03.05.2024 Aufrufe

05 / 2024

Die Fachzeitschrift ORTHOPÄDIE TECHNIK ist die maßgebliche Publikation für das OT-Handwerk und ein wichtiger Kompass für die gesamte Hilfsmittelbranche.

Die Fachzeitschrift ORTHOPÄDIE TECHNIK ist die maßgebliche Publikation für das OT-Handwerk und ein wichtiger Kompass für die gesamte Hilfsmittelbranche.

MEHR ANZEIGEN
WENIGER ANZEIGEN

Erfolgreiche ePaper selbst erstellen

Machen Sie aus Ihren PDF Publikationen ein blätterbares Flipbook mit unserer einzigartigen Google optimierten e-Paper Software.

Prothetik<br />

Literatur:<br />

[1] Spoden M, Nimptsch U, Mansky T. Amputation rates of the<br />

lower limb by amputation level – observational study using<br />

German national hospital discharge data from 20<strong>05</strong> to 2015.<br />

BMC Health Services Research, 2019; 19 (1): 8<br />

[2] Baumgartner R. Unterschenkelamputation. Operative<br />

Orthopädie und Traumatologie, 2011; 23 (4): 280–288<br />

[3] Souza JM, Wade SM, Harrington CJ, Potter BK. Functional<br />

Limb Restoration Through Amputation: Minimizing Pain and<br />

Optimizing Function With the Use of Advanced Amputation<br />

Techniques. Annals of Surgery, 2021; 273 (3): e108–e113<br />

[4] Burgess EM, Zettl JH. Amputations below the knee. Artificial<br />

Limbs, 1969; 13 (1): 1–12<br />

[5] Stahel PF, Oberholzer A, Morgan SJ, Heyde CE. Concepts<br />

of transtibial amputation: Burgess technique versus modified<br />

Brückner procedure. ANZ Journal of Surgery, 2006; 76 (10):<br />

942–946<br />

[6] Persson BM. Sagittal incision for below-knee amputation in<br />

ischaemic gangrene. Journal of Bone & Joint Surgery, 1974; 56<br />

(1): 110–114<br />

[7] Alter AH, Moshein J, Elconin KB, Cohen MJ. Below-knee<br />

amputation using the sagittal technique: a comparison with the<br />

coronal amputation. Clinical Orthopaedics, 1978; 131: 195–201<br />

[8] Tisi PV, Than MM. Type of incision for below knee amputation.<br />

Cochrane Database of Systematic Reviews, 2014; 4:<br />

CD003749<br />

[9] Bowker J. Minor and Major Lower-Limb Amputations and<br />

Disarticulations in Patients with Diabetes Mellitus. Levin and<br />

O‘Neal‘s The Diabetic Foot, 2008; 403–428<br />

[10] Morris CD, Potter BK, Athanasian EA, Lewis VO. Extremity<br />

amputations: principles, techniques, and recent advances. Instructional<br />

course lectures, 2015; 64: 1<strong>05</strong>–117<br />

[11] Schrock Jr RD, Zettl JH, Burgess EM, Romano RL. A preliminary<br />

report of basic studies from Prosthetics Research Study.<br />

Bulletin of prosthetics research, 1968; 10: 90–1<strong>05</strong><br />

[12] Pino AE, Taghva S, Chapman C, Bowker JH. Lower-limb<br />

amputations in patients with diabetes mellitus, Orthopedics,<br />

2011; 34 (12): e885–e892<br />

[13] Greitemann B, Brückner L, Schäfer M, Baumgartner R. Amputation<br />

und Prothesenversorgung, Indikationsstellung – operative<br />

Technik – Nachbehandlung – Funktionstraining. Stuttgart:<br />

Thieme, 2016<br />

[14] Kragh JF et al. Suturing of lacerations of skeletal muscle.<br />

Journal of Bone & Joint Surgery, 20<strong>05</strong>; 87 (9): 1303–13<strong>05</strong><br />

