06.08.2013 Views

A4-format til udskrift. - Aarhus Universitet

A4-format til udskrift. - Aarhus Universitet

A4-format til udskrift. - Aarhus Universitet

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

174 V. MATRICER<br />

med alle diagonal indgange λi = 0 er invertibel.<br />

Den inverse er<br />

Λ −1 ⎛<br />

λ<br />

⎜<br />

= ⎜<br />

⎝<br />

−1<br />

1<br />

0<br />

0<br />

. ..<br />

⎞<br />

...<br />

⎟<br />

0 ⎟<br />

⎠<br />

. 0 λ −1<br />

n<br />

2.12. Inverter produkt ☞ [LA] 4 Inverse matricer<br />

Sætning<br />

Lad A,B vœre invertible n × n-matricer. Så er AB invertibel og der gœlder<br />

"Pas på rœkkefølgen."<br />

Bevis<br />

(AB) −1 = B −1 A −1<br />

(AB)(B −1 A −1 ) = A(BB −1 )A −1<br />

= AInA −1<br />

= AA −1<br />

= In<br />

2.13. Test invers matrix ☞ [LA] 4 Inverse matricer<br />

Test<br />

Lad A,B være invertible n × n-matricer. Så gælder (AB) −1 = A −1 B −1 .<br />

Løsning<br />

Den rigtige formel er<br />

(AB) −1 = B −1 A −1<br />

Afkryds:<br />

ja nej<br />

<br />

2.14. Matrix potens ☞ [LA] 2 Matricer<br />

Definition<br />

For en kvadratisk n × n-matrix A defineres potens, k = 0,1,2,...,<br />

Hvis A er invertibel, så er<br />

For enhedsmatricen er<br />

A 0 = In, A k = A k−1 A<br />

A −k = (A −1 ) k = (A k ) −1<br />

In k = In<br />

2.15. Pas på matrix potens ☞ [LA] 2 Matricer<br />

Bemærkning<br />

Potensregneregler gælder<br />

A l A m = A l+m<br />

Men normalt er<br />

For eksempel<br />

(A l ) m = A lm<br />

A m B m = (AB) m<br />

A 2 B 2 = (AA)(BB) = (AB)(AB) = (AB) 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!