20.02.2013 Views

PDF (References and Appendices) - UTas ePrints - University of ...

PDF (References and Appendices) - UTas ePrints - University of ...

PDF (References and Appendices) - UTas ePrints - University of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>References</strong>


Australian Bureau <strong>of</strong> Meteorology, 1988. Climatic averages, Australia. Australian<br />

Government Publishing Service: Canberra.<br />

Ahmad M., Hallenstein C. P. <strong>and</strong> Wygralk A., 1984. Paleoplacer potential in the mid­<br />

Proterozoic <strong>of</strong> the Northern Territory: a study <strong>of</strong> the Westmorel<strong>and</strong><br />

Conglomerate. In Darwin Conference 1984. AusiMM: Melbourne. pp 357-366.<br />

Amireh B.S., Schneider W. <strong>and</strong> Abed A.M., 1994. Evolving fluvial-marine deposition<br />

through the Cambrian sequence <strong>of</strong> Jordan. Sed. Geol., 89: 65-90.<br />

Angelier J., 1984. Tectonic analysis <strong>of</strong> fault slip data sets. J. Geophys. Res., 89 (B7):<br />

5835-5848.<br />

Angelier J ., 1989. From orientation to magnitudes in paleostress determinations using<br />

fault slip data. J. Struct. GeoL, 11 (1/2): 37-50.<br />

Angelier J., Colletta B., Chorowicz J., Ortlieb L. <strong>and</strong> Rangin C., 1981. Fault tectonics<br />

<strong>of</strong> the Baja California Peninsula <strong>and</strong> the opening <strong>of</strong> the Sea <strong>of</strong> Cortez, Mexico. J.<br />

Struct. Geol., 3 (4): 347-357.<br />

Asmerom Y., Jacobsen S. B. <strong>and</strong> Wernicke B. P., 1994. Variations in magma source<br />

regions during large-scale continental extension, Death Valley region, western<br />

United States. Earth Planet. Sci. Lett., 125: 235-254.<br />

Aydin A. <strong>and</strong> Page B. M., 1984. Diverse Pliocene-Quaternary tectonics in a transform<br />

environment, San Francisco Bay region, California. Bull. Geol. Soc. Am., 95:<br />

1303-1317.<br />

Baker E. M., Kirwin D. J. <strong>and</strong> Taylor R. G., 1986. Hydrothermal breccia pipes. In Laing<br />

W. P. (Ed.): Contributions <strong>of</strong> the Economic Geology Research Unit 12.<br />

Department <strong>of</strong> Geology, James Cook <strong>University</strong>.<br />

Barber D. J., 1985. Dislocations <strong>and</strong> microstructures. In Wenk H.-R. (Ed.): Preferred<br />

orientation in deformed metals <strong>and</strong> rocks. An introduction to modem texture<br />

analysis. Academic Press: London. pp. 149-182.<br />

Bartlett W. L., Friedman M. <strong>and</strong> Logan J. M., 1981. Experimental folding <strong>and</strong> faulting<br />

<strong>of</strong> rocks under confining pressure. Part IX. Wrench faults in limestone layers.<br />

Tectonophysics, 79: 255-277.<br />

Bellieni G., Brotzu P., Comin-Chiaramonti P., Emesto M., Melfi A., Pacca I. G. <strong>and</strong><br />

Piccirillo E. M., 1984. Flood basalt to rhyolite suites in the southern Parana<br />

Plateau (Brazil): palaeomagnetism, petrogenesis <strong>and</strong> geodynamic implications. J.<br />

Petrol., 25: 579-618.<br />

Bergh S. G. <strong>and</strong> Torske T., 1986. The Proterozoic Skoadduvarri S<strong>and</strong>stone Formation,<br />

Alta, northern Norway: a tectonic fan-delta complex. Sed. Geol., 47: 1-25.<br />

Bhattacharyya A. <strong>and</strong> Morad S., 1993. Proterozoic braided ephemeral fluvial deposits:<br />

an example from the Dh<strong>and</strong>raul S<strong>and</strong>stone formation <strong>of</strong> the Kalmur Group, Son<br />

Valley, central India. Sed. Geol., 84: 101-114.<br />

Blair T. C. <strong>and</strong> McPherson J. G., 1994. Alluvial fans <strong>and</strong> their natural distinction from<br />

rivers based on morphology, hydraulic processes, sedimentary processes <strong>and</strong><br />

facies assemblages. J. Sed. Res., A64 (3): 450-489.<br />

221


Blake D. H., Etheridge M. A., Page R. W., Stewart A. J., Williams P. R. <strong>and</strong> Wyborn<br />

L. A. I., 1990. Mount Isa Inlier- regional geology <strong>and</strong> mineralisation. In Hughes<br />

F. E. (Ed.): Geology <strong>of</strong> the mineral deposits <strong>of</strong> Australia <strong>and</strong> Papua New Guinea<br />

Volume 1. Australasian Institute <strong>of</strong> Mining <strong>and</strong> Metallurgy: Monograph 14. pp.<br />

915-925.<br />

Blenkinsop T. G. <strong>and</strong> Rutter E. H., 1986. Cataclastic deformation <strong>of</strong> quartzite in the<br />

Moine thrust zone. J. Struct. Geol., 8 (6): 669-681.<br />

Bott M. H. P., 1959. The mechanisms <strong>of</strong> oblique slip faulting. Geol. Mag., 96: 109-117.<br />

BoyerS. E. <strong>and</strong> Elliot D., 1982. Thrust systems. Bull. Am. Ass. Petrol. Geol., 66 (9):<br />

1196-1230.<br />

Braun M. <strong>and</strong> Freidman G. M., 1969 . Carbonate lith<strong>of</strong>acies <strong>and</strong> environments <strong>of</strong> the<br />

Tribe Hill Formation (Lower Ordovician) <strong>of</strong> the Mohawk Valley, New York. J.<br />

Sed. Petrol., 39: 113-135.<br />

Browne G. H. <strong>and</strong> Plint A. G., 1994. Alternating braidplain <strong>and</strong> lacustrine deposition in<br />

a strike-slip setting: the Pennsylvanian Boss Point Formation <strong>of</strong> the Cumberl<strong>and</strong><br />

Basin, Maritime Canada. J. Sed. Res., B64 (1): 40-59.<br />

Buchanan D. T., 1984. The McArthur River project. In: Darwin Conference 1984.<br />

AusiMM: Parkville. pp. 49-57.<br />

BullS. W., 1993. Progress report- sedimentology <strong>and</strong> volcanology <strong>of</strong> the southern<br />

McArthur Basin. AMIRA/ARC project P384 rep., 4: 33-53.<br />

Bull S. W. <strong>and</strong> Rogers J. R., 1994. Structure <strong>and</strong> sedimentology <strong>of</strong> the Tawallah <strong>and</strong><br />

lower McArthur Groups, Batten Range. AMIRAJARC project P384 rep., 6: 41-52.<br />

Bilrgmann R., Pollard D. D. <strong>and</strong> Martel S. J., 1994. Slip distributions on faults: effects<br />

<strong>of</strong> stress gradients, inelastic deformation, heterogeneous host-rock stiffness, <strong>and</strong><br />

fault interaction. J. Struct. Geol., 16 (12): 1675-1690.<br />

Byerlee J.D., 1978. Friction <strong>of</strong> rocks. Pure appl. Geophys., 116: 615-626.<br />

Cas R. A. F. <strong>and</strong> Wright J. V., 1987. Volcanic successions: modem <strong>and</strong> ancient. Allen<br />

& Unwin: London.<br />

Casas-Sainz A.M. <strong>and</strong> Sim6n-G6mez J. L., 1992. Stress field <strong>and</strong> thrust kinematics: a<br />

model for the tectonic inversion <strong>of</strong> the Cameros Massif (Spain). J. Struct. Geol.,<br />

14 (5): 521-530.<br />

Chappell B. W. <strong>and</strong> White A. J. R., 1974. Two contrasting granite types. Pacific Geol.,<br />

8: 173-174.<br />

Chappell B. W. <strong>and</strong> White A. J. R., 1992. I- <strong>and</strong> S-type granites in the Lachlan Fold<br />

Belt. Trans. Roy. Soc. Edinburgh: Earth. Sci., 83: l-26.<br />

Clague D. A. <strong>and</strong> Frey F. A., 1982. Petrology <strong>and</strong> trace element geochemistry <strong>of</strong> the<br />

Honolulu Volcanics, Oahu: Implications for the oceanic mantle below Hawall. J.<br />

Petrol., 23 (3): 447-504.<br />

Clifton H. E., 1969. Beach lamination: nature <strong>and</strong> origin. Marine Geol., 7: 553-559.<br />

222


Clifton H. E., Hunter R. E. <strong>and</strong> Phillips R. L., 1971. Depositional structures <strong>and</strong><br />

processes in the non-barred high-energy nearshore. J. Sed. Petrol., 41 (3): 651-<br />

670.<br />

Cooke D. R., 1993. Transport <strong>and</strong> deposition <strong>of</strong> base metals from high temperature<br />

(250°C) sedimentary brines. AMIRA/ARC project P.384, Report No. 4: 111-130.<br />

Cooke D. R., Bull S. W. <strong>and</strong> Donovan S., 1995. Potassic alteration in the Settlement<br />

Creek <strong>and</strong> Gold Creek Volcanics, McArthur Basin, Northern Territory -<br />

implications for base metal mineralisation. AMIRA/ARC project P384., Final<br />

Report: 183-225.<br />

Cox K. G., 1980. A model for flood basalt vulcanism. J. Petrol., 21 (4): 629-650.<br />

Cox S. F., Etheridge M.A. <strong>and</strong> Wall V. J., 1986. The role <strong>of</strong> fluids in syntectonic mass<br />

transport, <strong>and</strong> the localization <strong>of</strong> metamorphic vein-type ore deposits. Ore Geol.<br />

Rev., 2: 65-86.<br />

Cox S. J. D. <strong>and</strong> Scholz C. H., 1988. On the formation <strong>and</strong> growth <strong>of</strong> faults: an<br />

experimental study. J. Struct. Geol., 10 (4): 413-430.<br />

Crawford A. J. <strong>and</strong> Hilyard D., 1990. Geochemistry <strong>of</strong> Late Proterozoic tholeiitic flood<br />

basalts. Adelaide Geosyncline, South Australia. In Jago J. B. <strong>and</strong> Moore P. S.<br />

(Eds.): The evolution <strong>of</strong> a Late Precambrian-Early Palaeozoic rift complex: the<br />

Adelaide Geosyncline. Geol. Soc. Aust. Spec. Publ.16. pp. 49-67.<br />

Crawford A. J. <strong>and</strong> von Rad U., 1994. The petrology, geochemistry <strong>and</strong> implications <strong>of</strong><br />

basalts dredged from the Rowley Terrace-Scott Plateau <strong>and</strong> Exmouth Plateau<br />

margins, northwestern Australia. AGSO J. Aust. Geol. Geophys., 15 (1): 43-54.<br />

Crawford M. L., 1981. Fluid inclusions in metamorphic rocks -low <strong>and</strong> medium grade.<br />

In Hollister L. S. <strong>and</strong> Crawford M. L. (Eds.): Fluid Inclusions: applications to<br />

petrology. Mineral. Assoc. Can. 6. pp. 157-181.<br />

Darby P., 1986. Petrology <strong>and</strong> geochemistry <strong>of</strong> igneous rocks <strong>of</strong> the Tawallah Group, in<br />

the southern part <strong>of</strong> the McArthur Basin. NTGS Technical Report, GS86/10<br />

(unpublished).<br />

Davidson G. J. <strong>and</strong> Dashlooty S. A., 1993. The Glyde Sub-basin: A volcaniclasticbearing<br />

pull-apart coeval with the McArthur River base-metal deposit, Northern<br />

Territory. Aust. J. Earth Sci., 40: 527-543.<br />

Davis R. A. J. <strong>and</strong> Fox W. T., 1972. Coastal processes <strong>and</strong> nearshore s<strong>and</strong> bars. J. Sed.<br />

Petrol., 42 (2): 401-412.<br />

Donovan S., 1993. The geology <strong>of</strong> west Mallapunyah Dome, southern McArthur Basin,<br />

Northern Territory. <strong>University</strong> <strong>of</strong> Tasmania, BSc hons. thesis (unpublished).<br />

Duke W. L., Arnott R. W. C. <strong>and</strong> Cheel R. J., 1991. Shelf s<strong>and</strong>stones <strong>and</strong> hummocky<br />

cross-stratification: New insights on a stormy debate. Geology, 19: 625-628.<br />

Duncan A. R., 1987. The Karoo igneous province- a problem area for inferring tectonic<br />

setting from basalt geochemistry. J. Volcan. Geotherm. Res., 32: 13-34.<br />

Dunn D. E., LaFountain L. J. <strong>and</strong> Jackson R. E., 1973. Porosity dependance <strong>and</strong><br />

mechanism <strong>of</strong> brittle fracture in s<strong>and</strong>stones. J. Geophys. Res., 78 (14): 2403-2417.<br />

223


Dupin J.-M., Sassi W. <strong>and</strong> Angelier J., 1993. Homogeneous stress hypothesis <strong>and</strong> actual<br />

fault slip: a distinct element analysis. J. Struct. Geol., 15 (8): I 033-1043.<br />

Ehlers E. G. <strong>and</strong> Blatt H., 1982. Petrology: Igneous, Sedimentary <strong>and</strong> Metamorphic.<br />

Freeman: San Francisco.<br />

Elliot T., 1986. Siliciclastic Shorelines. In Reading H. G. (Ed.): Sedimentary<br />

environments <strong>and</strong> facies. Blackwell Scientific: Oxford. pp. 155-188.<br />

Engelder J. T., 1974. Cataclasis <strong>and</strong> the generation <strong>of</strong> fault gouge. Geol. Soc. Am. Bull.,<br />

85: 1515-1522.<br />

Etchecopar A., Vasseur G. <strong>and</strong> Daignieres M., 1981. An inverse problem in<br />

microtectonics for the determination <strong>of</strong> stress tensors from fault striation analysis.<br />

J. Struct. Geol., 3 (1): 51-65.<br />

Etheridge M.A., Rutl<strong>and</strong> R. W. R. <strong>and</strong> Wyborn L.A. I., 1987. Orogenesis <strong>and</strong> tectonic<br />

process in the Early to Middle Proterozoic <strong>of</strong> northern Australia. In Kroner A.<br />

(Ed.): Proterozoic lithospheric evolution. Geodynamic Series 17. Am. Geophys.<br />

Union: Washington DC. pp. 131-147.<br />

Etheridge M. A. <strong>and</strong> Wall V. J., 1994. Tectonics <strong>and</strong> structural evolution <strong>of</strong> the<br />

Australian Proterozoic. Geol. Soc. Aust. (abs), 37: 102-103.<br />

Evans J. E., 1991. Facies relationships, alluvial architecture, <strong>and</strong> paleohydrology <strong>of</strong> a<br />

Paleogene, humid-tropical alluvial-fan system: Chumstock Formation,<br />

Washington State, U.S.A. J. Sed. Petrol., 61 (5): 732-755.<br />

Fedo C. M. <strong>and</strong> Cooper J. D., 1990. Braided fluvial to marine transition: the basal<br />

Lower Cambrian Wood Canyon Formation, southern Marble Mountains, Mojave<br />

Desert, California. J. Sed. Petrol., 60 (2): 220-234.<br />

Floyd P. A. <strong>and</strong> Winchester J. A., 1975. Magma type <strong>and</strong> tectonic setting using<br />

immobile elements. Earth Planet. Sci. Lett., 27: 211-218.<br />

Foden J.D., Buick I. S. <strong>and</strong> Mortimer G. E., 1988. The petrology <strong>and</strong> geochemistry <strong>of</strong><br />

granitic gneisses from the east Arunta Inlier, central Australia: implications for<br />

Proterozoic crustal development. Precamb. Res., 40 (41): 233-259.<br />

Fodor R. V., 1987. Low- <strong>and</strong> high-Ti0 2 flood basalts <strong>of</strong> southern Brazil: origin from<br />

picritic parentage <strong>and</strong> a common mantle source. Earth Planet. Sci. Lett., 84: 423-<br />

430.<br />

Fodor R. V., Corwin C. <strong>and</strong> Roisenburg A., 1985. Petrology <strong>of</strong> Serra Geral (Parana)<br />

continental flood basalts, southern Brazil: crustal contamination, source material<br />

<strong>and</strong> South Atlantic magmatism. Contrib. Mineral. Petrol., 91: 54-65.<br />

Fodor R. V. <strong>and</strong> Vetter S. K., 1984. Rift-zone magmatism: Petrology <strong>of</strong> basaltic rocks<br />

transitional from CFB to MORB, southeastern Brazil margin. Contrib. Mineral.<br />

Petrol., 88: 307-321.<br />

Fournier R. 0., 1979. Geochemical <strong>and</strong> hydrologic considerations <strong>and</strong> the use <strong>of</strong><br />

enthalpy-chloride diagrams in the prediction <strong>of</strong> underground conditions in hotspring<br />

systems. J. Volcan. Geotherm. Res., 5: 1-16.<br />

Friedman G. M. <strong>and</strong> S<strong>and</strong>ers J. E., 1978. Principles <strong>of</strong> sedimentology. John Wiley <strong>and</strong><br />

Sons: New York.<br />

224


Fyfe W. S., Price N.J. <strong>and</strong> Thompson A. B., 1978. Developments in geochemistry 1:<br />

Fluids in the earth's crust Elsevier: Amsterdam.<br />

Gapais D., Fiquet G. <strong>and</strong> Cobbold P.R., 1991. Slip system domains, 3. New insights in<br />

fault kinematics from plane-strain s<strong>and</strong>box experiments. Tectonophysics, 188:<br />

143-157.<br />

Geiser P. A., 1988. Mechanisms <strong>of</strong> thrust propagation: some examples <strong>and</strong> implications<br />

for the analysis <strong>of</strong> overthrust terranes. J. Struct. Geol., 10 (8): 829-845.<br />

Gephart J., 1990. Stress <strong>and</strong> the direction <strong>of</strong> slip on fault planes. Tectonics, 9 (4): 845-<br />

