08.01.2013 Aufrufe

Nanotechnologie in Lebensmitteln - DLR Online: Deutsche ...

Nanotechnologie in Lebensmitteln - DLR Online: Deutsche ...

Nanotechnologie in Lebensmitteln - DLR Online: Deutsche ...

MEHR ANZEIGEN
WENIGER ANZEIGEN

Sie wollen auch ein ePaper? Erhöhen Sie die Reichweite Ihrer Titel.

YUMPU macht aus Druck-PDFs automatisch weboptimierte ePaper, die Google liebt.

48<br />

Orig<strong>in</strong>alarbeiten «<br />

multaneous determ<strong>in</strong>ation of Zn, Cu, Pb and Cd <strong>in</strong> w<strong>in</strong>e<br />

samples, (ii) flame atomic absorption spectrometry (FAAS)<br />

for <strong>in</strong>dividual determ<strong>in</strong>ation of Zn and Cu content, and<br />

(iii) Zeeman graphite furnace atomic absorption spectrometry<br />

(ZGFAAS) for <strong>in</strong>dividual determ<strong>in</strong>ation of Pb and Cd<br />

content. ZGFAAS method was selected for determ<strong>in</strong>ation<br />

of Pb and Cd due to its sensitivity, accurate background<br />

correction (Zeeman-effect background correction), and because<br />

this method provides detection limit low enough to<br />

measure the usually low content of Pb and Cd <strong>in</strong> w<strong>in</strong>es.<br />

Simultaneous determ<strong>in</strong>ation of Zn, Cu, Pb and Cd content<br />

<strong>in</strong> w<strong>in</strong>es were carried out by flow-through stripp<strong>in</strong>g chronopotentiometry<br />

(FTSCP) method. FTSCP is a two-step<br />

analytical method. In the first step, the analyte species are<br />

collected at a work<strong>in</strong>g electrode, which is set to a suitable<br />

deposition potential or at a suitable deposition current. After<br />

a short quiescence period, <strong>in</strong> the second step the deposit<br />

was stripped by a constant current, whereas the change of<br />

the potential of the work<strong>in</strong>g electrode dur<strong>in</strong>g the dissolution<br />

is registered. The potential-time dependence gives the<br />

duration of the dissolution (chronopotentiometric stripp<strong>in</strong>g<br />

time) which is accord<strong>in</strong>g to the Faraday’s lows of electrolysis<br />

proportional to the analyte concentration. The<br />

orig<strong>in</strong>al S-shape of potential-time dependence is converted<br />

(transformed) to a peak-like signal conta<strong>in</strong><strong>in</strong>g the stripp<strong>in</strong>g<br />

peaks of the deposited species. The compact flow system<br />

operates fully automatic; it conta<strong>in</strong>s computer controlled<br />

electromagnetic valves for switch<strong>in</strong>g either the carrier electrolyte,<br />

sample or standard solutions to the flow. The electrolyte,<br />

solutions or samples are driven through the system<br />

and cell by a peristaltic pump. The hearth of the system is<br />

the compact flow-through electrochemical cell with porous<br />

flow-through work<strong>in</strong>g electrode.<br />

Electrochemical FTSCP measurements were performed on<br />

a fully automated computer controlled electrochemical analyser<br />

EcaFlow Model 150 GLP (Istran Ltd., Bratislava,<br />

Slovakia) equipment with two solenoid <strong>in</strong>ert valves, a peristaltic<br />

pump, 1 mm <strong>in</strong>ner diameter PTFE tub<strong>in</strong>g and microprocessor<br />

controlled potentiostat/galvanostat. The compact<br />

three-electrode flow-through electrochemical cell of<br />

type 104 (Istran Ltd., Bratislava, Slovakia), equipment<br />

with Pt auxiliary, Ag/AgCl reference and vitreous carbon<br />

macro porous work<strong>in</strong>g electrode (E104L, Istran Ltd.) was<br />

used.<br />

The determ<strong>in</strong>ation of Zn and Cu by FAAS was carried out<br />

on Perk<strong>in</strong>-Elmer (PE) Model 1100 spectrophotometer, and<br />

the experimental equipment used for Pb and Cd determ<strong>in</strong>ation<br />

by ZGFAAS was Zeeman atomic absorption spectrophotometer,<br />

Perk<strong>in</strong>-Elmer (PE) Model 4100ZL with<br />

Zeeman graphite furnace, pyrolytic graphite tubes (HGA)<br />

with L’vov platforms and autosampler PE Model AS-71.<br />

Instrumental conditions<br />

Operation parameters for FTSCP were as follows: The<br />

deposition of metal ions from w<strong>in</strong>e samples on carbon porous<br />

work<strong>in</strong>g electrode is performed by apply<strong>in</strong>g a suitable<br />

deposition potential, i.e. <strong>in</strong> the potentiostatic mode at –<br />

