30.07.2013 Views

Om uendelighedsbegrebet - Aarhus Universitet

Om uendelighedsbegrebet - Aarhus Universitet

Om uendelighedsbegrebet - Aarhus Universitet

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

P˚a engelsk kaldes en funktion/afbildning for ”function”/”mapping” eller<br />

bare ”map”.<br />

N˚ar man taler om en funktion, s˚a er dens domæne X og dens codomæne<br />

Y indbygget i funktionen i kraft af Definition 2.2, der jo specificerer b˚ade X<br />

og Y . Ofte underforst˚as X og Y , s˚a man i stedet for at tale om funktionen<br />

(X, Y, f) blot taler om funktionen f. En reel funktion f : X → kan<br />

selvfølgelig anskues som en funktion, der tager komplekse værdier, idet ⊆<br />

, men vi skelner alts˚a mellem den reelle og den komplekse funktion, fordi<br />

de har forskellige codomæner.<br />

Oftest bruges ordet funktion om en afbildning af en mængde X ind de<br />

reelle eller komplekse tal, medens ordet afbildning bruges for et vilk˚arligt<br />

codomæne.<br />

Delmængden f af X × Y er f = {(x, f(x)) ∈ X × Y | x ∈ X}, s˚a en<br />

funktion f : X → Y kan defineres ved, at vi til ethvert x ∈ X angiver<br />

værdien f(x) ∈ Y . Ofte møder man vendingen ”funktionen f defineret ved<br />

f(x) = . . ., x ∈ X”, hvor . . . er et eller andet udtryk i x, der giver et<br />

element i Y . Med vendingen menes funktionen f = {(x, y) ∈ X × Y | y =<br />

f(x)} (principielt dog triplen (X, Y, f)). F.eks. mener man med ”funktionen<br />

f defineret ved f(x) = x 3 , x ∈ ”, funktionen {(x, y) ∈ 2 | y = x 3 }.<br />

Undertiden skriver man funktionen f som x ↦→ f(x), x ∈ X. F.eks. betyder<br />

x ↦→ x 3 , x ∈ , funktionen f defineret ved f(x) = x 3 , x ∈ .<br />

I visse sammenhænge bruges der andre ord for afbildninger. F.eks. n˚ar<br />

man, givet en mængde X, betragter en følge {x1, x2, . . .} i X. Følgen tilordner<br />

til ethvert n ∈ elementet xn i X, s˚a der er dermed faktisk tale<br />

om funktionen f : → X givet ved f(n) = xn, n ∈ . En følge er alts˚a<br />

en funktion med de naturlige tal som definitionsomr˚ade. For en afbildning<br />

mellem vektorrum benytter man ofte glosen ”operator” i stedet for glosen<br />

”funktion”.<br />

En ofte mødt definition p˚a funktion er, at en funktion f : X → Y er en<br />

regel eller forskrift, der til ethvert element i X tilordner netop ét element i<br />

Y . I indeværende fremstilling er vi imidlertid utilfredse med ordene ”regel”<br />

og ”forskrift”, idet de er vage og ikke defineret mængdeteoretisk. Begrebet<br />

funktion som defineret i Definition 2.2 giver mening til disse vage termer.<br />

Men vi definerer alts˚a funktionsbegrebet, før vi benytter disse ord for en<br />

funktion. Vi kan og vil imidlertid benytte dem fra nu af.<br />

Lad f1 : X1 → Y1 og f2 : X2 → Y2 være to funktioner. Vi bemærker, at<br />

f1 = f2, hvis og kun hvis X1 = X2, Y1 = Y2 og f1(x) = f2(x) for ethvert<br />

x ∈ X1 = X2.<br />

Definition 2.3. Lad f : X → Y være en afbildning af X ind i Y , og lad X ′<br />

være en delmængde af X. Ved restriktionen af funktionen f til X ′ forst˚as<br />

funktionen (X ′ × Y ) ∩ f = {(x ′ , f(x ′ )) ∈ f | x ′ ∈ X ′ } med definitionsomr˚ade<br />

X ′ og codomæne Y . Den betegnes f |X ′.<br />

Restriktionen f |X ′ er principielt en anden funktion end f, idet de to<br />

12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!