858.<br />

Gibbs A. D., 1990. Linked fault families in basin formation. J. Struct. Geol., 12 (5/6):<br />

795-803.<br />

Gill J., 1981. Orogenic <strong>and</strong>esites <strong>and</strong> plate tectonics. Springer Verlag: Berlin.<br />

Gray D. R., Gregory R. T. <strong>and</strong> Durney D. W., 1994. Vein <strong>and</strong> fabric development<br />

within quartzo-feldspathic turbidite successions: implications for the role <strong>of</strong> fluid<br />

during deformation. Geol. Soc. Aust. ( abs ), 36: 56.<br />

Green D. H. <strong>and</strong> Ringwood A. E., 1967. The genesis <strong>of</strong> basaltic magmas. Contrib.<br />

Mineral. Petrol., 15: 103-190.<br />

Haas J. L., 1971. The effect <strong>of</strong> salinity on the maximum thermal gradient <strong>of</strong> a<br />

hydrothermal system at hydrostatic pressure. Econ. Geol., 66: 940-946.<br />

Haas J. L. J., 1976. Physical properties <strong>of</strong> the coexisting phases <strong>and</strong> the thermochemical<br />

properties <strong>of</strong> the H20 component in boiling NaCl solutions. U.S. Geol. Surv.<br />

Bull., 1421-A.<br />

Haines P. W., 1994. The Balma <strong>and</strong> Habgood Groups, northern McArthur Basin,<br />

Northern Territory: stratigraphy <strong>and</strong> correlations with the McArthur Group. In<br />

Hallenstein C. P. (Ed): Australian mining looks north - the challenges <strong>and</strong><br />

choices. 1994 AusiMM Annual Conference Tecnical Program Proceedings.<br />

AusiMM: Parkville. pp 147-152. ·<br />

Haines P. W., Pietsch B. A., Rawlings D. J. <strong>and</strong> Madigan T. L., 1993. Mount Young-<br />

1:250 000 geological map series. NTGS explanatory notes, SE53-15.<br />

Hall D. L., Sterner S. M. <strong>and</strong> Bodnar R. J., 1988. Freezing point depression <strong>of</strong> NaCl­<br />

KCI-H20 solutions. Econ. Geol., 83: 197-202.<br />

Hamblin A. P. <strong>and</strong> Walker R. G., 1979. Storm dominated shallow marine deposits: the<br />

Fernie-Kootenay (Jurassic) transition, southern Rocky Mountains. Can. J. Earth<br />

Sci., 16: 1673-1690.<br />

Hanor J. S., 1994. Origin <strong>of</strong> saline fluids in sedimentary basins. In Parnell J. (Ed.):<br />

Ge<strong>of</strong>luids: Origin, migration <strong>and</strong> evolution <strong>of</strong> fluids in sedimentary basins. Geol.<br />

Soc. Lond. Spec. Publ. No. 78: pp. 151-174.<br />

Harl<strong>and</strong> W. B., 1971. Tectonic transpression in Caledonian Spitsbergen. Geol. Mag.,<br />

108 (1): 27-42.<br />

Harms J. C., Southard J. B. <strong>and</strong> Walker R. G., 1982. Structure <strong>and</strong> sequences in clastic<br />

rocks. SEPM Short Course: No. 9.<br />

225


Hawkesworth C. J., Gallagher K., Hergt J. M. <strong>and</strong> McDermott F., 1994. Destructive<br />

plate margin magmatism: geochemistry <strong>and</strong> melt generation. Lithos, 33: 169-188.<br />

Hempton M. R. <strong>and</strong> Neher K., 1986. Experimental fracture, strain <strong>and</strong> subsidence<br />

patterns over en echelon strike-slip faults: implications for the structural evolution<br />

<strong>of</strong> pull-apart basins. J. Struct. Geol., 8 (6): 597-605.<br />

Henly R. W., Truesdell A. H. <strong>and</strong> Barton P. B. J., 1984. Fluid-mineral equilibria in<br />

hydrothermal systems. Rev. in Econ. GeoL, 1: 267.<br />

Hinman M., 1995. Structure <strong>and</strong> kinematics <strong>of</strong> the HYC-Cooley zone at McArthur<br />

River. AGSO. Record, 95 (5).<br />

Hinman M., Wall V. <strong>and</strong> Heinrich C., 1994. The interplay between sedimentation,<br />

deformation <strong>and</strong> hydrothermal activity at the McArthur Pb-Zn (-Cu) deposit.<br />

Geol. Soc. Aust. Abs., 37: 176-177.<br />

Hobbs B. E., Means W. D. <strong>and</strong> Williams P. F., 1976. An outline <strong>of</strong> structural geology.<br />

John Wiley & Sons: New York.<br />

Hoyanangi K. <strong>and</strong> Nishimura M., 1994. Slope-shelf-nearshore depositional sequences<br />

with transgressive conglomerate in a Miocene backarc <strong>and</strong> arc-junction setting,<br />

central Japan. Sed. Geol., 93: 247-260.<br />

Jackson M. J., 1982. A sedimentological study <strong>of</strong> the Wollogorang Formation in the<br />

southern McArthur Basin, Northern Territory, Australia. James Cook <strong>University</strong>,<br />

M.Sc. Dissertation (unpublished).<br />

Jackson M. J., Muir M.D. <strong>and</strong> Plumb K. A., 1987. Geology <strong>of</strong> the southern McArthur<br />

Basin, Northern Territory. BMR Bull., 220.<br />

Jaeger J. C. <strong>and</strong> Cook N. G. W., 1979. Fundamentals <strong>of</strong> rock mechanics (3rd Edn.).<br />

Chapman <strong>and</strong> Hall: London.<br />

Jamison W. R., 1987. Geometric analysis <strong>of</strong> fold development in overthrust termues. J.<br />

Struct. Geol., 9 (2): 207-219.<br />

Knipe R. J., 1989. Deformation mechanisms- recognition from natural tectonites. J.<br />

Struct. Geol., 11 (112): 127-146.<br />

Knipe R. J. <strong>and</strong> McCaig A.M., 1994. Microstructural <strong>and</strong> microchemical consequences<br />

<strong>of</strong> fluid flow in deforming rocks. In Parnell J. (Ed.): Ge<strong>of</strong>luids: Origin, migration<br />

<strong>and</strong> evolution <strong>of</strong> fluids in sedimentary basins. Geol. Soc. Lond. Spec. Publ. No.<br />

78. pp. 99-111.<br />

Kralik M., 1982. Rb-Sr age determinations on Precambrian carbonate rocks <strong>of</strong> the<br />

Carpentarian McArthur Basin, Northern Territory, Australia. Precambrian Res.,<br />

18: 157-170.<br />

Krantz R. L. <strong>and</strong> Scholz C. H., 1977. Critical dilatant volume <strong>of</strong> rocks at the onset <strong>of</strong><br />

tertiary creep. J. Geophys. Res., 82: 4893-4897.<br />

Kroner A., 1984. Evolution, growth <strong>and</strong> stabilization <strong>of</strong> the Precambrian lithosphere. In<br />

Pollack H. N. <strong>and</strong> Murthy U. R. (Eds.): Structure <strong>and</strong> evolution <strong>of</strong> the continental<br />

lithosphere. Physics <strong>and</strong> Chemistry <strong>of</strong> the Earth: 15. pp. 69-106.<br />

Kumar N. <strong>and</strong> S<strong>and</strong>ers J. E., 1976. Characteristics <strong>of</strong> shoreface storm deposits: modern<br />

<strong>and</strong> ancient examples. J. Sed. Petrol., 46 (1): 145-162.<br />

226


Law R. D., 1986. Relationships between strain <strong>and</strong> crystallographic fabrics in the Roche<br />

Maurice quartzites <strong>of</strong> Plougastel, western Brittany. J. Struct. Geol., 8 (5): 493-<br />

515.<br />

Leaman D. E., 1995. Architecture <strong>of</strong> the McArthur Basin, northern Australia.<br />

AMIRA/ARC project P.384, Final Report: 1-24.<br />

Lloyd G. E. <strong>and</strong> Knipe R. J., 1992. Deformation mechanisms accommodating faulting<br />

<strong>of</strong> quartzite under upper crustal conditions. J. Struct. Geol., 14 (2): 127-143.<br />

Ly C. K., 1982. Sedimentology <strong>of</strong> nearshore marine bar sequences from a Paleozoic<br />

depositional regressive shoreline deposit <strong>of</strong> the central coast <strong>of</strong> Ghana, West<br />

Africa. J. Sed. Petrol., 52 (1): 199-208.<br />

M<strong>and</strong>l G. <strong>and</strong> Shippam G. K., 1981. Mechanical model <strong>of</strong> thrust sheet gliding <strong>and</strong><br />

imbrication. In McClay K. R. <strong>and</strong> Price N.J. (Eds.): Thrust <strong>and</strong> nappe tectonics.<br />

GeoL Soc. Lond. Spec. Pub!. 9. pp. 79-98.<br />

Mantovani M.S. M., Marques L S., Sousa M. A D., CivettaL., Atalla L<strong>and</strong> Innocenti<br />

F., 1985. Trace element <strong>and</strong> strontium isotope constraints on the origin <strong>and</strong><br />

evolution <strong>of</strong> Parana continental flood basalts <strong>of</strong> Santa Catarina State (southern<br />

Brazil). J. Petrol., 26 (1): 187-209.<br />

Marsh J. S., 1987. Basalt geochemistry <strong>and</strong> tectonic discrimination within continental<br />

flood basalt provinces. J. Vole an. Geotherm. Res., 32: 35-39.<br />

Martell S. J., Pollard D. D. <strong>and</strong> Segall P., 1988. Development <strong>of</strong> simple strike-slip fault<br />

zones, Mount Abbot quadrangle, Sierra Nevada, California. Bull. Geol. Soc. Am.,<br />

100: 1451-1465.<br />

Martini I. P., Tongiorgi M., Oggiano G. <strong>and</strong> Cocozza T., 1991. Ordovician alluvial fan<br />

to marine shelf transition in sw Sardinia, western Mediterranean Sea: tectonically<br />

("Sardic phase") influenced clastic sedimentation. Sed. Geol., 72: 97-115.<br />

Martins-Neto M. A., 1994. Braidplain sedimentation in a Proterozoic rift basin: the Silo<br />

Joao da Chapada Formation, southeastern Brazil. Sed. Geol., 89: 219-239.<br />

McCallum M. E., 1985. Experimental evidence for fluidization processes in breccia<br />

pipe formation. Econ. Geol., 80: 1523-1543.<br />

McCormick D. S. <strong>and</strong> Grotzinger J. P., 1993. Distinction <strong>of</strong> marine from alluvial facies<br />

in the Paleoproterozoic (1.9 Ga) Burnside Formation, Kilohigok Basin, N.W.T.,<br />

Canada. J. Sed. Petrol., 63 (3): 398-419.<br />

McDougall I., Dunn P. R., Compston W., Webb A. W., Richards J. R. <strong>and</strong> B<strong>of</strong>inger<br />

V.M., 1965. Isotopic age determinations on Precambrian: rocks <strong>of</strong> the Carpentaria<br />

region, Northern Territory, Australia. J. Geol. Soc. Aust., 12: 67-90.<br />

McKenzie D. <strong>and</strong> Bickle M. J., 1988. The volume <strong>and</strong> composition <strong>of</strong> melt generated<br />

by extension <strong>of</strong> the lithosphere. J. Petrol., 29: 625-679.<br />

McKenzie D. <strong>and</strong> Weiss N., 1975. Speculations on the thermal <strong>and</strong> tectonic history <strong>of</strong><br />

the Earth. Geophys. J. Roy. Astr. Soc., 42: 131-174.<br />

McKibben M. A., Andes J. P. J. <strong>and</strong> Williams A E., 1988a. Active ore formation at a<br />

brine interface in metamorphosed deltaic sediments: the Salton Sea geothermal<br />

system, California. Econ. Geol., 83: 511-523.<br />

227


Mckibben M.A. <strong>and</strong> Williams A. E., 1989. Metal Speciation <strong>and</strong> solubility in saline<br />

hydrothermal fluids: an empirical approach based on geothermal brine data. Econ.<br />

Geol., 81: 1996-2007.<br />

McKibben M. A., Williams A. E. <strong>and</strong> Okubo S., 1988b. Metamorphosed Plio­<br />

Pleistocene evaporites <strong>and</strong> the origin <strong>of</strong> hypersaline brines in the Salton Sea<br />

geothermal system, California: fluid inclusion evidence. Geochim. Cosmochim.<br />

Acta, 52: 1047-1056.<br />

McNaughton N. J., Pollard P. J., Stacey J., Groves D. I. <strong>and</strong> Taylor R. G., 1993. An<br />

extreme high-heat producing Sn-W granite from the Bushveld Complex: evidence<br />

for a long-lived hydrothermal system. Geol. Soc. Aust. (abs), 34:46-47.<br />

McPherson J. G., Shanmugam G. <strong>and</strong> Moiola R. J., 1987. Fan-deltas <strong>and</strong> braid deltas:<br />

varieties <strong>of</strong> coarse-grained deltas. Geol. Soc. Am. Bull., 99: 331-340.<br />

McPhie J., Doyle M. <strong>and</strong> Allen R., 1993. Volcanic Textures. CODES Key Centre:<br />

Hobart.<br />

Menzies M. A., Rogers N., Tindle A. <strong>and</strong> Hawkesworth C. J., 1987. Metasomatic <strong>and</strong><br />

enrichment processes in lithospheric peridotites, an effect <strong>of</strong> asthenospherelithosphere<br />

interaction. In Menzies M.A. <strong>and</strong> Hawkes worth C. J. (Eds.): Mantle<br />

Metasomatism. Academic Press: London. pp. 313-361.<br />

Memagh T. P., Heinrich C. A., Leckie J. F., Carville D.P., Gilbert D. J., Valenta R. K.<br />

<strong>and</strong> Wyborn L. A. 1., 1994. Chemistry <strong>of</strong> low-temperature hydrothermal gold,<br />

platinum, <strong>and</strong> palladium (± uranium) mineralisation at Coronation Hill, Northern<br />

Territory, Australia. Econ. Geol., 89: 1053-1073.<br />

Meschede M., 1986. A method <strong>of</strong> discriminating between different types <strong>of</strong> mid-ocean<br />

ridge basalts <strong>and</strong> continental tholeiites with the Nb-Zr-Y diagram. Chern. Geol.,<br />

56: 207-218.<br />

Miall A. D., 1977. A review <strong>of</strong> the braided-river depositional environment. Earth-Sci.<br />

Rev., 13: 1-62.<br />

Miall A. D., 1978. Lith<strong>of</strong>acies types <strong>and</strong> vertical pr<strong>of</strong>ile models in braided river<br />

deposits: a summary. In Miall A. D. (Ed.): Fluvial Sedimentology. Can. Soc. Pet.<br />

Geol. Mem. 5. pp. 597-604.<br />

Morley C. K., 1986. A classification <strong>of</strong> thrust fronts. Bull. Am. Ass. Petrol. Geol., 70<br />

(1): 12-25.<br />

Mount J. F. <strong>and</strong> Kidder D., 1993. Combined flow origin <strong>of</strong> edgewise conglomerates:<br />

Sellick Hill Formation (Lower Cambrian), South Australia. Sedimentology, 40:<br />

315-329.<br />

Mustard P. S., 1991. Normal faulting <strong>and</strong> alluvial-fan deposition, basal Windermere<br />

Tectonic Assemblage, Yukon, Canada. Geol. Soc. Am. Bull., 103: 1346-1364.<br />

Myers J. S., Shaw R. D. <strong>and</strong> Tyler I. M., 1994. Proterozoic tectonic evolution <strong>of</strong><br />

Australia. Geol. Soc. Aust. (abs), 37: 312.<br />

Nakayama N. <strong>and</strong> Masuda F., 1989. Ocean current-controlled sedimentary facies <strong>of</strong> the<br />

Pleistocene Ichijiku Formation, Kazusa Group, Boso Peninsula, Japan. In Taira A.<br />

<strong>and</strong> Masuda F. (Eds.): Sedimentary facies in the active plate margin.<br />

TERRAPUB: Tokyo. pp. 275-293.<br />

228


Naylor M.A., M<strong>and</strong>l G. <strong>and</strong> Sijpesteijn C. H. K., 1986. Fault geometries in basementinduced<br />

wrench faulting under different initial stress states. J. Struct. Geol., 8 (7):<br />

737-752.<br />

Norrish K. <strong>and</strong> Hutton J. T., 1969. An accurate X-ray spectrographic method for the<br />

analysis <strong>of</strong> a wide range <strong>of</strong> geological samples. Geochim. Cosmochim. Acta, 33:<br />

431-453.<br />

Nottvedt A. <strong>and</strong> Kreisa R. D., 1987. Model for the combined-flow origin <strong>of</strong> hummocky<br />

cross-stratification. Geology, 15: 357-361.<br />

PageR. W., 1981. Depositional ages <strong>of</strong> the stratiform base metal deposits at Mount Isa<br />

<strong>and</strong> McArthur River, Australia, based on U-Pb zircon dating <strong>of</strong> concordant tuff<br />

horizons. Econ. Geol., 76: 648-658.<br />

· Paterson M. S. <strong>and</strong> Kekulawala K. R. S. S., 1979. The role <strong>of</strong> water in quartz<br />

deformation. Bull. Mineral., 102: 92-98.<br />

Paull R. K. <strong>and</strong> Paull R. A., 1994. Shallow marine sedimentary facies in the earliest<br />

Triassic (Griesbachian) Cordilleran miogeocline, U.S.A. Sed. Geol., 93: 181-191.<br />

Pearce J. A. <strong>and</strong> Norry M. J., 1979. Petrogenetic implications <strong>of</strong> Ti, Zr, Y <strong>and</strong> Nb<br />

variations in volcanic rocks. Contrib. Mineral. Petrol., 69: 33-47.<br />

Petit J.P., 1987. Criteria for the sense <strong>of</strong> movement on fault surfaces in brittle rocks. J.<br />

Struct. Geol., 9 (5/6): 597-608.<br />

Phillips W. J., 1972. Hydraulic fracturing <strong>and</strong> mineralization. J. Geol. Soc. Lond., 128:<br />

