984. <strong>of</strong> cell volume on Acridine Orange fluorescence in hepatocytes.<br />

1260. VAN ROSSUM, G. D. V., M. A. RUSSO, AND J. C. SCHISSEL- Biochem. J. 295: 11–14, 1993.<br />

BAUER. Role <strong>of</strong> cytoplasmic vesicles in volume maintenance. 1281. VÖLKL, H., AND F. LANG. Ionic requirement for regulatory cell<br />

Curr. Top. Membr. Transp. 30: 45–74, 1987. volume decrease in renal straight proximal tubules. Pflügers Arch.<br />

1261. VAN SCHAFTINGEN, E., AND A. VANDERCAMMEN. Mechanism 412: 1–6, 1988.<br />

<strong>of</strong> the stimulatory effect <strong>of</strong> a potassium rich medium on the phos- 1282. VÖLKL, H., AND F. LANG. Effect <strong>of</strong> potassium on cell volume<br />

phorylation <strong>of</strong> glucose in isolated rat hepatocytes. Eur. J. Bio- regulation in renal straight proximal tubules. J. Membr. Biol. 117:<br />

chem. 204: 363–369, 1992. 113–122, 1990.<br />

1262. VAUTRIN, J., AND M. E. KRIEBEL. Characteristics <strong>of</strong> slow-minia- 1283. VÖLKL, H., W. REHWALD, W. WAITZ, D. HÄUSSINGER, AND F.<br />

ture endplate currents show a subunit composition. Neuroscience LANG. Acridine Orange fluorescence in renal proximal tubules:<br />

41: 71–88, 1991. effects <strong>of</strong> NH3/NH / 4 and cell volume. <strong>Cell</strong>. Physiol. Biochem. 3:<br />

1263. VENOSA, R. A. Hypo-osmotic stimulation <strong>of</strong> active Na 28–33, 1993.<br />

/ transport<br />

in frog muscle: apparent upregulation <strong>of</strong> Na / pumps. J. Membr. 1284. VOM DAHL, S., B. STOLL, W. GEROK, AND D. HÄUSSINGER.<br />

Biol. 120: 97–104, 1991. Inhibition <strong>of</strong> proteolysis by cell swelling in the liver requires intact<br />

1264. VERBALIS, J. G. Hyponatremia: epidemiology, pathophysiology, microtubular structures. Biochem. J. 308: 529–536, 1995.<br />

and therapy. Curr. Opin. Nephrol. Hypertens. 2: 636–652, 1993. 1285. VOM DAHL, S., AND D. HÄUSSINGER. Nutritional state and the<br />

1265. VERBALIS, J. G., AND M. D. DRUTAROSKY. Adaptation to chronic swelling-induced inhibition <strong>of</strong> proteolysis in the perfused rat liver.<br />

hypoosmolality in rats. Kidney Int. 34: 351–360, 1988. J. Nutr. 126: 395–402, 1996.<br />

1266. VERBALIS, J. G., AND S. R. GULLANS. Hyponatremia causes large 1286. VOM DAHL, S., C. HALLBRUCKER, F. LANG, AND D. HÄUS-<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


304<br />

LANG ET AL. <strong>Volume</strong> 78<br />

SINGER. Regulation <strong>of</strong> cell volume in the perfused rat liver by cells by blocking Ca 2/ influx. Mol. <strong>Cell</strong>. Endocrinol. 83: 79–84,<br />

hormones. Biochem. J. 280: 105–109, 1991.<br />

1992.<br />

1287. VOM DAHL, S., C. HALLBRUCKER, F. LANG, W. GEROK, AND D. 1306. WANG, X., N. SATO, M. A. GREER, S. E. GREER, AND S.<br />

HÄUSSINGER. Regulation <strong>of</strong> liver cell volume and proteolysis by MCADAMS. <strong>Cell</strong> swelling induced by the permeant molecules urea<br />

glucagon and insulin. Biochem. J. 278: 771–777, 1991.<br />

or glycerol induces immediate high amplitude thyrotropin and<br />

1288. VOM DAHL, S., C. HALLBRUCKER, F. LANG, AND D. HÄUS- prolactin secretion by perifused adenohypophysial cells. Biochem.<br />

SINGER. Role <strong>of</strong> eicosanoids, inositol phosphates and extracellu- Biophys. Res. Commun. 163: 471–475, 1989.<br />

lar Ca 1307. WANG, X., N. SATO, M. A. GREER, S. E. GREER, AND S.<br />

2/ in cell volume regulation <strong>of</strong> rat liver. Eur. J. Biochem.<br />

198: 73–83, 1991.<br />

MCADAMS. Quinidine inhibits prolactin secretion induced by thy-<br />

1289. VON HARSDORF, R., R. LANG, M. FULLERTON, A. I. SMITH, AND rotropin releasing hormone, high medium potassium or hyposmo-<br />

