12.02.2013 Views

Neogene lake systems of Central and South-Eastern Europe ...

Neogene lake systems of Central and South-Eastern Europe ...

Neogene lake systems of Central and South-Eastern Europe ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Abstract<br />

<strong>Neogene</strong> <strong>lake</strong> <strong>systems</strong> <strong>of</strong> <strong>Central</strong> <strong>and</strong> <strong>South</strong>-<strong>Eastern</strong> <strong>Europe</strong>:<br />

Faunal diversity, gradients <strong>and</strong> interrelations<br />

Mathias Harzhauser ⁎ , Oleg M<strong>and</strong>ic<br />

Naturhistorisches Museum Wien, Geologisch-Paläontologische Abteilung, Burgring 7, A-1010 Wien, Austria<br />

Received 19 September 2007; received in revised form 10 December 2007; accepted 18 December 2007<br />

The gastropod γ-diversity <strong>of</strong> 12 <strong>Neogene</strong> <strong>lake</strong> <strong>systems</strong> is evaluated. In total, 1184 gastropod taxa from 119 localities are recorded deriving<br />

from the Early Miocene Rzehakia Lake System, the Early to Middle Miocene Dinarid Lake System, Lake Skopje, the Paratethyan Sarmatian <strong>lake</strong>s<br />

<strong>and</strong> the <strong>South</strong> German <strong>lake</strong>s, the Late Miocene Lake Pannon, the Pliocene <strong>lake</strong>s Dacia, Transylvania, Slavonia, Kosovo <strong>and</strong> Šoštanj as well as<br />

the Holocene Lake Petea. Each <strong>lake</strong> system is characterised according to its faunistic inventory <strong>and</strong> endemism. According to their gastropod<br />

faunas the <strong>lake</strong>s may be divided into pyrgulid-, hydrobiid-, viviparid- <strong>and</strong> planorbid-dominated ones. The generally high endemism rate is<br />

between 60 <strong>and</strong> 98%. Species diversity <strong>and</strong> generic diversity are strongly correlated. In contrast, neither endemism nor <strong>lake</strong> size are tightly linked<br />

with γ-diversity. Outst<strong>and</strong>ingly high diversities such as observed for Lake Pannon are rather a result <strong>of</strong> the combined effect <strong>of</strong> autochthonous<br />

evolution in a long-lived system <strong>and</strong> accumulation <strong>of</strong> inherited elements. Examples <strong>of</strong> parallel evolution in lymnaeids <strong>and</strong> planorbids are presented.<br />

© 2008 Elsevier B.V. All rights reserved.<br />

Keywords: Gastropods; Freshwater molluscs; Endemism; Ancient <strong>lake</strong>s; Evolution<br />

1. Introduction<br />

The <strong>Central</strong> <strong>and</strong> <strong>South</strong>-<strong>Eastern</strong> <strong>Europe</strong>an freshwater <strong>and</strong><br />

brackish <strong>systems</strong> <strong>of</strong> the <strong>Neogene</strong> are <strong>of</strong>ten characterised by<br />

outst<strong>and</strong>ing endemisms. Despite the enormous amount <strong>of</strong> systematic<br />

papers dealing with local faunas, the relations between<br />

these <strong>lake</strong> <strong>systems</strong> in space <strong>and</strong> time are still unexplored. The<br />

most important biogeographic entities are the Early Miocene<br />

Rzehakia Lake System, the Early to Middle Miocene Dinarid<br />

Lake System, Lake Skopje, the Paratethyan Sarmatian <strong>lake</strong>s <strong>and</strong><br />

the <strong>South</strong> German <strong>lake</strong>s, the Late Miocene Lake Pannon, the<br />

Pliocene <strong>lake</strong>s Dacia, Transylvania, Slavonia <strong>and</strong> Kosovo, as<br />

well as the Pleistocene <strong>and</strong> Holocene <strong>lake</strong>s Šoštanj <strong>and</strong> Petea<br />

(Fig. 1). The main obstacle for taxonomists working with the<br />

<strong>Neogene</strong> <strong>lake</strong> faunas <strong>of</strong> <strong>Central</strong> <strong>and</strong> <strong>South</strong>-<strong>Eastern</strong> <strong>Europe</strong> is the<br />

complex paleogeographic situation. Some areas have been<br />

repeatedly covered by different <strong>lake</strong> <strong>systems</strong> <strong>and</strong> therefore a<br />

⁎ Corresponding author. Fax: +43 1 52177 459.<br />

E-mail address: mathias.harzhauser@nhm-wien.ac.at (M. Harzhauser).<br />

0031-0182/$ - see front matter © 2008 Elsevier B.V. All rights reserved.<br />

doi:10.1016/j.palaeo.2007.12.013<br />

Available online at www.sciencedirect.com<br />

Palaeogeography, Palaeoclimatology, Palaeoecology 260 (2008) 417–434<br />

single literature-based locality name might represent completely<br />

different faunas. Moreover, several classical monographs<br />

intermingled faunas from several <strong>lake</strong> <strong>systems</strong> <strong>and</strong> very<br />

different stratigraphic levels (e.g. Neumayr 1869, 1880; Brusina<br />

1897, 1902a). Especially, the separation <strong>of</strong> Lake Pannon faunas<br />

from those <strong>of</strong> the older Dinarid Lake System was completely<br />

obscure for most taxonomists (e.g. Nuttall, 1990). Molluscs <strong>of</strong><br />

some ancient Balkan <strong>lake</strong>s such as the Early Miocene Lake<br />

Sumadija or the early Middle Miocene Lake Serbia (Krstić<br />

et al., 2001, 2003, 2007) are still insufficiently documented <strong>and</strong><br />

therefore excluded from present analysis.<br />

2. Methods <strong>and</strong> limitations<br />

www.elsevier.com/locate/palaeo<br />

The dataset is based on a compilation <strong>of</strong> published gastropod<br />

faunas from <strong>Central</strong> <strong>and</strong> <strong>South</strong>-<strong>Eastern</strong> <strong>Europe</strong>an <strong>Neogene</strong> <strong>lake</strong><br />

<strong>systems</strong>. The results <strong>of</strong> more than 120 systematic papers have<br />

been integrated; details <strong>and</strong> references are given below in<br />

section 4. In addition, material from the collection <strong>of</strong> the Natural<br />

History Museum Vienna (NHM) has been included. The full


418 M. Harzhauser, O. M<strong>and</strong>ic / Palaeogeography, Palaeoclimatology, Palaeoecology 260 (2008) 417–434


M. Harzhauser, O. M<strong>and</strong>ic / Palaeogeography, Palaeoclimatology, Palaeoecology 260 (2008) 417–434<br />

dataset with detailed locality information is available online:<br />

http://www.nhm-wien.ac.at/Content.Node/forschung/geologie/<br />

mitarbeiter/pdfs/Harzhauser-M<strong>and</strong>ic-freshwater.xls. The<br />

recorded species-level taxa have been systematically arranged<br />

<strong>and</strong> listed according to localities. In a next step, localities have<br />

been grouped into geographic <strong>and</strong> stratigraphic units. Hierarchical<br />

cluster analysis <strong>and</strong> non-metric multidimensional<br />

scaling (nMDS) were performed using the statistic s<strong>of</strong>tware<br />

packages PAST (Hammer et al., 2001) <strong>and</strong> PRIMER (Clarke<br />

<strong>and</strong> Warwick, 1994). The groupings achieved by means <strong>of</strong><br />

hierarchical cluster analysis were tested for robustness by using<br />

different available algorithms <strong>and</strong> were additionally compared to<br />

results from nMDS. The similarity measures providing the best<br />

interpretable groupings were the Euclidean distance (between<br />

rows) for the percentage contribution data <strong>and</strong> the Simpson<br />

index <strong>and</strong> Bray–Curtis measure for the presence/absence data.<br />

Generally, we follow the systematic groupings <strong>of</strong> Wenz<br />

(1923–1930, 1938–1944), Falkner et al. (2001), Bank et al.<br />

(2001) <strong>and</strong> Harzhauser et al. (2002). Nevertheless, the herein<br />

presented affiliation <strong>of</strong> several genera (e.g. Staja Brusina, 1897,<br />

Bania Brusina, 1896, Gyromelania Wenz, 1938–1944, Scalimelania<br />

Wenz, 1938–1944) to higher taxa is problematic <strong>and</strong><br />

may change after a modern revision. Moreover, it has to be kept<br />

in mind that the number <strong>of</strong> described species in the literature is<br />

too high for many genera as modern revisions are missing for<br />

most groups. A taxonomic revision, however, is beyond the<br />

scope <strong>of</strong> this study. Despite these limitations <strong>and</strong> “taxonomic<br />

noise”, we think that this dataset is a serious first approximation.<br />

3. The <strong>lake</strong>s: geography, geological settings <strong>and</strong><br />

stratigraphic framework<br />

3.1. Rzehakia Lake System (RLS, ~17.5–17.2 Ma; S. Germany,<br />

Austria, Moravia)<br />

The oldest <strong>lake</strong> system treated herein is the Early Miocene<br />

Rzehakia Lake System (Fig. 2). Its name is derived from the<br />

endemic bivalve genus Rzehakia (Korobkov, 1954). The<br />

geographic extension <strong>of</strong> the RLS reaches from Bavaria to<br />

Moravia, covering an area about 650 km long (W–E) <strong>and</strong><br />

150 km wide (N–S) (Senes, 1973). It had formed along the<br />

northern shoreline <strong>of</strong> the Paratethys Sea in the North-Alpine<br />

Forel<strong>and</strong> Basin <strong>and</strong>, in its Moravian prolongation, in the<br />

Carpathian Foredeep. The <strong>lake</strong>s developed during the Early<br />

Miocene (mid-Burdigalian) <strong>and</strong> reflect the sea-level lowst<strong>and</strong><br />

TB 2.1 <strong>of</strong> Haq et al. (1988) (Rögl, 1998). This event caused the<br />

<strong>Central</strong> Paratethys Sea to disintegrate into several basins <strong>and</strong><br />

allowed the development <strong>of</strong> strongly structured coastal plains<br />

with extensive brackish-water <strong>lake</strong>s. Little is known about the<br />

geochemistry <strong>of</strong> these <strong>lake</strong>s. Traditionally, they are considered<br />

as marine-derived brackish <strong>lake</strong>s (Rögl, 1998; Popov et al.,<br />

2004). This assumption is supported by the occurrence <strong>of</strong><br />

endemic cardiids such as Limnopagetia (Schlickum, 1963) <strong>and</strong><br />

Limnopappia (Schlickum, 1962) <strong>and</strong> taxa such as Siliqua<br />

(Megerle von Mühlfeld, 1811), which all have marine ancestors.<br />

The origin <strong>of</strong> the RLS fauna is partly rooted in the <strong>Eastern</strong><br />

Paratethys (Popov et al., 1993; Rögl, 1998; 1999). Several<br />

endemic genera apparently originated in the faunas <strong>of</strong> the<br />

Kozakhurian Stage (e.g. Limnopagetia) <strong>and</strong> subsequently<br />

settled the western <strong>and</strong> central Paratethyan shores.<br />

Based on considerable differences <strong>of</strong> the mollusc faunas <strong>of</strong> the<br />

western (Bavarian) <strong>and</strong> eastern (Austrian–Moravian) part,<br />

Harzhauser <strong>and</strong> M<strong>and</strong>ic (2008) <strong>and</strong> M<strong>and</strong>ic <strong>and</strong> Corić (2007)<br />

proposed the existence <strong>of</strong> at least two disconnected <strong>lake</strong>s. A<br />

further separation into smaller <strong>lake</strong>s in the western part <strong>of</strong> the RLS<br />

is indicated by slight faunistic differences between the Lower<br />

Bavarian Oncophora Basin <strong>and</strong> the Upper Bavarian Kirchberg<br />

Basin (Kowalke <strong>and</strong> Reichenbacher, 2005). The paleobiogeographic<br />

relations within the RLS are based on the high degree <strong>of</strong><br />

endemics on the generic level. All <strong>lake</strong>s <strong>of</strong> that system have in<br />

common taxa such as the bivalves Rzehakia, Limnopagetia, <strong>and</strong><br />

Limnopappia <strong>and</strong> the gastropod Ctyrokia (Schlickum, 1965).<br />

On the species-level, however, hardly any faunistic relation is<br />

represented aside from the ubiquist Melanopsis impressa (Krauss,<br />

1852) along with the theodoxid Theodoxus cyrtocelis (Krauss,<br />

1852) <strong>and</strong> the planorbid Gyraulus applantus (Thomae, 1845).<br />

The absence <strong>of</strong> RLS bivalves in the probably partly synchronous<br />

Dinaride Lake System suggests a distinct paleobiogeographic<br />

boundary between these <strong>lake</strong> <strong>systems</strong>.<br />

3.2. Dinarid Lake System (DLS, ~17–15 Ma; Croatia, Bosnia<br />

<strong>and</strong> Herzegovina, Montenegro, Serbia, Hungary <strong>and</strong> Slovenia)<br />

The Dinarid Lake System (DLS) formed during the late<br />

Oligocene <strong>and</strong> Miocene in today NW–SE trending intramountain<br />

basins parallel to the slowly rising Dinarid mountain chains<br />

(Pavelić, 2001). Extensional tectonics generated enhanced<br />

subsidence <strong>of</strong> elongated depressions during the Early to Late<br />

Miocene. The comparatively low terrigeneous input supported<br />

the diversification <strong>of</strong> lacustrine environments, including both<br />

deep- <strong>and</strong> shallow-water habitats. This habitat diversification<br />

sparked the spectacular Miocene radiation <strong>of</strong> the benthic fauna.<br />

Geographically, the deposits <strong>of</strong> the DLS cover parts <strong>of</strong> Croatia,<br />

Bosnia <strong>and</strong> Herzegovina, Montenegro, Serbia, Hungary <strong>and</strong><br />

Slovenia (Krstić et al., 2001, 2003). During its maximum extent,<br />

the <strong>lake</strong> system covered an area <strong>of</strong> c. 75,000 km 2 . Subsequent<br />

rifting in the Pannonian Basin System triggered the marine<br />

flooding <strong>of</strong> the northern DLS <strong>and</strong> considerably reduced it.<br />

The stratigraphic correlation <strong>and</strong> paleogeographic extension<br />

<strong>of</strong> that shrunken DLS, termed Lake Herzegovina by Vujnović<br />

et al. (2000), are still under discussion. The younger deposits,<br />

however, lack DLS endemics such as Clivunella Katzer, 1918<br />

Fig. 1. Geographic setting <strong>of</strong> the investigated <strong>lake</strong> <strong>systems</strong>. 1: Rzehakia Lake System (RLS, ~17.5–17.2 Ma), 2: Dinarid Lake System (DLS, ~17–15 Ma), 3: Lake<br />

Skopje (LSK, ~15 Ma), 4: Paratethyan Sarmatian Lakes (PSL, 12.4–11.8 Ma), 5: <strong>South</strong> German <strong>lake</strong>s (incl. Lake Steinheim) (SGL, 14.3– ~12 Ma), 6: Lake Pannon<br />

(LP, 11.6–5.8 Ma) 7: Lake Slavonia (LS, ~4–3 Ma), 8: Lake Transylvania (LT, ~4.5–3 Ma), 9: Lake Dacia (LD, ~5–3 Ma), 10: Lake Kosovo (LK, ~3–2 Ma),<br />

11: Lake Šoštanj (LSO, 2.5 Ma), 12: Lake Petea (P, 0.1–0 Ma). The outlines <strong>of</strong> the Early <strong>and</strong> Middle Miocene <strong>lake</strong>s reflect only the modern sediment distribution,<br />

whilst the outlines <strong>of</strong> the Late Miocene <strong>and</strong> Pliocene <strong>lake</strong>s roughly coincide with their former extent.<br />

419


420 M. Harzhauser, O. M<strong>and</strong>ic / Palaeogeography, Palaeoclimatology, Palaeoecology 260 (2008) 417–434


M. Harzhauser, O. M<strong>and</strong>ic / Palaeogeography, Palaeoclimatology, Palaeoecology 260 (2008) 417–434<br />

<strong>and</strong> Delmiella Kochansky-Devidé <strong>and</strong> Slišković, 1972<br />

