Matematisk Model for Mavesækkens Tømning - Danmarks Tekniske ...

Matematisk Model for Mavesækkens Tømning - Danmarks Tekniske ... Matematisk Model for Mavesækkens Tømning - Danmarks Tekniske ...

26.07.2013 Views

102 MATLAB kode til simulering af forsøgsscenarie 19 par.ke = 0.138; % Insulin elimination rate [1/min] 20 par.tauD = 40.0; % CHO absorption time constant [min] 21 par.tauS = 55.0; % Insulin absorption time constant [min] 22 par.AG = 0.8; % CHO utilization [−] 23 24 SI1 = 51.2e−4; % Transport insulin sensitivity [L/mU] 25 SI2 = 8.2e−4; % Disposal insulin sensitivity [L/mU] 26 SI3 = 520e−4; % EGP insulin sensitivity [L/mU] 27 28 par.kb1 = par.ka1*SI1; % Activation rate [(L/mU)/min] 29 par.kb2 = par.ka2*SI2; % Activation rate [(L/mU)/min] 30 par.kb3 = par.ka3*SI3; % Activation rate [(L/mU)/min] 31 32 par.VI = 0.12*BodyMass; % Insulin distribution volume [L] 33 par.VG = 0.16*BodyMass; % Glucose distribution volume [L] 34 par.EGP0 = 0.0161*BodyMass; % Liver glucose production at zero insulin 35 % [mmol/min] 36 par.F01 = 0.0097*BodyMass; % Insulin independent glucose consumption 37 % [mmol/min] 38 39 par.MwG = 180.1577; % Molecular weight of glucose [g/mol] 40 41 % Parameters from Cobelli 42 norm = 1/6.00; % [mU/pmol] 43 44 par.gamma = 0.5; % Transfer rate constant between portal vein 45 % and liver [1/min] 46 par.K = (2.3*norm*par.MwG*0.1)*(BodyMass/par.VG); % [mU/mmol] 47 par.alpha = 0.05; % [1/min] 48 par.beta = 0.11*norm*0.1*par.MwG*BodyMass; % [(mU/min)/(mmol/L)] 49 50 HEb = 0.6; % [−] 51 m5 = 0.0304*(1/norm)*(1/BodyMass); % [min/mU] 52 m6 = 0.6471; % [−] 53 54 par.Sb = ((m6−HEb)/m5)*0.36; % [mU/min] 55 % For BW = 70 kg is par.Sb = ((m6−HEb)/m5)*0.36 and I(0) = 5.7677 56 % For BW = 60 kg is par.Sb = ((m6−HEb)/m5)*0.12 and I(0) = 5.7253 57 par.Gss = 4.9656; % [mmol/L] for BW = 70 kg Listing D.2: HovorkaModel2pancreas.m 1 function xdot = HovorkaModel2pancreas(t,x,u,ug,d,par) 2 %HOVORKAMODEL The Hovorka model for the glucoregulatory system 3 % 4 % The function implements the Hovorka model for the gluco−regulatory system 5 % including absorption of food and iv administration of short−acting 6 % insulin together with Cobelli model for endogeneous insulin production. 7 % 8 % The model is in the form 9 % 10 % xdot(t) = (dx/dt)(t) = f(t,x(t),u,ug,d,par) 11 % 12 % with

13 % 14 % time : t [min] 103 15 % States: x = [D1; D2; Q1; Q2; I; x1; x2; x3; Ipo; Y] 16 % D1: Glucose compartment 1 in stomach/gut [mmol] 17 % D2: Glucose compartment 2 in stomach/gut [mmol] 18 % Q1: Plasma glucose (measurable) [mmol] 19 % Q2: Adipose glucose (non−measurable) [mmol] 20 % I : Plasma insulin [mU/L] 21 % x1: Insulin action on distribution/transport Q1−>Q2 22 % x2: Insulin action utilization in cells 23 % x3: Insulin action on EGP. 24 % Ipo:Insulin in portal vein [pmol/kg] 25 % Y : [mU/min] 26 % MVs : u = intraveneous insulin injection [mU/min] 27 % : ug = intraveneous glucose injection [g/min] 28 % DVs : d = CHO consumption [g/min] 29 % : Gss = Basal plasma glucose concentration [mmol/L] 30 % Parameters: par = {k12; ka1; ka2; ke; tauD; tauS; AG; kb1; kb2; VI; VG; 31 % EGP0; F01; MwG; gamma; K; alpha; beta; Sb; Gss} 32 % (this is a struct). 33 % 34 % The parameters may be constructed using the function 35 % HovorkaParametersPancreas. 36 % 37 % Syntax: xdot = HovorkaModel2pancreas(t,x,u,ug,d,par) 38 39 % ======================================================================== 40 % Modified 23.07.09 SW 41 % ======================================================================== 42 %% Extract variables 43 % Extract states 44 D1 = x(1,1); % Glucose compartment 1 in stomach/gut [mmol] 45 D2 = x(2,1); % Glucose compartment 2 in stomach/gut [mmol] 46 Q1 = x(3,1); % Plasma glucose (measurable) [mmol] 47 Q2 = x(4,1); % Adipose glucose (non−measurable) [mmol] 48 I = x(5,1); % Plasma insulin concentration [mU/L] 49 x1 = x(6,1); % Insulin action on distribution/transport [mU] 50 x2 = x(7,1); % Insulin action on disposal in adipose tissue [mU] 51 x3 = x(8,1); % Insulin action on EGP 52 53 Ipo = x(9,1); % Insulin mass in liver [mU] 54 Y = x(10,1); % Transfer of insulin [mU/min] 55 56 % Extract parameters 57 k12 = par.k12; % Transfer rate [1/min] 58 ka1 = par.ka1; % Deactivation rate [1/min] 59 ka2 = par.ka2; % Deactivation rate [1/min] 60 ka3 = par.ka3; % Deactivation rate [1/min] 61 ke = par.ke; % Insulin elimination rate [1/min] 62 tauD = par.tauD; % CHO absorption time constant [min] 63 tauS = par.tauS; % Insulin absorption time constant [min] 64 AG = par.AG; % CHO utilization [−] 65 kb1 = par.kb1; % Activation rate [(L/mU)/min] 66 kb2 = par.kb2; % Activation rate [(L/mU)/min] 67 kb3 = par.kb3; % Activation rate [(L/mU)/min]