E. A. WOODCOCK. Right atrial dilation increases inositol-(1,4,5)<br />

trisphosphate accumulation. Implications for the control <strong>of</strong> atrial<br />

natriuretic peptide release. FEBS Lett. 233: 201–205, 1988.<br />

1290. WAITE, M. R. F., AND E. R. PFEFFERKORN. Effect <strong>of</strong> altered os-<br />

larity in GH4C1 cells. J. Pharmacol. Exp. Ther. 256: 135–140, 1991.<br />

1308. WANG, X., N. SATO, M. A. GREER, S. E. GREER, AND S.<br />

MCADAMS. Role <strong>of</strong> extracellular calcium and calmodulin in pro-<br />

lactin secretion induced by hyposmolarity, thyrotropin-releasing<br />

hormone, and high K / motic pressure on the growth <strong>of</strong> Sindbis virus. J. Virol. 2: 759–<br />

760, 1968.<br />

1291. WAKABAYASHI, S., B. BERTRAND, T. IKEDA, J. POUYSSÉGUR,<br />

AND M. SHIGEKAWA. Mutation <strong>of</strong> calmodulin-binding site renders<br />

the Na<br />

in GH4C1 cells. Acta Endocrinol. 123: 218–<br />

224, 1990.<br />

1309. WANG, X., N. SATO, M. A. GREER, S. MCADAMS, AND S. E.<br />

GREER. Dual effect <strong>of</strong> osmotic cell swelling on prolactin secretion<br />

by acutely dispersed adenohypophysial cells. Life Sci. 48: 617–<br />

/ /H / exchanger (NHE1) highly H / -sensitive and Ca 2/ regulation-defective.<br />

J. Biol. Chem. 269: 13710–13715, 1994.<br />

1292. WAKABAYASHI, S., P. FAFOURNOUX, C. SARDET, AND J. POU-<br />

YSSÉGUR. The Na<br />

622, 1991.<br />

1310. WANG, Y., R. ROMAN, S. D. LIDOFSKY, AND J. G. FITZ. Autocrine<br />

signaling through ATP release represents a novel mechanism for<br />

/ /H / antiporter cytoplasmic domain mediates<br />

growth factor signals and controls ‘‘H cell volume regulation. Proc. Natl. Acad. Sci. USA 93: 12020–<br />

/ -sensing.’’ Proc. Natl. Acad.<br />

Sci. USA 89: 2424–2428, 1992.<br />

1293. WAKABAYASHI, S., C. SARDET, P. FAFOURNOUX, L. COUNIL-<br />

LON, S. MELOCHE, G. PAGES, AND J. POUYSSEGUR. Structure<br />

function <strong>of</strong> the growth-factor-activatable Na<br />

12025, 1996.<br />

1311. WANGEMANN, P. Comparison <strong>of</strong> ion transport mechanisms between<br />

vestibular dark cells and strial marginal cells. Hearing Res.<br />

90: 149–157, 1995.<br />

/ /H / exchanger<br />

(NHE1). Rev. Physiol. Biochem. Pharmacol. 119: 157–186, 1992.<br />

1312. WANGEMANN, P., J. LIU, Z. SHEN, A. SHIPLEY, AND D. C. MAR-<br />

CUS. Hypo-osmotic challenge stimulates transepithelial K / 1294. WAKABAYASHI, S., M. SHIGEKAWA, AND J. POUYSSEGUR. Mo-<br />

lecular physiology <strong>of</strong> vertebrate Na<br />

secretion<br />

and activates apical IsK channel in vestibular dark cells. J.<br />

/ /H / exchangers. Physiol. Rev.<br />

77: 51–74, 1997.<br />

1295. WALDEGGER, S., P. BARTH, G. RABER, AND F. LANG. Cloning<br />

Membr. Biol. 147: 263–273, 1995.<br />

1313. WANGEMANN, P., J. Z. LIU, AND N. SHIGA. Vestibular dark cells<br />

contain the Na / /H / and characterization <strong>of</strong> a putative human serine/theonine protein<br />

kinase transcriptionally modified during anisotonic and isotonic<br />

exchanger NHE 1 in the basolateral mem-<br />

brane. Hearing Res. 94: 94–106, 1996.<br />

1314. WANGEMANN, P., AND D. C. MARCUS. K / alterations <strong>of</strong> cell volume. Proc. Natl. Acad. Sci. USA 94: 4440–<br />