(Kochansky-Devidé <strong>and</strong> Slišković, 1978, 1980). A typical<br />

fauna <strong>of</strong> the late DLS is recorded from the Sinj Basin in southeastern<br />

Croatia, It represents the best investigated record <strong>of</strong> the<br />

DLS <strong>and</strong> yields an extraordinarily high species diversity (e.g.<br />

Neumayr, 1869; Brusina, 1874, 1897, 1902a).<br />

3.3. Lake Skopje (LSK, ~15 Ma; Macedonia)<br />

The data on that <strong>lake</strong> are extremely poor. The investigated<br />

mollusc fauna was first described more than a century ago<br />

(Burgerstein, 1877; Pavlovic, 1903) <strong>and</strong> is known so far only<br />

from Skopje. Following the current paleogeographic reconstructions,<br />

those deposits could represent the southern part <strong>of</strong><br />

the Serbian Lake <strong>of</strong> Krstić et al. (2001, 2003, 2007) dated<br />

as early Middle Miocene (c. 16–14 Ma). The Serbian Lake<br />

extended via a 200 km wide, NNW–SSE striking depression<br />

between the Dinaride <strong>and</strong> Carpathian orogenes from Belgrade<br />

(N Serbia) to Serres (N Greece). Its molluscs, including Kosovia<br />

(Pavlovic, 1903), are insufficiently documented — mainly in<br />

unpublished reports <strong>and</strong> theses. Apparently, based on a synopsis<br />

by Krstić et al. (2007), they differ not only from synchronous<br />

DLS faunas but also from those <strong>of</strong> Lake Skopje. Consequently,<br />

Lake Skopje is treated herein as an independent paleogeographic<br />

unit.<br />

3.4. Paratethyan Sarmatian Lakes (PSL, 12.4–11.8 Ma; Romania,<br />

Austria, Hungary)<br />

During the late Middle Miocene, the isolated Paratethys<br />

Sea developed a conspicuous endemic marine mollusc fauna<br />

(Harzhauser <strong>and</strong> Piller, 2007). The coastal flats <strong>of</strong> this sea were<br />

fringed by several freshwater <strong>systems</strong>. The paleogeography <strong>of</strong><br />

these coastal <strong>lake</strong>s is unclear <strong>and</strong> our knowledge on the fauna<br />

might be incomplete. Only few localities yield rich assemblages,<br />

whereas most other occurrences are rather out-<strong>of</strong>-habitat<br />

findings in marine deposits. Important Sarmatian wetl<strong>and</strong> faunas<br />

are known from Soceni in Romania (Jekelius, 1944) <strong>and</strong> the<br />

Austrian Eisenstadt-Sopron Basin (Harzhauser <strong>and</strong> Kowalke<br />

2002). Răcăştie (formerly Rákosd) in the Deva region in<br />

Romania is another important Sarmatian locality described by<br />

Gaál (1911) <strong>and</strong> Szalai (1928). In addition, Szalai (1928) <strong>and</strong><br />

Boda (1959) described species from various Hungarian localities<br />

in the Bakony region <strong>and</strong> the Bükk Mountains.<br />

3.5. <strong>South</strong> German <strong>lake</strong>s (incl. Lake Steinheim) (SGL, 14.3 to<br />

~12 Ma; Germany)<br />

During the late Middle Miocene several freshwater <strong>systems</strong><br />

developed in southern Germany in the area between Munich,<br />

Nürnberg <strong>and</strong> Stuttgart. The most important <strong>of</strong> these are the<br />

Steinheim Lake in the Swabian Alb <strong>and</strong> the Ries Lake at the<br />

border between the Swabian <strong>and</strong> Franconian Alb. Both formed<br />

by a simultaneous meteorite impact during the middle Miocene<br />

(~14.3 Ma; Tütken et al., 2006). The crater basins became filled<br />

by freshwater, <strong>and</strong> long-lived <strong>lake</strong>s became established. The<br />

smaller Steinheim Lake had a diameter <strong>of</strong> c. 3.5 km, whilst the<br />

Nördliger Ries impact structure was c. 25 km in diameter. Aside<br />

from endemics, the mollusc fauna is closely related to the<br />

assemblages <strong>of</strong> the coeval wetl<strong>and</strong> faunas <strong>of</strong> the so-called<br />

Silvana Beds in the adjacent North-Alpine Forel<strong>and</strong> Basin.<br />

Representative localities are Hohenememmingen (26 km SSE<br />

<strong>of</strong> Nördlingen) <strong>and</strong> Zwiefaltendorf (70 km SE <strong>of</strong> Steinheim).<br />

Little is known about the paleogeography <strong>and</strong> paleolimnology<br />

<strong>of</strong> the associated small <strong>lake</strong>s. Especially at Zwiefaltendorf, the<br />

mollusc fauna was described from reworked lithoclasts outcropping<br />

in Pleistocene deposits (Schlickum, 1976). Despite the<br />

earlier impact age <strong>of</strong> 14.3 Ma, most <strong>of</strong> the assemblages are<br />

correlated with the mammal zone MN 7 (Tütken et al., 2006),<br />

pointing to an age between c. 13.5–12 Ma.<br />

3.6. Lake Pannon (LP, 11.6–5.8 Ma; Austria, Czech Republic,<br />

Slovakia, Hungary, Romania, Croatia, Slovenia, Bosnia, Serbia)<br />

At about 11.6 Ma a glacioeustatic sea-level drop caused<br />

the final disintegration <strong>of</strong> the Paratethys Sea, <strong>and</strong> Lake<br />

Pannon arose in the Pannonian basin system (Magyar et al.,<br />

1999; Harzhauser et al., 2004). The benthic ecosystem<br />

collapsed at that point <strong>and</strong> marine life completely vanished.<br />

The <strong>lake</strong> was initially brackish, slowly freshening <strong>and</strong> slightly<br />

alkaline (Harzhauser et al., 2007). A very detailed paleogeographic<br />

development throughout the late Miocene is provided<br />

by Magyar et al. (1999). Accordingly, Lake Pannon attained a<br />

maximum length <strong>of</strong> 860 km (from the Karlovac Basin close to<br />

Zagreb in the west to the Transylvanian Basin in Romania in the<br />

east) <strong>and</strong> a width <strong>of</strong> 550 km (from the Vienna Basin in the north<br />

to Belgrade in the south). It covered an area <strong>of</strong> c. 290,000 km 2<br />

<strong>and</strong> is the largest aquatic system considered in this study. The<br />

<strong>lake</strong> was highly structured by numerous isl<strong>and</strong>s <strong>and</strong> mountain<br />

ranges. Its maximum water depth may have reached 800 m in<br />

its central part but less than 200 m elsewhere (Magyar et al.,<br />

1999).<br />

At around 9 Ma the <strong>lake</strong> began to shrink. Its north-western<br />

part turned into fluvial plains <strong>and</strong>, in the east, the Transylvanian<br />

Basin became dry l<strong>and</strong>, reducing the area to c. 180,000 km 2 .<br />

Finally, in the latest Miocene, a comparably small <strong>lake</strong> <strong>of</strong> c.<br />

480 km width remained, covering only the southern basins <strong>of</strong> the<br />

Pannonian basin system. Herein, the succession is separated into<br />

3 time slices: LP, Phase I: 11.6–10.0 Ma, Phase II: 10.0–8.0 Ma,<br />

Phase III: 8.0–5.8 Ma. These units roughly represent the buildup<br />

phase <strong>of</strong> Lake Pannon (Lower Pannonian), its maximum<br />

extent (Middle Pannonian, C. subglobosae Zone) <strong>and</strong> its<br />

gradual retreat (Upper Pannonian=“Pontian” sensu Stevanović,<br />

1990a,b,c).<br />

Fig. 2. Chronostratigraphic <strong>and</strong> biostratigraphic correlation scheme for the Mediterranean <strong>and</strong> Paratethyan areas (after Gradstein et al., 2004 <strong>and</strong> Piller et al., 2007). The<br />

stratigraphic range <strong>and</strong> the number <strong>of</strong> documented species <strong>and</strong> genera <strong>of</strong> each <strong>lake</strong> system are indicated in the right column (see text for abbreviations). Numbers in<br />

circles represent species that occur in two <strong>lake</strong>s.<br />

421


422 M. Harzhauser, O. M<strong>and</strong>ic / Palaeogeography, Palaeoclimatology, Palaeoecology 260 (2008) 417–434


M. Harzhauser, O. M<strong>and</strong>ic / Palaeogeography, Palaeoclimatology, Palaeoecology 260 (2008) 417–434<br />

3.7. Lake Dacia (LD, ~5–3 Ma; Romania, Bulgaria)<br />

Lake Dacia formed in Pliocene times in place <strong>of</strong> the former<br />

<strong>Eastern</strong> Paratethys Sea. It filled the name-giving Dacian Basin<br />

<strong>and</strong> had a W–E extension <strong>of</strong> roughly 500 km <strong>and</strong> less than<br />

200 km width, covering an area <strong>of</strong> c. 78,000 km 2 . It was<br />

delimited in the north <strong>and</strong> west by the Carpathian Mountains<br />

<strong>and</strong> by the Balkanids <strong>and</strong> the Moesian platform in the south <strong>and</strong><br />

extended into the area <strong>of</strong> the modern Black Sea. The age <strong>of</strong> the<br />

herein considered deposits is Dacian to Romanian (Snel et al.,<br />

2006).<br />

3.8. Lake Transylvania (LT, ~4.5–3 Ma; Romania)<br />

This elongate U-shaped <strong>lake</strong> was situated on the SE-<br />

Carpathians <strong>and</strong> covered the Brasov Basin complex, the Ciuc<br />

Basin <strong>and</strong> the Gheorgheni Graben (see Fielitz <strong>and</strong> Seghedi, 2005<br />

for tectonic setting). It had a length <strong>of</strong> about 180 km (N–S) <strong>and</strong><br />

was rather narrow, attaining a maximum width <strong>of</strong> 20–30 km. This<br />

only c. 4500 km 2 large <strong>lake</strong> was not a relic <strong>of</strong> Lake Pannon, but<br />

formed independently during the late Dacian <strong>and</strong> Romanian<br />

(László, 2005) within the Carpathian nappe system.<br />

3.9. Lake Slavonia (LS, ~4–3 Ma; Croatia, Bosnia, Serbia,<br />

Romania)<br />

This <strong>lake</strong> is also known as Paludina Lake, referring to<br />

the conspicuous diversity <strong>and</strong> endemic evolution <strong>of</strong> viviparid<br />

gastropods. It's a small Pliocene <strong>lake</strong> about 290 km long <strong>and</strong><br />

120 km wide, covering the southernmost basins <strong>of</strong> the<br />

Pannonian basin system over about 28,000 km 2 . Its geographic<br />

extension is similar to that <strong>of</strong> the latest phase <strong>of</strong> Lake Pannon.<br />

Therefore, it is discussed by some authors as being a direct<br />

descendent <strong>of</strong> Lake Pannon (e.g. Magyar et al., 1999). This<br />

relation remains somewhat questionable because reliable geological<br />

data <strong>and</strong> modern datings are missing.<br />

3.10. Lake Kosovo (LK, ~3–2 Ma; Serbia, Kosovo)<br />

Lake Kosovo was a roughly circular <strong>lake</strong> <strong>of</strong> about 50 km<br />

diameter covering an area <strong>of</strong> c. 8000 km 2 . Its deposits are<br />

restricted to the larger Metohia Basin in the west <strong>and</strong> the<br />

elongated Kosovo Basin in the east (Atanacković, 1990). The<br />

stratigraphy <strong>of</strong> the basin is described by Milosević (1966).<br />

Accordingly, mollusc faunas occur in the Kosovo Basin in<br />

Middle Miocene, Upper Miocene <strong>and</strong> Pliocene deposits. The<br />

oldest fauna is part <strong>of</strong> Lake Serbia <strong>and</strong> is not considered herein.<br />

The Miocene <strong>and</strong> Pliocene faunas have been revised by Krstić<br />

et al. (2001), who treat Lake Kosovo as part <strong>of</strong> the Macedonian-<br />

Drim System (Marović et al., 1999). The latter <strong>lake</strong> system<br />

covered southern Serbia, Macedonia, southern Bulgaria <strong>and</strong><br />

central Greece during the Late Pliocene. Its endemic mollusc<br />

fauna <strong>of</strong> Akchagylian age, however, is known so far only from<br />

the Metohia <strong>and</strong> Kosovo Basins (Atanacković, 1990; Krstić<br />

et al., 2001).<br />

3.11. Lake Šoštanj (LSO, 2.5 Ma; Slovenia)<br />

The investigated fauna derives from Pliocene lignite-bearing<br />

lacustrine deposits at Šoštanj near Velenje in Slovenia.<br />

Geologically, these deposits are part <strong>of</strong> the Velenje Basin <strong>and</strong><br />

are dated as Villafranchian (Brezigar et al., 1985). Three small<br />

<strong>lake</strong>s are still present in the depression along a length <strong>of</strong> c. 4 km;<br />

the extent <strong>of</strong> the Pliocene <strong>lake</strong> is unknown. The locality is also<br />

referred to as Schönstein in the old literature (Rolle, 1860,<br />

1861).<br />

3.12. Lake Petea (P, 0.1–0 Ma; Romania)<br />

Lake Petea, situated about 9 km SE <strong>of</strong> Oradea in W. Romania,<br />

is the only still existing <strong>lake</strong> in the herein utilised dataset. It is a<br />

very small (N1 km 2 ) thermal-spring-fed freshwater rivulet <strong>and</strong><br />

<strong>lake</strong> with constant water temperature <strong>of</strong> c. 30 °C. The area is now<br />

protected because <strong>of</strong> the occurrence <strong>of</strong> the endemic water lily<br />

Nymphaea lotus thermalis (de C<strong>and</strong>olle, 1821), the rudd Scardinus<br />

erithrophtalmus racovitzai (Müller, 1958) <strong>and</strong> the gastropod<br />

Melanopsis parreyssi (Pauca, 1933). Lake Petea is a very young,<br />

mainly Holocene, aquatic system which did not originate before<br />

Pleistocene times (pers. com. Marton Venczel). Due to the<br />

complex history <strong>of</strong> the region, the locality is referred to in the<br />

literature also as Bisch<strong>of</strong>sbad (German) <strong>and</strong> as Püspökfürdö<br />

(Hungarian). It is included herein because <strong>of</strong> its diversity <strong>of</strong><br />

melanopsids <strong>and</strong> its Mio-Pliocene “flair”, whilst other Pleistocene<br />

<strong>and</strong> Holocene <strong>lake</strong>s are excluded.<br />

4. Results<br />

In total, 1184 gastropod species <strong>and</strong> (chrono- or morpho-)<br />

subspecies from 119 localities have been compiled from<br />

the extensive literature on Miocene to Pleistocene <strong>Central</strong> <strong>and</strong><br />

<strong>South</strong> <strong>Europe</strong>an <strong>lake</strong>s <strong>and</strong> <strong>lake</strong> <strong>systems</strong>. This surprisingly high<br />

diversity is even comparable with marine gastropod diversity<br />

for the same geographic area during the Miocene (c. 1300 taxa<br />

in Harzhauser <strong>and</strong> Piller, 2007). In a first step a cluster analysis<br />

was performed to group localities in evolutionary entities. The<br />

number <strong>of</strong> taxa in single localities differed strongly, ranging<br />

Fig. 3. Plots <strong>of</strong> cluster analysis using Bray–Curtis similarity measure <strong>and</strong> Group Average method <strong>and</strong> non-metric Multidimensional Scaling (MDS) <strong>of</strong> Miocene to<br />

Pliocene <strong>lake</strong>-fauna bearing localities with more than 23 taxa. The cluster analysis demonstrates the presence <strong>of</strong> 7 taxonomically constrained paleogeographic,<br />

paleobiogeographic <strong>and</strong> stratigraphic units (Groups 1 to 7). The peri-Paratethys units (Groups 1 to 3) are strictly divided from units <strong>of</strong> the <strong>Central</strong> Paratethys/Lake<br />