337-359.<br />

Pietsch B. A., Plumb K. A., PageR. W., Haines P. W., Rawlings D. J. <strong>and</strong> Sweet I. P.,<br />

1994. A revised stratigraphic framework for the McArthur Basin, Northern<br />

Territory. In HaUenstein C. P. (Ed): Australian mining looks north - the<br />

challenges <strong>and</strong> choices. 1994 AusiMM Annual Conference Tecnical Program<br />

Proceedings. AusiMM: Parkville. pp 135-138.<br />

Pietsch B. A., Wyche S., Rawlings D. J., Creaser P. M. <strong>and</strong> Findhamrner T. L. R.,<br />

1991a. McArthur River Region, Northern Territory- 1:100 000 geological map<br />

series. NTGS explanatory notes, 6065-6165.<br />

Pietsch B. A., Rawlings D. J., Creaser P. M., Kruse P. D., Ahmad M., Ferenczi P. A.<br />

<strong>and</strong> Findhamrner T. L. R., 1991b. Bauhinia Downs, Northern Territory- 1:250<br />

000 geological map series. NTGS explanatory notes, SE 53-3.<br />

Plumb K. A., 1979. Structure <strong>and</strong> tectonic style <strong>of</strong> the Precambrian shields <strong>and</strong><br />

platforms <strong>of</strong> northern Australia. Tectonophysics, 58: 291-325.<br />

Plumb K. A., 1994. Structural evolution <strong>of</strong> the McArthur Basin, NT. In HaUenstein C.<br />

P. (Ed): Australian mining looks north - the challenges <strong>and</strong> choices. 1994<br />

AusiMM Annual Conference Tecnical Program Proceedings. AusiMM:Parkville.<br />

pp 139-145.<br />

Plumb K. A., Ahmad M. <strong>and</strong> Wygralak A. S., 1990. Mid-Proterozoic basins <strong>of</strong> the<br />

North Australian Craton - regional geology <strong>and</strong> mineralisation. In Hughes F. E.<br />

(Ed.): Geology <strong>of</strong> the mineral deposits <strong>of</strong> Australia <strong>and</strong> Papua New Guinea<br />

Volume 1. Australasian Institute <strong>of</strong> Mining <strong>and</strong> Metallurgy: Monograph 14. pp.<br />

881-902.<br />

229


Plumb K. A., Derrick G. M., Needham R. S. <strong>and</strong> Shaw R. D., 1981. The Proterozoic <strong>of</strong><br />

northern Australia. In Hunter D. R. (Ed.): Precambrian <strong>of</strong> the Southern<br />

Hemisphere. Developments in Precambrian geology 2. Elsevier: Amsterdam. pp.<br />

205-307.<br />

Plumb K. A., Derrick G. M. <strong>and</strong> Wilson I. H., 1980. Precambrian geology <strong>of</strong> the<br />

McArthur River Mount Isa region, northern Australia. In Henderson R. A. <strong>and</strong><br />

Stephenson P. J. (Eds.): The geology <strong>and</strong> geophysics <strong>of</strong> northeastern Australia, 4.<br />

Geological Society <strong>of</strong> Australia, Queensl<strong>and</strong> Division: Brisbane. pp. 71-88.<br />

Plumb K. A. <strong>and</strong> Wellman P., 1987. McArthur Basin, Northern Territory: mapping <strong>of</strong><br />

deep troughs using gravity <strong>and</strong> magnetic anomalies. BMR J. Aust. Geol. Geophys.,<br />

10: 243-251.<br />

Pollard D. D., Saltzer S.D. <strong>and</strong> Rubin A.M., 1993. Stress inversion methods: are they<br />

based on faulty assumptions. J. Struct. Geol., 15 (8): 1045-1054.<br />

Powell T. G., Jackson M. J., Sweet I. P., Crick I. H., Boreham C. J. <strong>and</strong> SummonsR.E.,<br />

1987. Petroleum geology <strong>and</strong> geochemistry, Middle Proterozoic McArthur Basin.<br />

BMR Record, 1987/48 (unpublished).<br />

Rainbird R. H., 1993. The sedimentary record <strong>of</strong> mantle plume uplift preceding<br />

eruption <strong>of</strong> the Neoproterozoic Natkusiak flood basalt. J. Geol., 101: 305-318.<br />

Ramsey J. G. <strong>and</strong> Huber M. I., 1987. The techniques <strong>of</strong> modem structural geology.<br />

Acedernic Press Inc. Ltd.: London.<br />

Rawlings D. J., 1993. Mafic peperite from the Gold Creek Volcanics in the Middle<br />

Proterozoic McArthur Basin, Northern Territory. Aust. J. Earth. Sci., 40: 109-113.<br />

Rawlings D. J., 1994. Characterisation <strong>and</strong> correlation <strong>of</strong> volcanism in the McArthur<br />

Basin <strong>and</strong> transitional domain; NT. In Hallenstein C. P. (Ed): Australian mining<br />

looks north - the challenges <strong>and</strong> choices. 1994 AusiMM Annual Conference<br />

Tecnical Program Proceedings. AusiMM:Parkville. pp 157-160.<br />

Rawlings D. J., Madigan T. L., Pietsch B. A. <strong>and</strong> Haines P. W., 1993. Tawallah Range,<br />

Northern Territory- 1:100 000 geological map series. NTGS explanatory notes,<br />

6066.<br />

Reches Z., 1987. Determination <strong>of</strong> the tectonic stress tensor from slip along faults that<br />

obey the Coulomb yield condition. Tectonics, 6: 849-861.<br />

Reinson G. E., 1984. Barrier isl<strong>and</strong> <strong>and</strong> associated str<strong>and</strong>-plain systems. In Walker R.<br />

G. (Ed.): Facies Models. Geoscience Canada: Ontario. pp. 119-140.<br />

Reneau S., Dietrich W. E., Donahue D. I., Jull A. J. T. <strong>and</strong> Rubin M., 1990. Late<br />

Quaternary history <strong>of</strong> colluvial deposition <strong>and</strong> erosion in hollows, central<br />

California Coastal Ranges. Geol. Soc. Am. Bull., 102: 969-982.<br />

Richard P. <strong>and</strong> Krantz R. W., 1991. Experiments on fault reactivation in strike-slip<br />

mode. Tectonophysics, 188: 117-131.<br />

Robinson P., Higgins N. G. <strong>and</strong> Jenner G. A., 1986. Determination <strong>of</strong> rare-earth<br />

elements, yttrium <strong>and</strong> sc<strong>and</strong>ium in rocks by an ion exchange - XRF technique.<br />

Chem. Geol., 55: 121-137.<br />

Roedder E., 1984. Fluid Inclusions. Mineral. Soc. Am. Rev. Mineralogy, 12: 644 p.<br />

230


Roedder E. <strong>and</strong> Bodnar R. J., 1980. Geologic pressure determinations from fluid<br />

inclusion studies. Ann. Rev. Earth Planet. Sci., 8: 263-301.<br />

Roex A. P. L., Dick H. J. B., Erlank A. J., Reid A.M., Fray F. A. <strong>and</strong> HartS. R., 1983.<br />

Geochemistry, mineralogy <strong>and</strong> petrogenesis <strong>of</strong> lavas erupted along the southwest<br />

Indian Ridge between Bouvet triple junction <strong>and</strong> 11 degrees east. J. Petrol., 24<br />

(3): 267-318.<br />

Rollinson H., 1993. Using geochemical data: evaluation, presentation, interpretation.<br />

Longman Scientific & Technical: Essex.<br />

Rust B. R., 1972. Structure <strong>and</strong> process in a braided river. Sedimentology, 18: 221-245.<br />

Rust B. R., 1978. Depositional models for braided alluvium. In Miall A. D. (Ed.):<br />

Fluvial Sedimentology. Can. Soc. Pet. Geol. Mem. 5. pp. 605-625.<br />

Rust B. R. <strong>and</strong> Gibling M. R., 1990. Braidplain evolution in the Pennsylvanian South<br />

Bar Formation, Sydney Basin, Nova Scotia, Canada. J. Sed. Petrol., 60 (1): 59-72.<br />

Rust B. R. <strong>and</strong> Koster E. H., 1984. Coarse alluvial deposits. In Walker R. G. (Ed.):<br />

Facies Models. Geoscience Canada: Ontario. pp. 53-70.<br />

Rutl<strong>and</strong> R. W. R., 1976. Orogenic evolution <strong>of</strong> Australia. Earth Sci. Rev., 12: 161-196.<br />

Rutl<strong>and</strong> R. W. R., Etheridge M. A. <strong>and</strong> Solomon M., 1990. The stratigraphic <strong>and</strong><br />

tectonic setting <strong>of</strong> the ore deposits <strong>of</strong> Australia. In Hughes F. E. (Ed.): Geology <strong>of</strong><br />

the mineral deposits <strong>of</strong> Australia <strong>and</strong> Papua New Guinea. AusiMM: Melbourne.<br />

pp. 15-26.<br />

S<strong>and</strong>erson D. J. <strong>and</strong> Marchini W. R. D., 1984. Transpression. J. Struct. Geol., 6 (5):<br />

449-458.<br />

Scott D. L., Etheridge M.A. <strong>and</strong> Rosendahl B. R., 1992. Oblique-slip deformation in<br />

extensional terrains: a case study <strong>of</strong> the Lakes Tanganyika <strong>and</strong> Malawi Rift<br />

Zones. Tectonics,ll (5): 998-1009.<br />

Scott D. L., Betts P. G., Rogers J. R., Bradshaw B. E., Jackson M. J., McConachie B. A.<br />

<strong>and</strong> Southgate P. N., (in press). Stratal growth <strong>and</strong> basin phase geometries in the<br />

Proterozoic <strong>of</strong> North Australia: preliminary investigations. Submitted to Geol.<br />

Soc. Aus. (abs.), 38.<br />

Segall P. <strong>and</strong> Pollard D. D., 1980. Mechanics <strong>of</strong> discontinuous faults. J. Geophys. Res.,<br />

85: 4337-4350.<br />

Sepkoski J. J. J., 1982. Flat-pebble conglomerates, storm deposits, <strong>and</strong> the Cambrian<br />

bottom fauna. In Einsele G. <strong>and</strong> Seilacher A. (Eds.): Cyclic <strong>and</strong> event<br />

stratification. Spinger-Verlag: New York. pp. 371-385.<br />

Sibson R. H., 1985. A note on fault reactivation. J. Struct. Geol., 7 (6): 1985.<br />

Sibson R. H., 1986. Brecciation processes in fault zones: inferences from earthquake<br />

·rupturing. Pageoph, 124 (1/2): 159-175.<br />

Sibson R. H., 1989. Structure <strong>and</strong> mechanics <strong>of</strong> fault zones in relation to fault hosted<br />

mineralisation. Aust. Min. Foundation: Dept. Geol. Sci. Uni. California.<br />

231


Sibson R. H., 1994. Crustal stress, faulting <strong>and</strong> fluid flow. In Parnell J. (Ed.): Ge<strong>of</strong>luids:<br />

Origin, Migration <strong>and</strong> Evolution <strong>of</strong> Fluids in Sedimentary Basins. Geol. Soc.<br />

Spec. Pub. No. 78. pp. 69-84.<br />

Siders M. A. <strong>and</strong> Elliot D. H., 1985. Major <strong>and</strong> trace element geochemistry <strong>of</strong> the<br />

Kirkpatrick Basalt, Mesa Range, Antarctica. Earth Planet. Sci. Lett., 72: 54-64.<br />

Singh A. <strong>and</strong> Bhardwaj B. D., 1991. Fluvial facies model <strong>of</strong> the Ganga River sediments,<br />

India. Sed. Geol., 72: 135-146.<br />

Smith J. W., 1964. 1:250 000 geological series explanatory notes. Bauhinia Downs,<br />

N. T. Bureau <strong>of</strong> Mineral Resources: Australia.<br />

Smith N.D., 1970. The braided stream depositional environment: comparison <strong>of</strong> the<br />

Platte River with some Silurian clastic rocks, north-central Appalachians. Geol.<br />

Soc. Am. Bull., 81: 2993-3014.<br />

Solomon M. <strong>and</strong> Groves D. I., 1994. The Geology <strong>and</strong> Origin <strong>of</strong> Australia's Mineral<br />

Deposits. Clarendon Press: Oxford.<br />

Solomon M. <strong>and</strong> Heinrich C. A., 1992. Are high-heat-producing granites essential to the<br />

origin <strong>of</strong> giant lead-zinc deposits at Mount Isa <strong>and</strong> McArthur River, Australia?<br />

Explor. Mining Geol., 1 (1): 85-91.<br />

Spera F. J., 1987. Dynamics <strong>of</strong> translithospheric migration <strong>of</strong> metasomatic fluid <strong>and</strong><br />

alkaline magma. In Menzies M. A. <strong>and</strong> Hawkesworth C. J. (Eds.): Mantle<br />

Metasomatism. Academic Press: London. pp. 1-20.<br />

Spry A., 1969. Metamorphic Textures. Pergamon Press: Oxford.<br />

Stel H., 1981. Crystal growth in -cataclasites: diagnostic microstructures <strong>and</strong><br />

implications. Tectonophysics, 78: 585-600.<br />

Stolz A. J. <strong>and</strong> Davies G. R., 1988. Chemical <strong>and</strong> isotopic evidence from spinel<br />

lherzolite xenoliths for episodic metasomatism <strong>of</strong> the upper mantle beneath<br />

southeast Australia. J. Petrol., Special Lithosphere Issue: 303-330.<br />

Stolz A. J., 1992. Compositional <strong>and</strong> Textural Alteration <strong>of</strong> Volcanic Rocks. CODES<br />

Key Centre MSc. Econ. Geol. Course Work Manual10. pp. 7-22.<br />

Suppe J., 1983. Geometry <strong>and</strong> kinematics <strong>of</strong> fault-bend folding. Am. J. Sci., 283: 684-<br />

721.<br />

Swanson M. T., 1988. Pseudotachylyte-bearing strike-slip duplex structures in the Fort<br />

Foster Brittle Zone, S. Maine. J. Struct. Geol., 10 (8): 813-828.<br />

Sylvester A. G., 1988. Strike-slip faults. Bull. Geol. Soc. Am., 100: 1666-1703.<br />

Sylvester A. G. <strong>and</strong> Smith R. R., 1976. Tectonic transpression <strong>and</strong> basement-controlled<br />

deformation in San Andreas Fault Zone, Salton Trough, California. Bull. Am. Ass.<br />

Petrol. Geol., 60 (12): 2081-2102.<br />

Tchalenko J. S., 1970. Similarities between shear zones <strong>of</strong> different magnitudes. Bull.<br />

Geol. Soc. Am., 81: 1625-1640.<br />

Thatcher W. <strong>and</strong> Hill D.P., 1991. Fault orientations in extensional <strong>and</strong> conjugate strikeslip<br />

environments <strong>and</strong> their implications. Geology, 19: 1116-1120.<br />

232


Thompson RN., Morrison M. A., Dickin A. P. <strong>and</strong> Hendry G. L., 1983. Continental<br />

flood basalts... arachnids rule OK? In Hawkesworth C. J. <strong>and</strong> Norry J. (Eds.):<br />

Continental basalts <strong>and</strong> mantle xenoliths. Shiva: Nantwhich. pp. 158-185.<br />

Thompson RN., Morrison M. A., Hendry G. L. <strong>and</strong> Parry S. J., 1984. An assessment<br />

<strong>of</strong> the relative roles <strong>of</strong> crust <strong>and</strong> mantle in magma genesis: an elemental approach.<br />

Phi/. Trans. Roy. Soc. L<strong>and</strong>., 310: 549-590.<br />

Toth J. <strong>and</strong> Corbet T., 1987. Post-Palaeocene evolution <strong>of</strong> regional groundwater flow<br />

systems <strong>and</strong> their relation to petroleum accumulations, Taber Area, southern<br />

Alberta, Canada. In G<strong>of</strong>f J. C. <strong>and</strong> Williams B. P. J. (Eds.): Fluid flow in<br />

sedimentary basins <strong>and</strong> aquifers. Geol. Soc. Spec. Publ. 34. pp. 45-77.<br />

Uhlir D. M., Akers A. <strong>and</strong> Vondra C. F., 1988. Tidal inlet sequence, Sundance<br />

Formation (Upper Jurassic), north-central Wyoming. Sedimentology, 35: 739-752.<br />

Vagnes E. <strong>and</strong> Amundsen H. E. F., 1993. Late Cenozoic uplift <strong>and</strong> vo1canism on<br />

Spitsbergen: Caused by mantle convection? Geology, 21: 251-254.<br />

Vernon R. H., 1976. Metamorphic Processes: Reactions <strong>and</strong> Microstructure<br />

Development. Alien <strong>and</strong> Unwin: London.<br />

Vogt P., 1991. Bermuda <strong>and</strong> Appalachian-Labrador rises: Common non-hotspot<br />

processes? Geology, 19: 41-44.<br />

Walker R. G., 1981. Clastic sedimentary facies <strong>and</strong> depositional models: short course<br />

notes. Australian Sedimentologists Group <strong>of</strong> the Geol. Soc. Aust.: Dept. Earth Sci.<br />

Monash Uni.<br />

Walker R G., 1984. Shelf <strong>and</strong> shallow marine s<strong>and</strong>s. In Walker R. G. (Bd.): Facies<br />

Models. Geoscience Canada: Ontario. pp. 141-170.<br />

Walker R. G. <strong>and</strong> Cant D. J., 1984. S<strong>and</strong>y fluvial systems. In Walker R. G. (Ed.):<br />

Facies Models. Geoscience Canada: Ontario. pp. 71-89.<br />

Walker R. G. <strong>and</strong> Plint A. G., 1992. Wave- <strong>and</strong> storm-dominated shallow marine<br />

systems. In Walker R G. <strong>and</strong> James N. P. (Eds.): Facies Models: response to sea<br />

level change. Geological Association <strong>of</strong> Canada: Ontario. pp. 219-238.<br />

Wallace RE., 1951. Geometry <strong>of</strong> shearing stress <strong>and</strong> relation to faulting. J. Geol., 59:<br />