-induced swelling <strong>of</strong><br />

vestibular dark cells is dependent on Na / and Cl 0 4445, 1997.<br />

1296. WALDEGGER, S., G. PINGGERA, K. KLOIBER, M. RITTER, E.<br />

WÖLL, E. HUMPELER, K. MALY, H. GRUNICKE, AND F. LANG.<br />

Further studies on the nature <strong>of</strong> cell membrane potential oscillations<br />

in NIH-3T3 fibroblasts expressing the ras oncogene. <strong>Cell</strong>.<br />

Physiol. Biochem. 3: 89–96, 1993.<br />

1297. WALTERS, R. J., J. A. O’BRIEN, M. A. VALVERDE, AND F. V. SE-<br />

PULVEDA. Membrane conductance and cell volume changes<br />

evoked by vasoactive intestinal polypeptide and carbachol in<br />

small intestinal crypts. Pflügers Arch. 421: 598–605, 1992.<br />

1298. WALZ, W. Role <strong>of</strong> Na/K/Cl cotransport in astrocytes. Can. J. Phys-<br />

iol. Pharmacol. 70, Suppl.: S260–S262, 1992.<br />

1299. WALZ, W., AND S. MUKERJI. Simulation <strong>of</strong> aspects <strong>of</strong> ischemia in<br />

cell culture: changes in lactate compartmentation. Glia 3: 522–<br />

528, 1990.<br />

1300. WANG, K., AND R. WONDERGEM. Redistribution <strong>of</strong> hepatocyte<br />

chloride during L-alanine uptake. J. Membr. Biol. 135: 237–244,<br />

1993.<br />

and inhibited<br />

by piretanide. Pflügers Arch. 416: 262–269, 1990.<br />

1315. WANGEMANN, P., AND N. SHIGA. <strong>Cell</strong> volume control in vestibular<br />

dark cells during and after a hyposmotic challenge. Am. J.<br />

Physiol. 266 (<strong>Cell</strong> Physiol. 35): C1046–C1060, 1994.<br />

1316. WARD, D. M., C. M. PEROU, M. LLOYD, AND J. KAPLAN. ‘‘Synchronized’’<br />

endocytosis and intracellular sorting in alveolar macrophages:<br />

the early sorting endosome is a transient organelle. J.<br />

<strong>Cell</strong> Biol. 129: 1229–1240, 1995.<br />

1317. WARSKULAT, U., W. P. NEWSOME, B. NOE, B. STOLL, AND D.<br />

HÄUSSINGER. Anisoosmotic regulation <strong>of</strong> hepatic gene expression.<br />

Biol. Chem. Hoppe-Seyler 377: 57–65, 1996.<br />

1318. WARSKULAT, U., C. WEIK, AND D. HÄUSSINGER. Myo-inositol<br />

is an osmolyte in rat liver macrophages (Kupffer cells) but not in<br />

RAW 264.7 mouse macrophages. Biochem. J. 326: 289–295, 1997.<br />

1319. WARSKULAT, U., M. WETTSTEIN, AND D. HÄUSSINGER. Betaine<br />

is an osmolyte in RAW 264.7 mouse macrophages. FEBS Lett. 377:<br />

47–50, 1995.<br />

1320. WARSKULAT, U., M. WETTSTEIN, AND D. HÄUSSINGER. Osmo-<br />

1301. WANG, W., AND E. G. SCHNEIDER. Potassium induced aldosterone<br />

secretion involves a Cl dependent mechanism. Am. J. Physiol.<br />

272 (<strong>Regulatory</strong> Integrative Comp. Physiol. 41): R183–R187,<br />

1997.<br />

1302. WANG, W. J., P. ACS, J. A. GOODNIGHT, T. GIESE, P. M. BLUM-<br />

BERG, H. MISCHAK, AND J. F. MUSHINSKI. The catalytic domain<br />

<strong>of</strong> protein kinase C delta in reciprocal delta and epsilon chimeras<br />

mediates phorbol ester induced macrophage differentiation <strong>of</strong><br />

mouse promyelocytes. J. Biol. Chem. 272: 76–82, 1997.<br />

1303. WANG, W.-H., J. GEIBEL, AND G. GIEBISCH. Mechanism <strong>of</strong> apical<br />

K<br />

regulated taurine transport in H4IIE hepatoma cells and perfused<br />

rat liver. Biochem. J. 321: 683–690, 1997.<br />

1321. WARSKULAT, U., F. ZHANG, AND D. HÄUSSINGER. Modulation<br />

<strong>of</strong> phagocytosis by anisoosmolarity and betaine in rat liver macrophages<br />

(Kupffer cells) and raw 264.7 mouse macrophages. FEBS<br />

Lett. 391: 287–292, 1996.<br />

1322. WARSKULAT, U., F. ZHANG, AND D. HÄUSSINGER. Taurine is an<br />

osmolyte in rat liver macrophages (Kupffer cells). J. Hepatol. 26:<br />

1340–1347, 1997.<br />

1323. WASSERMAN, J. C., E. DELPIRE, W. TONIDANDEL, R. KOJIMA,<br />

/ channel modulation in principal renal tubule cells. Effect <strong>of</strong><br />

inhibition <strong>of</strong> basolateral Na<br />

AND S. R. GULLANS. Molecular characterization <strong>of</strong> ROSIT, a renal<br />