Pannon region, forming a coherent but internally hierarchically ordered group. The hierarchical ordering <strong>of</strong> localities <strong>of</strong> that latter group follows a stratigraphic pattern,<br />

which is also evident in the non-metric MDS plot. The hierarchical/stratigraphical ordinance starts with the Middle Miocene Sarmatian Lakes (Group 4), goes through<br />

early Late Miocene (Group 5) <strong>and</strong> late Late Miocene (Group 6) Lake Pannon up to the latest Miocene <strong>and</strong> Pliocene residual <strong>lake</strong>s (Group 7). The subgroups within<br />

Group 7 reflect paleogeographic units. The full dataset with all localities is available online: http://www.nhm-wien.ac.at/Content.Node/forschung/geologie/mitarbeiter/<br />

pdfs/Harzhauser-M<strong>and</strong>ic-freshwater.xls.<br />

423


424 M. Harzhauser, O. M<strong>and</strong>ic / Palaeogeography, Palaeoclimatology, Palaeoecology 260 (2008) 417–434<br />

from one to maximally 97 recorded species. Prior to analysis the<br />

dataset was therefore filtered to records containing sufficient<br />

taxa for a reasonable comparison. The best results were<br />

achieved from the species diversity <strong>of</strong> 24 upwards <strong>and</strong> using<br />

the Bray Curtis Similarity measure. The resulting grouping was<br />

used as test for a priori assumptions about paleogeographic<br />

units.<br />

The ordering <strong>of</strong> localities coincided with their paleogeographic<br />

<strong>and</strong> stratigraphic patterns. Thus, seven paleobiogeographic<br />

units were clearly distinguished (Fig. 3): the Dinaride<br />

Lake System, the Paratethyan Sarmatian Lakes, the <strong>South</strong><br />

German Lakes, Lake Kosovo, Lake Pannon I & II <strong>and</strong> Lake<br />

Pannon III, <strong>and</strong> a cluster representing the faunas <strong>of</strong> the latest<br />

Lake Pannon, Lake Slavonia, Lake Dacia <strong>and</strong> Lake Transylvania.<br />

Within the area <strong>of</strong> the former Paratethys Sea, the hierarchical<br />

ordering showed a clear stratigraphic pattern, with the<br />

oldest <strong>lake</strong> <strong>systems</strong> at the base <strong>and</strong> the Pliocene <strong>lake</strong>s at the top<br />

<strong>of</strong> the line-up. The peri-Paratethys <strong>systems</strong> (Dinaride Lake<br />

System, <strong>South</strong> German Lakes <strong>and</strong> Lake Kosovo), although<br />

principally following a similar stratigraphic pattern, ordered<br />

strictly separately from the <strong>Central</strong> Paratethys line-up, underlining<br />

their autochthonous evolutionary <strong>and</strong> paleoecological<br />

status.<br />

4.1. Faunistic inventories <strong>and</strong> sources<br />

The groupings in Fig. 3 represent ancient <strong>lake</strong> <strong>systems</strong> with<br />

fairly consistent faunas. In the next step the faunas were merged<br />

for each <strong>lake</strong> to provide a synopsis <strong>of</strong> the faunistic composition<br />

<strong>of</strong> each <strong>lake</strong> (Fig. 4). This dataset allows estimation <strong>of</strong> the<br />

γ-diversities (sensu Whittaker, 1972) <strong>and</strong> outlines the dominant<br />

taxa. There are, however, clear limitations to this approach.<br />

Especially the phenotypic plasticity <strong>of</strong> several freshwater<br />

gastropod species (e.g. within Melanopsis Férussac, 1823) is<br />

difficult to h<strong>and</strong>le <strong>and</strong> might result in over-splitting in some<br />

genera (Geary 1990). Hybridisation effects as discussed by<br />

Geary (1992) <strong>and</strong> B<strong>and</strong>el (2000) for Lake Pannon melanopsids<br />

will also increase the inventory. As this phenomenon cannot be<br />

solved based solely on conchological data, we maintain several<br />

<strong>of</strong> these critical morpho-species. Another drawback is the timeaveraging<br />

that is inevitable in such datasets. Therefore, at least<br />

for the extremely long-lived Lake Pannon, we tried to separate<br />

the faunas into 3 time slices. Taxonomic remarks: Pyrgulidae<br />

are maintained as a family although molecular data hint at a<br />

subfamily level (Szarowska et al., 2005). The thiarid Tinnyea<br />

(Hantken, 1887) is counted to the Melanopsidae.<br />

4.1.1. Rzehakia Lake System (RLS, ~17.5–17.2 Ma)<br />

In total, 39 gastropod species attributed to 15 genera (species/<br />

genera ratio=2.6) have been described from the RLS in the<br />

papers <strong>of</strong> Rzehak (1893), Schlickum (1963, 1964a,b, 1966,<br />

1967), Ctyroky (1972), Steininger (1973) <strong>and</strong> Kowalke <strong>and</strong><br />

Reichenbacher (2005). The fauna is characterised by its small<br />

size, the individuals usually being less than 10 mm in height.<br />

Few exceptions, such as Viviparus suevicus (Wenz, 1919) or<br />

Melanopsis impressa (Krauss, 1852), exceed this limit. Similarly,<br />

the dreissenids are small-sized with ranges from 10–20 mm<br />

(Harzhauser <strong>and</strong> M<strong>and</strong>ic, 2008). The highest percentage <strong>of</strong> 56%<br />

is contributed by Hydrobiidae (22 species). These are represented<br />

by Nematuerella (S<strong>and</strong>berger, 1874) (9), Staliopsis (Rzehak,<br />

1893) (6) <strong>and</strong> Hydrobia (Hartmann, 1821) (2) <strong>and</strong> the endemic<br />

genus Ctyrokia (Schlickum, 1965) (5). All other families are<br />

represented by 5 or less species: Planorbidae (5), Neritidae (4),<br />

Melanopsidae (3), Viviparidae (2), Lymnaeidae (2), Bithyniidae<br />

(1). The most striking feature <strong>of</strong> the RLS gastropod fauna is the<br />

diversity <strong>of</strong> the hydrobiids Ctyrokia <strong>and</strong> Staliopsis. The endemicity<br />

on the species-level is high (77%).<br />

4.1.2. Dinarid Lake System (DLS, ~17–15 Ma)<br />

The entire gastropod fauna <strong>of</strong> the DLS is composed <strong>of</strong> 110<br />

species <strong>and</strong> 28 genera (species/genera ratio=3.9). The DLS<br />

literature is manifold, partly hard to get <strong>and</strong> a synopsis is<br />

completely missing up to now. The most important papers are:<br />

Brusina (1870, 1874, 1878, 1884b, 1881, 1896, 1897, 1902a),<br />

Neumayr (1869, 1880), Kittl (1895), Kochansky-Devidé <strong>and</strong><br />

Slišković (1972), Jurišić-Polšak (1979), Jurišić-Polšak <strong>and</strong><br />

Slišković (1988) <strong>and</strong> Olujić (1999).<br />

Most <strong>of</strong> the species are small-sized (b1 cm); larger shells (1–<br />

3 cm) are confined to few species belonging to the genus Melanopsis<br />

<strong>and</strong> to the thiarid Tinnyea (up to 7 cm). Hydrobiidae (40)<br />

<strong>and</strong> Melanopsidae (34) are the dominant families, followed by the<br />

Planorbidae (13). Stenothyridae (6), Pyrgulidae (6), Neritidae (5),<br />

Lymnaeidae (3), Viviparidae (1), Bithyniidae (1) <strong>and</strong> Valvatidae<br />

(1) are subordinate as taxa but may be important constituents<br />

concerning individual numbers. The most eye-catching radiations<br />

are represented by the genera Melanopsis (29), Prososthenia<br />

(Neumayr, 1869) (18), <strong>and</strong> Fossarulus (Neumayr, 1869) (14),<br />

which develop extraordinary numbers <strong>of</strong> species. All other genera<br />

are recorded only with 5 to 1 species. Endemic DLS genera are the<br />

stenothyrid Bania (Brusina, 1896), the pyrgulid Marticia<br />

(Brusina, 1897) <strong>and</strong> the derived clivunellids Clivunella <strong>and</strong> Delminiella,<br />

which are endemic even on the family level. Fossarulus<br />

<strong>and</strong> Dianella? Gude, 1913, although recorded as rare elements<br />

from other Miocene <strong>lake</strong> <strong>systems</strong> as well, display a unique<br />

diversity in the DLS. The endemicity level is extremely high<br />

(98%).<br />

4.1.3. Lake Skopje (LSK, ~15 Ma)<br />

The gastropod fauna <strong>of</strong> Lake Skopje has been described in only<br />

few papers (Burgerstein, 1877; Pavlovic, 1903). Sixteen smallsized<br />

species from 5 genera are known (species/genera ratio=3.2).<br />

These represent an unusual diversity <strong>of</strong> Pyrgulidae (7 species<br />

<strong>of</strong> Dianella) accompanied by Melanopsidae (3), Hydrobiidae<br />

(3), Neritidae (2) <strong>and</strong> Stenothyridae (1). There is no endemism on<br />

the genus level but a complete endemism on the species-level. The<br />

fauna is small-sized, ranging between 2 <strong>and</strong> 15 mm.<br />

4.1.4. Paratethyan Sarmatian Lakes (PSL, 12.4–11.8 Ma)<br />

The Sarmatian wetl<strong>and</strong> <strong>systems</strong> were inhabited by 61 gastropod<br />

species attributed to 21 genera (species/genera ratio=2.9) (Hörnes,<br />

1856; Stoliczka, 1862; Jekelius, 1944; Boda, 1959; Harzhauser <strong>and</strong><br />

Kowalke, 2002). The dominant families are the Hydrobiidae<br />

(15 species) <strong>and</strong> the Pyrgulidae (12) followed by the Neritidae<br />

(9), Valvatidae (8) <strong>and</strong> Stenothyridae (7). The rest is contributed by


M. Harzhauser, O. M<strong>and</strong>ic / Palaeogeography, Palaeoclimatology, Palaeoecology 260 (2008) 417–434<br />

Fig. 4. Family-level analysis <strong>of</strong> the gastropod faunas (note that Pyrgulidae are treated as a family <strong>and</strong> that the thiarid Tinnyea is counted to the Melanopsidae).<br />

Percentages are based on species numbers <strong>and</strong> do not reflect dominance <strong>of</strong> single species in individual numbers. The corresponding species numbers are given in the<br />

text.<br />

Melanopsidae (4), Planorbidae (4) <strong>and</strong> Lymnaeidae (2). Endemics<br />

on the genus level mainly involve stenothyrids (Aluta Jekelius,<br />

1932, Staja Brusina, 1897) <strong>and</strong> the pyrgulids (Socenia Jekelius,<br />

1944, Baglivia Brusina, 1892). All these genera persist into the Late<br />

Miocene <strong>and</strong> are constituents <strong>of</strong> the fauna <strong>of</strong> Lake Pannon. This<br />

faunistic relation to Lake Pannon is also present on the species-level<br />

425


426 M. Harzhauser, O. M<strong>and</strong>ic / Palaeogeography, Palaeoclimatology, Palaeoecology 260 (2008) 417–434<br />

<strong>and</strong> lowers the endemicity to 62%. The size <strong>of</strong> most gastropod<br />

species is rather small, ranging between 2 <strong>and</strong> 6 mm. Only the<br />

melanopsids <strong>and</strong> lymnaeids exceed the 2 cm limit.<br />

Within the investigated time-interval, the circum-Paratethyan<br />

<strong>lake</strong>s gave rise to the first peaks <strong>of</strong> diversity within the<br />

valvatids <strong>and</strong> neritids <strong>of</strong> the <strong>Europe</strong>an faunas.<br />

4.1.5. <strong>South</strong> German <strong>lake</strong>s (incl. Lake Steinheim) (SGL, 14.3 to<br />

~12 Ma)<br />

The various small Middle Miocene <strong>lake</strong>s in southern<br />

Germany, including the famous Steinheim Lake, yield about<br />

41 gastropod species <strong>of</strong> 18 genera (species/genera ratio=2.3)<br />

(Klein, 1846, Gottschick, 1911, 1853, 1920; Gottschick <strong>and</strong><br />

Wenz, 1916; Schlickum, 1976; Nützel <strong>and</strong> B<strong>and</strong>el, 1993;<br />

Finger, 1997 <strong>and</strong> references therein).<br />

The Steinheim Lake experienced an outst<strong>and</strong>ing endemic<br />

evolution <strong>of</strong> small-sized planorbids (Hilgendorf, 1867; Nützel<br />

<strong>and</strong> B<strong>and</strong>el, 1993). Thus, the diversity is completely dominated<br />

by the Planorbidae, which are recorded with at least 24 species.<br />

Of these, at least 17 species belong to Gyraulus (Charpentier,<br />

1837). Lymnaeidae, with 7 species, are the second most speciesrich<br />

group, whilst the Neritidae, Melanopsidae, Bithyniidae,<br />

Stenothyridae, Hydrobiidae <strong>and</strong> Valvatidae are represented by<br />

1–3 species only. No endemism on the generic level has been<br />

observed so far for these <strong>lake</strong>s; a considerably endemism <strong>of</strong><br />

c. 75% is represented by the species <strong>of</strong> the stenothyrids, hydrobiids<br />

<strong>and</strong> even more so within the planorbids. At least 10<br />

species are also recorded from other freshwater <strong>systems</strong> such as<br />

the RLS <strong>and</strong> the PSL. Aside from Tinnyea <strong>and</strong> few lymnaeids,<br />

the fauna is small-sized (b5 mm).<br />

4.1.6. Lake Pannon (LP, 11.6–5.8 Ma)<br />

Aside from numerous monographs treating regional Lake<br />

Pannon assemblages, only Müller et al. (1999) provided a familylevel<br />

synopsis <strong>of</strong> the mollusc fauna. The long history <strong>of</strong> Lake<br />

Pannon, spanning more than 6 Ma, <strong>and</strong> the large geographic<br />

extent <strong>of</strong> its deposits, is reflected in an enormous bibliography. In<br />

total, at least 497 species- <strong>and</strong> subspecies-level gastropods have<br />

been described from Lake Pannon. Only few <strong>of</strong> these species<br />

existed throughout the history <strong>of</strong> the <strong>lake</strong>. Therefore, the faunas <strong>of</strong><br />

the various localities are united into three stratigraphic groups:<br />

LP, Phase I: 11.6–10.0 Ma: 150 gastropod species <strong>of</strong> 34<br />

genera are described from this early phase <strong>of</strong> Lake Pannon<br />

(species/genera ratio=4.4) (Brusina; 1884a, 1896, 1897, 1902a;<br />

Lörenthey, 1894; Halaváts, 1903; Jekelius, 1944; Papp, 1951,<br />

1953; 1985b, Sauerzopf, 1953).<br />

The early gastropod fauna <strong>of</strong> Lake Pannon is dominated by<br />

Melanopsidae (38), Pyrgulidae (33) <strong>and</strong> Planorbidae (29).<br />

Neritidae (18), Stenothyridae (11), Valvatidae (9), Hydrobiidae<br />

(7), Lymnaeidae (3) <strong>and</strong> Bithyniidae (1) contribute to a lesser<br />

amount. The endemicity is high (86%), although some species<br />

appeared already in the Paratethyan Sarmatian <strong>lake</strong>s. The larger<br />

part <strong>of</strong> the fauna is small-sized, ranging from 2–8 mm; a size<br />

class between 10–30 mm is frequently represented within the<br />

lymnaeids, planorbids <strong>and</strong> melanopsids. Nevertheless, the early<br />

Lake Pannon witnesses also a tendency to gigantism by species<br />

<strong>of</strong> the Melanopsis fossilis-complex, which may attain a<br />

maximum size <strong>of</strong> 80 mm, <strong>and</strong> by Tinnyea escheri vasarhelyii<br />