118-130.<br />

Warren J. K., 1991. Sulfate dominated sea-marginal <strong>and</strong> platform evaporitive settings:<br />

sabkhas <strong>and</strong> salinas, mudflats <strong>and</strong> salterns. In Melvin J. L. (Bd.): Evaporites,<br />

petroleum <strong>and</strong> mineral resources. Developments in Sedimentology 50. Elsevier:<br />

Amsterdam. Chapter 2.<br />

White R. <strong>and</strong> McKenzie D., 1989. Magmatism at rift zones: the generation <strong>of</strong> volcanic<br />

continental margins <strong>and</strong> flood basalts. J. Geophys. Res., 94 (B6): 7685-7729..<br />

Wilcox RE., Harding T. P. <strong>and</strong> Seely D. R, 1973. Basic wrench tectonics. Bull. Am.<br />

Ass. Petrol. Geol., 57 (1): 74-96.<br />

Wilkerson M. S., 1992. Differential transport <strong>and</strong> continuity <strong>of</strong> thrust sheets. J. Struct.<br />

Geo/., 14 (6): 749-751.<br />

Will T. M. <strong>and</strong> Powell R., 1991. A robust approach to the calculation <strong>of</strong> paleostress<br />

fields from fault plane data. J. Struct. Geol., 13 (7): 813-821.<br />

233


Wilson M., 1989. Igneous Petrogenesis: A global tectonic approach. Unwin Hyman:<br />

London.<br />

Winchester J. A. <strong>and</strong> Floyd P. A., 1976. Geochemical magma type discrimination;<br />

application to altered <strong>and</strong> metamorphosed basin igneous rocks. Earth Planet. Sci.<br />

Lett., 28: 459-469.<br />

Winchester J. A. <strong>and</strong> Floyd P. A., 1977. Geochemical discrimination <strong>of</strong> different<br />

magma series <strong>and</strong> their differentiation products using immobile elements. Chem.<br />

Geol., 20: 325-343.<br />

Wisonant R. C., 1987. Paleocurrent <strong>and</strong> petrographic analysis <strong>of</strong> imbricate intraclasts in<br />

shallow-marine carbonates, Upper Cambrian, southwestern Virginia. J. Sed.<br />

Petrol., 57 (6): 983-994.<br />

Wong T. F., 1990. Mechanical compaction <strong>and</strong> the brittle-ductile transition in porous<br />

s<strong>and</strong>stones. In Knipe R. J. <strong>and</strong> Rutter E. H. (Eds.): Deformation mechanisms,<br />

rheology <strong>and</strong> tectonics. Geol. Soc. Lond. Spec. Publ. No. 54. pp. 111-122.<br />

Wood D. A., 1980. The application <strong>of</strong> a Th-Hf-Ta diagram to problems <strong>of</strong><br />

tectonomagmatic classification <strong>and</strong> to establishing the nature <strong>of</strong> crustal<br />

contamination <strong>of</strong> basaltic lavas <strong>of</strong> the British Tertiary volcanic province. Earth<br />

Planet. Sci. Lett., 50: 11-30.<br />

Woodcock N. H. <strong>and</strong> Fischer M., 1986. Strike-slip duplexes. J. Struct. Geol., 8 (7): 725­<br />

735.<br />

Woodhead J., Eggins S. <strong>and</strong> Gamble J., 1993. High field strength <strong>and</strong> transition element<br />

systematics in isl<strong>and</strong> arc <strong>and</strong> back-arc basin basalts: evidence fro multi-phase melt<br />

extraction <strong>and</strong> a depleted mantle wedge. Earth Planet. Sci. Lett., 114: 491-504.<br />

Wright J. V., 1993. The geology <strong>of</strong> north Mallapunyah Dome, Northern Territory.<br />

<strong>University</strong> <strong>of</strong> Tasmania, BSc hons. thesis (unpublished).<br />

Wyborn L. A. 1., 1992. Proterozoic <strong>and</strong> late Archaean magmatism, tectonics, <strong>and</strong><br />

mineralisation: a granitologist's perspective. In:. Tectonic <strong>and</strong> structural controls<br />

on ore deposits. CODES Key Centre M.Econ.Geol. course work manual 6. pp.<br />

283-354.<br />

Wyborn L. A. 1., Page R. W. <strong>and</strong> Parker A. J., 1987. Geochemical <strong>and</strong> geochronological<br />

signatures in Australian Proterozoic igneous rocks. In Pharaoh T. C., Beckinsale<br />

R. D. <strong>and</strong> Rickard D. (Eds.): Geochemistry <strong>and</strong> mineralisation <strong>of</strong> Proterozoic<br />

volcanic suites. Geol. Soc. Spec. Publ. 33. pp. 377-394.<br />

Yagishita K., 1994. Planar cross-bedding associated with rip currents <strong>of</strong> Upper<br />

Cretaceous formations, northeast Japan. Sed. Geol., 93: 155-163.<br />

Yin Z.-M. <strong>and</strong> Ranalli G., 1993. Determination <strong>of</strong> tectonic stress field from fault slip<br />

data: towards a probabilistic model. 1. Geophys. Res., 98 (B7): 12165-12176.<br />

Zaw K., Huston D. L., Large R. R., Mernagh T. <strong>and</strong> H<strong>of</strong>fmann C. F., 1994.<br />

Microthermometry <strong>and</strong> geochemistry <strong>of</strong> fluid inclusions from the Tennant Creek<br />

gold-copper deposits: implications for ore deposition <strong>and</strong> exploration. Mineral.<br />

Deposita, 29: 288-300.<br />

234


la Sample catalogue<br />

Appendix 1<br />

Ib Salnple locations in the study region<br />

le Sample locations outside <strong>of</strong> the study region<br />

Id Location <strong>of</strong> samples collected for fluid inclusion analysis.


Appendix 1a Catalogue <strong>of</strong> representative Tawallah Group samples collected during this study.<br />

Field No. Fm. Area Section/sample location (AMG) m Sedimentary facies or rock type Preparations<br />

94-88 PIn Tawallah Range 5780E 82090N - 5783E 82071 N 23.5 Planar cross-bedded gravelly s<strong>and</strong>stone R,TS<br />

94-89 PIn Tawallah Range 5780E 82090N - 5783E 82071 N 49 Planar cross-bedded s<strong>and</strong>stone R, TS<br />

94-51 ptn Scrutton Range 5638E 82090N - 5633E 82086N 1.5 Upper planar cross-bedded s<strong>and</strong>stone R,TS<br />

94-52 Ptn Scrutton Range 5638E 82090N - 5633E 82086N 1.5 Upper planar cross-bedded s<strong>and</strong>stone R,TS<br />

94-53 Ptn Scrutton Range 5638E 82090N - 5633E 82086N 55 Upper ripple/aminated s<strong>and</strong>stone R,TS<br />

94-15 PIn Batten Range 5813E 81909N - 5812E 81916N 130 Planar cross-bedded s<strong>and</strong>stone R,TS<br />

94-14 PIn Batten Range 5813E 81909N - 5812E 81916N 166 Upper ripple laminated s<strong>and</strong>stone R, TS<br />

94-13 PIn Batten Range 5813E 81909N - 5812E 81916N 187 Upper planar cross-bedded s<strong>and</strong>stone R,TS<br />

94-12 Pin Batten Range 5813E 81909N - 5812E 81916N 187 Upper planar cross-bedded s<strong>and</strong>stone R, TS<br />

94-110a Pin Batten Range 5784E 81960N Palaeosol horizon R, TS<br />

94-110b PIn Batten Range 5784E 81960N Palaeosol horizon R,TS<br />

92-M01 Pie Mallapunyah 5895E 81215N Coherent dolerite R,TS<br />

92-M01 PIe Mallapunyah 5895E 81215N Coherent dolerite R,TS<br />

92-M02 PIe Mallapunyah 5895E 81215N Coherent dolerite R,TS<br />

92-M02 PIe Mallapunyah 5895E 81215N Coherent dolerite R, TS<br />

92-M02 PIe Mallapunyah 5895E 81215N Coherent dolerite R, TS<br />

93-69 PIe Serutton Range 5264E 82093N Coherent dolerite R,PO<br />

93-71 PIe Serutton Range 5264E 82093N Coherent dolerite R, PS, PO<br />

93-72 PIe Serutton Range 5264E 82093N Coherent dolerite R,PO<br />

93-73 PIe Serutton Range 5264E 82093N Do omite/dolomitic siltstone R,TS,PS,PD<br />

93-74 PIe Serutton Range 5264E 82093N Dolomite/dolomitic siltstone R, TS, PO<br />

93-78 PIe Serutton Range 5264E 82093N Coherent dolerite R, PO<br />

93-79 Pte Serutton Range 5264E 82093N Coherent dolerite R, PO<br />

93-80 PIe Seruttan Range 5264E 82093N Coherent dolerite R, PS, PO<br />

93-81 PIe Scrutton Range 5632E 82086N Coherent dolerite R,PO<br />

93-82 PIe Scrutton Range 5632E 82086N Coherent dolerite R,PD<br />

93-88A PIe Serutton Range 5632E 82086N Coherent dolerite R, PS, PO<br />

93-886 PIe Scrutton Range 5632E 82086N Coherent dolerite R,PD<br />

94-540 PIe Serutton Range 5632E 82086N Dolomite/dolomitie siltstone R, TS<br />

94-54b PIe Scrutton Range 5632E 82086N Dolomite/dolomitic siltstane R, TS<br />

94-58a Pte Seruttan Range 5632E 82086N Dolomite/dolomitie siltstone R, TS<br />

94-58b Pte Scrutton Range 5632E 82086N Dolomlte/dolomitic siltstone R, TS<br />

94-99 PIe Kiana 5246E 81320N 174.9 Coherent dolerite R,PO<br />

94-100 PIe Kiana 5246E 81320N 169.1 Coherent dolerite R, PS, PO<br />

94-101 PIe Kiana 5246E 81320N 166.5 Coherent dolerite R<br />

94-104 PIe Kiana 5246E 81320N 143.9 In situ dalerite breeeia R<br />

94-27a Plo Scrutton Range 5621E 82083N - 5618E 82081N 9.5 Carbonate association R,TS<br />

94-27b Plo Scrutton Range 5621E 82083N - 5618E 82081N 9.5 Carbonate association R, TS<br />

94-28 Plo Scrutton Range 5621E 82083N - 5618E 82081N 9.5 Carbonate association R, TS<br />

94-29 Plo Scrutton Range 5621E 82083N -5618E 82081N 14.5 S<strong>and</strong>stone association R,PS<br />

94-30 Pto Serutton Range 5621E 82083N - 5618E 82081N 14.5 S<strong>and</strong>stone association R, PS<br />

94-32 Plo Scrutton Range 5621E 82083N -5618E 82081N 138 S<strong>and</strong>stone association R,TS<br />

94-105 Plo Masterton Horst 6206E 81756N Carbonate association R,TS<br />

94-106 Plo Masterton Horst 6206E 81756N Carbonate association R,TS<br />

92-M03 PIg Mallapunyah 5886E 81218N Coherent dolerite R,TS<br />

92-M04 PIg Mallapunyah 5886E 81218N Coherent dorerite R, TS<br />

93-90 PIg Seruttan Range 5617E 82077N Volcanic Breeeia R, TS, PS<br />

93-99 PIg Scruttan Range 5617E 82077N Volcanic Breccia R, TS<br />

93-107 PIg Scrutton Range 5617E 82077N Volcanic Breccia R, PS<br />

93-108 PIg Scrutton Range 5617E 82077N Coherent dolerite R,TS<br />

93-109 PIg Serutlan Range 5617E 82077N Volcanic Breeela R,TS<br />

93-122 PIg Scrulton Range 5617E 82077N Volcanic Breccia R, PS<br />

94-33a PIg Scrutton Range 5637E 82067N - 5632E 62065N 15 S<strong>and</strong>stone R,TS<br />

94-33b PIg Scrutton Range 5637E 82067N - 5632E 82065N 15 S<strong>and</strong>stone R,TS<br />

94-34 PIg Scrutton Range 5637E 82067N - 5632E 82065N 32 Coherent dolerite R,TS<br />

94-35 PIg Scrutton Range 5637E 82067N - 5632E 82065N 32 Coherent dolerite R,PO<br />

94-36 PIg Scrutton Range 5637E 82067N - 5632E 82065N 32 Coherent dorerite R,PO<br />

94-37 PIg Scrutton Range 5637E 82067N - 5632E 82065N 32 Coherent dolerite R, PS, PO<br />

94-38 PIg Serutton Range 5637E 82067N - 5632E 82065N 88 Coherent dolerite R, PO<br />

94-39 Ptg Scrutlon Range 5637E 82067N - 5632E 82065N 88 Coherent dolerite R, PO<br />

94-40 Ptg Serutton Range 5637E 82067N - 5632E 82065N 193 Coherent dolerite R, PO<br />

94-41 Ptg Serutton Range 5637E 82067N - 5632E 82065N 193 Coherent dolerite R,PO<br />

94-42 PIg Scrutton Range 5637E 82067N - 5632E 82065N 193 Coherent dolente R, PS, PO<br />

94-43 PIg Scrutton Range 5637E 82067N - 5632E 82065N 224 Coherent dolerite R,PO<br />

94-44 PIg Scrutton Range 5637E 82067N - 5632E 82065N 224 Coherent dorerite R, PO<br />

94-45 PIg Scrutton Range 5637E 82067N - 5632E 82065N 253 S<strong>and</strong>stone R, TS<br />

94-49 PIg Scruttan Range 5637E 82067N - 5632E 82065N 228 Coherent dolerite (vesicular) R, TS<br />

94-50 PIg Scrutton Range 5637E 82067N - 5632E 82065N 228 Coherent dolerite (vesicular) R, TS


Appendix 2<br />

2a Inverse palaeostress analysis <strong>of</strong> fault-slip data (Batten Range)<br />

2b Inverse palaeostress analysis <strong>of</strong>fauIt-slip data (Scrutton Range)<br />

2c Inverse palaeostress analysis <strong>of</strong> fault-slip data (Scrutton Range)