/ -K / -ATPase. J. Gen. Physiol. 101: osmotic stress-induced Na / -Cl 0 673–694, 1993.<br />

1304. WANG, X., C. L., CHIK, A. K. HO, N. SATO, AND M. A. GREER.<br />

-organic solute cotransporter. Am.<br />

J. Physiol. 267 (Renal Fluid Electrolyte Physiol. 36): F688–F694,<br />

1994.<br />

Cyclic adenosine monophosphate is not part <strong>of</strong> the transduction 1324. WATSON, P. A. Accumulation <strong>of</strong> cAMP and calcium in S49 mouse<br />

chain by which cell-swelling induces secretion in either normal lymphoma cells following hyposmotic swelling. J. Biol. Chem.<br />

or tumor-derived GH4C1 pituitary cells. Metabolism 42: 435–439, 264: 14735–14740, 1989.<br />

1993. 1325. WATSON, P. A. Direct stimulation <strong>of</strong> adenylate cyclase by me-<br />

1305. WANG, X., N. SATO, AND M. A. GREER. Medium hyperosmolarity chanical forces in S49 mouse lymphoma cells during hyposmotic<br />

inhibits prolactin secretion induced by depolarizing K swelling. J. Biol. Chem. 265: 6569–6575, 1990.<br />

/ in GH4C1<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


January 1998 FUNCTIONAL SIGNIFICANCE OF CELL VOLUME 305<br />

1326. WATSON, P. A. Function follows form: generation <strong>of</strong> intracellular apical chloride and potassium conductances, decreases cell volsignals<br />

by cell deformation. FASEB J. 5: 2013–2019, 1991.<br />

ume, and increases permeability <strong>of</strong> cultured epithelial cell mono-<br />

1327. WEBER, K., AND M. OSBORN. The cytoskeleton. Natl. Cancer layers. Am. J. Respir. <strong>Cell</strong> Mol. Biol. 6: 583–593, 1992.<br />

Inst. Monogr. 60: 31–46, 1982.<br />

1351. WINZOR, C. L., D. J. WINZOR, L. G. PALEG, G. P. JONES, AND<br />

1328. WEEL, J. F. L., AND J. P. VAN PUTTEN. Fate <strong>of</strong> the major outer B. P. NAIDU. Rationalization <strong>of</strong> the effects <strong>of</strong> compatible solutes<br />

membrane protein P.IA in early and late events <strong>of</strong> gonococcal on protein stability in terms <strong>of</strong> thermodynamic nonideality. Arch.<br />

infection <strong>of</strong> epithelial cells. Res. Microbiol. 142: 985–993, 1991. Biochem. Biophys. 296: 102–107, 1992.<br />

1329. WEHLING, M., J. KASMAYR, AND K. THEISEN. Rapid effects <strong>of</strong> 1352. WIRTHENSOHN, G., S. LE FRANK, AND W. G. GUDER. Studies<br />

mineralcorticoids on sodium-proton exchanger: genomic or non- on the role <strong>of</strong> glycerophosphorylcholine and sorbitol in renal os-<br />

genomic pathway? Am. J. Physiol. 260 (Endocrinol. Metab. 23): moregulation. In: Molecular Nephrology. Biochemical Aspects <strong>of</strong><br />

E719–E726, 1991. Kidney Function, edited by Z. Kovacevic and W. G. Guder. Berlin:<br />

1330. WEHLING, M., J. KASMAYR, AND K. THEISEN. The Na de Gruyter, 1987, p. 321–327.<br />

/ -H / exchanger<br />

is stimulated and cell volume increased in lymphocytes 1353. WIRTHENSOHN, G., S. LEFRANK, M. SCHMOLKE, AND W. G.<br />

from patients with essential hypertension. J. Hypertens. 9: 519– GUDER. Regulation <strong>of</strong> organic osmolyte concentrations in tubules<br />

524, 1991. from rat renal inner medulla. Am. J. Physiol. 256 (Renal Fluid<br />

1331. WEHLING, M., S. KUHLS, AND D. ARMANINI. <strong>Volume</strong> regulation Electrolyte Physiol. 25): F128–F135, 1989.<br />

<strong>of</strong> human lymphocytes by aldosterone in isotonic media. Am. J. 1354. WIRTZ, H. R. W., AND L. G. DOBBS. Calcium mobilization and exo-<br />

Physiol. 257 (Endocrinol. Metab. 20): E170–E174, 1989.<br />

cytosis after one mechanical stretch <strong>of</strong> lung epithelial cells. Sci-<br />