(Hantken, 1887), which may exceed 100 mm in length.<br />

LP, Phase II: 10.0–8.0 Ma: During the phase <strong>of</strong> the maximum<br />

extent <strong>of</strong> Lake Pannon, 254 species <strong>of</strong> 40 genera (species/genera<br />

ratio=6.4) existed (Stoliczka, 1862; Fuchs, 1873; Brusina 1884a,<br />

1892, 1897, 1902a; H<strong>and</strong>mann, 1882; Halaváts, 1887, 1892,<br />

1903, 1910; Gorjanović-Kramberger, 1901; Lörenthey, 1902;<br />

Moos, 1944; Papp, 1951, 1985a,b; Sauerzopf, 1953; Bartha,<br />

1956, 1953, 1959; Lupu, 1963; Lueger, 1979, 1980; Jiriček, 1985;<br />

Fordinál, 1997, 1999; Harzhauser et al., 2002).<br />

The increase in species richness compared to LP I is largely<br />

due to the radiation <strong>of</strong> Melanopsidae (60), Pyrgulidae (58),<br />

Planorbidae (39), Hydrobiidae (25) <strong>and</strong> Valvatidae (20). A<br />

slight increase in numbers is also evident for the Neritidae (23),<br />

Stenothyridae (14) <strong>and</strong> Lymnaeidae (10); only the Bithyniidae<br />

(1) remain on a low level. The species-level endemicity (89%) is<br />

comparable to the early Lake Pannon fauna. Moreover, the size<br />

structures <strong>of</strong> the faunas are comparable.<br />

LP, Phase III: 8.00–5.8 Ma: The late phase <strong>of</strong> Lake Pannon<br />

gave rise to a huge diversity <strong>of</strong> 284 gastropod species <strong>of</strong> 48<br />

genera (species/genera ratio=5.9) (Rolle, 1861; Fuchs, 1870a,b;<br />

1873; Hoernes, 1875; Herbich <strong>and</strong> Neumayr, 1875; Lörenthey,<br />

1893a,b,c, 1895; Brusina 1896, 1902a; Halaváts, 1887, 1897,<br />

1892, 1904, 1915, 1923; Gorjanović-Kramberger, 1901; Soós,<br />

1934; Moos, 1944; Strausz, 1951; Papp, 1951, 1985b; Sauerzopf,<br />

1953; Bartha, 1954; Bartha <strong>and</strong> Soós, 1955; Gillet <strong>and</strong> Marinescu,<br />

1971; Marinescu, 1973; Schlickum, 1978, 1953, 1979; Korpás-<br />

Hódi, 1983; Stevanović <strong>and</strong> Papp, 1985; Stevanović, 1941, 1978,<br />

1985, 1990a,b,c; Basch, 1990; Müller <strong>and</strong> Szónoky, 1990;<br />

Fordinál, 1994, 1996, 1998; Szilaj et al., 1999; Harzhauser <strong>and</strong><br />

Binder, 2004).<br />

The maximum diversity <strong>of</strong> Lake Pannon III is contributed by<br />

Planorbidae (53), Pyrgulidae (48), Melanopsidae (41), Lymnaeidae<br />

(40) <strong>and</strong> Valvatidae (30). Hydrobiidae (24), Viviparidae<br />

(19), Neritidae (11), Stenothyridae (11) <strong>and</strong> Bithynidae (2) follow<br />

in decreasing numbers. Compared to LP I <strong>and</strong> LP II, an<br />

increase in species richness within the viviparids, planorbids <strong>and</strong><br />

lymnaeids is evident, whilst the melanopsids <strong>and</strong> pyrgulids lose<br />

ground. The species-level endemicity remains high (83%). The<br />

bulk <strong>of</strong> the fauna is still represented by small-sized gastropods<br />

(2–8 mm), whereas the giant melanopsids have vanished. Largesized<br />

taxa <strong>of</strong> up to 100 mm diameter are now represented by the<br />

limpet-like lymnaeid Valenciennius (Rousseau, 1842).<br />

Although Lake Pannon is <strong>of</strong>ten referred to as the centre <strong>of</strong><br />

Melanopsis evolution (B<strong>and</strong>el, 2000; Geary et al., 2002), its most<br />

conspicuous radiations are found within the Pyrgulidae, with<br />

several endemic genera such as Goniochilus (S<strong>and</strong>berger, 1875),<br />

Lisinskia (Brusina, 1897), Gyromelania (Wenz, 1938–1944),<br />

Scalimelania (Wenz, 1938–1944) <strong>and</strong> Beogradica (Pavlovic,<br />

1903). Microbeliscus (S<strong>and</strong>berger, 1875), a questionable pyrgulid<br />

with heterostrophic protoconch, is another endemism. Among the<br />

Lymnaeidae, the evolution <strong>of</strong> deep-water, limpet-like morphologies<br />

(Provalenciennesia Gorjanović-Kramberger, 1923, Velutinopsis<br />

Brusina, 1884a <strong>and</strong> Valenciennius) is noteworthy. Another<br />

endemism is represented by the succinid Papyrotheca (Brusina,<br />

1893), which documents the rare adaptation <strong>of</strong> a terrestrial<br />

gastropod to aquatic environments.


M. Harzhauser, O. M<strong>and</strong>ic / Palaeogeography, Palaeoclimatology, Palaeoecology 260 (2008) 417–434<br />

4.1.7. Lake Dacia (LD, ~5–3 Ma)<br />

This initially brackish aquatic system gave rise to at least 119<br />

gastropod species <strong>of</strong> 21 genera (species/genera ratio=5.7)<br />

(Wenz, 1942; Hanganu, 1972; Hanganu <strong>and</strong> Papaianopol, 1982;<br />

Lubenescu <strong>and</strong> Zazuleac, 1985; Motas <strong>and</strong> Papaianopol, 1984;<br />

Papaianopol, 1995). The most prominent group is represented<br />

by the quickly radiating Viviparidae (50). Other important<br />

groups are the Melanopsidae (16), Hydrobiidae (15) <strong>and</strong><br />

Bithyniidae (11). All other families are subordinate: Neritidae<br />

(9), Valvatidae (8), Planorbidae (6), Pyrgulidae (3), Lymnaeidae<br />

(1). Endemism is moderate on the species-level (60.5%) <strong>and</strong><br />

absent on the generic level. Most species are small-sized<br />

(b10 mm); only the viviparids develop giant sized species <strong>of</strong> up<br />

to 55 mm in height. [Several elements with Lake Pannon<br />

affinities settled the Dacian Basin during the Late Miocene;<br />

herein, however, only the Pliocene assemblages are considered.]<br />

4.1.8. Lake Transylvania (LT, ~4.5–3 Ma)<br />

The fauna is mainly known from the paper <strong>of</strong> Jekelius (1932),<br />

who described 63 species <strong>of</strong> 17 genera from Lake Transylvania<br />

(species/genera ratio=3.7). The fauna is manifold <strong>and</strong> not<br />

dominated by a certain gastropod family. Stenothyridae (12),<br />

Pyrgulidae (10), Viviparidae (9) <strong>and</strong> Hydrobiidae (9) are most<br />

species rich, followed by Valvatidae (6), Planorbidae (6),<br />

Lymnaeidae (4), Melanopsidae (3), Bithyniidae (3) <strong>and</strong> Neritidae<br />

(1). Endemicity is high (73%) within species but absent for<br />

genera. The size structure <strong>of</strong> the fauna ranges from 4–17 mm <strong>and</strong><br />

is rather uniform. Larger taxa are represented solely by Viviparus<br />

(Montfort, 1810) (b40 mm).<br />

4.1.9. Lake Slavonia (LS, ~4–3 Ma)<br />

The fauna <strong>of</strong> that <strong>lake</strong> was studied mainly during the 19th<br />

century. In total, 183 gastropod species <strong>of</strong> 29 genera are<br />

described (species/genera ratio=6.3) (Brusina, 1874, 1884b,<br />

1878, 1896, 1902a; Fontannes, 1886; Herbich <strong>and</strong> Neumayr,<br />

1875; Neumayr, 1869, 1897, 1880; Neumayr <strong>and</strong> Paul, 1875).<br />

The fauna is dominated by Melanopsidae (42), Viviparidae<br />

(35) <strong>and</strong> Hydrobiidae (28). Aside from the rare Stenothyridae<br />

(1) <strong>and</strong> Lymnaeidae (5), all other groups contribute in comparable<br />

numbers: Planorbidae (18), Neritidae (15), Valvatidae<br />

(16), Bithyniidae (12). The fauna is generally small-sized<br />

(b10 mm) except for the partly large-sized viviparids, whose<br />

size may exceed 50 mm. The faunistic relation <strong>of</strong> Lake Slavonia<br />

to Lake Pannon <strong>and</strong> Lake Transylvania is responsible for a<br />

moderately high endemicity <strong>of</strong> 63%.<br />

4.1.10. Lake Kosovo (LK, ~3–2 Ma)<br />

Lake Kosovo harboured a poorly diverse gastropod fauna <strong>of</strong><br />

35 species <strong>of</strong> 9 genera (species/genera ratio=4; Atanacković,<br />

1959; Atanacković <strong>and</strong> Stevanović, 1990). Viviparidae dominate<br />

with 15 species, followed by the Planorbidae (12), <strong>of</strong><br />

which 8 species belong to the endemic sinistral genus Kosovia.<br />

Other species are represented by Melanopsidae (3), Neritidae<br />

(2), Hydrobiidae (2) <strong>and</strong> Stenothyridae (1). The endemicity is<br />

very high (92%). Most <strong>of</strong> the taxa range from 10–15 mm in<br />

size. Larger species <strong>of</strong> up to 25 mm are represented only by<br />

Viviparus.<br />

4.1.11. Lake Šoštanj (LSO, 2.5 Ma)<br />

This highly endemic Late Pliocene <strong>lake</strong> fauna (endemicity<br />

87%) was included because <strong>of</strong> its “Miocene” fair. Only 8 species<br />

are reported by Rolle (1860, 1861) <strong>and</strong> Brezigar et al.<br />

(1985). Planorbidae <strong>and</strong> Hydrobiidae are represented by 3 <strong>and</strong> 2<br />

species, whilst Bithyniidae, Melanopsidae <strong>and</strong> Valvatidae are<br />

documented only by 1 species each. The fauna is small-sized<br />

(2–10 mm). Only Melanopsis <strong>and</strong> valvatids grow to 16 mm.<br />

4.1.12. Lake Petea (P, 0.1–0 Ma)<br />

Only few papers deal with the Pleistocene to Holocene<br />

thermal-spring <strong>lake</strong> fauna <strong>of</strong> Lake Petea. Brusina (1902b),<br />

Kormos (1905) <strong>and</strong> Pauca (1937) described 23 species <strong>of</strong> 9<br />

genera (species/genera ratio=2.6). The composition is uniquely<br />

dominated by Melanopsidae, whose 12 species contribute more<br />

than 50% to the total fauna. Planorbidae (5) are the second<br />

important gastropod group in Lake Petea, whilst Neritidae (3),<br />

Lymnaeidae (2) <strong>and</strong> Valvatidae (1) are subordinate in species<br />

numbers. Aside from the fully endemic melanopsid fauna,<br />

which raises the endemicity <strong>of</strong> the fauna to 60.8%, most taxa are<br />

frequently found in Pleistocene <strong>and</strong> Holocene freshwater<br />

<strong>systems</strong> <strong>of</strong> <strong>Europe</strong>. The fauna is very small (b8 mm) aside<br />

from the melanopsids (height up to 20 mm).<br />

5. Discussion<br />

5.1. Gamma diversity: size does matter but heritage is fine as<br />

well<br />

Species diversity in the studied <strong>lake</strong> <strong>systems</strong> ranges from low<br />

(b30; LSK, P, LSO) <strong>and</strong> moderate (30–50; RLS, SGL, LK) to<br />

high (51–100; PSL, LT) <strong>and</strong> very high (N100; DLS, LPI–III,<br />

LD). Among the classical extant long-lived <strong>lake</strong>s, only Lake<br />

Baikal (147 species) falls into the last grouping <strong>and</strong> even the<br />

high diversity class is represented only by few examples (Lake<br />

Tanganyika, 68; Lake Ohrid, 72) [see Brown (1994), Seddon<br />

(2000) <strong>and</strong> Sitnikova (1994, 2006) for data on extant <strong>lake</strong>s]. The<br />

high species number is correlated with high generic diversities<br />

(Fig. 5). This tight correlation (r 2 =0.9) is in contrast to the “gutfeeling”<br />

that the enormous diversities <strong>of</strong> Lake Pannon or <strong>of</strong><br />

Lake Slavonia are maintained by few genera such as Melanopsis<br />

or Viviparus. The origin <strong>of</strong> the diversity is less easily explained.<br />

A simple correlation <strong>of</strong> diversity with <strong>lake</strong> size is evident on a<br />

very rough scale (r 2 =0.6). Thus, small <strong>systems</strong> such as Lake<br />

Skopje <strong>and</strong> Lake Petea yield low diversities compared to the<br />

huge Lake Pannon or Lake Slavonia. The relation, however, fails<br />

in intermediate <strong>systems</strong>. Presumably large <strong>systems</strong> such as the<br />

Rzehakia Lake System or the Paratethyan Sarmatian Lakes do<br />

not fit the pattern because they have fewer taxa than expected<br />

based on size. Moreover, the highest diversity is found in Lake<br />

Pannon III, which is smaller than Lake Pannon II. A problem <strong>of</strong><br />

this approach may be the complex geometry <strong>and</strong> sometimes<br />

poorly known extent <strong>of</strong> the <strong>lake</strong>s, which may result in inadequate<br />

size estimates.<br />

A second ad hoc explanation for differences in γ-diversities<br />

is the age <strong>of</strong> the communities. A clear hint for this age/diversity<br />

relation is the high species richness <strong>of</strong> Lake Pannon III, which<br />

427


428 M. Harzhauser, O. M<strong>and</strong>ic / Palaeogeography, Palaeoclimatology, Palaeoecology 260 (2008) 417–434<br />

Fig. 5. A tight correlation between species-level γ-diversity <strong>and</strong> the number <strong>of</strong><br />

genera exists for the analysed faunas. A similar correlation <strong>of</strong> diversity <strong>and</strong> <strong>lake</strong><br />

size is evident for the endpoints but is poor for the middlefield.<br />

experienced more than 4 Ma <strong>of</strong> endemic evolution during the<br />

climatically challenging Late Miocene. This interpretation,<br />

however, is again too naive to be applied to all <strong>systems</strong>. Most <strong>of</strong><br />

the investigated <strong>lake</strong>s with moderate to high diversities existed<br />

between 0.5 <strong>and</strong> b2.0 Ma. Despite the comparable ranges, the<br />

observed diversities differ strongly. This discrepancy is solved<br />

when calculating the numbers <strong>of</strong> species occurring in more than<br />

one <strong>lake</strong>. Early <strong>and</strong> Middle Miocene <strong>lake</strong>s have high<br />

endemisms <strong>and</strong> share less than 10 species. Several <strong>of</strong> the involved<br />

genera such as Orygoceras (Brusina, 1882) orCtyrokia<br />

(Schlickum, 1965) have their first appearances in these <strong>lake</strong>s<br />

<strong>and</strong> lack any known geological history. Starting with the<br />

Paratethyan Sarmatian Lakes, this pattern changes <strong>and</strong> each<br />

system is “vaccinated” by its ancestor (Fig. 2). About 20 species<br />

persist from the PSL into the faunas <strong>of</strong> the early Lake Pannon,<br />

contributing to an initially high diversity. Lake Pannon II<br />

inherited 97 species from its early stage <strong>and</strong> 88 species ultimately<br />

persist into the latest phase <strong>of</strong> Lake Pannon, which<br />

therefore displays the highest diversity observed in this study.<br />

The comparably short-lived Pliocene Lake Slavonia bears 28<br />

species which are rooted in Lake Pannon. Again, the high<br />

diversity is thus a matter <strong>of</strong> heritage rather than <strong>of</strong> autochthonous<br />

endemic evolution. The coeval Lake Dacia, after the<br />

take-over by freshwater settings, becomes invaded by a mixture<br />

<strong>of</strong> Lake Pannon species (14) <strong>and</strong> newly evolved species from<br />

Lake Slavonia (40). Similarly, Lake Transylvania seems to have<br />

pr<strong>of</strong>ited from the evolutionary laboratory <strong>of</strong> Lake Slavonia,<br />

with which it shares 14 species. Thus, the first phases <strong>of</strong> radiations<br />

<strong>and</strong> the fastest evolutionary pulses can be postulated to<br />

have occurred in the Early Miocene <strong>lake</strong>s <strong>of</strong> the Balkanids<br />