Appendix 2a<br />

Batten Range: Lower Tawallah Group: E-W Compression<br />

79 81 N 20 W 0 1 46 41 S 21 E 0 12 23 34 E 72 E R 23<br />

24 63 W 46 W 0 2 67 84 S 5 W 0 13 44 27 E 40 E S 24<br />

61 68 N 3 E 0 3 120 20 S 89 E R 14 71 32 S 0 E S 25<br />

60 89 N 10 W 0 4 116 38 E 90 E R 15 180 74 W 18 S S 26<br />

71 47 S 15 E 0 5 20 58 E 90 E R 16 67 46 S 8 W S 27<br />

41 89 W 50 W 0 6 23 79 w 80 W N 17 102 20 S 11 W S 28<br />

44 49 W 53 W 0 7 108 39 N 70 W N 18 133 44 N 32 W S 29<br />

56 24 N 42 W 0 8 66 11 N 65 W N 19 121 31 N 14 W S 30<br />

71 77 N 17 E 0 9 10 56 E 70 W R 20 163 84 W 18 E S 31<br />

38 52 W 20 W 0 10 11 86 E 90 E R 21<br />

62 45 N 11 W 0 11 34 56 E 71 E R 22<br />

MINIMISATION PERCENT 80 SELECTED PARAMETERS, SrGMA 1 TRE=lOO PLUN= 3<br />

LEAST SQUARE REGRESSION OF THE 24 CLOSEST STRIATIONS<br />

AVERAGE ERROR IN DEGREES 21. 39169 ERROR IN R .38E+OO<br />

NO STRESS VALUES USED AND PRINCIPAL AXES<br />

3 3<br />

.1 3 3<br />

33<br />

-<br />

--­<br />

3­<br />

1 3<br />

3 3 1.<br />

2<br />

2<br />

2<br />

2 .2<br />

2 ...<br />

. 2<br />

2<br />

2 2<br />

*<br />

1<br />

3<br />

1<br />

111+.<br />

3 1 +++<br />

1+<br />

11.<br />

3 1<br />

1..<br />

2


Bat ten Range: Basal Tawallah Group - NW-SE Compression<br />

143 77 E 45 E D 1 38 52 W 20 W D 18 23 34 E 72 E R 35<br />

141 71 E 0 E D 2 62 45 N 11 W D 19 50 88 S 23 E S 36<br />

70 20 S 38 E D 3 112 71 N 12 W D 20 52 83 S 3 W S 37<br />

145 20 W 0 E D 4 46 41 S 21 E D 21 44 27 E 40 E S 38<br />

79 81 N 20 W D 5 67 84 S 5 W D 22 71 32 S 0 E S 39<br />

24 63 W 46 W D 6 120 20 S 89 E R 23 180 74 W 18 S S 40<br />

119 22 S 5 W D 7 164 21 E 90 E R 24 54 70 S 12 E S 41<br />

101 27 S 0 E D 8 176 38 E 90 E R 25 42 45 E 5 W S 42<br />

61 68 N 3 E D 9 20 58 E 90 E R 26 37 74 E 25 E S 43<br />

162 67 W 12 E D 10 23 79 W 80 W N 27 55 72 S 23 E S 44<br />

150 87 W 23 E D 11 18 45 W 50 W N 28 40 66 E 15 W S 45<br />

60 89 N 10 W D 12 108 39 N 70 W N 29 67 46 S 8 W S 46<br />

71 47 S 15 E D 13 66 11 N 65 W N 30 102 20 S 11 W S 47<br />

41 89 W 50 W D 14 10 56 E 70 W R 31 133 44 N 32 W S 48<br />

44 49 W 53 W D 15 11 86 E 90 E R 32 121 31 N 14 W S 49<br />

56 24 N 42 W D 16 34 56 E 71 E R 33 3 61 W 0 E S 50<br />

71 77 N 17 E D 17 61 68 N 70 E R 34 163 84 W 18 E S 51<br />

MINIMISATION PERCENT 40 SELECTED PARAMETERS, SIGMA 1 TRE=l75 PLUN= 1<br />

LEAST SQUARE REGRESSION OF THE 20 CLOSEST STRIATIONS<br />

AVERAGE ERROR IN DEGREES 21. 96397 ERROR IN R .32E+00<br />

NO STRESS VALUES USED AND PRINCIPAL AXES STRESS RATIO R = .61<br />

SIGMA(l)= .46252 TREND 357.0 (ERR 21.4) PLUNGE 3.0 (ERR 16.51<br />

SIGMA(2)= .07495 TREND 261. 6 (ERR 47.01 PLUNGE 61. 5 (ERR 9.9l<br />

SIGMA(3l= -.53748 TREND 88.6 (ERR 18.1) PLUNGE 28.3 (ERR 10.2)<br />

GAMME NBRE INDICE DES VALEURS DANS CETTE GAMME<br />

1 .0 .1 7 36 20 43 10 50 41 24<br />

2 .1 .2 10 11 42 7<br />

3 .2 .3 12 44 1<br />

4 .3 .4 14 3 37<br />

5 .4 .5 16 28 2<br />

6 .5 .6 18 8 4<br />

7 .6 .7 19 45<br />

8 .7 .8 20 34<br />

9 .8 .9 20<br />

10 .9 1.0 20<br />

11 1.0 1.2 21 30<br />

12 1.2 1.4 23 46 13<br />

13 1.4 1. 6 24 23<br />

14 1.6 1.8 25 40<br />

15 1.8 2.0 31 14 35 49 39 27 38<br />

16 2.0 2.2 34 15 5 6<br />

17 2.2 2.4 38 21 33 31 26<br />

18 2.4 2.6 43 16 19 32 47 12<br />

19 2.6 2.8 47 18 9 51 29<br />

20 2.8 3.0 50 22 17 48<br />

21 3.0 3.2 51 25<br />

SCHMIDT NET OF NEAREST EXACT SOLN<br />

1<br />

..... +.<br />

+++ 1<br />

+1 1<br />

1<br />

3<br />

3<br />

2 3 3<br />

3 3<br />

2 2 3<br />

2 .2 • ---3<br />

...2<br />

3<br />

2 3 3<br />

2<br />

2<br />

1<br />

1 1<br />

....... .. 1 ....<br />

1<br />

1


Batten Range: Basal Tawallah Group: NE-SW Compression<br />

143 77 E 45 E D 1 157 63 E 90 E R 51<br />

141 71 E 0 E D 2 164 21 E 90 E R 52<br />

28 66 E 37 E D 3 176 38 E 90 E R 53<br />

45 69 S 41 W D 4 20 58 E 90 E R 54<br />

70 20 S 38 E D 5 157 22 E 60 W R 55<br />

14 69 E 21 W D 6 23 79 W 80 W N 56<br />

147 21 E 50 W D 7 18 45 W 50 W N 57<br />

145 20 W 0 E D 8 136 13 E 61 W R 58<br />

161 71 E 5 W D 9 108 39 N 70 W N 59<br />

79 81 N 20 W D 10 66 11 N 65 W N 60<br />

24 63 W 46 W D 11 10 56 E 70 W R 61<br />

119 22 S 5 W D 12 134 40 N 60 E R 62<br />

101 27 S 0 E D 13 11 86 E 90 E R 63.<br />

170 51 W 45 E D 14 34 56 E 71 E R 64<br />

13 63 W 30 W D 15 61 68 N 70 E R 65<br />

49 86 N 5 E D 16 23 34 E 72 E R 66<br />

157 74 E 10 W D 17 50 88 S 23 E S 67<br />

61 68 N 3 E D 18 52 83 S 3 w S 68<br />

164 81 E 0 E D 19 44 27 E 40 E S 69<br />

166 62 E 5 W D 20 71 32 S 0 E S 70<br />

175 62 W 25 E D 21 180 74 W 18 S S 71<br />

162 67 W 12 E D 22 54 70 S 12 E S 72<br />

150 87 W 23 E D 23 42 45 E 5 W S 73<br />

60 89 N 10 W D 24 37 74 E 25 E S 74<br />

166 74 E 14 E D 25 125 78 N 32 W S 75<br />

71 47 S 15 E D 26 55 72 S 23 E S 76<br />

41 89 W 50 W D 27 93 74 S 5 E S 77<br />

44 49 W 53 W D 28 40 66 E 15 W S 78<br />

171 62 E 13 W D 29 80 68 S 12 E S 79<br />

56 24 N 42 W D 30 67 46 S 8 W S 80<br />

46 79 S 12 E D 31 102 20 S 11 W S 81<br />

158 82 E 16 E D 32 116 61 N 10 W S 82<br />

56 78 S 11 E D 33 88 67 S 3 E s 83<br />

25 55 W 16 E D 34 133 44 N 32 W S 84<br />

15 82 E 38 E D 35 161 45 W 45 W S 85<br />

156 82 E 15 W D 36 120 89 N 5 W S 86<br />

167 73 E 4 W D 37 129 68 S 24 W S 87<br />

156 73 E 10 W D 38 108 88 N 28 W S 88<br />

161 64 E 13 w D 39 121 31 N 14 W S 89<br />

41 70 E 37 E D 40 121 54 S 30 w S 90<br />

71 77 N 17 E D 41 3 61 W 0 E S 91<br />

159 73 E 14 W D 42 112 59 S 12 W S 92<br />

38 52 W 20 W D 43 101 81 N 3 E S 93<br />

161 63 E 10 W D 44 114 63 N 15 E S 94<br />

168 74 E 14 W D 45 127 59 N 5 E S 95<br />

62 45 N 11 W D 46 115 71 N 4 E S 96<br />

112 71 N 12 W D 47 113 42 N 13 E S 97<br />

46 41 S 21 E D 48 123 24 S 0 E S 98<br />

67 84 S 5 W D 49 131 36 s 10 E S 99<br />

120 20 S 89 E R 50 136 39 W 21 W S 100<br />

168 35 W 40 W S 101<br />

163 84 W 18 E S 102<br />

MINIMISATION PERCENT 50 SELECTED PARAMETERS, SIGMA 1 TRE=225 PLUN=15 LEAST<br />

SQUARE REGRESSION OF THE 51 CLOSEST STRIATIONS<br />

AVERAGE ERROR IN DEGREES 21.67805 ERROR IN R .39E+OO<br />

NO STRESS VALUES USED AND PRINCIPAL AXES\<br />

SIGMA(I)= .45043 TREND 241.1 (ERR 13.2) PLUNGE 12.7 (ERR 15.7)<br />

SIGMA(2)= .09915 TREND 115.1 (ERR 43.9) PLUNGE 69.0 (ERR 17.4)<br />

SIGMA(3)= -.54957 TREND 334.9 (ERR 11.7) PLUNGE 16.4 (ERR 15.2)<br />

STRESS RATIO R = .65<br />

GAMME NBRE INDICE DES VALEURS DANS CETTE GAMME<br />

1 .0 .1 16 100 87 83 45 62 19 31 95 82 92 58 21 79 29 42 33<br />

2 .1 .2 22 88 7 32 34 37 17<br />

3 .2 .3 31 97 98 75 38 9 39 86 77 90<br />

4 .3 .4 37 55 20 14 44 99 96<br />

5 .4 .5 39 6 25<br />

6 .5 .6 45 93 85 36 94 35 4<br />

7 .6 .7 49 16 15 101 3<br />

8 .7 .8 50 40<br />

9 .8 .9 51 51<br />

10 .9 1.0 51<br />

11 1.0 1.2 59 81 89 52 22 48 59 11 43<br />

12 1.2 1.4 61 53 27<br />

13 1.4 1.6 69 84 24 63 56 64 18 66 70<br />

14 1.6 1.8 74 54 69 41 23 80<br />

15 1.8 2.0 78 60 61 46 50<br />

16 2.0 2.2 84 28 26 49 57 1 5<br />

17 2.2 2.4 84<br />

18 2.4 2.6 86 13 76<br />

19 2.6 2.8 93 73 68 10 72 12 74 30<br />

20 2.8 3.0 100 65 102 91 71 67 8 47<br />

21 3.0 3.2 102 78 2


SCHMIDT NET OF NEAREST EXACT SOLN<br />

3<br />

.. 33 3 3 3<br />

.3.3-333<br />

3 3---3 3<br />

3 3­<br />

3<br />

3 3 3<br />

2 2<br />

2 2<br />

22 2<br />

* 2 22 22<br />

2 ... 22<br />

1 2 222.2 2<br />

2 2<br />

1 1<br />

1 2<br />

11 +1 11 1<br />

+++1111<br />

11+<br />

1<br />

1 11<br />

1..<br />

1<br />

2 1..<br />

1


Batten Range: Wununmantyala s<strong>and</strong>stone/Masterton S<strong>and</strong>stone: NW-SE Compression<br />

60 42 S 5 W D 1 149 63 E 5 E D 13 141 80 W 8 E D 25<br />

140 80 W 5 W D 2 146 70 E 23 E D 14 69 40 S 80 E R 26<br />

133 49 S 10 E D 3 175 86 E 90 E R 15 74 61 S 75 E R 27<br />

55 74 S 48 W D 4 139 64 W 10 E S 16 75 35 S 90 E R 28<br />

170 89 E 20 W S 5 90 75 S 12 E D 17 135 73 E "11 W D 29<br />

30 80 E 5 S S 6 175 80 W 80 E R 18 141 34 E 5 W D 30<br />

125 67 S 12 W D 7 161 78 W 30 W D 19 146 43 E 0 E D 31<br />

79 72 N 25 E D 8 75 27 E 90 E R 20 140 71 E 40 E D 32<br />

79 69 N 45 W D 9 121 80 N 12 E D 21 135 69 E 16 E D 33<br />

117 75 S 15 E D 10 123 70 S 30 W D 22 150 70 W 32 W D 34<br />

72 46 E 90 E R 11 71 68 S 90 E R 23 153 61 E 11 E D 35<br />

79 80 E 90 E R 12 141 82 W 10 W D 24 144 80 E 65 E N 36<br />

MINIMISATION PERCENT 88 SELECTED PARAMETERS, SIGMA 1 TRE=167 PLUN=19<br />

LEAST SQUARE REGRESSION OF THE 31CLOSEST STRIATIONS<br />

AVERAGE ERROR IN DEGREES 21. 94 ERROR IN R .45E+OO<br />

NO STRESS vALUES USED AND PRINCIPAL AXES STRESS RATIO R = .37<br />

SIGMA(l)= .54270 TREND 167.4 (ERR 4.6) PLUNGE 18.7 (ERR 4.51<br />

SIGMA(2)= -.08541 TREND 337.8 (ERR 45.21 PLUNGE 71. 0 (ERR 4.91<br />

SIGMA(3)= -.45730 TREND 76.4 (ERR 7.5) PLUNGE 3.0 (ERR 13.5)<br />

GAMME NBRE INDICE DES VALEURS DANS CETTE GAMME<br />

1 .0 .1 7 9 25 28 5 33 14 21<br />

2 .1 .2 14 20 8 10 12 11 6 19<br />

3 .2 .3 17 23 2 34<br />

4 .3 .4 21 30 32 27 24<br />

5 .4 .5 27 3 26 31 35 13 7<br />

6 .5 .6 28 29<br />

7 .6 .7 28<br />

8 .7 .8 30 17 36<br />

9 .8 .9 31 22<br />

10 .9 1.0 31<br />

11 1.0 1.2 31<br />

12 1.2 1.4 31<br />

13 1.4 1.6 31<br />

14 1.6 1.8 32 15<br />

15 1.8 2.0 32<br />

16 2.0 2.2 33 18<br />

17 2.2 2.4 34 1<br />

18 2.4 2.6 34.<br />

19 2.6 2.8 34<br />

20 2.8 3.0 35 16<br />

21 3.0 3.2 36 4<br />

SCHMIDT NET OF NEAREST EXACT SOLN<br />

33<br />

33 3 *2<br />

33<br />

3 3<br />

­<br />

3<br />

3 3<br />

3 3<br />

... 2<br />

2 .22 2 3 -3<br />

2<br />

222<br />

2<br />

22<br />

2<br />

3 ..<br />

3<br />

2<br />

1<br />

1<br />

+ 11 1 1 1<br />

+++11<br />

1 111 1+<br />

1<br />

3<br />

3.


Ba t ten Range: Wununmantyala S<strong>and</strong>stone/Masterton S<strong>and</strong>stone: NE-SW Compression<br />

60 42 S 5 W D 1 153 73 E 10 W D 49<br />

130 12 S 90 E R 2 121 80 N 12 E D 50<br />

175 80 E 10 w D 3 123 70 S 30 w D 51<br />

140 80 w 5 w D 4 71 68 S 90 E R 52<br />

60 80 N 0 E S 5 61 62 S 14 w S 53<br />

48 57 S 48 w D 6 133 69 S 19 N s 54<br />

110 33 S 90 E R 7 159 75 E 0 E D 55<br />

133 49 S 10 E D 8 135 89 E 0 E S 56<br />

55 74 S 48 w D 9 153 73 w 0 E D 57<br />

170 89 E 20 w S 10 125 79 S 0 E S 58<br />

169 80 E 0 E D 11 141 82 W 10 W D 59<br />

79 87 N 12 E S 12 141 80 W 8 E D 60<br />

30 80 E 5 S S 13 69 40 S 80 E R 61<br />

125 67 S 12 w D 14 127 79 S 12 w S 62<br />

79 72 N 25 E D 15 74 61 S 75 E R 63<br />

171 82 E 10 W D 16 175 26 E 40 W D 64<br />

107 66 N 0 E S 17 145 14 E 90 E R 65<br />

33 20 E 0 E D 18 144 28 E 90 E R 66<br />

127 72 S 64 W R 19 133 31 N 90 E R 67<br />

79 69 N 45 w D 20 151 63 E 70 E R 68<br />

117 75 S 15 E D 21 47 71 S 31 W D 69<br />

155 52 E 90 E R 22 175 84 E 11 W D 70<br />

72 46 E 90 E R 23 144 40 E 90 E R 71<br />

79 80 E 90 E R 24 158 67 E 20 w D 72<br />

166 78 E 40 N D 25 129 71 N 7 E S 73<br />

149 63 E 5 E D 26 166 38 E 12 w D 74<br />

146 70 E 23 E D 27 161 41 E 57 w D 75<br />

175 86 E 90 E R 28 174 78 E 10 W D 76<br />

167 79 W 9 E D 29 140 52 w 60 w R 77<br />

95 70 S 10 W S 30 157 63 E 17 w D 78<br />

155 66 E 60 w R 31 151 12 E 69 w R 79<br />

70 80 N 16 w S 32 79 64 N 0 E S 80<br />

139 64 w 10 E S 33 153 78 E 5 E D 81<br />

0 69 E 31 N D 34 75 35 S 90 E R 82<br />

165 77 E 12 w D 35 164 81 E 0 E D 83<br />

172 80 E 10 W D 36 135 73 E 11 W D 84<br />

168 75 E 15 w D 37 141 34 E 5 W D 85<br />

157 85 E 7 w D 38 146 43 E 0 E D 86<br />

164 73 E 13 w D 39 140 71 E 40 E D 87<br />

90 75 S 12 E D 40 135 69 E 16 E D 88<br />

40 74 E 6 w D 41 148 58 E 90 E R 89<br />

175 80 w 80 E R 42 157 42 E 90 E R 90<br />

171 54 w 60 E R 43 150 70 w 32 w D 91<br />

41 72 E 8 w D 44 171 75 w 20 w D 92<br />

161 78 W 30 w D 45 161 80 w 5 E D 93<br />

156 82 w 0 E D 46 172 64 E 15 w D 94<br />

153 69 E 22 w D 47 153 61 E 11 E D 95<br />

75 27 E 90 E R 48 144 80 E 65 E N 96<br />

MINIMISATION PERCENT 62 SELECTED PARAMETERS, SIGMA 1 TRE=230 PLUN= 2 LEAST<br />

SQUARE REGRESSION OF THE 59cLOSEST STRIATIONS<br />

AVERAGE ERROR IN DEGREES 22.66202 ERROR IN R .48E+00<br />

NO STRESS VALUES USED AND PRINCIPAL AXES<br />

SIGMA{l}= .60708 TREND 230.9 (ERR 13.2) PLUNGE 2.0 (ERR 12.8)<br />

SIGMA(2)= -.21417 TREND 86.1 (ERR 83.71 PLUNGE 87.5 (ERR 31.5)<br />

SIGMA(3)= -.39292 TREND 321. 0 (ERR 13.1) PLUNGE 1.4 (ERR 51.2)<br />

STRESS RATIO R = .18<br />

GAMME NBRE INDICE DES VALEURS DANS CETTE GAMME<br />

1 .0 .1 14 36 75 76 80 38 3 16 37 64 69 30 66 71 6<br />

2 .1 .2 27 41 65 35 44 70 79 56 31 18 67 11 29 32<br />

3 .2 .3 36 94 39 83 5 12 19 34 2 89<br />

4 .3 .4 39 93 43 17<br />

5 .4 .5 46 72 25 62 90 46 77 22<br />

6 .5 .6 51 55 47 78 58 49<br />

7 .6 .7 54 53 81 74<br />

8 .7 .8 57 92 73 7<br />

9 .8 .9 60 54 68 57<br />

10 .9 1.0 60<br />

11 1.0 1.2 62 45 42<br />

12 1.2 1.4 64 95 26<br />

13 1.4 1.6 69 86 60 85 24 28<br />

14 1.6 1.8 80 52 27 82 8 91 33 48 23 9 59 4<br />

15 1.8 2.0 83 84 63 61<br />

16 2.0 2.2 83<br />

17 2.2 2.4 89 88 96 1 87 20 21<br />

18 2.4 2.6 90 14<br />

19 2.6 2.8 93 15 10 40<br />

20 2.8 3.0 94 51<br />

21 3.0 3.2 96 50 13


SCHMIDT NET OF NEAREST EXACT SOLN<br />

.. -333 333<br />

.. 33333 33 1 1 1<br />

3 3 3 1.<br />

3 3<br />

3 11<br />

1 .1<br />

3 2<br />

1..<br />

3 2<br />

2 2<br />

2 22<br />

22.22<br />

2 22 2* ..<br />

2 222. 2<br />

2<br />

2 2 23 2<br />

2 2<br />

11<br />

.1 1<br />

.1<br />

.1+ 3 3<br />

+++11<br />

+1 1 1 3 3 33.<br />

1. 1 1 3 33 33 .<br />

.. 1 1 3 333.<br />

333.<br />

3 ...