1332. WEHNER, F., H. SAUER, AND R. K. H. KINNE. Hypertonic stress ence 250: 1266–1269, 1990.<br />

increases the Na 1355. WITKE, W., A. H. SHARPE, J. H. HARTWIG, T. AZUMA, T. P.<br />

/ conductance <strong>of</strong> rat hepatocytes in primary culture.<br />

J. Gen. Physiol. 105: 507–535, 1995. STOSSEL, AND D. J. KWIATKOWSKI. Hemostatic, inflammatory,<br />

1333. WEI, L.-Y., AND P. D. ROEPE. Low external pH and osmotic shock and fibroblast responses are blunted in mice lacking gelsolin. <strong>Cell</strong><br />

increase the expression <strong>of</strong> human MDR protein. Biochemistry 33: 81: 41–51, 1995.<br />

7229–7238, 1994.<br />

1356. WOLFF, S. D., T. S. STANTON, S. L. JAMES, AND R. S. BALABAN.<br />

1334. WEISS, H., AND F. LANG. Ion channels activated by swelling <strong>of</strong> Acute regulation <strong>of</strong> the predominant organic solutes <strong>of</strong> the rabbit<br />

Madin-Darby canine kidney (MDCK) cells. J. Membr. Biol. 126: renal inner medulla. Am. J. Physiol. 257 (Renal Fluid Electrolyte<br />

109–114, 1992. Physiol. 26): F676–F681, 1989.<br />

1335. WEISSBACH, L., AND M. S. KILBERG. Amino acid activation <strong>of</strong> 1357. WÖLL, E., M. RITTER, T. HALLER, H. VÖLKL, AND F. LANG.<br />

amino acid transport system N early in primary cultures <strong>of</strong> rat Calcium entry stimulated by swelling <strong>of</strong> Madin-Darby canine kidhepatocytes.<br />

J. <strong>Cell</strong>. Physiol. 121: 133–138, 1984. ney (MDCK) cells. Nephron 74: 150–157, 1996.<br />

1336. WELSH, M. J. Electrolyte transport by airway epithelia. Physiol. 1358. WÖLL, E., M. RITTER, W. SCHOLZ, D. HÄUSSINGER, AND F.<br />

Rev. 67: 1143–1184, 1987. LANG. The role <strong>of</strong> calcium in cell shrinkage and intracellular<br />

1337. WELSH, M. J., AND C. M. LIEDTKE. Chloride and potassium chan- alkalinization by bradykinin in Ha-ras oncogene expressing cells.<br />

nels in cystic fibrosis airway epithelia. Nature 322: 467–470, 1986. FEBS Lett. 322: 261–265, 1993.<br />

1338. WELTE, W. Porins from bacterial outer membranes. Renal Phys- 1359. WÖLL, E., S. WALDEGGER, F. LANG, K. MALY, AND H. GRUiol.<br />

Biochem. 17: 216–218, 1994. NICKE. Mechanism <strong>of</strong> intracellular calcium oscillations in fibro-<br />

1339. WESTBROOK, G. L. Glutamate receptors and excitotoxicity. Res. blasts expressing the ras oncogene. Pflügers Arch. 420: 208–212,<br />

Publ. Assoc. Res. Nerv. Ment. Dis. 71: 35–50, 1993. 1992.<br />

1340. WETTSTEIN, M., B. NOE, AND D. HÄUSSINGER. Metabolism <strong>of</strong> 1360. WÖLL, E., H. WEISS, S. WALDEGGER, AND F. LANG. Effect <strong>of</strong><br />

cysteinyl leukotrienes in the perfused rat liver: the influence <strong>of</strong> calcium channel antagonists on cell membrane potential oscilla-<br />

endotoxin pretreatment and the cellular hydration state. Hepatoltions and proliferation <strong>of</strong> cells expressing the ras oncogene. Eur.<br />

ogy 22: 235–240, 1995. J. Pharmacol. 212: 105–107, 1992.<br />

1341. WETTSTEIN, M., S. VOM DAHL, F. LANG, W. GEROK, AND D. 1361. WOLLNIK, B., C. KUBISCH, A. MAASS, H. VETTER, AND L.<br />

HÄUSSINGER. <strong>Cell</strong> volume regulatory responses <strong>of</strong> isolated per- NEYSES. Hyperosmotic stress induces immediate-early gene ex-<br />

fused rat liver. The effect <strong>of</strong> amino acids. Biol. Chem. Hoppe- pression in ventricular adult cardiomyocytes. Biochem. Biophys.<br />

Seyler 371: 493–501, 1990. Res. Commun. 194: 642–646, 1993.<br />

1342. WHALLEY, D. W., L. C. HOOL, R. E. TEN EICK, AND H. H. RAS- 1362. WONDERGEM, R., AND J. DAVIS. Ethanol increases hepatocyte<br />