(DLS, LSK) <strong>and</strong> in the Middle Miocene Sarmatian Paratethyan<br />

Lakes. The diversities <strong>of</strong> the Late Miocene <strong>and</strong> Pliocene <strong>lake</strong>s<br />

<strong>systems</strong>, however, were supported by gastropod lineages that<br />

developed in precursor-<strong>lake</strong>s. A similar mechanism was also<br />

documented for the extant gastropod fauna <strong>of</strong> Lake Tanganyika<br />

(Wilson et al., 2003).<br />

5.2. Phylogenetic lineages <strong>and</strong> generic inter-<strong>lake</strong> relations<br />

Numerous widespread non-endemic genera occur in most <strong>of</strong><br />

the analysed <strong>lake</strong> faunas. Aside from the extinct thiarid Tinnyea,<br />

most <strong>of</strong> these genera are extant. Some extinct genera, however,<br />

display a striking fossil history indicating important faunal<br />

exchange between certain <strong>lake</strong> <strong>systems</strong>. Large stratigraphic<br />

gaps between the occurrences underline the highly incomplete<br />

record <strong>of</strong> the <strong>Neogene</strong> freshwater <strong>systems</strong>. The Dinarid Lake<br />

System was the presumed starting point for the evolution <strong>of</strong> the<br />

de-coiled planorbid Orygoceras (Brusina, 1882), the hydrobiid<br />

Emmericia (Brusina, 1870) <strong>and</strong> the melanopsid Melanoptychia<br />

(Neumayr, 1880). Thereafter, they are apparently absent from<br />

younger <strong>systems</strong> such as the <strong>South</strong> German Lakes <strong>and</strong> the<br />

Paratethyan Lakes but also from more or less coeval <strong>systems</strong><br />

such as Lake Skopje <strong>and</strong> Lake Serbia. They, however, reappear<br />

5 Ma later in the Late Miocene as constituents <strong>of</strong> the Lake<br />

Pannon fauna. The DLS element Fossarulus displays an even<br />

larger stratigraphic gap <strong>and</strong> reappears in the Pliocene in Lake<br />

Kosovo. Similarly, the sinistral planorbid Kosovia appears in<br />

the early Middle Miocene Lake Serbia <strong>and</strong> re-enters the scene c.<br />

10 Ma later in Lake Kosovo. In respect to the very characteristic<br />

conchological features, convergent evolution is unlikely to<br />

be responsible for these chronologically disjunct occurrences.<br />

Other Dinarid Lake genera such as the hydrobiid Prososthenia<br />

<strong>and</strong> the pyrgulids Marticia <strong>and</strong> Dianella have a more continuous<br />

record <strong>and</strong> invade the coeval Lake Skopje. Afterwards,<br />

Prososthenia steps into the Paratethyan Sarmatian <strong>lake</strong>s, enters<br />

Lake Pannon <strong>and</strong> persists in Lake Transylvania, Lake Slavonia<br />

<strong>and</strong> Lake Dacia. Emmericia, the pyrgulid Micromelania,<br />

the bithyniid Tylopoma <strong>and</strong> the highly derived lymnaeid<br />

Valenciennius, too, manage to settle Pliocene descendants <strong>of</strong><br />

Lake Pannon. Of these, only Emmericia persisted into the<br />

Holocene <strong>and</strong> is still found in <strong>Central</strong> <strong>Europe</strong>.<br />

5.3. Convergent evolution<br />

Aside from those partly enigmatic generic inter-<strong>lake</strong> relations,<br />

striking convergences help explain the numerous<br />

stratigraphic <strong>and</strong> biogeographic misinterpretations. Harzhauser<br />

<strong>and</strong> M<strong>and</strong>ic (2008) have pinpointed several examples within the<br />

dreissenid bivalves which developed unrelated morpho-pairs in<br />

the Dinarid Lake System <strong>and</strong> Lake Pannon. Even more<br />

astonishing is the convergent evolution <strong>of</strong> large-sized, limpetlike,<br />

deep-water-dwelling gastropods in these <strong>lake</strong>s. In the<br />

Dinarid Lake system, Clivunella <strong>and</strong> Delminiella represent<br />

this type. The origin <strong>of</strong> these taxa is unknown. The lymnaeid<br />

protoconch <strong>and</strong> earliest teleoconch <strong>of</strong> Delminiella point to<br />

an affiliation with the Lymnaeoidea. Clivunella lacks these<br />

conchological features <strong>and</strong> its ancylid early shell may point to a<br />

relation to the Planorboidea. These derived gastropods settled<br />

the deep <strong>lake</strong> habitats but were unable to spread into any other<br />

Early <strong>and</strong> Middle Miocene <strong>lake</strong>s. During the Late Miocene,


Lake Pannon saw a near-identical development, which led to the<br />

large-sized Valenciennius. In this case a good fossil record<br />

documents the evolution from inflated lymnaeids via various<br />

intermediate stages (e.g. Provalenciennesia, Vetulinopsis) to the<br />

depressed deep-water limpet Valenciennius. This gastropod<br />

managed to spread into coeval deposits <strong>of</strong> the Dacian Basin <strong>and</strong><br />

survived until Pliocene times in Lake Slavonia.<br />

5.4. Biostratigraphy versus ecology<br />

M. Harzhauser, O. M<strong>and</strong>ic / Palaeogeography, Palaeoclimatology, Palaeoecology 260 (2008) 417–434<br />

Fig. 6. Cluster analysis <strong>of</strong> the total gastropod faunas <strong>of</strong> each <strong>lake</strong> system for family-, genus- <strong>and</strong> species-level (see section 2 for methods). A biostratigraphic signal is<br />

evident on the species-level but becomes weak at higher hierarchies. The family-level analysis reveals rather a mixture <strong>of</strong> ecology <strong>and</strong> stratigraphy.<br />

An analysis <strong>of</strong> the individual <strong>lake</strong> faunas on various<br />

taxonomic levels (family, genus, species; Fig. 6) revealed<br />

quite deviating patterns. The species-level cluster analysis<br />

clearly traces the biostratigraphic signal. Aside from the outside<br />

branches (Lake Skopje, Lake Šoštanj), two main clusters<br />

separate the Miocene <strong>and</strong> the Pliocene–Pleistocene <strong>lake</strong> faunas.<br />

Moreover, the Miocene cluster falls apart into an Early to<br />

Middle Miocene cluster <strong>and</strong> a late Middle to Late Miocene<br />

cluster with a distinct Lake Pannon group. This biostratigraphic<br />

signal begins to become lost already in the genera-based<br />

analysis. Again, the Miocene cluster is evident <strong>and</strong> especially<br />

the (PSL(LPIII(LPII LPI)))-relation is strong due to the direct<br />

phylogenetic <strong>and</strong> geodynamic relationship <strong>of</strong> these <strong>systems</strong>.<br />

The Miocene DLS fauna, however, clusters within the Pliocene<br />

cluster due to the contribution <strong>of</strong> freshwater genera such as<br />

Emmericia <strong>and</strong> Lithoglyphus. On the family level, this biostratigraphic<br />

grouping becomes indistinct. Instead, five distinct<br />

clusters are evident. Lake Petea, with the unusually high amount<br />

<strong>of</strong> melanopsids, represents the outgroup. The remaining cluster<br />

separates into planorbid-dominated <strong>lake</strong>s such as the <strong>South</strong><br />

German <strong>lake</strong>s <strong>and</strong> Lake Kosovo (N37% planorbids) <strong>and</strong> a<br />

second cluster which divided into 3 branches: hydrobiiddominated<br />

<strong>lake</strong>s (DLS, RLS), pyrgulid-dominated <strong>lake</strong>s (PSL,<br />

LT, LP, LSK) <strong>and</strong> viviparid-dominated ones (LD, LS, LK). This<br />

stratigraphy-unrelated pattern reflects more ecological parameters.<br />

A simple salinity relation, however, is unlikely because<br />

the Pliocene freshwater <strong>systems</strong> Lake Transylvania <strong>and</strong><br />

Lake Kosovo cluster together with the alkaline <strong>and</strong> saline<br />

<strong>systems</strong> such as Lake Pannon <strong>and</strong> the Paratethyan Sarmatian<br />

Lakes. Similarly, the hydrobiid-dominated branch unites the<br />

brackish Rzehakia Lake System with the freshwater Dinarid<br />

Lake System. Only the viviparid-dominated <strong>and</strong> the planorbid-dominated<br />

<strong>systems</strong> seem to correlate simply with freshwater<br />

settings. This is also indicated by the unionid-bivalve<br />

fauna <strong>of</strong> the viviparid <strong>lake</strong>s: Lake Slavonia <strong>and</strong> Lake Dacia.<br />

Despite the vanishing biostratigraphic signal a generalization<br />

is that the Early Miocene <strong>lake</strong> <strong>systems</strong> tend to be hydrobiiddominated,<br />

the middle-Miocene <strong>and</strong> Late Miocene are<br />

pyrgulid-dominated <strong>and</strong> the Pliocene <strong>systems</strong> are usually<br />

viviparid-dominated.<br />

5.5. Endemism <strong>of</strong> fossil <strong>and</strong> extant <strong>lake</strong> <strong>systems</strong><br />

Most extant faunas <strong>of</strong> ancient <strong>lake</strong>s display endemism rates<br />

between 40 <strong>and</strong> 80% at diversities between 24 <strong>and</strong> 147 species<br />

(Fig. 7). The observed endemisms <strong>of</strong> the herein-considered<br />

fossil <strong>lake</strong> faunas is generally comparable but tend to be even<br />

higher (60–98%). Neither the extant nor the fossil faunas show<br />

any correlation between species richness <strong>and</strong> endemism. Lowdiversity<br />

faunas such as in Lake Skopje <strong>and</strong> Lake Kosovo<br />

display equally high endemism rates as the extremely diverse<br />

Lake Pannon <strong>and</strong> the Dinarid Lake System. The generally<br />

higher endemism in the fossil <strong>systems</strong> is probably related to an<br />

incomplete record <strong>of</strong> coeval <strong>lake</strong> faunas (e.g. Lake Skopje, Lake<br />

Kosovo). An exception seems to be Lake Pannon, whose<br />

extraordinary endemism might rather be related to adaptations<br />

429


430 M. Harzhauser, O. M<strong>and</strong>ic / Palaeogeography, Palaeoclimatology, Palaeoecology 260 (2008) 417–434<br />

Fig. 7. Endemism versus γ-diversity for fossil <strong>and</strong> extant ancient <strong>lake</strong>s [data for modern faunas from Brown (1994), Seddon (2000) <strong>and</strong> Sitnikova (1994, 2006)]. The<br />

endemism <strong>and</strong> species-richness <strong>of</strong> Lake Pannon, Lake Slavonia <strong>and</strong> the Dinarid Lake System are outst<strong>and</strong>ing. The generally higher endemism in the fossil <strong>systems</strong> at<br />

comparable species numbers might hint at a still incomplete record <strong>of</strong> <strong>Neogene</strong> freshwater <strong>systems</strong>.<br />

<strong>of</strong> the fauna to an aberrant water chemistry coupled with a<br />

geological longevity.<br />

6. Conclusions<br />

Many papers dealing with extant mollusc faunas <strong>of</strong> Eurasian<br />

aquatic <strong>systems</strong> refer to Lake Pannon when explaining extant<br />

biogeographic distributions <strong>and</strong> phylogenetic relations (e.g.<br />

Grigorovich et al., 2003; Bunje <strong>and</strong> Lindberg, 2007). Our<br />

dataset, however, points to a much more complex history <strong>of</strong> the<br />

faunas reaching back at least to the Early Miocene. High<br />

endemisms <strong>and</strong> low inter-<strong>lake</strong> relations <strong>of</strong> the Early <strong>and</strong> early<br />

Middle Miocene <strong>lake</strong> <strong>systems</strong> suggest that these experienced<br />

the first autochthonous evolutionary pulses. Many genera<br />

display their FADs in these <strong>systems</strong> (e.g. Marticia, Kosovia,<br />

Orygoceras, Pyrgula, Dianella, Emmericia). This pattern<br />

changed at the Middle/Late Miocene boundary when Lake<br />

Pannon inherited numerous species which evolved prior in the<br />

Sarmatian Paratethyan <strong>lake</strong>s. On the generic level, parts <strong>of</strong> the<br />

Lake Pannon fauna can be traced back even to the Early<br />

Miocene faunas <strong>of</strong> the Dinarid Lake System. The combined<br />

effect <strong>of</strong> heritage <strong>and</strong> new radiations in a geochemically unique<br />

aquatic system allowed Lake Pannon to accumulate an enormous<br />

diversity <strong>of</strong> 497 gastropod species. Lake Pannon itself<br />

acted as a stepping stone for species <strong>and</strong> genera which settled<br />

the descendant freshwater <strong>systems</strong> such as Lake Slavonia, Lake<br />

Dacia <strong>and</strong> Lake Transylvania. Generic endemism thus decreased<br />

during the Pliocene.<br />

Generally, the <strong>lake</strong> faunas may be divided into pyrgulid-,<br />

hydrobiid-, viviparid- <strong>and</strong> planorbid-dominated <strong>lake</strong>s. The<br />

reason for this predominance <strong>of</strong> certain taxa is not fully understood.<br />

A simple relation to water chemistry is unlikely in respect<br />

to the similarities between the faunas <strong>of</strong> the slightly brackish<br />

<strong>and</strong> alkaline Lake Pannon (Harzhauser et al., 2007) <strong>and</strong> those <strong>of</strong><br />

the freshwater fauna <strong>of</strong> the Dinarid Lake System.<br />

A weak stratigraphic signal indicates that Early Miocene<br />

freshwater <strong>systems</strong> are hydrobiid dominated; Middle <strong>and</strong> Late<br />

Miocene <strong>systems</strong> tend to be pyrgulid dominated, whilst<br />

Pliocene ones are <strong>of</strong>ten viviparid dominated. A climatic control<br />

is not the main force behind the pattern because the temperate<br />

RLS faunas are hydrobiid dominated as are the DLS faunas<br />

which developed during the beginning Middle Miocene<br />

climatic optimum. At least the switch from pyrgulid- to<br />

viviparid-dominated <strong>lake</strong>s in the Pliocene seems to be mainly<br />

explained by the pure freshwater settings that replaced the<br />

slightly brackish <strong>and</strong> alkaline Lake Pannon environments.<br />

The <strong>Neogene</strong> <strong>lake</strong> <strong>systems</strong> represent a unique laboratory <strong>of</strong><br />

evolution. Examples <strong>of</strong> parallel evolution <strong>and</strong> the phenomenon<br />

<strong>of</strong> iterative morphologies make the analysis <strong>of</strong> ancient <strong>lake</strong><br />

faunas a tantalizing endeavour. Repetitive morphologies <strong>of</strong><br />

related lineages have been documented to occur in Lake<br />

Pannon melanopsids (Geary et al., 2002). Even more interesting<br />

are such iterative developments <strong>of</strong> unrelated taxa as shown<br />

for DLS <strong>and</strong> LP dreissenids (Harzhauser <strong>and</strong> M<strong>and</strong>ic, 2008).<br />

The most striking examples <strong>of</strong> such “morpho-pairs” is the DLS<br />

taxa Delminiella <strong>and</strong> Clivunella <strong>and</strong> the Valenciennius-lineage<br />

in Lake Pannon. The planorbid Clivunella <strong>and</strong> the lymnaeid<br />

Delminiella are two endemic limpet-like shells which, deriving<br />

from nearshore ancestors, adapted synchronously <strong>and</strong> independently<br />

to deep-water settings <strong>of</strong> the Dinarid Lake System.<br />

About 5 Ma later, the lymnaeids <strong>of</strong> Lake Pannon started to<br />

explore the deep-water habitats <strong>of</strong> that <strong>lake</strong>, resulting in the<br />

limpet-like Valenciennius. Such morpho-pairs have been the<br />

reason for frequent stratigraphic <strong>and</strong> biogeographic misinterpretations<br />

in the literature. Despite the huge dataset, comprising<br />

about 1184 gastropod taxa from 119 localities, the <strong>Neogene</strong><br />

freshwater record is still poor. This fragmentary fossil record<br />

is underlined by disjunct stratigraphic occurrences <strong>of</strong><br />

highly derived genera such as Orygoceras or Kosovia with<br />

gaps <strong>of</strong> 5–10 Ma.