Appendix 2b<br />

Scrutton Range: Basal Tawal1ah Group: NE-SW Compression (1)<br />

122 64 w 90 E R 1 51 71 E 5 E S 8<br />

9 36 w 0 E D 2 145 50 E 0 E S 9<br />

161 64 W 0 E D 3 130 68 E 7 W S 10<br />

i75 75 E 0 E D 4 142 60 w 0 E S 11<br />

137 64 W 0 E D 5 122 30 w 60 E S 12<br />

72 71 E 5 E D 6 59 41 E 50 E S 13<br />

11 61 W 0 E S 7<br />

MINIMISATION PERCENT 60 SELECTED PARAMETERS, SIGMA 1 TRE=240 PLUN=10 LEAST<br />

SQUARE REGRESSION OF THE 7 CLOSEST STRIATIONS<br />

AVERAGE ERROR IN DEGREES 18.72711 ERROR IN R .13E+OO<br />

NO STRESS VALUES USED AND PRINCIPAL AXES<br />

SIGMA(l)= .34148 TREND 70.8 (ERR 30.4) PLUNGE 26.5 (ERR 87.2)<br />

SIGMA(2)= .31703 TREND 267.2 (ERR 61.0) PLUNGE 62.6 (ERR 87.1)<br />

SIGMA(3)= -.65852 TREND 164.2 (ERR 18.7) PLUNGE 6.7 (ERR 17.7)<br />

STRESS RATIO R = .98<br />

GAMME NBRE INDICE DES VALEURS DANS CETTE GAMME<br />

1 .0 .1 4 3 10 4 9<br />

2 .1 .2 4<br />

3 .2 .3 6 2 11<br />

4 .3 .4 7 12<br />

5 .4 .5 7<br />

6 .5 .6 7<br />

7 .6 .7 7<br />

8 .7 .8 7<br />

9 .8 .9 7<br />

10 .9 1.0 7<br />

11 1.0 1.2 8 13<br />

12 1.2 1.4 8<br />

13 1.4 1.6 9 6<br />

14 1.6 1.8 9<br />

15 1.8 2.0 9<br />

16 2.0 2.2 10 1<br />

17 2.2 2.4 11 8<br />

18 2.4 2.6 11<br />

19 2.6 2.8 11<br />

20 2.8 3.0 12 5<br />

21 3.0 3.2 13 7<br />

SCHMIDT NET OF NEAREST EXACT SOLN<br />

3<br />

..... .<br />

2<br />

2<br />

.......<br />

•<br />

3<br />

-3<br />

1+<br />

+++<br />

+<br />

1


Scrutton Range: Basal Tawallah Group: NE-SW Compression (21<br />

133 42 W 70 W R 1 145 38 W 70 W R 19 161 64 W 0 E D 37<br />

122 64 W 90 E R 2 145 25 W 90 E R 20 175 75 E 0 E D 38<br />

165 64 W 90 E R 3 172 37 W 70 E R 21 137 64 W 0 E D 39<br />

164 46 W 90 E R 4 160 37 W 80 E R 22 72 71 E 5 E D 40<br />

161 37 W 70 W R 5 173 27 W 80 E R 23 4 13 W 45 S D 41<br />

158 32 W 70 E R 6 11 29 W 90 E R 24 164 89 W 0 E D 42<br />

152 52 W 90 E R 7 14 44 W 75 S R 25 11 61 W 0 E S 43<br />

170 21 W 80 E R 8 171 57 W 80 E R 26 82 71 E 5 E S 44<br />

135 42 W 70 W R 9 9 36 W 0 E D 27 73 65 E 10 W S 45<br />

136 39 W 70 W R 10 40 64 E 0 E D 28 51 71 E 5 E s 46<br />

135 34 W 80 W R 11 28 65 E 0 E D 29 145 50 E 0 E S 47<br />

137 22 W 90 E R 12 56 81 E 0 E D 30 100 87 S 0 E S 48<br />

173 56 W 80 W R 13 31 64 E 5 E D 31 130 68 E 7 W S 49<br />

173 41 W 90 E R 14 21 67 W 7 N D 32 142 60 W 0 E S 50<br />

156 15 w 80 W R 15 17 64 W 10 W D 33 86 64 S 10 W S 51<br />

149 22 W 70 W R 16 171 83 W 0 E D 34 122 30 W 60 E S 52<br />

149 48 W 90 E R 17 8 84 W 0 E D 35 59 41 E 50 E S 53<br />

144 34 W 80 W R 18 65 89 E 5 W D 36 97 89 N 5 W S 54<br />

65 47 E 15 W S 55<br />

MINIMISATION PERCENT 78 SELECTED PARAMETERS, SIGMA 1 TRE= 65 PLUN=10 LEAST<br />

SQUARE REGRESSION OF THE 42 CLOSEST STRIATIONS<br />

AVERAGE ERROR IN DEGREES 17.04976 ERROR IN R .16E+00<br />

NO STRESS VALUES USED AND PRINCIPAL AXES STRESS RATIO R = .00<br />

SIGMA(1l= .66655 TREND 67.4 (ERR 14.51 PLUNGE 2.7 (ERR 10.9)<br />

SIGMA(2l= -.33310 TREND 336.9 (ERR ?) PLUNGE 11.2 {ERR ?l<br />

SIGMA(3l= -.33345 TREND 170.6 (ERR ?) PLUNGE 78.4 (ERR ?l<br />

GAMME NBRE rNDICE DES VALEURS DANS CETTE GAMME<br />

1 .0 .1 8 55 48 21 8 19 51 30 35<br />

2 .1 .2 21 18 22 44 36 23 10 15 54 7 4 45 9 16<br />

3 .2 .3 30 1 17 20 42 33 28 26 31 34<br />

4 .3 .4 37 11 41 3 6 14 29 12<br />

5 .4 .5 39 5 32<br />

6 .5 .6 40 25<br />

7 .6 .7 42 24 13<br />

8 .7 .8 43 38<br />

9 .8 .9 44 49<br />

10 .9 1.0 45 27<br />

11 1.0 1.2 47 50 2<br />

12 1.2 1.4 48 47<br />

13 1.4 1.6 49 37<br />

14 1.6 1.8 49<br />

15 1.8 2.0 50 52<br />

16 2.0 2.2 50<br />

17 2.2 2.4 51 39<br />

18 2.4 2.6 53 53 43<br />

19 2.6 2.8 53<br />

20 2.8 3.0 53<br />

21 3.0 3.2 55 40 46<br />

SCHMIDT NET OF NEAREST EXACT SOLN<br />

2 .. 2 2 2<br />

... 2 2. 2<br />

2 ..• 2 2<br />

.. 2 2 2<br />

2<br />

2<br />

3 11.<br />

2<br />

2 11<br />

11<br />

3 1 1 1.+<br />

1+++<br />

1 +.<br />

3 1.<br />

2 3 11<br />

1 3<br />

3<br />

3 1.<br />

•<br />

11 3<br />

3­<br />

.1<br />

..<br />

1 3<br />

.. 3<br />

3<br />

.11 2<br />

1. 1<br />

1 1 3<br />

1<br />

1. 22<br />

2<br />

3 2 2 ..<br />

2 2 2 2 ..<br />

2 22 ..<br />

22 . .<br />

.... .. 2 2


Scrutton Range: Middle <strong>and</strong> Upper Tawa11ah Group: NW-SE Compression<br />

111 51 E 80 N N 1 114 40 W 45 W D 15 151 61 E 0 E S 29<br />

14 88 W 50 W N 2 139 40 W 40 E D 16 114 22 W 10 E S 30<br />

14 35 W 50 N R 3 165 33 E 5 W D 17 39 45 W 5 E S 31<br />

34 83 W 60 E R 4 44 87 E 10 E S 18 5 62 W 0 E S 32<br />

144 35 W 90 E N 5 42 47 W 20 W S 19 135 55 W 0 E S 33<br />

136 57 W 80 W N 6 13 53 W 5 W S 20 163 34 W 90 E N 34<br />

144 34 W 80 W N 7 11 84 E 5 E S 21 151 50 W 75 W N 35<br />

157 46 W 90 E N 8 20 86 E 0 E S 22 162 77 W 60 W N 36<br />

149 19 W 80 W N 9 14 81 E 15 E S 23 133 41 W 10 W D 37<br />

76 61 W 0 E D 10 40 89 E 5 W S 24 160 39 W 20 W D 38<br />

123 43 W 10 W D 11 45 38 E 30 E S 25 28 55 E 5 W S 39<br />

72 80 W 30 E D 12 25 69 E 5 E S 26 11 77 E 0 E S 40<br />

78 61 W 5 W D 13 25 74 E 30 E S 27 0 64 E 10 S S 41<br />

99 74 N 0 E D 14 150 55 E 7 E S 28 66 81 E 0 E S 42<br />

MINIMISATION PERCENT 75 SELECTED PARAMETERS, SIGMA 1 TRE=160 PLUN=16 LEAST<br />

SQUARE REGRESSION OF THE 31 CLOSEST STRIATIONS<br />

AVERAGE ERROR IN DEGREES 20.89404 ERROR IN R .34E"00<br />

NO STRESS VALUES USED AND PRINCIPAL AXES<br />

SIGMA(l)= .35306 TREND 161.5 (ERR 13.6) PLUNGE 12.8 (ERR 80.1)<br />

SIGMA(2)= .29389 TREND .6 (ERR 155.1) PLUNGE 76.4 (ERR 75.7)<br />

SIGMA(3)= -.64694 TREND 252.5 (ERR 9.0) PLUNGE 4.3 (ERR 22.1)<br />

STRESS RATIO R = .94<br />

GAMME NBRE INDICE DES VALEURS DANS CETTE GAMME<br />

1 .0 .1 11 12 19 24 35 9 34 22 14 13 21 1<br />

2 .1 .2 16 8 26 23 7 15<br />

3 .2 .3 21 10 42 40 25 18<br />

4 .3 .4 23 5 27<br />

5 .4 .5 25 39 31<br />

6 .5 .6 28 36 6 11<br />

7 .6 .7 29 2<br />

8 .7 .8 31 20 37<br />

9 .8 .9 32 32<br />

10 .9 1.0 32<br />

11 1.0 1.2 34 41 38<br />

12 1.2 1.4 35 4<br />

13 1.4 1.6 35<br />

14 1.6 1.8 38 17 3 16<br />

15 1.8 2.0 38<br />

16 2.0 2.2 40 29 28<br />

17 2.2 2.4 42 33 30<br />

SCHMIDT NET OF NEAREST EXACT SOLN<br />

1<br />

2 2<br />

.. . 1 ..<br />

1 2<br />

11 1<br />

.......<br />

1 2 3<br />

2 .3<br />

1 2<br />

22<br />

2 1.<br />

1 1 3.<br />

22 3<br />

'2<br />

2 2<br />

3 3 2 2 1<br />

.3 3 2 1<br />

.3- 2<br />

.---3<br />

.-33 1<br />

3 3 1<br />

. .. . 1 ..<br />

2<br />

1<br />

211<br />

1 2<br />

11 1.<br />

+<br />

+++<br />

+<br />

. . 1 ...


Scrutton Range: Middle <strong>and</strong> Upper Tawa11ah Group: NE-SW Compression<br />

102 60 S 60 w R 1 26 89 w 0 E 0 55<br />

31 61 w 70 w R 2 165 33 E 5 w 0 56<br />

141 34 w 70 w R 3 64 64 w 50 W 0 57<br />

144 8 w 70 E R 4 72 55 E 0 E 0 58<br />

162 5 w 90 E R 5 44 87 E 10 E S 59<br />

144 44 w 90 E R 6 42 47 w 20 W S 60<br />

1 31 E 90 N R 7 13 53 w 5 w S 61<br />

171 51 E 80 N N 8 79 74 E 5 w S 62<br />

14 88 w 50 w N 9 109 89 E 0 E S 63<br />

1 30 w 70 N R 10 11 84 E 5 E S 64<br />

115 21 w 90 E R 11 20 86 E 0 E S 65<br />

160 17 w 90 E R 12 14 81 E 15 E S 66<br />

129 26 w 70 w R 13 40 89 E 5 w S 67<br />

159 41 w 50 W R 14 45 38 E 30 E S 68<br />

14 35 w 50 N R 15 25 69 E 5 E s 69<br />

158 37 w 50 w R 16 122 20 w 5 w S 70<br />

161 40 w 70 w R 17 25 74 E 30 E S 71<br />

5 51 w 90 N R 18 150 55 E 7 E S 72<br />

131 35 w 80 w R 19 151 61 E 0 E S 73<br />

34 83 W 60 E R 20 114 22 w 10 E S 74<br />

154 49 W 50 w R 21 161 67 w 50 w S 75<br />

155 25 w 90 E R 22 39 45 w 5 E s 76<br />

158 85 w 90 E R 23 5 62 w 0 E S 77<br />

151 22 w 90 E R 24 135 55 w 0 E S 78<br />

98 15 S 50 w R 25 151 50 w 85 w R 79<br />

109 16 w 60 w R 26 147 37 w 80 w R 80<br />

144 35 w 90 E N 27 156 61 w 90 E R 81<br />

136 57 w 80 w N 28 151 47 w 90 E R 82<br />

144 34 w 80 w N 29 166 60 w 60 w R 83<br />

157 46 w 90 E N 30 163 34 w 90 E N 84<br />

149 19 w 80 w N 31 149 37 w 80 E R 85<br />

66 56 E 5 w 0 32 149 26 w 80 w R 86<br />

66 55 E 5 E 0 33 156 31 w 80 E R 87<br />

60 61 E 0 E 0 34 139 25 w 90 E R 88<br />

56 86 w 0 E 0 35 157 22 w 90 E R 89<br />

76 61 w 0 E 0 36 136 22 w 90 E R 90<br />

123 43 w 10 w 0 37 119 29 w 90 E R 91<br />

72 80 w 30 E 0 38 160 35 w 80 w R 92<br />

67 15 E 50 E 0 39 1 43 w 90 E R 93<br />

40 89 w 5 w 0 40 151 50 w 75 w N 94<br />

42 89 E 5 E 0 41 162 77 w 60 w N 95<br />

20 62 W 10 E 0 42 171 57 W 70 W R 96<br />

78 61 w 5 W 0 43 146 40 w 80 w R 97<br />

176 84 E 0 E 0 44 169 28 w 80 w R 98<br />

74 44 E 5 w 0 45 133 41 w 10 W 0 99<br />

99 74 N 0 E 0 46 160 39 w 20 w 0 100<br />

6 82 W 0 E 0 47 29 76 E 10 W 0 101<br />

42 67 E 0 E 0 48 40 61 E 15 E 0 102<br />

45 78 E 30 w 0 49 28 55 E 5 w S 103<br />

114 40 w 45 w D 50 11 77 E 0 E S 104<br />

44 88 E 10 E 0 51 0 64 E 10 S S 105<br />

51 86 E 5 w 0 52 66 81 E 0 E S 106<br />

42 58 w 5 E 0 53<br />

139 40 w 40 E 0 54<br />

MINIMISATION PERCENT 57 SELECTED PARAMETERS, SIGMA 1 TRE=255 PLUN= 5 LEAST<br />

SQUARE REGRESSION OF THE 60 CLOSEST STRIATIONS<br />

AVERAGE ERROR IN DEGREES 22.33187 ERROR IN R .20E+00<br />

NO STRESS VALUES USED AND PRINCIPAL AXES<br />

SIGMA(l)= .65053 TREND 253.9 (ERR 17.3) PLUNGE 4.8 (ERR 2.51<br />

SIGMA(2)= -.30105 TREND 163.9 (ERR 17.0) PLUNGE .9 (ERR 30.2)<br />

SIGMA(3)= -.34947 TREND 63.1 (ERR 30.9) PLUNGE 85.1 (ERR 4.3)<br />

STRESS RATIO R = .05<br />

GAMME NBRE INDICE DES VALEURS DANS CETTE GAMME<br />

1 .0 .1 11 102 40 52 25 12 33 3 86 63 44 92<br />

2 .1 .2 21 89 35 34 55 80 22 41 97 48 5<br />

3 .2 .3 32 79 24 81 32 62 13 51 58 98 82 17<br />

4 .3 .4 37 26 101 87 7 93<br />

5 .4 .5 45 6 45 19 88 85 21 90 18<br />

6 .5 .6 55 23 47 96 53 57 49 16 83 75 14<br />

7 .6 .7 60 1 10 4 2 39<br />

8 .7 .8 63 91 11 70<br />

9 .8 .9 64 42<br />

10 .9 1.0 66 78 74<br />

11 1.0 1.2 69 72 38 73<br />

12 1.2 1.4 71 15 54<br />

13 1.4 1.6 72 56<br />

14 1.6 1.8 72<br />

15 1.8 2.0 74 20 100<br />

16 2.0 2.2 76 105 77<br />

17 2.2 2.4 78 61 99<br />

18 2.4 2.6 82 76 9 37 103<br />

19 2.6 2.8 85 28 95 27<br />

20 2.8 3.0 95 71 104 43 59 36 69 29 60 30 66<br />

21 3.0 3.2 106 50 68 31 46 64 65 94 8 84 106 67


SCHMIDT NET OF NEAREST EXACT SOLN<br />

•• 2<br />

.2<br />

.. . 22 .<br />

.. • 2<br />

2<br />

.. 2 ....<br />

5<br />

. . 1 1. .<br />

1.<br />

.1 1<br />

1 111<br />

11 1 1<br />

33<br />

33 3<br />

---33<br />

3"'3­<br />

3<br />

1<br />

1<br />

.11 333<br />

.. 1<br />

+1 1<br />

.+++111<br />

.+11 1<br />

. . 11<br />

.. 1<br />

1 1<br />

1 1<br />

11 1<br />

2.<br />

2.<br />

22<br />

2 2 ..<br />

2 .222222<br />

..... 2 22 2 2 .... 2 .<br />

..•.. 2.22 .•.•..