1800 mV. The deposit was stripped galvanostatically by<br />

apply<strong>in</strong>g a stripp<strong>in</strong>g current of 200 μA, whereas stripp<strong>in</strong>g<br />

chronopotentiogram is recorded and evaluated. Others parameters<br />

were: start<strong>in</strong>g potential I, –1800 mV; start<strong>in</strong>g potential<br />

II, –1400 mV; end potential, 100 mV; quiescence<br />

time I 5 s; quiescence time II 30 s; sample volume, 1 ml;<br />

flow rate, 6 ml/m<strong>in</strong>.<br />

The <strong>in</strong>strumental conditions for ZGFAAS measurements<br />

were: resonance wavelength, 283.3 nm for Pb, and<br />

228.8 nm for determ<strong>in</strong>ation of Cd; slit with, 0.7 nm; signal<br />

process<strong>in</strong>g parameter, peak-area mode; <strong>in</strong>jection volume,<br />

20 μl. The temperature and gas programmes were as follows:<br />

For determ<strong>in</strong>ation of Pb: step 1: temperature 110 °C,<br />

1 s ramp time, 50 s hold time, argon flow 250 ml/m<strong>in</strong>; step<br />

2 temperature 500 °C, 5 s ramp time, 30 s hold time, argon<br />

flow 250 ml/m<strong>in</strong>; step 3: temperature 1900 °C, 0 s ramp<br />

time, 5 s hold time, argon flow stop; step 4: temperature<br />

2400 °C, 1 s ramp time, 2 s hold time, argon flow 250 ml/<br />

m<strong>in</strong>. For determ<strong>in</strong>ation of Cd the conditions were: step 1:<br />

temperature 110 °C, 1 s ramp time, 50 s hold time, argon<br />

flow 250 ml/m<strong>in</strong>; step 2: temperature 400 °C, 30 s ramp<br />

time, 30 s hold time, argon flow 250 ml/m<strong>in</strong>; step 3: temperature<br />

700 °C, 10 s ramp time, 20 s hold time, argon flow<br />

250 ml/m<strong>in</strong>; step 4: temperature 1400 °C, 0 s ramp time, 5 s<br />

hold time, argon flow stop; step 5: temperature 2400 °C, 1 s<br />

ramp time, 2 s hold time, argon flow 250 ml/m<strong>in</strong>.<br />

The <strong>in</strong>strumental conditions for flame atomic absorption<br />

spectrometry (FAAS) were: resonance wavelength,<br />

324.7 nm for Cu and 213.8 nm for Zn; slit width, 0.7 nm;<br />

signal process<strong>in</strong>g parameter, peak-area mode; flame type,<br />

air/acetylene flame.<br />

Reagents<br />

Analytical-reagent grade chemicals were used <strong>in</strong> all experiments.<br />

Al electrolyte and solutions were prepared with ultrapure<br />

(double-distilled deionised) water obta<strong>in</strong>ed from a<br />

Millipore Milli-Q purification system (specific resistance of<br />

ultrapure water was greater or equal to 18 MΩ cm).<br />

The carrier electrolyte for FTSCP measurements was solution<br />

0.01 mol dm -3 CH 3 COOH + 0.01 mol dm -3<br />

CH 3 COONa + 0.2 mol dm -3 NaCl. The electrolyte for<br />

preparation (dilution) of w<strong>in</strong>e samples and preparation of<br />

standard solutions of heavy metals was solution 0.1 mol<br />

dm -3 HCl. The standard solution of heavy metals for additions<br />

to the w<strong>in</strong>e sample, concentration of: 400 μg/l Zn;<br />

10 μg/l Cd; 20 μg/l Pb and 40 μg/l Cu, was prepared from<br />

certified reference materials (Istran Ltd.) by simple dilut<strong>in</strong>g<br />

with 0.1 mol dm -3 HCl.<br />

For the ZGFAAS and FAAS measurements a stock solutions<br />

of 1000 mg/l of Pb, Cd, Cu and Zn, (Merck) were<br />

used as the reference standard. Work<strong>in</strong>g standards of different<br />

concentration range (depend<strong>in</strong>g on the element and<br />

the method of determ<strong>in</strong>ation) were prepared from the stock<br />

(reference) standard by dilution with 0.15 % nitric acid solution<br />

(Suprapur, Merck).<br />

» November/Dezember 2008 | <strong>DLR</strong>

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!