MUSSEN. Effect <strong>of</strong> osmotic swelling and shrinkage on Na / -K /<br />

water volume. Alcohol. Clin. Exp. Res. 18: 1230–1236, 1994.<br />

pump activity in mammalian cardiac myocytes. Am. J. Physiol. 1363. WONG, M. M., AND J. K. FOSKETT. Oscillations <strong>of</strong> cytosolic so-<br />

265 (<strong>Cell</strong> Physiol. 34): C1201–C1210, 1993. dium during calcium oscillations in exocrine acinar cells. Science<br />

1343. WHEATLEY, D. N. <strong>Cell</strong> growth and division in hypertonic medium. 254: 1014–1016, 1991.<br />

Exp. <strong>Cell</strong> Res. 87: 219–232, 1974. 1364. WORRELL, R. T., A. G. BUTT, W. H. CLIFF, AND R. A. FRIZZELL.<br />

1344. WIEBEL, F. J., U. KLOSE, AND F. KIEFER. Toxicity <strong>of</strong> 2,3,7,8- A volume-sensitive chloride conductance in human colonic cell<br />

tetrachlorodibenzo-p-dioxin in vitro: H4IIEC3-derived 5L hepa- line T84. Am. J. Physiol. 256 (<strong>Cell</strong> Physiol. 25): C1111–C1119,<br />

toma cells as a model system. Toxicol. Lett. 55: 161–169, 1991. 1989.<br />

1345. WIESINGER, H., U. THEISS, AND B. HAMPRECHT. Sorbitol path- 1365. WORTHEN, G. S., P. M. HENSON, S. ROSENGREN, G. P. DOWway<br />

activity and utilization <strong>of</strong> polyols in astroglia-rich primary NEY, AND D. M. HYDE. Neutrophils increase volume during migra-<br />

cultures. Glia 3: 277–282, 1990. tion in vivo and in vitro. Am. J. Respir. <strong>Cell</strong> Mol. Biol. 10: 1–7,<br />

1346. WILKER, C. E., T. H. WELSH, JR., S. H. SAFE, T. R. NARASIM- 1994.<br />

HAN, AND L. JOHNSON. Human chorionic gonadotropin protects 1366. WU, G., AND N. E. FLYNN. Regulation <strong>of</strong> glutamine and glucose<br />

Leydig cell function against 2,3,7,8-tetrachloridibenzo-p-dioxin in metabolism by cell volume in lymphocytes and macrophages. Bioadult<br />

rats: role <strong>of</strong> Leydig cells cytoplasmic volume. Toxicology 95: chim. Biophys. Acta 1243: 343–350, 1995.<br />

93–102, 1995. 1367. WYLLIE, A. H., J. F. KERR, AND A. R. CURRIE. <strong>Cell</strong> death: the<br />

1347. WILLS, N. K., L. P. MILLINOFF, AND W. E. CROWE. Na significance <strong>of</strong> apoptosis. Int. Rev. Cytol. 68: 251–306, 1980.<br />

/ channel<br />

activity in cultured renal (A6) epithelium: regulation by solution 1368. XIA, Z., M. DICKENS, J. RAINGEAUD, R. J. DAVIS, AND M. E.<br />

osmolarity. J. Membr. Biol. 121: 79–90, 1991. GREENBERG. Opposing effects <strong>of</strong> ERK and JNK-p38 MAP kinases<br />

1348. WILLUMSEN, N. J., C. W. DAVIS, AND R. C. BOUCHER. Selective on apoptosis. Science 270: 1326–1331, 1995.<br />

response <strong>of</strong> human airway epithelia to luminal but not serosal 1369. XU, B., B. A. WILSON, AND L. LU. Induction <strong>of</strong> human myeloblastic<br />

solution hypertonicity. Possible role for proximal airway epithelia ML 1 cell G1 arrest by suppression <strong>of</strong> K / channel activity. Am. J.<br />

as an osmolality transducer. J. Clin. Invest. 94: 779–787, 1994. Physiol. 271 (<strong>Cell</strong> Physiol. 40): C2037–C2044, 1996.<br />

1349. WINDHAGER, E. E., AND A. TAYLOR. <strong>Regulatory</strong> role <strong>of</strong> intracel- 1370. XU, J.-C., C. LYTLE, T. T. ZHU, J. A. PAYNE, E. BENZ, JR., AND<br />

lular calcium ions in epithelial Na transport. Annu. Rev. Physiol. B. FORBUSH III. Molecular cloning and functional expression <strong>of</strong><br />

45: 519–532, 1983. the bumetanide-sensitive Na-K-Cl cotransporter. Proc. Natl. Acad.<br />

1350. WINTER, M., M. CARSON, AND M. SHASBY. Mastoparan activates Sci. USA 91: 2201–2205, 1994.<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev


306<br />

LANG ET AL. <strong>Volume</strong> 78<br />

1371. YAMAMOTO, T., C. A. MUNDY, C. B. WILSON, AND R. C. BLANTZ. increased glucose levels on Na / /K / pump activity in cultured neu-<br />

Effect <strong>of</strong> mesangial cell lysis and proliferation on glomerular heroblastoma cells. J. Neurochem. 51: 601–610, 1988.<br />

modynamics in the rat. Kidney Int. 40: 705–713, 1991. 1387. YOREK, M. A., J. A. DUNLAP, AND M. R. STEFANI. Restoration <strong>of</strong><br />

Na / /K / 1372. YAMAUCHI, A., H. M. KWON, S. UCHIDA, A. S. PRESTON, AND<br />

pump activity and resting membrane potential by myo-<br />

J. S. HANDLER. Myo-inositol and betaine transporters regulated inositol supplementation in neuroblastoma cells chronically ex-<br />

by tonicity are basolateral in MDCK cells. Am. J. Physiol. 261 posed to glucose or galactose. Diabetes 40: 240–248, 1991.<br />

(Renal Fluid Electrolyte Physiol. 30): F197–F202, 1991. 1388. YOUNG, E., AND R. F. BRADLEY. Cerebral edema with irreversible<br />

1373. YAMAUCHI, A., A. MIYAI, K. YOKOYAMA, T. ITOH, T. KAMADA, coma in severe diabetic ketoacidosis. N. Engl. J. Med. 276: 665–<br />

N. UEDA, AND Y. FUJIWARA. Response to osmotic stimuli in mes- 669, 1967.<br />

angial cells: role <strong>of</strong> system A transporter. Am. J. Physiol. 267 (<strong>Cell</strong> 1389. ZAMMIT, V. A. Effect <strong>of</strong> hydration state on the synthesis and se-<br />

Physiol. 36): C1493–C1500, 1994. cretion <strong>of</strong> triacylglycerol by isolated rat hepatocytes. Implications<br />

1374. YAMAUCHI, A., S. UCHIDA, H. M. KWON, A. S. PRESTON, R. B. for the actions <strong>of</strong> insulin and glucagon on hepatic secretion. Bio-<br />

ROBEY, A. GARCIA-PEREZ, M. B. BURG, AND J. S. HANDLER. chem. J. 312: 57–62, 1995.<br />

Cloning <strong>of</strong> a Na 1390. ZENTAY, Z., A. REDDI, M. RAGUWANSHI, J. P. GARDNER, J. H.<br />

/ - and Cl 0 -dependent betaine transporter that is<br />

regulated by hypertonicity. J. Biol. Chem. 267: 649–652, 1992. CHO, N. LASKER, A. DASMAHAPATRA, AND A. AVIV. Platelet<br />

1375. YAMAUCHI, A., T. SUGIURA, T. ITO, A. MIYAI, M. HORIO, E. sodium-hydrogen antiport in obese and diabetic black women.<br />

IMAI, AND T. KAMADA. Na / /myo-inositol transport is regulated Hypertension 20: 549–554, 1992.<br />

by basolateral tonicity in Madin-Darby canine kidney cells. J. Clin. 1391. ZHANG, F., M. WETTSTEIN, U. WARSKULAT, R. SCHREIBER, P.<br />

Invest. 97: 263–267, 1996. HENNINGER, K. DECKER, AND D. HÄUSSINGER. Hyperosmolar-<br />

1376. YANCEY, P. H. Compatible and conteracting solutes. In: <strong>Cell</strong>ular ity stimulates prostaglandin synthesis and cyclooxygenase-2 exand<br />

Molecular Physiology <strong>of</strong> <strong>Cell</strong> <strong>Volume</strong> Regulation, edited by pression in activated rat liver macrophages. Biochem. J. 312: 135–<br />

K. Strange. Boca Raton, FL: CRC, 1994, p. 81–109.<br />

143, 1995.<br />

1377. YANCEY, P. H. Osmotic effectors in kidneys <strong>of</strong> xeric and mesic 1392. ZHANG, F., U. WARSKULAT, AND D. HÄUSSINGER. Modulation<br />

rodents: corticomedullary distributions and changes with water <strong>of</strong> tumor necrosis factor alpha release by anisoosmolarity and<br />

availability. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. betaine in rat liver macrophages (Kupffer cells). FEBS Lett. 391:<br />

158: 369–380, 1988.<br />

293–296, 1996.<br />

1378. YANCEY, P. H., AND M. B. BURG. Distribution <strong>of</strong> major organic 1393. ZHANG, F., U. WARSKULAT, M. WETTSTEIN, AND D. HÄUSosmolytes<br />

in rabbit kidneys in diuresis and antidiuresis. Am. J. SINGER. Identification <strong>of</strong> betaine as an osmolyte in rat liver mac-<br />

Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F602–F607, rophages (Kupffer cells). Gastroenterology 110: 1543–1552, 1996.<br />

1989.<br />

1394. ZHANG, J., R. L. RASMUSSON, S. K. HALL, AND M. LIEBERMAN.<br />

1379. YANCEY, P. H., M. B. BURG, AND S. M. BAGNASCO. Effects <strong>of</strong> A chloride current associated with swelling <strong>of</strong> cultured chick heart<br />

NaCl, glucose and aldose reductase inhibitors on cloning effi- cells. J. Physiol. (Lond.) 472: 801–820, 1993.<br />

ciency <strong>of</strong> renal medullary cells. Am. J. Physiol. 258 (<strong>Cell</strong> Physiol. 1395. ZHAO, Y., S. CHIEN, AND R. SKALAK. A stochastic model <strong>of</strong> leuko-<br />

27): C156–C163, 1990.<br />

cyte rolling. Biophys. J. 69: 1309–1320, 1995.<br />

1380. YANCEY, P. H., AND M. B. BURG. Counteracting effects <strong>of</strong> urea 1396. ZIMMER, M., O. KEMPSKI, A. NEU, F. VON ROSEN, AND A.<br />

and betaine in mammalian cells in culture. Am. J. Physiol. 258 BAETHMANN. Anoxic incubation <strong>of</strong> suspended glial cells. An in-<br />

(<strong>Regulatory</strong> Integrative Comp. Physiol. 27): R198–R204, 1990. vitro model <strong>of</strong> cerebral anoxia to study cytotoxic brain edema.<br />

1381. YANCEY, P. H., M. E. CLARK, S. C. HAND, R. D. BOWLUS, AND Adv. Neurosurg. 12: 271–273, 1984.<br />

G. N. SOMERO. Living with water stress: evolution <strong>of</strong> osmolyte 1397. ZIMMERMAN, S. B., AND A. P. MINTON. Macromolecular crowd-<br />

systems. Science 217: 1214–1222, 1982.<br />

ing: biochemical, biophysical, and physiological consequences.<br />

1382. YANCEY, P. H., AND G. N. SOMERO. Counteraction <strong>of</strong> urea desta- Annu. Rev. Biophys. Biomol. Struct. 22: 27–65, 1993.<br />

bilization <strong>of</strong> protein structure by methylamine osmoregulatory 1398. ZIYADEH, F. N., J. W. MILLS, AND A. KLEINZELLER. Hypotonicity<br />

compounds <strong>of</strong> elasmobranch fishes. Biochem. J. 183: 317–323, and cell volume regulation in shark rectal gland: role <strong>of</strong> organic<br />

1979.<br />

osmolytes and F-actin. Am. J. Physiol. 262 (Renal Fluid Electro-<br />

1383. YANCEY, P. H., AND G. N. SOMERO. Methylamine osmoregulatory lyte Physiol. 31): F468–F479, 1992.<br />

solutes <strong>of</strong> elasmobranch fishes counteract urea inhibition <strong>of</strong> en- 1399. ZONGAZO, M. A., A. CARAYON, F. MASSON, R. ISNARD, J. EUzymes.<br />

J. Exp. Zool. 212: 205–213, 1980. RIN, G. MAISTRE, C. BARTHELEMY, A. C. PROST, AND J. C. LE-<br />

1384. YANKASKAS, J. R., J. T. GATZY, AND R. C. BOUCHER. Effects GRAND. Atrial natriuretic peptide during water deprivation or<br />

<strong>of</strong> raised osmolarity on canine tracheal epithelial ion transport hemorrhage in rats. Relationship with arginine vasopressin and<br />

function. J. Appl. Physiol. 62: 2241–2245, 1987.<br />

osmolarity. J. Physiol. (Paris) 86: 167–175, 1992.<br />

1385. YANTORNO, R. E., D. A. CARRE, M. COCA PRADOS, T. KRUPIN, 1400. ZONGAZO, M. A., A. CARAYON, F. MASSON, G. MAISTRE, E.<br />

AND M. M. CIVAN. Whole cell patch clamping <strong>of</strong> ciliary epithelial NOE, J. EURIN, C. BARTHELEMY, M. KOMAJDA, AND J. C. LEcells<br />

during anisosmotic swelling. Am. J. Physiol. 262 (<strong>Cell</strong> Phys- GRAND. Effects <strong>of</strong> arginine vasopressin and extracellular osmo-<br />

iol. 31): C501–C509, 1992.<br />

larity on atrial natriuretic peptide release by superfused rat atria.<br />

1386. YOREK, M. A., J. A. DUNLAP, AND B. H. GINSBERG. Effect <strong>of</strong> Eur. J. Pharmacol. 209: 45–55, 1991.<br />

/ 9j07$$ja07 P18-7 12-30-97 09:41:42 pra APS-Phys Rev

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!