Acknowledgements<br />

The studies were supported by FWF-grant P18519-B17<br />

“Mollusc Evolution <strong>of</strong> the <strong>Neogene</strong> Dinaride Lake System” <strong>and</strong><br />

contributed to the NECLIME project.<br />

References<br />

M. Harzhauser, O. M<strong>and</strong>ic / Palaeogeography, Palaeoclimatology, Palaeoecology 260 (2008) 417–434<br />

Atanacković, M., 1959. Pliocène du bassin de Kosovo (Serbie méridionale).<br />

Institut Géologique du Montenegro. Bulletin Géologique 3, 255–396.<br />

Atanacković, M., 1990. Kosovo-Metohia Becken (Süd-Serbien) und sein<br />

limnisches Pont. In: Stevanović, P., Nevesskaja, L.A., Marinescu, F., Sokac,<br />

A., Jámbor, A. (Eds.), Pontien, Pl 1. Chronostratigraphie und Neostratotypen,<br />

Neogen der Westlichen (Zentrale) Paratethys, vol. 8, pp. 360–363.<br />

Atanacković, M., Stevanović, P., 1990. Limnische Mollusken. Pontische<br />

limnische Molluskenfauna aus Kosovo und Metohia Becken (Südserbien).<br />

In: Stevanović, P., Nevesskaja, L.A., Marinescu, F., Sokac, A., Jámbor, A.<br />

(Eds.), Pontien, Pl 1. Chronostratigraphie und Neostratotypen, Neogen der<br />

Westlichen (Zentrale) Paratethys, vol. 8, pp. 632–650.<br />

B<strong>and</strong>el, K., 2000. Speciation among Melanopsidae (Caenogastropoda) —<br />

special emphasis the Melanopsidae <strong>of</strong> the Pannonian Lake at Pontian time<br />

(Late Miocene) <strong>and</strong> the Pleistocene <strong>and</strong> Recent <strong>of</strong> Jordan. Mitteilungen des<br />

Geologisch-Paläontologischen Instituts der Universität Hamburg 84,<br />

131–208.<br />

Bank, R.A., Bouchet, Ph., Falkner, G., Gittenberger, E., Hausdorf, B., Proschwitz,<br />

T., von Ripken, Th.E.J., 2001. Supraspecific classification <strong>of</strong> <strong>Europe</strong>an nonmarine<br />

Mollusca (CLECOM Sections I+II). Heldia 4, 77–128.<br />

Bartha, F., 1954. Pliocén Puhatestú Fauna Öcsröl. Magyar Állami Földtani<br />

Intézet Évkönyve 42, 167–207.<br />

Bartha, F., 1956. A Tabi Pannóniai Korú Fauna. Magyar Állami Földtani Intézet<br />

Évkönyve 45, 481–595.<br />

Bartha, F., 1959. Finomrétegtani Vizsgálatok a Balaton Környéki Felsö-Pannon<br />

Képzödményeken. Magyar Állami Földtani Intézet Évkönyve 48, 1–191.<br />

Bartha, F., Soós, L., 1955. Die pliozäne Molluskenfauna von Balatonszentgyörgy.<br />

Annales historico-naturales Musei Nationalis Hungarici 6, 51–71.<br />

Basch, O., 1990. Die Molluskenfauna der Pontischen Stufe in Kroatien. In:<br />

Stevanović, P., Nevesskaja, L.A., Marinescu, F., Sokac, A., Jámbor, A.<br />

(Eds.), Pontien, Pl 1. Chronostratigraphie und Neostratotypen, Neogen der<br />

Westlichen (Zentrale) Paratethys, vol. 8, pp. 538–548.<br />

Boda, J., 1959. Das Sarmat in Ungarn und seine Invertebraten-Fauna. Magyar<br />

Állami Földtani Intézet Évkönyve 47, 569–862.<br />

Brezigar, A., Kosi, G., Vrhovsek, D., Velkovrh, F., 1985. Paleontological<br />

investigations <strong>of</strong> the Plio-Quaternary beds <strong>of</strong> the Velenje depression. Geologija<br />

28, 93–119.<br />

Brown, D.S., 1994. Freshwater Snails <strong>of</strong> Africa <strong>and</strong> their Medical Importance,<br />

2nd. ed. Taylor & Francis, London, pp. 1–550.<br />

Brusina, S., 1870. Monographie der Gattung Emmericia und Fossarulus.<br />

Verh<strong>and</strong>lungen der k.k. zoologisch-botanischen Gesellschaft in Wien 1870,<br />

925–938.<br />

Brusina, S., 1874. Fossile Binnen-Mollusken aus Dalmatien, Kroatien und<br />

Slavonien nebst einem Anhange. Deutsche vemehrte Ausgabe der kroatischen<br />

im Rad der südslav. Akademie der Wissenschaften und Künste in Agram<br />

(28, 1874) erschienen Abh<strong>and</strong>lung, Actienbuchdruckerei. Agram 1–143.<br />

Brusina, S., 1878. Molluscorum fossilium species novae et emendatae, in tellure<br />

tertiaria Dalmatiae, Croatiae et Slavoniae inventae. Journal de Conchyliologie<br />

1878, 1–10.<br />

Brusina, S., 1881. Le Pyrgulinae dell' Europa orientale. Bulletino della Società<br />

Malacologica Italiana 7, 229–292.<br />

Brusina, S., 1882. Orygoceras, eine neue Gasteropoden-Gattung der Melanopsiden-Mergel<br />

Dalmatiens. Beiträge zur Paläontologie Österreich-Ungarns<br />

und des Orients 2, 33–46.<br />

Brusina, S., 1884a. Die Fauna der Congerienschichten von Agram in Kroatien.<br />

Beiträge zur Paläontologie Österreich-Ungarns und des Orients 3, 126–187.<br />

Brusina, S., 1884b. Die Neritodonta Dalmatiens und Slavoniens nebst allerlei<br />

malakologischen Bemerkungen. Jahrbücher der deutschen Malakozoologischen<br />

Gesellschaft 11, 1–102.<br />

Brusina, S., 1892. Fauna fossile terziaria di Markusevec in Croazia. Glasnika<br />

Hrvarskoga Naravoslovnoga Druztva 7, 113–210.<br />

Brusina, S., 1893. Papyrotheca, a new genus <strong>of</strong> Gastropoda from the Pontic<br />

Steppes <strong>of</strong> Servia. Conchologist 2, 158–163.<br />

Brusina, S., 1896. Neogenska zbirka iz Ugarske, Hrvatske, Slavonije I<br />

Dalmacije na Budimpestanskoj izlozbi. Hrvatsko Naravoslovno Drutvo 9,<br />

98–150.<br />

Brusina, S., 1897. Gragja za Neogensku Malakolosku faunu Dalmacije,<br />

Hrvatske I Slavonije uz neke vrste iz Bosne, Hercegovine I Serbije. Djela<br />

Jugoslavenske Akademije Znanosti I Unjetnosti 18, 1–43.<br />

Brusina, S., 1902a. Iconographia Molluscorum Fossilium in tellure tertiaria<br />

Hungariae, Croatiae, Slavoniae, Dalmatiae, Bosniae, Herzegovinae, Serbiae<br />

<strong>and</strong> Bulgariae inventorum. 30 plates, Officina Soc. Typographicae. Agram<br />

1–10.<br />

Brusina, S., 1902b. Eine subtropische Oasis in Ungarn. Mittheilungen des<br />

naturwissenschaftlichen Vereins für die Steiermark 1902, 101–121.<br />

Bunje, P.M.E., Lindberg, D.R., 2007. Lineage divergence <strong>of</strong> a freshwater snail<br />

associated with post-Tethys marine basin development. Molecular Phylogenetics<br />

<strong>and</strong> Evolution 42, 373–387.<br />

Burgerstein, L., 1877. Beitrag zur Kenntniss des Jungtertiären Süsswasser-<br />

Depôts bei Ueskueb. Jahrbuch der k.k. geologischen Reichsanstalt 1877,<br />

243–250.<br />

de Charpentier, J., 1837. Catalogue des mollusques terrestres et fluviatiles de la<br />

Suisse. Formant la seconde partie de la faune Helvétique. Neue Denkschriften<br />

der Allgemeinen Schweizerischen Gesellschaft für die Gesammten Naturwissenschaften<br />

1, 1–28.<br />

Clarke, K.R., Warwick, R.M., 1994. Changes in Marine Communities: An<br />

Approach to Statistical Analysis <strong>and</strong> Interpretation. Plymouth Marine<br />

Laboratory, Plymouth, pp. 1–144.<br />

Ctyroky, P., 1972. Die Molluskenfauna der Rzehakia (Oncophora) Schichten<br />

Mährens. Annalen des naturhistorischen Museums in Wien 76, 41–141.<br />

de C<strong>and</strong>olle, A.P., 1821. Regni vegetabilis systema naturale 2, Treuttel et Würz,<br />

Paris, pp. 1–700.<br />

Falkner, G., Bank, R.A., von Proschwitz , T., 2001. Check-list <strong>of</strong> non-marine<br />

Molluscan Species-group taxa <strong>of</strong> the States <strong>of</strong> Northern, Atlantic <strong>and</strong> <strong>Central</strong><br />

<strong>Europe</strong> (CLECOM I). Heldia 4, 1–76.<br />

Férussac, A., 1823. Monographie des espèces vivantes et fossiles du genre<br />

Melanopsis. Mémoires de la Société de l'Histoire de Paris 1, 1–35.<br />

Fielitz, W., Seghedi, I., 2005. Late Miocene-Quaternary volcanism, tectonics<br />

<strong>and</strong> drainage system evolution in the East Carpathians, Romani.<br />

Tectonophysics 410, 111–136.<br />

Finger, I., 1997. Gastropoden der kleini-Schichten des Steinheimer Beckens<br />

(Miozän, Süddeutschl<strong>and</strong>). Stuttgarter Beiträge zur Naturkunde Serie B 259,<br />

1–51.<br />

Fontannes, F., 1886. Contribution a la fauna malacologique des terrains Néogènes<br />

de la Roumanie. Archives du Musèum d' Histoire naturelle de Lyon 4, 1–49.<br />

Fordinál, K., 1994. Vrchný panón (zóna H) východného okraja Povazského<br />

Inovca. Geologické práce 99, 67–75.<br />

Fordinál, K., 1996. Terrestrial gastropods <strong>of</strong> the Upper Pannonian in the<br />

northern part <strong>of</strong> the Danube basin. Slovak Geological Magazine 1/96, 5–16.<br />

Fordinál, K., 1997. Molluscs (gastropoda, bivalvia) from the Pannonian deposits<br />

<strong>of</strong> the western part <strong>of</strong> the Danube Basin. (Pezinok-clay pit). Slovak<br />

Geological Magazine 3/1997, 263–283.<br />

Fordinál, K., 1998. Freshwater gastropods <strong>of</strong> the Upper Pannonian age in the northern<br />

part <strong>of</strong> the Danube basin. Slovak Geological Magazine 4/1998, 293–300.<br />

Fordinál, K., 1999. Paleoekologické pomery severného okraja podunajskej<br />

panvy v priebehu vrchného panónu. Zemny plyn a nafta 43, 435–442.<br />

Fuchs, T., 1870a. Beiträge zur Kenntniss fossiler Binnenfaunen. III. Die<br />

Congerienschichten von Radmanest im Banate. Jahrbuch der k.k. geologischen<br />

Reichsanstalt 20, 341––364.<br />

Fuchs, T., 1870b. Beiträge zur Kenntniss fossiler Binnenfaunen. IV. und V. Die<br />

Fauna der Congerienschichten von Tihany am Plattensee und Kúp bei Pápa<br />

in Ungarn. Jahrbuch der k.k. geologischen Reichsanstalt 20, 531–548.<br />

Fuchs, T., 1873. Beiträge zur Kenntnis fossiler Binnenfaunen. VI. Neue<br />

Conchylienarten aus den Congerien-Schichten und aus Ablagerungen der<br />

sarmatischen Stufe. Jahrbuch der k.k. geologischen Reichsanstalt 23, 19–26.<br />

Gaál, I., 1911. A Hunyadmegyei Rákosd szarmatakorú csigafaunája. Magyar<br />

Földtani Intézet Èvkönyve 18, 1–108.<br />

431


432 M. Harzhauser, O. M<strong>and</strong>ic / Palaeogeography, Palaeoclimatology, Palaeoecology 260 (2008) 417–434<br />

Geary, D., 1990. Patterns <strong>of</strong> evolutionary tempo <strong>and</strong> mode in the radiation <strong>of</strong><br />

Melanopsis (Gastropoda; Melanopsidae). Paleobiology 16, 492–511.<br />

Geary, D., 1992. An unusual pattern <strong>of</strong> divergence between two fossil<br />

gastropods: ecophenotype, dimorphism, or hybridization? Paleobiology<br />

18, 93–109.<br />

Geary, D.H., Staley, A.W., Müller, P., Magyar, I., 2002. Iterative changes in<br />

Lake Pannon Melanopsis reflect a recurrent theme in gastropod morphological<br />

evolution. Paleobiology 28, 208–221.<br />

Gillet, S., Marinescu, F., 1971. La faune malacologique Pontienne de<br />

Radmanesti (Banat Roumain). Memorille Institutului Geologic al Romaniei<br />

15, 1–65.<br />

Gorjanović-Kramberger, K., 1901. Über die Gattung Valenciennesia und einige<br />

unterpontische Limnaeen. Beiträge zur Paläontologie und Geologie<br />

Österreich-Ungarns und des Orients 13, 121–140.<br />

Gorjanović-Kramberger, K., 1923. Die Valenciennesiiden und einige <strong>and</strong>ere<br />

Limnaeiden der pontischen stufe des unteren Pliocäns in ihrer stratigraphischen<br />

und genetischen Bedeutung. Glasnik Hrvatskog prirodoslovnog<br />

Drustva 35, 87––114.<br />

Gottschick, F., 1911. Aus dem Tertiärbeckens von Steinheim a. A. Jahreshefte<br />

des Vereins für Vaterländische Naturkunde in Württemberg 66, 496–534.<br />

Gottschick, F., 1920. Die L<strong>and</strong>- und Süßwassermollusken des Tertiärbeckens<br />

von Steinheim am Aalbuch. Archiv für Molluskenkunde 52, 33–66, 108–<br />

117, 163–177.<br />

Gottschick, F., Wenz, W., 1916. Die Sylvanaschichten von Hohenmemmingen<br />

und ihre Fauna. Nachrichtenblatt der Deutschen Malakozoologischen<br />

Gesellschaft 1916/3, 97–113.<br />

Gradstein, F.M., Ogg, J.G., Smith, A.G., 2004. A geologic time scale.<br />

Cambridge University Press, Cambridge, I−XIX+1–589.<br />

Grigorovich, I.A., Therriault, T.W., MacIsaac, H.C., 2003. History <strong>of</strong> aquatic<br />

invertebrate invasions in the Caspian Sea. Biological Invasions 5, 103–115.<br />

Gude, G.K., 1913. On some preoccupied molluscan names (generic <strong>and</strong> specific).<br />

Proceedings <strong>of</strong> the Malacological Society <strong>of</strong> London 10, 292––293.<br />

Halaváts, G., 1887. Paläontologische Daten zur Kenntniss der Fauna der<br />

Südungarischen Neogen-Ablagerungen. Mittheilungen aus dem Jahrbuche<br />

kgl. Ungarische Geologische Anstalt 8, 126–142.<br />

Halaváts, G., 1892. Paläontologische Daten zur Kenntniss der Fauna der<br />

Südungarischen Neogen-Ablagerungen. Mittheilungen aus dem Jahrbuche<br />

kgl. Ungarische Geologische Anstalt 10, 27–45.<br />

Halaváts, G., 1903. Die Fauna der pontischen Schichten in der Umgebung des<br />

Balatonsees. Resultate der wissenschaftlichen Erforschung des Balatonsees<br />

1, 1––80.<br />

Halaváts, G., 1904. A Magyar pontusi emelet átalántos és öslénytani irodalma.<br />

