02.11.2012 Aufrufe

BUNSENMAGAZIN - Deutsche Bunsengesellschaft für ...

BUNSENMAGAZIN - Deutsche Bunsengesellschaft für ...

BUNSENMAGAZIN - Deutsche Bunsengesellschaft für ...

MEHR ANZEIGEN
WENIGER ANZEIGEN

Erfolgreiche ePaper selbst erstellen

Machen Sie aus Ihren PDF Publikationen ein blätterbares Flipbook mit unserer einzigartigen Google optimierten e-Paper Software.

UNTERRICHT<br />

Gunther Brunklaus and Hans-Wolfgang Spiess<br />

1. INTRODUCTION<br />

Dr. Gunther Brunklaus<br />

MPI <strong>für</strong> Polymerforschung<br />

Ackermannweg 10, D-55128 Mainz, Germany<br />

Phone: +49 6131 379 240<br />

FAX: +49 6131 379 100<br />

E-Mail: brunklaus@mpip-mainz.mpg.de<br />

62<br />

SOLID STATE NMR OF<br />

SUPRAMOLECULAR SYSTEMS<br />

In the fi eld of materials science, the precise knowledge of structure<br />

and dynamics of macromolecules and supramolecular<br />

systems in principle allows for a rational design of well-defi ned<br />

architectures with tailored properties, such as effi cient proton<br />

exchange membranes 1 (that are used in fuel cells), photonic<br />

sensors and devices 2 or gene delivery systems. 3 The physical<br />

properties of (mainly organic) polymers and supramolecular<br />

aggregates, for instance, can be substantially improved by controlling<br />

their microstructure and processing conditions. Indeed,<br />

the local arrangement of the respective building blocks within<br />

the material relative to each other and their mobility on different<br />

length- and time scales critically determine their specifi c<br />

functions. 4 In fact, in supramolecular chemistry, 5 the same key<br />

elements of organization 6 are used as in nature, namely, hydrogen<br />

bonds, p-stacking, shape control, and surface effects<br />

(cf. Fig. 1). At present, manifold complementary characterization<br />

techniques such as scattering of light, 7 X-rays 8 and neutrons<br />

9 , various forms of microscopy 10 as well as mechanical 11<br />

and dielectric 12 relaxation are available.<br />

Figure 1: Key elements of supramolecular assembly. 6<br />

In addition, Nuclear Magnetic Resonance (NMR) spectroscopy<br />

is a remarkably versatile and powerful tool that has found widespread<br />

applications in materials science. 13 Since NMR allows<br />

for element-specifi c observation of different nuclei, it provides<br />

an outstanding selectivity for local environments. 14 Moreover,<br />

Prof. Dr. Hans-Wolfgang Spiess<br />

MPI <strong>für</strong> Polymerforschung<br />

Ackermannweg 10, D-55128 Mainz, Germany<br />

Phone: +49 6131 379 120<br />

FAX: +49 6131 379 320<br />

E-Mail: spiess@mpip-mainz.mpg.de<br />

BUNSEN-MAGAZIN · 11. JAHRGANG · 2/2009<br />

dynamic features can be studied over many decades of characteristic<br />

times, ranging from picoseconds to minutes, 15 and<br />

length scales from interatomic distances in the 100 pm range<br />

up to a meter or so in NMR imaging. 16 This wealth of information<br />

accessible by modern NMR spectroscopy is based on the<br />

fact that a large variety of interactions of nuclear spins with<br />

their local surroundings can be selectively exploited. 17 For a basic<br />

description of the NMR experiment and a comprehensive<br />

introduction to the interactions that possibly govern NMR spectra,<br />

we refer to text books 15,17,18 and a previous article within<br />

this series. 19 Indeed, the rich information content of solid-state<br />

NMR spectra renders them rather diffi cult to handle, in particular<br />

if several sources of line-broadening like dipole-dipole<br />

couplings and quadrupolar interactions 20 have to be taken into<br />

account. Recent developments in NMR methodology, however,<br />

provide possibilities to selectively suppress and/or (re-)introduce<br />

nuclear spin interactions where the different sources of<br />

information can be separated and correlated using multidimensional<br />

NMR techniques (see below).<br />

Some advanced NMR techniques are introduced in Section<br />

2, while Section 3 describes selected applications of studying<br />

structure and dynamics of supramolecular structures based<br />

on the key elements presented in Fig. 1, mostly taken from our<br />

own laboratory.<br />

2. NMR METHODOLOGY<br />

In the following section, we describe selected versatile techniques<br />

available in modern high-resolution solid-state NMR<br />

spectroscopy. Most of them are based on either homo- or heteronuclear<br />

dipolar couplings and facilitate studies of self-organisation<br />

in the solid-state.<br />

2.1. ANISOTROPIC SPIN INTERACTIONS<br />

Information that can be extracted from (high-resolution) solidstate<br />

NMR spectra is encoded via spin interactions such as<br />

the chemical shift, the quadrupolar interaction, homo- and heteronuclear<br />

dipolar interactions, as well as J-couplings. In principle,<br />

the relevant spin interactions are anisotropic and can

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!