Appendix 2c<br />

Tawallah Range: Basal Tawal1ah Group: NW-SE Compression<br />

72 80 E 80 E N 1 112 34 W 20 W S 12 151 38 E 0 E 0 23<br />

5 25 W 90 N R 2 103 62 E 7 E 0 13 116 75 E 0 E 0 24<br />

22 68 E 80 E N 3 127 89 E 0 E 0 14 128 57 w 0 E 0 25<br />

156 48 W 55 W R 4 72 86 E 5 W 0 15 129 64 E 7 E 0 26<br />

22 85 W 5 E S 5 88 47 E 20 W 0 16 137 73 E 0 E 0 27<br />

36 72 E 0 E S 6 75 84 E 15 W 0 17 72 73 E 7 E 0 28<br />

103 72 S 5 E S 7 101 67 W 5 W 0 18 130 72 E 0 E D 29<br />

128 89 E 0 E S 8 78 82 W 10 W 0 19 129 81 E 0 E D 30<br />

125 89 W 0 E S 9 84 68 W 5 W .D 20 135 82 S 5 E D 31<br />

131 69 W 0 E S 10 125 77 E 0 E D 21 144 25 E 0 E 0 32<br />

15 43 W 0 E S 11 94 37 E 0 E D 22<br />

MINIMISATION PERCENT 45 SELECTED PARAMETERS, SIGMA 1 TRE=300 PLUN=15 LEAST<br />

SQUARE REGRESSION OF THE 14CLOSEST STRIATIONS<br />

AVERAGE ERROR IN DEGREES 14.86136 ERROR IN R .19E+00<br />

NO STRESS VALUES USED AND PRINCIPAL AXES<br />

SIGMA(l)= .39044 TREND 302.9 (ERR 8.8) PLUNGE 9.5 (ERR 23.2)<br />

SIGMA(2)= .21912 TREND 127.5 (ERR 19.9) PLUNGE BO.5 (ERR 23.2)<br />

SIGMA(3)= -.60956 TREND 33.0 (ERR B.9) PLUNGE .7 (ERR 1.9)<br />

STRESS RATIO R = .83<br />

GAMME NBRE INDICE DES VALEURS DANS CETTE GAMME<br />

1 .0 .1 5 20 28 15 19 9<br />

2 .1 .2 8 5 22 11<br />

3 .2 .3 10 17 18<br />

4 .3 .4 13 8 16 13<br />

5 .4 .5 14 31<br />

6 .5 .6 14<br />

7 .6 .7 14<br />

8 .7 .8 14<br />

9 .8 .9 14<br />

10 .9 1.0 14<br />

11 1.0 1.2 16 24 10<br />

12 1.2 1.4 16<br />

13 1.4 1.6 17 3<br />

14 1.6 1.8 22 1 4 25 26 21<br />

15 1.8 2.0 23 2<br />

16 2.0 2.2 25 29 32<br />

17 2.2 2.4 29 30 12 23 27<br />

18 2.4 2.6 30 7<br />

19 2.6 2.B 32 6 14<br />

SCHMIDT NET OF NEAREST EXACT SOLN<br />

1<br />

.1 +<br />

+++ 1 1<br />

+ 1<br />

.. 3<br />

1<br />

3 ..<br />

. 3.<br />

2<br />

2 2<br />

'2<br />

2 2<br />

2<br />

---3<br />

1<br />

3<br />

1.


Tawal1ah Range: Basal Tawa11ah Group: NE-SW Compression(l)<br />

158 33 E 90 E R 1 105 82 W 7 W S 64<br />

121 25 E 80 W R 2 45 78 W 0 E S 65<br />

149 42 W 90 E R 3 95 86 N 5 E S 66<br />

72 80 E 80 E N 4 61 84 W 30 E S 67<br />

5 25 W 90 N R 5 66 69 W 20 E S 68<br />

22 68 E 80 E N 6 48 89 E 5 E S 69<br />

142 83 W 90 E R 7 43 72 E 5 W S 70<br />

122 30 W 90 E R 8 44 66 E 0 E S 71<br />

140 17 W 90 E R 9 74 76 W 0 E S 72<br />

156 48 w 55 W R 10 50 71 E 10 E S 73<br />

138 48 W 70 E R 11 112 34 W 20 W S 74<br />

162 50 W 60 E R 12 0 89 W 0 N D 75<br />

145 55 W 65 E R 13 73 62 E 7 E D 76<br />

147 58 W 60 E R 14 127 89 E 0 E D 77<br />

134 34 W 90 E R 15 42 86 E 5 W D 78<br />

144 72 W 80 E R 16 58 47 E 20 W D 79<br />

144 53 W 90 E R 17 45 84 E 15 W D 80<br />

140 49 W 70 E R 18 71 67 W 5 W D 81<br />

128 22 w 70 E R 19 7 75 E 0 S D 82<br />

122 33 W 80 W R 20 48 82 w 10 W D 83<br />

145 50 W 75 E R 21 54 68 W 5 W D 84<br />

129 56 W 70 E R 22 125 77 E 0 E D 85<br />

141 46 W 90 E R 23 64 37 E 0 E D 86<br />

142 36 W 85 W R 24 20 59 W 10 W D 87<br />

145 38 W 90 E R 25 151 38 E 0 E D 88<br />

134 43 W 80 W R 26 116 75 E 0 E D 89<br />

138 46 W 70 E R 27 148 74 E 5 W D 90<br />

143 55 W 80 W R 28 128 57 W 0 E D 91<br />

125 80 W 90 E R 29 14 76 E 5 W D 92<br />

149 29 W 70 W R 30 129 64 E 7 E D 93<br />

129 32 W 75 W R 31 145 74 E 5 W D 94<br />

22 85 W 5 E S 32 151 67 E 10 W D 95<br />

36 72 E 0 E S 33 22 77 E 0 E D 96<br />

42 63 E 10 E S 34 153 74 E 5 W D 97<br />

74 89 E 20 W S 35 137 73 E 0 E D 98<br />

111 78 E 5 E S 36 146 87 E 0 E D 99<br />

73 89 E 7 W S 37 142 84 E 5 W D 100<br />

105 84 S 40 W S 38 144 83 E 5 E D 101<br />

111 75 W 10 W S 39 139 80 E 5 E D 102<br />

114 89 E 5 W S 40 14 58 E 7 S D 103<br />

103 72 S 5 E S 41 33 72 E 10 W D 104<br />

95 75 S 7 W S 42 42 73 E 7 E D 105<br />

101 86 S 0 E S 43 174 70 E 25 W D 106<br />

91 71 S 15 W S 44 31 41 W 5 E D 107<br />

128 89 E 0 E S 45 14 89 E 10 W D 108<br />

66 88 E 5 W S 46 175 76 E 7 W D 109<br />

55 89 E 0 E S 47 18 74 E 5 W D 110<br />

110 89 E 30 W S 48 19 65 E 5 W D 111<br />

46 74 E 0 E S 49 146 82 E 15 E D 112<br />

75 84 E 5 W S 50 166 77 E 5 W D 113<br />

121 89 W 50 W S 51 175 68 E 0 E D 114<br />

125 89 W 0 E S 52 130 72 E 0 E D 115<br />

48 68 E 5 W S 53 129 81 E 0 E D 116<br />

72 73 E 5 W S 54 105 82 S 5 E D 117<br />

81 72 E 0 E S 55 150 80 E 0 E D 11B<br />

80 63 E 15 W S 56 144 25 E 0 E D 119<br />

73 62 E 7 W S 57 165 89 E 5 E D 120<br />

131 69 W 0 E S 58 153 76 E 0 E D 121<br />

78 45 E 5 W S 59 7 73 E 0 E D 122<br />

74 78 E 15 W S 60 23 77 E 5 E D 123<br />

42 64 E 7 E S 61 8 73 E 5 S D 124<br />

87 76 S 7 E S 62 22 73 E 0 E D 125<br />

15 43 W 0 E S 63 23 75 W 45 W D 126<br />

MINIMISATION PERCENT 75 SELECTED PARAMETERS, SIGMA 1 TRE=215 PLUN= 5 LEAST<br />

SQUARE REGRESSION OF THE 94 CLOSEST STRIATIONS<br />

AVERAGE ERROR IN DEGREES 16.99675 ERROR IN R .75E-01<br />

NO STRESS VALUES USED AND PRINCIPAL AXES STRESS RATIO R = .,00<br />

SIGMA(l)= .66605 TREND 218.6 (ERR 8.41 PLUNGE 6.3 (ERR ?)<br />

SIGMA(2)= -.33210 TREND 356.9 (ERR ?) PLUNGE 81.6 (ERR ?)<br />

SIGMA(3)= -.33395 TREND 128.0 (ERR ?) PLUNGE 5.6 (ERR ?)<br />

GAMME NBRE INDICE DES VALEURS DANS CETTE GAMME<br />

1 .0 .1 26 107 60 13 37 70 125 113 82 14 72 109 20 96 46 122 34 108<br />

61 53 120 110 92 18 65 87 104<br />

2 .1 .2 44 51 15 101 47 71 21 50 100 8 111 11 49 124 123 27 118 75<br />

66<br />

3 .2 .3 67 99 69 36 9 12 35 114 29 54 38 56 48 106 97 103 121 40<br />

31 44 23 68 57 26<br />

4 .3 .4 77 2 25 22 112 73 90 24 43 19 17<br />

5 .4 .5 85 55 42 16 64 102 95 94 3<br />

6 .5 .6 89 59 62 28 67<br />

7 .6 .7 92 126 1 39<br />

8 .7 .8 94 30 7<br />

9 .8 .9 97 41 98 74<br />

10 .9 1.0 98 5<br />

11 1.0 1.2 100 88 52<br />

12 1.2 1.4 102 10 119<br />

13 1.4 1.6 106 116 115 45 91<br />

14 1.6 1.8 110 4 58 93 6<br />

15 1.8 2.0 111 77<br />

16 2.0 2.2 112 85<br />

17 2.2 2.4 112<br />

18 2.4 2.6 114 117 89<br />

19 2.6 2.8 117 76 86 63<br />

20 2.8 3.0 121 32 105 81 80<br />

21 3.0 3.2 126 33 83 84 79 78


SCHMIDT NET OF NEAREST EXACT SOLN<br />

.2.....<br />

2 .. 1<br />

2 1 1.<br />

11.<br />

2 1<br />

.3 1 1<br />

.. 333 1..<br />

33 2<br />

333 2<br />

.. 2 2 33 2 1.<br />

33<br />

333 2<br />

3 2 2<br />

33 3 2<br />

3 2 2.22 2<br />

322 ... 2 2 2<br />

2 2.22 2<br />

2 22 2*22<br />

222 33<br />

2<br />

2 2 33 22<br />

.. 2 332<br />

2 2 32 2<br />

2 1 3 3<br />

2 33<br />

2 33<br />

1 1 33<br />

11 2 33 ­<br />

11 1 2 ---.2<br />

11 -3.<br />

11+ 1 2<br />

.. +++1111 2 2<br />

11+11<br />

.. 112 2 2<br />

11<br />

1<br />

Tawal1ah Range: Basal Tawal1ah Group: NE-SW Compression(2)<br />

72 80 E 80 E N 1 125 77 E 0 E D 10<br />

5 25 W 90 N R 2 151 38 E 0 E D 11<br />

22 68 E 80 E N 3 116 75 E 0 E D 12<br />

156 48 W 55 W R 4 128 57 W 0 E D 13<br />

36 72 E 0 E S 5 129 64 E 7 E D 14<br />

103 72 S 5 E S 6 137 73 E 0 E D 15<br />

131 69 W 0 E S 7 130 72 E 0 E D 16<br />

112 34 W 20 W S 8 129 81 E 0 E D 17<br />

127 89 E 0 E D 9 144 25 E 0 E D 18<br />

MINIMISATION PERCENT 80 SELECTED PARAMETERS, SIGMA 1 TRE=200 PLUN= 5<br />

LEAST SQUARE REGRESSION OF THE 14CLOSEST STRIATIONS<br />

AVERAGE ERROR IN DEGREES 14.52969 ERROR IN R .15E+00<br />

NO STRESS VALUES USED AND PRINCIPAL AXES<br />

SIGMA(1)= .36538 TREND 192.9 (ERR 20.11 PLUNGE 29.5 (ERR 46.21<br />

SIGMA(2)= .26924 TREND 44.4 (ERR 34.4) PLUNGE 56.5 (ERR 47.0)<br />

SIGMA(J) = -.63462 TREND 291.4 (ERR 5.6) PLUNGE 14.6 (ERR 11.2)<br />

STRESS RATIO R = .90<br />

GAMME NBRE INDICE DES VALEURS DANS CETTE GAMME<br />

1 .0 .1 7 13 12 15 16 10 9 17<br />

2 .1 .2 11 3 5 a 14<br />

3 .2 .3 11<br />

4 .3 .4 13 18 11<br />

5 .4 .5 13<br />

6 .5 .6 14 6<br />

7 .6 .7 14<br />

8 .7 .8 14<br />

9 .8 .9 14<br />

10 .9 1.0 14<br />

11 1.0 1.2 14<br />

12 1.2 1.4 14<br />

13 1.4 1.6 14<br />

14 1.6 1.8 15 1<br />

15 1.8 2.0 15<br />

16 2.0 2.2 15<br />

17 2.2 2.4 15<br />

18 2.4 2.6 15<br />

19 2.6 2.8 15<br />

20 2.8 3.0 17 4 7<br />

21 3.0 3.2 18 2


E<br />

E<br />

z E<br />

zz<br />

+<br />

+++<br />

"[+<br />


Tawallah Range: Wununmantyala S<strong>and</strong>stone/Masterton S<strong>and</strong>stone: NW-SE Compression<br />

61 84 E 80 W N 1 91 71 E 3 E D 19 12 84 W 5 W S 37<br />

158 75 E 80 E R 2 84 81 E 10 W D 20 130 80 W 10 E S 38<br />

39 60 E 80 E R 3 75 85 E 7 E D 21 127 75 W 5 E S 39<br />

90 72 S 55 E R 4 3 10 W 0 N D 22 135 22 W 10 W S 40<br />

43 69 E 70 W R 5 77 67 E 7 E D 23 95 72 S 5 E S 41<br />

50 53 E 80 E N 6 82 79 W 7 W D 24 178 74 E 0 E S 42<br />

43 55 W 50 E N 7 85 55 W 20 W D 25 15 65 W 65 W R 43<br />

40 61 E 70 E R 8 124 66 E 5 E D 26 104 67 E 5 E D 44<br />

25 78 E 89 E N 9 80 77 E 5 E D 27 115 35 W 0 E D 45<br />

176 77 E 89 N N 10 90 81 N 10 E D 28 75 89 E 5 W D 46<br />

20 65 E 45 E N 11 134 77 E 5 W S 29 69 80 W 0 E D 47<br />

146 80 E 60 W R 12 152 74 W 5 W S 30 65 76 E 5 W D 48<br />

165 89 E 89 E N 13 145 76 W 17 E S 31 116 43 S 5 W D 49<br />

175 18 E 89 E R 14 0 67 E 45 N S 32 81 62 W 0 E D 50<br />

58 87 W 15 E D 15 5 83 W 3 S S 33 15 79 E 50 E D 51<br />

114 75 W 45 W D 16 178 89 w 0 E S 34 133 71 W 0 E S 52<br />

86 89 W 5 W D 17 177 89 E 10 N S 35 4 74 E 0 E S 53<br />

80 86 W 11 W D 18 144 89 W 7 E S 36 167 89 E 10 E S 54<br />

19 89 W 10 W S 55<br />

MINIMISATION PERCENT 67 SELECTED PARAMETERS, SIGMA 1 TRE=120 PLUN= 8<br />

LEAST SQUARE REGRESSION OF THE 36 CLOSEST STRIATIONS<br />

AVERAGE ERROR IN DEGREES 19.56421 ERROR IN R .42E+00<br />

NO STRESS VALUES USED AND PRINCIPAL AXES STRESS RATIO R = .37<br />

SIGMA(1)= .54223 TREND 123.2 (ERR 12.1) PLUNGE 1.0 (ERR 2.5)<br />

SIGMA(2)= -.08445 TREND 14.2 (ERR 9.9) PLUNGE 78.2 (ERR 31. 2)<br />

SIGMA(3)= -.45777 TREND 219.4 (ERR 12.6) PLUNGE 11.7 (ERR 31.2)<br />

GAMME NBRE INDICE DES VALEURS DANS CETTE GAMME<br />

1 .0 .1 11 17 19 36 55 21 54 27 18 24 34 46<br />

2 .1 .2 17 30 38 31 29 44 40<br />

3 .2 .3 20 20 33 23<br />

4 .3 .4 27 49 35 47 28 52 39 50<br />

5 .4 .5 31 37 42 25 15<br />

6 .5 .6 34 8 48 43<br />

7 .6 .7 36 53 3<br />

8 .7 .8 36<br />

9 .8 .9 36<br />

10 .9 1.0 36<br />

11 1.0 1.2 38 14 2<br />

12 1.2 1.4 43 51 16 1 4 32<br />

13 1.4 1.6 46 22 7 5<br />

14 1.6 1.8 47 13<br />

15 1.8 2.0 50 10 12 45<br />

16 2.0 2.2 50<br />

17 2.2 2.4 52 6 11<br />

18 2.4 2.6 53 41<br />

19 2.6 2.8 54 9<br />

20 2.8 3.0 55 26<br />

SCHMIDT NET OF NEAREST EXACT SOLN<br />

. 111<br />

.. 11<br />

111<br />

1<br />

1 1<br />

1 1<br />

2<br />

2<br />

2 .2<br />

2...22 2<br />

2 2.22<br />

222<br />

'22<br />

2<br />

11<br />

11+<br />

3 1+++<br />

3 1 .+<br />

33 1 ..<br />

.. 3 33- 3 3<br />

.33 --- 3 3<br />

.. 3-3 3<br />

3<br />

... 3<br />

3<br />

3<br />

1<br />

1


Tawa11ah Range: wununmantya1a S<strong>and</strong>stone/Masterton S<strong>and</strong>stone: NE-SW Compression<br />