Födtani Intézet Kiadványai 1904, 1–134.<br />

Halaváts, G., 1910. Die neogenen Sedimente der Umgebung von Budapest.<br />

Mittheilungen aus dem Jahrbuche kgl. ungarische geologische Anstalt 17,<br />

279–386.<br />

Halaváts, G., 1915. Die Bohrung in Nagybecsekerek. Mittheilungen aus dem<br />

Jahrbuche kgl. Ungarische Geologische Anstalt 22, 189–222.<br />

Halaváts, G., 1923. A baltavarsi felsöpontusi koru Molluszka-fauna. Magyar<br />

Állami Földtani Intézet Évkönyve 24, 395–407.<br />

Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. Past: paleontological statistics<br />

s<strong>of</strong>tware package for education <strong>and</strong> data analysis. Palaeontologia Electronica<br />

4/1/4, 1–9.<br />

H<strong>and</strong>mann, R., 1882. Die fossile Molluskenfauna von Kottingbrunn. Jahrbuch<br />

der k.k. Geologischen Reichsanstalt 32, 543–564.<br />

Hanganu, E., 1972. Des espèces de Valenciennius au Pontien du bassin dacique.<br />

Revue Roumaine de Géologie Géophysique et Géographie 16, 21–39.<br />

Hanganu, E.N., Papaianopol, I., 1982. Associations significatives du Pontien du<br />

Bassin Dacique (Roumanie). Bulletin de la Société belge de Géologie 91,<br />

51–59.<br />

Hantken, M., 1887. Tinnyea Vásárhelyii nov. gen. et nov. spec. Földtani<br />

Közlöny 17, 345–348.<br />

Haq, B.U., Hardenbol, J., Vail, P.R., 1988. Mesozoic <strong>and</strong> Cenozoic<br />

chronostratigraphy <strong>and</strong> cycles <strong>of</strong> sea level changes. In: Wilgus, C.K.<br />

(Ed.), Sea-level Changes — An Integrated Approach. Society <strong>of</strong> Economic<br />

Paleontologists <strong>and</strong> Mineralogists, Special Publications, vol 42, pp. 71–108.<br />

Hartmann, W., 1821. System der Erd- und Flußschnecken der Schweiz. Mit<br />

vergleichender Aufzählung aller auch in den benachbarten Ländern,<br />

Deutschl<strong>and</strong>, Frankreich und Italien sich vorfindenden Arten. Neue Alpina<br />

1, 194–268.<br />

Harzhauser, M., Binder, H., 2004. Pannonian Molluscs from the sections<br />

Richardh<strong>of</strong> <strong>and</strong> Eichkogel in the Vienna Basin (Austria, Late Miocene).<br />

Archiv für Molluskenkunde 133, 109–165.<br />

Harzhauser, M., Kowalke, T., 2002. Sarmatian (Late Middle Miocene)<br />

Gastropod assemblages <strong>of</strong> the <strong>Central</strong> Paratethys. Facies 46, 57–82.<br />

Harzhauser, M., M<strong>and</strong>ic, O., 2008. <strong>Neogene</strong> Dreissenids in <strong>Central</strong> <strong>Europe</strong> —<br />

exploring the limits. In: Van der Velde, G., Rajagopal, S., Bij de Vaat, A.<br />

(Eds.), Zebra Mussels in <strong>Europe</strong>. Backhuys Publishers, pp. 1–19.<br />

Harzhauser, M., Piller, W.E., 2007. Benchmark data <strong>of</strong> a changing sea.<br />

Palaeogeography, Palaeobiogeography <strong>and</strong> events in the <strong>Central</strong> Paratethys<br />

during the Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology<br />

253, 8–31.<br />

Harzhauser, M., Kowalke, T., M<strong>and</strong>ic, O., 2002. Late Miocene (Pannonian)<br />

Gastropods <strong>of</strong> Lake Pannon with special emphasis on early Ontogenetic<br />

development. Annalen des Naturhistorischen Museums Wien 103 A,<br />

75–141.<br />

Harzhauser, M., Daxner-Höck, G., Piller, W.E., 2004. An integrated stratigraphy<br />

<strong>of</strong> the Pannonian (Late Miocene) in the Vienna Basin. Austrian Journal <strong>of</strong><br />

Earth Sciences 95/96, 6–19.<br />

Harzhauser, M., Latal, C., Piller, W.E., 2007. The stable isotope archive <strong>of</strong> Lake<br />

Pannon as a mirror <strong>of</strong> Late Miocene climate change. Palaeogeography,<br />

Palaeoclimatology, Palaeoecology 249, 335–350.<br />

Herbich, F., Neumayr, M., 1875. Beiträge zur Kenntnis fossiler Binnenfaunen.<br />

VII. Die Süsswasserablagerungen im südöstlichen Siebenbürgen. Jahrbuch<br />

der k.k. geologischen Reichsanstalt 25, 401–431.<br />

Hilgendorf, F., 1867. Über Planorbis multiformis im Steinheimer<br />

Süßwasserkalk. Monatsberichte der königlichen preussischen Akademie<br />

der Wissenschaften zu Berlin 1866, pp. 474–504.<br />

Hoernes, R., 1875. VI. Ein Beitrag zur Kenntniss der Neogen-Fauna von<br />

Südsteiermark und Croatien. Jahrbuch der k.k. geologischen Reichsanstalt<br />

25, 61–78.<br />

Hörnes, M., 1856. Die fossilen Mollusken des Tertiär-Beckens von Wien. I.<br />

B<strong>and</strong>. Univalven. Abh<strong>and</strong>lungen der Geologischen Reichsanstalt 3, 10.<br />

Lieferung 461–736.<br />

Jekelius, E., 1932. Die Molluskenfauna der Dazischen Stufe des Beckens von<br />

Brasov. Memorille Institutului Geologic al Romaniei 2, 1–118.<br />

Jekelius, E., 1944. Sarmat und Pont von Soceni. Memorille Institutului geologici<br />

al Romanici 5, 1–167.<br />

Jiriček, R., 1985. Wiener Becken: Hodonin, Ziegelei I, Südmähren. In: Papp, A.,<br />

Jambor, A., Steininger, F. (Eds.), M6 Pannonien (Slavonien und Serbien),<br />

Akadémiai Kiadó Budapest, pp. 201–204.<br />

Jurišić-Polšak, Z., 1979. Miocenske I Pliocenske Neritide u Hrvatskoj.<br />

Palaeontologia Jugoslavica 22, 1–50.<br />

Jurišić-Polšak, Z., Slišković, T., 1988. Slatkovodni Gastropodi Neogenskih<br />

naslaga Jugozapadne Bosne. Zemaljski Muzej Bosne I Herzegovine,<br />

Zbornik referata 1988. 9 pages, unpaginated.<br />

Katzer, F., 1918. Die Braunkohlenablagerungen der grossen Poljen Westbosniens.<br />

Bergbau Hütte 4/18, 313–318.<br />

Kittl, E., 1895. Bericht über eine Reise in Norddalmatien und einem<br />

angrenzenden Theile Bosniens. Annalen des k.k. Naturhistorischen<br />

H<strong>of</strong>museums in Wien 10, 91–96.<br />

Klein, R., 1846. Conchylien der Süßwasserkalkformation Wüttembergs.<br />

Jahreshefte des Vereins für Vaterländische Naturkunde in Württemberg 2,<br />

60–116.<br />

Klein, R., 1853. Conchylien der Süßwasserkalkformation Wüttembergs.<br />

Jahreshefte des Vereins für Vaterländische Naturkunde in Württemberg 9,<br />

203–223.<br />

Kochansky-Devidé, V., Slišković, T., 1972. Revizija roda Clivunella Katzer,<br />

1918. I Delminiella n. gen. Gastropoda, Geoloski glasnik 16, 47–70.<br />

Kochansky-Devidé, V., Sliškovic, T., 1978. Miocenske Kongerije Hrvatske,<br />

Bosne i Hercegovine. Palaeontologia Jugoslavica 19, 1–98.<br />

Kochansky-Devidé, V., Sliškovic, T., 1980. Mlade Miocenske Kongerije<br />

Livanjskog, Duvanjskog i Kupreškog Polja u jugozapadnoj Bosni i Hodova<br />

u Hercegovini. Palaeontologia Jugoslavica 25, 1–25.<br />

Kormos, T., 1905. Über den Ursprung der Thermenfauna von Püspökfürdö.<br />

Földtani Közlöny 35, 421–450.


M. Harzhauser, O. M<strong>and</strong>ic / Palaeogeography, Palaeoclimatology, Palaeoecology 260 (2008) 417–434<br />

Korobkov, I.A., 1954. Spravočnik i metodičeskoje rukovodstvo po tretičnym,<br />

mollûskam. Brûhonogie, Gostoptehizdat, Leningrad, pp. 1–795.<br />

Korpás-Hódi, M., 1983. Palaeoecology <strong>and</strong> biostratigraphy <strong>of</strong> the Pannonian<br />

Mollusca fauna in the Northern Forel<strong>and</strong> <strong>of</strong> the Transdanubian <strong>Central</strong><br />

Range. Magyar Állami Földtani Intézet Évkönyve 96, 1–141.<br />

Kowalke, T., Reichenbacher, B., 2005. Early Miocene (Ottnangian) Mollusca <strong>of</strong><br />

the Western Paratethys — ontogenetic strategies <strong>and</strong> palaeoenvironments.<br />

Geobios 38, 609–635.<br />

Krauss, F., 1852. Die Mollusken der Tertiärformation von Kirchberg an der Iller.<br />

Jahreshefte des Vereins vaterländischer Naturkunde 8, 136–157.<br />

Krstić, N., Knezević, S., Pavić, S., 2007. Fauna <strong>of</strong> a large early Middle Miocene<br />

Lake <strong>of</strong> Serbia. Joannea Geologie Paläontologie 9, 51–54.<br />

Krstić, N., Savić, L., Jovanović, G., Bodor, E., 2003. Lower Miocene <strong>lake</strong>s <strong>of</strong><br />

the Balkan L<strong>and</strong>. Acta Geologica Hungarica 46, 291–299.<br />

Krstić, N., Dumurdžanov, N., Olujić, J., Vujnović, L., Janković-Golubović, J.,<br />

2001. Interbedded tuff <strong>and</strong> bentonite in the <strong>Neogene</strong> lacustrine sediments <strong>of</strong><br />

the central part <strong>of</strong> the Balkan Peninsula. A review. Acta Vulcanologica 13,<br />

91–99.<br />

László, A., 2005. The post-Late Pontian paleogeographic evolution <strong>of</strong> the south<br />

Harghita Mountains area <strong>and</strong> the adjacent basins. Studia Universitatis<br />

Babes-Bolyai. Geologia 50, 27–40.<br />

Lörenthey, E., 1893a. Beiträge zur Kenntniss der unterpontischen Bildungen des<br />

Szilágyer Comitates und Siebenbürgens. Foeldtani Ertesitö 1893, 289–325.<br />

Lörenthey, E., 1893b. A Szegzárdi, Nagy-Mányoki és Árpádi felsö-pontusi<br />

lerkaodások és faunájok. Földtani Intézet Evkönyve 10, 73–160.<br />

Lörenthey, E., 1893c. Die Pontische Fauna von Kurd im Comitate Tolna.<br />

Földtani Közlöny 24, 73–102.<br />

Lörenthey, E., 1894. Einige Bemerkungen über Papyrotheca. Földtani Közlöny<br />

25, 1–3.<br />

Lörenthey, E., 1895. Neuere Daten zur Kenntniss der oberpontischen Fauna von<br />

Szegzárd. Természetrajzi Füzetek 18, 317–326.<br />

Lörenthey, E., 1902. Die Pannonische Fauna von Budapest. Palaeontographica<br />

48, 1–294.<br />

Lubenescu, V., Zazuleac, D., 1985. Viviparidae du basin dacique. Memorille<br />

Institutului Geologic al Romaniei 32, 77–136.<br />

Lueger, J.P., 1979. Rezente Flußmollusken im Pannon (O. Miozän) des Wiener<br />

Beckens (Österreich). Sitzungsberichte der Österreichischen Akademie der<br />

Wissenschaften, mathematisch naturwissenschaftliche Klasse 188, 87–95.<br />

Lueger, J.P., 1980. Die Molluskenfauna aus dem Pannon (Obermiozän) des<br />

Fölligberges (Eisenstädter Bucht) im Burgenl<strong>and</strong> (Österreich). Mitteilungen<br />

der österreichischen geologischen Gesellschaft 73, 95–134.<br />

Lupu, D., 1963. Observatii aspura paonianului de la Halmagiu si Mermesti.<br />

Studii si Cercetari de Geologie 8, 404–410.<br />

Magyar, I., Geary, D.H., Müller, P., 1999. Paleogeographic evolution <strong>of</strong> the Late<br />

Miocene Lake Pannon in <strong>Central</strong> <strong>Europe</strong>. Palaeogeography, Palaeoclimatology,<br />

Palaeoecology 147, 151–167.<br />

M<strong>and</strong>ic, O., Coric, S., 2007. Eine neue Molluskenfauna aus dem oberen<br />

Ottnangium von Rassing (NÖ) — taxonomische, biostratigrafische, paläoökologische<br />

und paläobiogeografische Auswertung. Jahrbuch der Geologischen<br />

Bundesanstalt 147, 387–397.<br />

Marinescu, F., 1973. Les Mollusques Pontiens de Tirol (Banat Roumain).<br />

Memorille Institutului Geologic al Romaniei 18, 1–56.<br />

Marović, M., Krstić, N., Stanić, S., Cvetković, V., Petrović, M., 1999. The<br />

evolution <strong>of</strong> <strong>Neogene</strong> sedimentation provinces <strong>of</strong> central Balkan Peninsula.<br />

Radovi GI 36, 25–94.<br />

Megerle von Muhlfeld, J.K., 1811. Entwurf eines neuen System's der<br />

Schalthiergehäuse. Schriften der Gesellschaft Naturforschender Freunde<br />

zu Berlin. Magazin für die Neuesten Entdeckungen in der Gesammten<br />

Naturkunde 5, 38–72.<br />

Milosević, V., 1966. Facijalno-stratigrafske karakteristike metohijskog Neogena<br />

s narocitim osvrtom na starost ugljeva. Glasnik Prirodnjackog muzeja 21,<br />

5–19.<br />

de Montfort, D., 1810. Conchyliologie systématique, et classification<br />

méthodique des coquilles; <strong>of</strong>frant leurs figures, leur arrangement générique,<br />

leurs descriptions caractéristiques, leurs noms; ainsi que leur synonymie en<br />

plusieurs langues. Ouvrage destiné à faciliter l'étude des coquilles, ainsi que<br />

leur disposition dans les cabinets d'histoire naturelle. Coquilles univalves,<br />

non cloisonnées, Paris, Schœll, vol. 2, pp. 1–676.<br />

Moos, A., 1944. Neue Funde von Limnaeiden, insbesondere von Valenciennesiiden<br />

im Pannon Kroatien. Vjestnika Hrvatskog geolozkog zavoda i<br />

Hrvatskog geolozkog muzeja 2–3, 341–390.<br />

Motas, I.C., Papaianopol, I., 1984. Considérations sur les faunes Daciennes<br />

inférieures (Gétiennes) du bassin dacique. Revue Roumaine de Géologie<br />

Géophysique et Géographie 28, 73–82.<br />

Müller, G.J., 1958. Scardinius racovitzai n. sp. (Pisces, Cyprinidae), eine<br />

reliktäre Rotfeder aus Westrumänien. Senckenbergiana biologica 39,<br />

165–168.<br />

Müller, P., Szónoky, M., 1990. Faciostratotype the Tihany–Fehérpart (Hungary)<br />

(”Balatonica Beds”,byLőrenthey, 1905). In: Stevanović, P., Nevesskaja, L.A.,<br />

Marinescu, F., Sokac, A., Jámbor, A. (Eds.), Pontien, Pl 1. Chronostratigraphie<br />

und Neostratotypen, Neogen der Westlichen (Zentrale) Paratethys,<br />

vol. 8, pp. 427–436.<br />

Müller, P., Geary, D.H., Magyar, I., 1999. The endemic molluscs <strong>of</strong> the Late<br />