13 %<br />

14 % time : t [min]<br />

103<br />

15 % States: x = [D1; D2; Q1; Q2; I; x1; x2; x3; Ipo; Y]<br />

16 % D1: Glucose compartment 1 in stomach/gut [mmol]<br />

17 % D2: Glucose compartment 2 in stomach/gut [mmol]<br />

18 % Q1: Plasma glucose (measurable) [mmol]<br />

19 % Q2: Adipose glucose (non−measurable) [mmol]<br />

20 % I : Plasma insulin [mU/L]<br />

21 % x1: Insulin action on distribution/transport Q1−>Q2<br />

22 % x2: Insulin action utilization in cells<br />

23 % x3: Insulin action on EGP.<br />

24 % Ipo:Insulin in portal vein [pmol/kg]<br />

25 % Y : [mU/min]<br />

26 % MVs : u = intraveneous insulin injection [mU/min]<br />

27 % : ug = intraveneous glucose injection [g/min]<br />

28 % DVs : d = CHO consumption [g/min]<br />

29 % : Gss = Basal plasma glucose concentration [mmol/L]<br />

30 % Parameters: par = {k12; ka1; ka2; ke; tauD; tauS; AG; kb1; kb2; VI; VG;<br />

31 % EGP0; F01; MwG; gamma; K; alpha; beta; Sb; Gss}<br />

32 % (this is a struct).<br />

33 %<br />

34 % The parameters may be constructed using the function<br />

35 % HovorkaParametersPancreas.<br />

36 %<br />

37 % Syntax: xdot = Hovorka<strong>Model</strong>2pancreas(t,x,u,ug,d,par)<br />

38<br />

39 % ========================================================================<br />

40 % Modified 23.07.09 SW<br />

41 % ========================================================================<br />

42 %% Extract variables<br />

43 % Extract states<br />

44 D1 = x(1,1); % Glucose compartment 1 in stomach/gut [mmol]<br />

45 D2 = x(2,1); % Glucose compartment 2 in stomach/gut [mmol]<br />

46 Q1 = x(3,1); % Plasma glucose (measurable) [mmol]<br />

47 Q2 = x(4,1); % Adipose glucose (non−measurable) [mmol]<br />

48 I = x(5,1); % Plasma insulin concentration [mU/L]<br />

49 x1 = x(6,1); % Insulin action on distribution/transport [mU]<br />

50 x2 = x(7,1); % Insulin action on disposal in adipose tissue [mU]<br />

51 x3 = x(8,1); % Insulin action on EGP<br />

52<br />

53 Ipo = x(9,1); % Insulin mass in liver [mU]<br />

54 Y = x(10,1); % Transfer of insulin [mU/min]<br />

55<br />

56 % Extract parameters<br />

57 k12 = par.k12; % Transfer rate [1/min]<br />

58 ka1 = par.ka1; % Deactivation rate [1/min]<br />

59 ka2 = par.ka2; % Deactivation rate [1/min]<br />

60 ka3 = par.ka3; % Deactivation rate [1/min]<br />

61 ke = par.ke; % Insulin elimination rate [1/min]<br />

62 tauD = par.tauD; % CHO absorption time constant [min]<br />

63 tauS = par.tauS; % Insulin absorption time constant [min]<br />

64 AG = par.AG; % CHO utilization [−]<br />

65 kb1 = par.kb1; % Activation rate [(L/mU)/min]<br />

66 kb2 = par.kb2; % Activation rate [(L/mU)/min]<br />

67 kb3 = par.kb3; % Activation rate [(L/mU)/min]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!