[15] Ponce BA et al. A biomechanical analysis of controllable<br />

intraoperative variables affecting the strength of rotator cuff repairs<br />

at the suture-tendon interface. American Journal of Sports<br />

Medicine, 2013; 41 (10): 2256–2261<br />

[16] Pascale B, Potter B. Residual Limb Complications and Management<br />

Strategies. Current Physical Medicine and Rehabilitation<br />

Reports, 2014; 2: 241–249<br />

[17] Tintle SM et al. Reoperation after combat-related major<br />

lower extremity amputations. Journal of Orthopaedic Trauma,<br />

2014; 28 (4): 232–237<br />

[18] Gottschalk F. Transfemoral amputation. Biomechanics and<br />

surgery. Clinical Orthopaedics and Related Research, 1999; 361:<br />

15–22<br />

[19] Geertzen JHB et al. Myodesis or myoplasty in trans-femoral<br />

amputations. What is the best option? An explorative study.<br />

Medical Hypotheses, 2019; 124: 7–12<br />

[20] Warren R. Early Rehabilitation of the Elderly Lower Extremity<br />

Amputee. Surgical Clinics of North America, 1968; 48 (4):<br />

807–816<br />

[21] Tuthill JC, Azim E. Proprioception. Current Biology, 2018;<br />

28 (5): R194–R203<br />

[22] Proske U, Gandevia SC. The proprioceptive senses: their roles<br />

in signaling body shape, body position and movement, and<br />

muscle force. Physiological Reviews, 2012; 92 (4): 1651–1697<br />

[23] Edin BB, Johansson N. Skin strain patterns provide kinaesthetic<br />

information to the human central nervous system.<br />

Journal of Physiology, 1995; 487 (1): 243–251<br />

[24] Day J et al. Muscle spindles in human tibialis anterior encode<br />

muscle fascicle length changes. Journal of Neurophysiology,<br />

2017; 117 (4): 1489–1498<br />

[25] Vanicek N, Strike S, McNaughton L, Polman R. Postural<br />

responses to dynamic perturbations in amputee fallers versus<br />

nonfallers: a comparative study with able-bodied subjects. Archives<br />

of Physical Medicine and Rehabilitation, 2009; 90 (6):<br />

1018–1025<br />

[26] Beurskens R, Wilken JM, Dingwell JB. Dynamic Stability of<br />

Individuals with Transtibial Amputation Walking in Destabilizing<br />

Environments. Journal of Biomechanics, 2014; 47 (7):<br />

1675–1681<br />

[27] Metzger AJ et al. Feedforward control strategies of subjects<br />

with transradial amputation in planar reaching. Journal of Rehabilitation<br />

Research and Development, 2010; 47 (3): 201–211<br />

[28] Shell CE et al. Lower-Limb Amputees Adjust Quiet Stance<br />

in Response to Manipulations of Plantar Sensation. Frontiers in<br />

Neuroscience, 2021; 15: 611926<br />

[29] Petrini FM et al. Enhancing functional abilities and cognitive<br />

integration of the lower limb prosthesis. Science Translational<br />

Medicine, 2019; 512 (11): eaav8939<br />

[30] Clites TR et al. The Ewing Amputation: The First Human<br />

Implementation of the Agonist-Antagonist Myoneural Interface.<br />

Plastic and Reconstructive Surgery—Global Open, 2018; 6<br />

(11): e1997<br />

[31] Sullivan C et al. Clinical, Functional, and Sensorial Outcomes<br />

of the Agonist-Antagonist Myoneural Interface (AMI)<br />

Ewing Amputation. Plastic and Reconstructive Surgery—Global<br />

Open, 2023; 11 (10S): 124<br />

[32] Chiao RB et al. Patient Reported Outcome Measures<br />

(PROMs) Amongst Lower Extremity Agonist–Antagonist Myoneural<br />

Interface (AMI) Amputees. Applied Sciences, 2023; 13<br />

(18): 1<strong>05</strong>08<br />

[33] Berger L et al. The Ewing Amputation: Operative technique<br />

and perioperative care. Orthoplastic Surgery, 2023; 13: 1–9<br />

[34] Gardetto A et al. Reduction of Phantom Limb Pain and<br />

Improved Proprioception through a TSR-Based Surgical Technique:<br />

A Case Series of Four Patients with Lower Limb Amputation.<br />

Journal of Clinical Medicine, 2021; 10 (17): 4029<br />

[35] Dumanian GA et al. Targeted Muscle Reinnervation Treats<br />

Neuroma and Phantom Pain in Major Limb Amputees: A Randomized<br />

Clinical Trial. Annals of Surgery, 2019; 270 (2): 238–<br />

246<br />

[36] Valerio IL et al. Preemptive Treatment of Phantom and Residual<br />

Limb Pain with Targeted Muscle Reinnervation at the<br />

Time of Major Limb Amputation. Journal of the American College<br />

of Surgeons, 2019; 228 (3): 217–226<br />

[37] Woo SL et al. Regenerative Peripheral Nerve Interfaces for<br />

the Treatment of Postamputation Neuroma Pain: A Pilot Study.<br />

Plastic and Reconstructive Surgery—Global Open, 2016; 4 (12):<br />

e1038<br />

[38] Mauch JT, Kao DS, Friedly JL, Liu Y. Targeted muscle reinnervation<br />

and regenerative peripheral nerve interfaces for pain<br />

prophylaxis and treatment: A systematic review. Journal of Plastic,<br />

Reconstructive & Aesthetic Surgery, 2023; 75 (3): 948–959<br />

[39] de Lange JWD et al. Prevention is better than cure: Surgical<br />

methods for neuropathic pain prevention following amputation<br />

– A systematic review. Journal of Plastic, Reconstructive &<br />

Aesthetic Surgery, 2022; 75 (3): 948–959<br />

[40] Sanders JE, Fatone S. Residual limb volume change: systematic<br />

review of measurement and management. Journal of Rehabilitation<br />

Research and Development, 2011; 48 (8): 949–986<br />

[41] G. Vanghetti, Vitalizzazione delle membra artificiali: teoria<br />

e casistica dei motori plastici (chirurgia cinematica per protesi<br />

cinematica); con 137 illustrazioni. U. Hoepli, 1916<br />

[42] Sauerbruch F. Chirurgische Vorarbeit für „Die willkürlich<br />

bewegbare künstliche Hand“. Medizinische Klinik, 1915; 11:<br />

1125–1126<br />

[43] Srinivasan SS et al. Neural interfacing architecture enables<br />

enhanced motor control and residual limb functionality postamputation.<br />

Proceedings of the National Academy of Sciences of the<br />

United States of America, 2021; 118 (9) : e2019555118<br />

88<br />

ORTHOPÄDIE TECHNIK <strong>05</strong>/24

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!