20.12.2012 Aufrufe

Modellierung gekoppelter Effekte in Mikrosystemen auf ...

Modellierung gekoppelter Effekte in Mikrosystemen auf ...

Modellierung gekoppelter Effekte in Mikrosystemen auf ...

MEHR ANZEIGEN
WENIGER ANZEIGEN

Erfolgreiche ePaper selbst erstellen

Machen Sie aus Ihren PDF Publikationen ein blätterbares Flipbook mit unserer einzigartigen Google optimierten e-Paper Software.

iv<br />

systems with a noticeably reduced number of degrees of freedom compared to cont<strong>in</strong>uousfield<br />

models.<br />

Based on detailed <strong>in</strong>vestigations of various coupled-field effects on cont<strong>in</strong>uous-field level<br />

two contrary approaches are compared: system model<strong>in</strong>g by lumped variables (compact<br />

models, lumped elements) and system model<strong>in</strong>g by distributed variables, <strong>in</strong> particular the<br />

F<strong>in</strong>ite Network method. System model<strong>in</strong>g by physically-based, analytical compact models<br />

and lumped variables turns out to be a powerful method for fast and efficient design<br />

studies. However, the derivation of the compact models needs a lot of effort and expertise<br />

by the designer, which means that the procedure can not be automated. Additionally,<br />

physically-based, analytical compact model<strong>in</strong>g is mostly limited to device geometries<br />

and/or problems which are not too complex. Therefore, <strong>in</strong> this work both approaches –<br />

compact model<strong>in</strong>g and F<strong>in</strong>ite Network method – are comb<strong>in</strong>ed to form a mixed-level<br />

model. This approach is very flexible, powerful, and especially suited to derive system<br />

models for complex problems, which – by the nature of this modular approach – can be<br />

tailored accord<strong>in</strong>g to the needs, practicalities and the required accuracy.<br />

The potential of the method has been demonstrated successfully for the simulation of<br />

viscous damp<strong>in</strong>g effects <strong>in</strong> dynamically operated microstructures. This phenomenon can<br />

be exactly described on cont<strong>in</strong>uous-field level by fluid-structure <strong>in</strong>teraction, which becomes<br />

prohibitive for most of the practically relevant devices due to the complexity of<br />

the govern<strong>in</strong>g equations and the often very complex device geometries (3D, perforations).<br />

Based on the mixed-level method, it was possible to derive a reduced-order model<br />

where the complexity is drastically reduced but which nevertheless is physically based,<br />

scales with all important design parameters, and still provides a high accuracy. Thus, for<br />

the first time, this damp<strong>in</strong>g model allows for a predicitive simulation of damp<strong>in</strong>g effects<br />

<strong>in</strong> microsystems even for complex device geometries with an acceptable computational<br />

effort.

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!