61 84 E 80 W N 1 24 84 W 45 W S 62<br />

136 41 W 89 E R 2 5 83 W 3 S S 63<br />

158 75 E 80 E R 3 178 89 W 0 E S 64<br />

116 56 E 80 E R 4 177 89 E 10 N S 65<br />

39 60 E 80 E R 5 51 73 E 5 E S 66<br />

118 74 W 65 E R 6 49 64 E 10 W S 67<br />

90 72 S 55 E R 7 144 89 W 7 E S 68<br />

43 69 E 70 W R 8 44 73 E 5 E S 69<br />

50 53 E 80 E N 9 81 74 W 5 E S 70<br />

43 55 W 50 E N 10 64 87 W 3 E S 71<br />

40 61 E 70 E R 11 12 84 W 5 W S 72<br />

25 78 E 89 E N 12 31 84 W 0 E S 73<br />

176 77 E 89 N N 13 130 80 W 10 E S 74<br />

20 65 E 45 E N 14 27 86 E 5 W S 75<br />

136 27 W 89 E R 15 80 89 E 0 E S 76<br />

146 80 E 60 W R 16 80 89 E 0 E S 77<br />

154 23 E 89 E R 17 40 90 W 7 W S 78<br />

120 21 E 89 E R 18 62 83 E 5 E S 79<br />

135 22 W 65 E R 19 42 70 W 0 E S 80<br />

124 25 W 89 E R 20 127 75 W 5 E S 81<br />

136 52 E 80 W R 21 65 81 E 22 W S 82<br />

165 89 E 89 E N 22 66 85 W 5 W s 83<br />

131 44 W 89 E R 23 52 76 E 10 E S 84<br />

175 18 E 89 E R 24 55 68 E 5 E s 85<br />

20 77 W 15 W D 25 27 68 E 11 W S 86<br />

28 87 W 15 E D 26 55 65 W 0 E S 87<br />

114 75 W 45 W D 27 135 22 W 10 W s 88<br />

56 89 W 5 W D 28 95 72 S 5 E S 89<br />

50 86 W 11 W D 29 30 78 E 10 W S 90<br />

170 88 W 0 E D 30 60 89 W 10 W S 91<br />

61 71 E 3 E D 31 178 74 E 0 E S 92<br />

164 89 E 10 E D 32 81 82 E 5 W S 93<br />

54 81 E 10 W D 33 45 26 E 5 E s 94<br />

150 76 E 0 E D 34 15 65 W 65 W R 95<br />

177 76 E 5 S D 35 74 67 E 5 E D 96<br />

167 81 W 5 E D 36 14 89 E 0 E D 97<br />

152 79 E 0 E D 37 6 89 E 10 N D 98<br />

35 85 E 7 E D 38 15 64 E 5 E D 99<br />

3 10 W 0 N D 39 115 35 W 0 E D 100<br />

149 89 W 8 W D 40 35 89 E 5 W D 101<br />

145 89 W 0 E D 41 27 61 E 30 E D 102<br />

47 67 E 7 E D 42 39 80 W 0 E D 103<br />

141 68 W 0 E D 43 35 76 E 5 W D 104<br />

52 79 W 7 W D 44 131 82 W 0 E D 105<br />

35 55 W 20 W D 45 173 64 W 5 E D 106<br />

160 89 E 15 E D 46 86 43 S 5 W D 107<br />

i24 66 E 5 E D 47 51 62 W 0 E D 108<br />

50 77 E 5 E D 48 21 64 E 5 E D 109<br />

133 74 E 5 E D 49 15 79 E 50 E D 110<br />

60 81 W 10 E D 50 171 87 W 0 E D 111<br />

165 67 W 7 E D 51 25 67 E 10 E D 112<br />

132 76 E 0 E D 52 42 85 W 5 W S 113<br />

127 81 E 0 E D 53 27 64 E 45 W S 114<br />

95 78 S 10 W S 54 28 76 W 0 E S 115<br />

134 77 E 5 W S 55 133 71 W 0 E S 116<br />

30 89 W 5 W S 56 45 57 W 5 E S 117<br />

49 64 E 19 E S 57 51 73 W 7 E S 118<br />

152 74 W 5 W S 58 68 71 E 0 E S 119<br />

145 76 W 17 E S 59 4 74 E 0 E S 120<br />

38 49 E 7 E S 60 167 89 E 10 E S 121<br />

0 67 E 45 N S 61 19 89 W 10 W S 122<br />

MINIMISATION PERCENT 55 SELECTED PARAMETERS, SIGMA 1 TRE=200 PLUN= B LEAST<br />

SQUARE REGRESSION OF THE 67 CLOSEST STRIATIONS<br />

AVERAGE ERROR IN DEGREES 17.56022 ERROR IN R .12E+00<br />

NO STRESS VALUES USED AND PRINCIPAL AXES<br />

SIGMA(l)= .66192 TREND 204.2 (ERR 2.9) PLUNGE 5.1 (ERR 4.6)<br />

SIGMA(2)= -.32384 TREND 105.6 (ERR 23.4) PLUNGE 59.0 (ERR 50.0)<br />

SIGMA(3)= -.33808 TREND 297.2 (ERR 7.1) PLUNGE 30.5 (ERR 50.2)<br />

STRESS RATIO R = .01<br />

GAMME NBRE INDICE DES VALEURS DANS CETTE GAMME<br />

1 .0 .1 15 113 80 78 90 102 117 83 97 56 .91 19 86 32 118 99<br />

2 .1 .2 38 37 67 30 35 36 111 109 73 82 71 62 75 87 18 20 115 70<br />

46 112 34 76 77 41<br />

3 .2 .3 48 98 106 4 6 51 93 53 69 25 79<br />

4 .3 .4 55 40 60 66 23 94 15 85<br />

5 .4 .5 61 84 119 2 52 114 21<br />

6 .5 .6 63 54 49<br />

7 .6 .7 65 57 105<br />

8 .7 .8 67 43 17<br />

9 .8 .9 67<br />

10 .9 1.0 70 110 16 89<br />

11 1.0 1.2 74 8 95 24 47<br />

12 1.2 1.4 74<br />

13 1.4 1.6 79 7 22 5 100 3<br />

14 1.6 1.8 83 13 11 9 88<br />

15 1.8 2.0 84 1<br />

16 2.0 2.2 84<br />

17 2.2 2.4 91 81 12 116 107 14 10 27<br />

18 2.4 2.6 94 61 96 74<br />

19 2.6 2.8 99 58 26 31 42 45<br />

20 2.8 3.0 107 48 55 38 65 59 39 50 122<br />

21 3.0 3.2 122 108 29 44 64 121 68 103 104 63 92 101 33 120 28 72


SCHMIDT NET OF NEAREST EXACT SOLN<br />

2<br />

1 1 Ill.<br />

1 1...<br />

1 11..<br />

2 11 1 ..<br />

1 1<br />

2 1..<br />

2 1<br />

•. 333<br />

3 33<br />

3--- 2<br />

-333 2<br />

3 2<br />

2 333<br />

333<br />

2<br />

3 22<br />

2 2 22 22*2 22 2 2 2<br />

2 22<br />

2 3<br />

33 22<br />

2<br />

2 3 3 2<br />

23<br />

2 2 2 3<br />

22 3 3<br />

2 2 3333.<br />

1 2<br />

.. 11<br />

111 +111 1<br />

.. 1 +++1<br />

.. +111<br />

2.


Appendix 3<br />

3a Fluid inclusion microthermometry data<br />

3b Fluid inclusion decrepitate microprobe analyses


Sample No. Fault type 8reccia type Incl. pop. UV ratio Te Tm-H20 Th NaCI eq.wt"1o Enthaply Chloride<br />

93-802-2 Tawallah Fault Fracture 10 -6.2 227.2 9.5 17385 1.8<br />

93-802-2 Tawallah Fault Fracture 5 -2.6 176.2 4.2 12883 0.75<br />

93-802-2 Tawallah Fault Fracture 5 -41.2 -6.3 175.8 9.6 13211 1.82<br />

93-802-2 Tawallah Fault Fracture 5 -8.2 338.8 11.9<br />

93-802-2 Tawallah Fault Fracture 10 252.7<br />

93-802-2 Tawallah Fault Fracture 10 -40.6 -2.1 226.4 3.4 17366 0.6<br />

93-802-2 Tawallah Fault Fracture 5 -36.8 234.2<br />

93-802-2 Tawallah Fault Fracture 5 -31.6 -7.6 144.2 11.2 10904 2.16<br />

93-802-2 Tawallah Fault Fracture 5 -37.5 -7.6 190.1 11.2 14383 2.16<br />

93-802-2 Tawallah Fault Fracture 5 -33.1 -7.6 151.7 11.2 11285 2.16<br />

93-802-2 Tawallah Fault Fracture 10 253.2<br />

93-802-2 Tawallah Fault Fracture 10 230.1<br />

93-802-3 Tawallah Fault Fracture 10 343.8<br />

93-802-3 Tawallah Fault Fracture 10 229.8<br />

93-802-3 Tawallah Fault Fracture 1 5 168.3<br />

93-802-3 Tawallah Fault Fracture 5 215.4<br />

93-802-3 Tawallah Fault Fracture 10 -5.4 323.1 8.4<br />

93-802-3 Tawallah Fault Fracture 10 -42.5 -5.3 321.1 8.2<br />

93-802-3 Tawallah Fault Fracture 5 234.4<br />

93-802-3 Tawallah Fault Fracture 5 195.4<br />

93-802-3 Tawallah Fault Fracture 10 194.2 -<br />

93-802-3 Tawallah Fault Fracture 5 -7.2 177.4 10.7 13411 2.05<br />

93-802-3 Tawallah Fault Fracture 10 -33.7 -3.7 321.4 I 5.9 .....<br />

93-802-3 Tawallah Fault Fracture 5 -38.6 -4.2 277.7 6.7 21642 1.23<br />

93-802-3 TawaJlah Fault Fracture 5 179.3<br />

93-802-3 Tawallah Fault Fracture 5 -4.3 239.2 6.8 21642 1.25<br />

93-802-3 Tawallah Fault Fracture 5 232.6<br />

93-802-4 Tawallah Fault Fracture 5 -38.2 -5.1 185.4 8 14025 1.49<br />

93-802-4 Tawallah Fault Fracture 10 244.2<br />

93-802-4 Tawallah Fault Fracture 5 -31.3 -5.6 _179.9 8.7 13632 1.63<br />

93-802-4 Tawallah Fault Fracture 10 185.8<br />

93-802-4 Tawallah Fault Fracture 5 180.2<br />

93-802-4 Tawallah Fault Fracture 5 -22.6 187.8<br />

93·802·4 Tawallah Fault Fracture 5 -25.2 -5 199.7 7.8 15216 1.45<br />

93-B02-4 Tawallah Fault Fracture U 10 -42.6 -11.2 15.2<br />

93-802-4 Tawallah Fault Fracture 5 -22.3 -9.6 157.3 13.5 11843 2.67<br />

93-802-4 Tawallah Fault Fracture 30 -28.3 -5.1 243.6 8 18918 1.49<br />

93-802-4 Tawallah Fault Fracture 50 -27.2 -5.3 249.2 8.2 19344 1.53<br />

93-802-5 Tawallah Fault Fracture 5 -38 -7.3 226.7 10.9 16778 2.09<br />

93-802-5 Tawallah Fault Fracture 5 -41.9 -5.2 232.4 8.1 17659 1.51<br />

93-802-5 Tawallah Fault Fracture 5 -37.6 182.9<br />

93-802-5 Tawallah Fault Fracture 5 -31.8 -2.8 176.6 4.5 13276 0.81<br />

93-802-5 Tawallah Fault Fracture 5 -29.8 235.8<br />

..._.­<br />

93-802-5 Tawallah Fault Fracture 5 223.7<br />

93-802-5 Tawallah Fault Fracture 5 250<br />

93-803-1 Tawallah Fault Fracture 5 -42.3 -14.9 145.2 18.5 10779 3.88<br />

93-803-1 Tawallah Fault Fracture 5 -47.3 -14.7 132.8 18.4 9856 3.86<br />

93-803-1 Tawallah Fault Fracture 11 5 113<br />

93-803-1 Tawallah Fault Fracture 11 20 -28.7<br />

93-803-1 Tawallah Fault Fracture 11 5 -35.2 -2.7 138.6 4.4 10559 0.79<br />

93-803-1 Tawallah Fault Fracture I1 30 -37.3 -9.6 127.6 13.5 9570 2.67<br />

93-803-1 Tawallah Fault Fracture 1I 5 184.9<br />

93-803-1 Tawallah Fault Fracture 11 5 -12.2 179.9 16.2 13477 3.31<br />

93-803-1 Tawallah Fault Fracture 11 10 124.2<br />

93-803-1 TawaJlah Fault Fracture 11 10 133.9<br />

93-803-2 Tawallah Fault Fraclure n 5 -2.5 150.3 4.1 11329 0.73<br />

93-803-2 Tawallah Fault Fracture 11 5 145<br />

Appendix 3a Fluid inclusion microthermometry data (2)


Sample Ne. Fault type 8reccia typE Inc!. pop UV ratio Te Tm-H2C Th NaGI eq.wt° .Enthapl Chlorid<br />

93-814-3 NW-sin Open 5 145.9<br />

93-814-3 NW-sin Open 5 111.8<br />

93-814-3 NW-sin Open 5 -36.4 -1.9 123.6 3.1 8861 0.55<br />

93-814-3 NW-sin Open 5 -52.6 -1.3 2.1<br />

93-815-1 NNW-dex Fracture 5 231.3<br />

93-815-1 NNW-dex Fracture 10 -32.8 -9.2 109.3 13.1 8241 2.58<br />

93-815-1 NNW-dex Fracture 5 172.3<br />

93-815-1 NNW-dex Fracture 10 -38.9 -18.2 161.1 21.1 11847 4.58<br />

93-815-1 NNW-dex Fracture 40 186.7<br />

93-815-1 NNW-dex Fracture 30 -10.1 192.3 14.1 14542 2.81<br />

93-815-1 NNW-dex Fracture 30 -37.3 -16.2 132.6 19.6 9829 4.17<br />

93-815-1 NNW-dex Fracture 30 -42.5 -13.1 156.7 17 11576 3.5<br />

93-815-1 NNW-dex Fracture 10 142.7<br />

93-815-1 NNW-dex Fracture 10 202.6<br />

93-815-2 NNW-dex Fracture 10 127.7<br />

93-815-2 NNW-dex Fracture 10 -14.6 122.7 18.3 8109 3.83<br />

93-815-2 NNW-dex Fracture [ 50 92.3<br />

93-815-2 NNW-dex Fracture 11 5 -31 -14.5 167.2 18.2 12484 3.81<br />

93-815-2 NNW-dex Fracture 11 20 -28.3 -15.2 137.1 18.8 10230 3.96<br />

93-815-2 NNW-dex Fracture 20 -29.7 163.4 .•<br />

93-815-2 NNW-dex Fracture 20 133.7<br />

93-815-2 NNW-dex Fracture 20 125.6 - -­<br />

93-815-2 NNW-dex Fracture 30 -36.9 -15.3 182.3 18.9 13621 3.99<br />

93-815-2 NNW-dex<br />

- 93-815-2 NNW-dex<br />

93-815-2 NNV\I-dex<br />

93-815-2 . NNW-dex<br />

Fracture<br />

Fracture<br />

Fracture<br />

Fracture<br />

5<br />

5<br />

30<br />

5<br />

-36.2 -15.6 270.6<br />

165.6<br />

123.3<br />

131.2<br />

19.1 20518 4.04<br />

-­<br />

93-815-2 NNW-dex Fracture 10 -11.6 134.7 15.6 10100 3.16<br />

93-815-3 NNW-dex Fracture 5 -30.2 -1.4 295.9 2.3 22518 4.39<br />

93-815-3 NNW-dex Fracture 5 -28.1 -0.7 147.2 1.2 10922 3.6<br />

93-815-3 NNW-dex Fracture 5 128.2<br />

93-815-3 NNW-dex Fracture 5 186.5<br />

93-815-3 NNW-dex Fracture 5 205.3<br />

93-815-3 NNW-dex Fracture 5 167.4<br />

93-815-3 NNW-dex Fracture 10 167.2 .­<br />

93-815-3 NNW-dex Fracture 5 -25.6 -5.1 151.2 8 11305 1.49<br />

93-815-3 NNW-dex Fracture 10 220.7<br />

93-815-3 NNW-dex Fracture 5 231.4<br />

93-816-1 NNW-dex Fracture 5 -39.6 129.6<br />

93-816-1 NNW-dex Fracture 5 113.5<br />

93-816-1 NNW-dex Fracture 5 166.8<br />

"-_.'"­-­<br />

93-816-1 NNW-dex Fracture 20 -48.6 -5.8 114.1 8.9 8640 1.67<br />

93-816-1 NNW-dex Fracture 30 -38.1 -8.1 119.2 11.8 9000 2.29<br />

93-816-1 NNW-dex Fracture 5 -35.6 -6.2 108.5 9.5 8053 1.8<br />

93-816-2 NNW-dex Fracture 5 175.9<br />

93-816-2 NNW-dex Fracture 5 177.1<br />

93-816-2 NNW-dex Fracture 5 127.3<br />

93-816-2 NNW-dex Fracture 10 154.9<br />

93-816-2 NNW-dex Fracture 5 143.6<br />

93-816-2 NNW-dex Fracture 60 -25.6 -12.3 114.5 16.2 8600 3.31<br />

93-816-2 NNW-dex Fracture JI 30 117.6 -­<br />

93-816-2 NNW-dex Fracture 11 10 101.8<br />

93-816-2 NNW-dex Fracture 11 10 -31.6 -10.1 88.1 14.1<br />

93-816-2 NNW-dex Fracture 11 20 -32.6 0 128.6 0 9641 0<br />

93-816-2 NNW·dex Fracture 11 5 -20.7 -5.4 131.5 8.4 9778 1.57<br />

93-816-2 NNW-dex Fracture 11 5 -24.9 -13.2 107.1 17.1 7925 3.53<br />

93-816-2 NNW-dex Fracture 11 10 -28.6 -12.6 120.3 16.5 8946 3.38<br />

Appendix 3a Fluid inclusion microthermometry data (7)


Appendix 4<br />

Appendix 4a Structural geology <strong>of</strong> the study region<br />

Appendix 4b Structural geology <strong>of</strong> the Batten Range<br />

Appendix 4e Structural geology <strong>of</strong> the Scrutton Range<br />

Appendix 4d Structural geology <strong>of</strong> the Tawallah Range - Region 1<br />

Appendix 4e Structural geology <strong>of</strong> the Tawallah Range - Region 2<br />

Appendix 4f Structural geology <strong>of</strong> the Tawallah Range - Region 3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!