14.12.2012 Aufrufe

Universität Osnabrück, Graduiertenkolleg Mikrostruktur oxidischer

Universität Osnabrück, Graduiertenkolleg Mikrostruktur oxidischer

Universität Osnabrück, Graduiertenkolleg Mikrostruktur oxidischer

MEHR ANZEIGEN
WENIGER ANZEIGEN

Sie wollen auch ein ePaper? Erhöhen Sie die Reichweite Ihrer Titel.

YUMPU macht aus Druck-PDFs automatisch weboptimierte ePaper, die Google liebt.

GRADUIERTENKOLLEG MIKROSTRUKTUR OXIDISCHER KRISTALLE 13<br />

Table II. Calculated and measured frequencies (cm -1 ) of four A1-TO modes in LiTaO3<br />

calc. LiTaO3 exp. LiTaO3<br />

present [24] [25] [26] [21]<br />

TO1 194 206 203 206 201<br />

TO2 242 253 252 253 253<br />

TO3 360 356 356 356 356<br />

TO4 599 600 597 597 597<br />

One can see that the TO3 and TO4 vibration modes are harmonic, whereas the TO1 and TO2 exhibit a certain<br />

degree of anharmonicity. Most significantly, the calculated TO3 frequency in LiTaO3 is higher than those in<br />

LiNbO3. Since both modes are largely harmonic, one can infer from the corresponding atomic displacement<br />

patterns, that a substantial contribution of Li movement in the TO3 mode of LiTaO3 - while absent in LiNbO3 - ,<br />

leads to the observed feature of their Raman spectra.<br />

The potential technological applications of LiNbO3 can be considerably extended by its doping with various<br />

impurity ions. A theoretical insight of the ground-state properties of the doped LiNbO3 can be gained through<br />

supercell calculations which are quite demanding because of the low symmetry of the studied materials. Moreover,<br />

the influence of the impurities on its optical properties can be estimated from the analysis of the impurity<br />

states localized in the optical band gap. The spin-polarized results obtained for a 40 atom supercell spanned by<br />

[-111], [111] and [111] with Fe on Nb site were previously reported [27]. The total density of states calculated<br />

for undoped LiNbO3 and the partial density of states corresponding to Fe 3d energy levels are shown in Figure<br />

I.<br />

a) b)<br />

Fig. I. a) Total density of states for undoped LiNbO3; b) Partial density of states for 3d energy levels of a Fe<br />

impurity<br />

Apart from the hybridization of the impurity 3d states with those of Nb and O over an energy range of 7 eV, one<br />

can observe that several groups of the Fe states are localized in the optical band gap. This situation is different<br />

from the Fe doped KNbO3 (see, e.g., [28]), where a small band gap preclude any analysis of its optical properties.<br />

However, a more realistic calculations must be based on the experimental observation that an impurity in an<br />

insulator matrix is charge compensated. Assuming a self-compensated pair CrNb-CrLi, such calculations for Cr<br />

impurities in a 2x2x2 supercell are now in progress.<br />

Literatur<br />

[1]. E. Krätzig, O. F. Schirmer: In Photorefractive Materials and Their Applications I, ed. by. P. Günter, J.-P.<br />

Huignard (Springer, Berlin, Heidelberg 1988) pp. 131.<br />

[2]. M. E. Lines, Phys. Rev. 177, 797 (1969).<br />

[3]. M. E. Lines, Phys. Rev. 177, 812 (1969).<br />

[4]. H. J. Bakker, S. Hunsche, and H. Kurz, Phys. Rev. B 48, 9331 (1993).

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!