Miocene Lake Pannon: their origin, evolution, <strong>and</strong> family-level taxonomy.<br />

Lethaia 32, 47–60.<br />

Neumayr, M., 1869. Beiträge zur Kenntniss fossiler Binnenfaunen. Jahrbuch der<br />

k.k. Geologischen Reichsanstalt 1869/3, 355–382.<br />

Neumayr, M., 1880. V. Tertiäre Binnenmollusken aus Bosnien und der<br />

Hercegovina. Jahrbuch der k.k. Geologischen Reichsanstalt 1880, 463–486.<br />

Neumayr, M., Paul, C.M., 1875. Die Congerien- und Paludinenschichten<br />

Slavoniens und deren Faunen. Ein Beitrag zur Descendenz-Theorie.<br />

Abh<strong>and</strong>lungen der k.k. Geologischen Reichsanstalt 7, 1–111.<br />

Nuttall, C.P., 1990. Review <strong>of</strong> the Caenozoic heterodont bivalve superfamily<br />

Dreissenacea. Palaeontology 33/3, 707–737.<br />

Nützel, A., B<strong>and</strong>el, K., 1993. Studies on the side-branch planorbids (Mollusca,<br />

Gastropoda) <strong>of</strong> the Miocene crater <strong>lake</strong> <strong>of</strong> Steinheim am Albuch (southern<br />

Germany). Scripta Geologica, Special Issue 2, 313–357.<br />

Olujić, J., 1999. O razvojnim nizovima nekoliko melanopsida i prozostenida iz<br />

sarmatskih naslaga okolice Sinja (Dalmacija, Hrvatska). Hrvatski prirodoslovni<br />

muzej Zagreb & Provincijalat Franjevacke provincije Presvetog<br />

otkupitelja Sinj, pp. 1–135.<br />

Papaianopol, I., 1995. Faune de mollusques daciens du Bassin Dacique. In:<br />

Marinescu, F., Papaianopol, I. (Eds.), Dacien, PL1. Chronostratigraphie und<br />

Neostratotypen. Neogen der Zentralen Paratethys, vol. 9, pp. 130–267.<br />

Papp, A., 1951. Das Pannon des Wiener Beckens. Mitteilungen der<br />

Geologischen Gesellschaft in Wien 39–41, 99–193.<br />

Papp, A., 1953. Die Molluskenfauna des Pannon im Wiener Becken.<br />

Mitteilungen der Geologischen Gesellschaft Wien 44, 85–222.<br />

Papp, A., 1985a. Holostratotypus: Vösendorf, Wiener Becken (Österreich). In:<br />

Papp, A., Jambor, A., Steininger, F. (Eds.), M6 Pannonien (Slavonien und<br />

Serbien), Akadémiai Kiadó, Budapest, pp. 187–198.<br />

Papp, A., 1985b. Gastropoda (Neritidae, Viviparidae, Valvatidae, Hydrobiidae,<br />

Stenothyridae, Truncatellidae, Bulimidae, Micromelaniidae, Thiaridae) und<br />

Bivalvia (Dreissenidae. Limnocardiidae, Unionidae) des Pannonien. In:<br />

Papp, A., Jambor, A., Steininger, F. (Eds.), M6 Pannonien (Slavonien und<br />

Serbien), Akadémiai Kiadó, Budapest, pp. 276–339.<br />

Pauca, M., 1933. Studii asupra lacului Petea (Oradea Mare). (O oaza tropicala).<br />

Notationes Biologicae 1, 24–30.<br />

Pauca, M., 1937. Les Mollusques Pleistocenes de Baile Episcopesti. Bulletin de<br />

la Societe Roumanie de Geologie 3, 130–142.<br />

Pavelić, D., 2001. Tectonostratigraphic model for the North Croatian <strong>and</strong> North<br />

Bosnian sector <strong>of</strong> the Miocene Pannonian Basin System. Basin Research 13,<br />

359–376.<br />

Pavlovic, P.S., 1903. Beiträge zur Fauna der Tertiärablagerungen in Alt-Serbien.<br />

Annales Géologique de la Péninsula Balkanique 6, 3–31.<br />

Piller, W.E., Harzhauser, M., M<strong>and</strong>ic, O., 2007. Miocene <strong>Central</strong> Paratethys<br />

stratigraphy — current status <strong>and</strong> future directions. Stratigraphy 4, 151–168.<br />

Popov, S.V., Akhmet, M.A., Zaporozhets, N.I., Voronina, A.A., Stolyarov, A.S.,<br />

1993. Evolution <strong>of</strong> the <strong>Eastern</strong> Paratethys in the Late Eocene-Early<br />

Miocene. Stratigraphy <strong>and</strong> Geological Correlation 1/6, 10–39.<br />

Lithological-Paleogeographic maps <strong>of</strong> Paratethys. In: Popov, S.V., Rögl, F., Rozanov,<br />

A.Y., Steininger, F.F., Shcherba, I.G., Kováč, M. (Eds.), 10 Maps Late Eocene<br />

to Pliocene. Courier Forschungsinstitut Senckenberg, vol. 250, pp. 1–46.<br />

Rögl, F., 1998. Palaeogeographic Considerations for Mediterranean <strong>and</strong><br />

Paratethys Seaways (Oligocene to Miocene). Annalen des Naturhistorischen<br />

Museums in Wien 99A, 279–310.<br />

433


434 M. Harzhauser, O. M<strong>and</strong>ic / Palaeogeography, Palaeoclimatology, Palaeoecology 260 (2008) 417–434<br />

Rögl, F., 1999. Mediterranean <strong>and</strong> Paratethys. Facts <strong>and</strong> hypotheses <strong>of</strong> an<br />

Oligocene to Miocene Paleogeography (short overview). Geologica<br />

Carpathica 59, 339–349.<br />

Rolle, F., 1860. Die Lignit-ablagerungen des Beckens von Schönstein in Unter-<br />

Steiermark und ihre Fossilien. Sitzungsberichte der mathematisch naturwissenschaftlichen<br />

Classe der kais. Akademie der Wissenschaften 1860, 9–52.<br />

Rolle, F., 1861. Über einige neue oder wenig gekannte Molluskenarten aus<br />

Tertiär-Ablagerungen. Sitzungsberichte der mathematisch naturwissenschaftlichen<br />

Classe der kais. Akademie der Wissenschaften 1861, 3–21.<br />

Rousseau, L., 1842. Description des Principaux Fossiles de la Crimée. In:<br />

Démid<strong>of</strong>f de, A. (Ed.), Voyage dans la Russie Méridionale et la Crimée par<br />

la Hongrie, la Valachie et al Moldavie vol. 2, 781–823.<br />

Rzehak, A., 1893. Die Fauna der Oncophora Schichten Mährens. Verh<strong>and</strong>lungen<br />

des naturforschenden Vereins in Brünn 31, 142–192.<br />

S<strong>and</strong>berger, F., 1874. Die L<strong>and</strong>- und Süßwasser-Conchylien der Vorwelt.<br />

Wiesbaden, Kreidel 1874, 353–616.<br />

S<strong>and</strong>berger, F., 1875. Die L<strong>and</strong>- und Süßwasser-Conchylien der Vorwelt.<br />

Wiesbaden, Kreidel 1875, 617–1000.<br />

Sauerzopf, F., 1953. Die Planorbidae aus dem Pannon des Alpenostr<strong>and</strong>es.<br />

Burgenländische Heimatblätter 15, 49–64.<br />

Schlickum, W.R., 1962. Die Gattung Limnopappia n. gen. Archiv für<br />

Molluskenkunde 91, 109–115.<br />

Schlickum, W.R., 1963. Die Molluskenfauna der Süssbrackwassermolasse von<br />

Ober- und Unterkirchberg. Archiv für Molluskenkunde 92, 1–10.<br />

Schlickum, W.R., 1964a. Die Molluskenfauna der Süssbrackwassermolasse<br />

Niederbayerns. Archiv für Molluskenkunde 93, 1–68.<br />

Schlickum, W.R., 1964b. Die Molluskenfauna der Süssbrackwassermolasse<br />

Niederbayerns. Archiv für Molluskenkunde 93, 163–164.<br />

Schlickum, W.R., 1965. Zur Gattung Euchilus S<strong>and</strong>bereger. Archiv für<br />

Molluskenkunde 94, 99–104.<br />

Schlickum, W.R., 1966. Die Molluskenfauna der Kirchberger Schichten des<br />

Jungholzes bei Leipheim/Donau. Archiv für Molluskenkunde 95, 321–335.<br />

Schlickum, W.R., 1967. Zur Molluskenfauna der Süssbrackwassermolasse<br />

Niederbayerns 2. Archiv für Molluskenkunde 96, 175–179.<br />

Schlickum, W.R., 1976. Die in der pleistozänen Gemeindekiesgrube von<br />

Zwiefaltendorf a. d. Donau abgelagerte Molluskenfauna der Silvanaschichten.<br />

Archiv für Molluskenkunde 107, 1–31.<br />

Schlickum, W.R., 1978. Zur oberpannonen Molluskenfauna von Öcs, I. Archiv<br />

für Molluskenkunde 108, 245–261.<br />

Schlickum, W.R., 1979. Zur oberpannonen Molluskenfauna von Öcs, II. Archiv<br />

für Molluskenkunde 109, 407–415.<br />

Seddon, M., 2000. Molluscan biodiversity <strong>and</strong> the impact <strong>of</strong> large dams. In:<br />

Behrkamp, G., McCartney, M., Dugan, P., McNeely, J., Acreman, M. (Eds.),<br />

Dams, Ecosystem Functions <strong>and</strong> Environmental Restoration, World<br />

Commission on Dams, Cape Town. unpaginated.<br />

Senes, J., 1973. Die Sedimentationsräume und die Schichtengruppen der<br />

zentralen Paratethys im Ottnangien. In: Papp, A., Rögl, F., Sen eš, J. (Eds.),<br />

M2 – Ottnangien. Die Innviertler, Salgótarjáner, Bántapusztaer Schichtengruppe<br />

und die Rzehakia Formation. Chronostratigraphie und Neostratotypen,<br />

Miozän der Zentralen Paratethys, 3, pp. 45–53.<br />

Sitnikova, T.Y., 1994. Recent views on the history <strong>and</strong> diversity <strong>of</strong> the Baikalian<br />

malac<strong>of</strong>auna. Hydrobiologia 44, 319–326.<br />

Sitnikova, T.Y., 2006. Endemic gastropod distribution in Baikal. Hydrobiologia<br />

568 (Supplement 1), 207–211.<br />

Snel, E., Măranteanu, M., Macalet, R., Meulen kamp, J.E., van Vugt, N., 2006.<br />

Late Miocene to Early Pliocene chronostratigraphic framework for the Dacic<br />

Basin, Romania. Palaeogeography, Palaeoclimatology, Palaeoecology 238,<br />

107–124.<br />

Soós, M.L., 1934. Az öcsi felsö-pontusi Mollusca-faunája. Állattani Közlem 31,<br />

183–210.<br />

Steininger, F., 1973. Die Molluskenfaunen des Ottnangien. In: Papp, A.,<br />

Rögl, F., Sen es, J. (Eds.), M2 Ottnangien. Die Innviertler, Salgótarjáner,<br />

Bántapusztaer Schichtgruppe und die Rzehakia Formation. Chronostratigraphie<br />

und Neostratotypen, Miozän der zentralen Paratethys, vol. 3,<br />

pp. 380–615.<br />

Stevanović, P., 1941. Beitrag zur Kenntnis der pontischen Stufe (Obere<br />

Congerienschichten) in Serbien und Syrmien. Musée d'Histoire naturelle de<br />

Beograd 22, 1–30.<br />

Stevanović, P., 1978. Neue pannon-pontische Molluskenarten aus Serbien.<br />

Annales Géologiques de la Péninsule Balkanique 42, 315–344.<br />

Stevanović, P., 1985. Karagča (Jugoslavien) Stratotypus des Serbien Stevanović<br />

1975. In: Papp, A., Jambor, A., Steininger, F. (Eds.), M6 Pannonien<br />

(Slavonien und Serbien), Akadémiai Kiadó, Budapest, pp. 256–258.<br />

Stevanović, P., 1990a. Pontien südlich von der Sava und Donau in Serbien und<br />

Bosnien. In: Stevanović, P., Nevesskaja, L.A., Marinescu, F., Sokac, A.,<br />

Jámbor, A. (Eds.), Pontien, Pl 1. Chronostratigraphie und Neostratotypen,<br />

Neogen der Westlichen (Zentrale) Paratethys, vol. 8, pp. 119–153.<br />

Stevanović, P., 1990b. Faziostratotypen in Bosnien, Serbien und Syrmien. In:<br />

Stevanović, P., Nevesskaja, L.A., Marinescu, F., Sokac, A., Jámbor, A.<br />

(Eds.), Pontien, Pl 1. Chronostratigraphie und Neostratotypen, Neogen der<br />

Westlichen (Zentrale) Paratethys, vol. 8, pp. 439–457.<br />

Stevanović, P., 1990c. Die pontische halbbrackische Molluskenfauna aus Serbien<br />

und Bosnien. In: Stevanović, P., Nevesskaja, L.A., Marinescu, F., Sokac, A.,<br />

Jámbor, A. (Eds.), Pontien, Pl 1. Chronostratigraphie und Neostratotypen,<br />

Neogen der Westlichen (Zentrale) Paratethys, vol. 8, pp. 462–537.<br />

Stevanović, P., Papp, A., 1985. Beočin, Syrmien (Jugoslawien). In: Papp, A.,<br />

Jambor, A., Steininger, F. (Eds.), M6 Pannonien (Slavonien und Serbien),<br />

Akadémiai Kiadó Budapest, pp. 250–255.<br />

Stoliczka, F., 1862. Beitrag zur Kenntnis der Molluskenfauna der Cerithien- und<br />

Inzersdorfer Schichten des ungarischen Tertiärbeckens. Verh<strong>and</strong>lungen der<br />

k.k. zoologisch-botanischen Gesellschaft in Wien 1862, 529–538.<br />

Strausz, L., 1951. Földtani Vizsgalaktok Kisber es Tata környeken. Földtani<br />

Közlöny 81, 284–292.<br />

Szalai, T., 1928. Kontinentales Sarmatium von Szentendre. Geologische<br />

Beobachtungen im Szentendre-Visegrader Gebirge (Ungarn) mit besonderer<br />

Rücksicht auf die ungarische terrestrischen Tertiärbildungen. Neues<br />

Jahrbuch für Mineralogie, Geologie und Paläontologie 60B, 307–314.<br />

Szarowska, M., Falniowski, A., Riedel, F., Wilke, T., 2005. Phylogenetic<br />

relationships <strong>of</strong> the subfamily Pyrgulinae (Gastropoda: Caenogastropoda:<br />

Hydrobiidae) with emphasis on the genus Dianella Gude, 1913. Zootaxa 891,<br />

1–32.<br />

Szilaj, R., Szónoky, M., Geary, D.H., Magyar, I., Müller, P., 1999. Stratigraphy,<br />

paleoecology, <strong>and</strong> paleogeography <strong>of</strong> the ”Congeria ungulacaprae beds”<br />

(Lymnocardium ponticum Zone) in NW Hungary: studies <strong>of</strong> the Dáka<br />

outcrop. Acta Geologica Hungarica 42, 33–55.<br />

Thomae, C., 1845. Fossile Conchylien aus den Tertiärschichten bei Hochheim<br />

und Wiesbaden gesammelt und im naturhistorischen Museum zu Wiesbaden<br />

aufgestellt. Jahrbuch des Nassauischen Vereins für Naturkunde 2, 125–162.<br />

Tütken, T., Vennemann, T.W., Janz, H., Heizmann, E.P.J., 2006. Palaeoenvironment<br />

<strong>and</strong> palaeoclimate <strong>of</strong> the Middle Miocene <strong>lake</strong> in the Steinheim basin,<br />

SW Germany: a reconstruction from C, O, <strong>and</strong> Sr isotopes <strong>of</strong> fossil remains.<br />

Palaeogeography, Palaeoclimatology, Palaeoecology 241, 457–491.<br />

Vujnović, L., Krstić, N., Olujić, J., Ječmenica, Z., Mijatović, V., Tokić, S., 2000.<br />

Lacustrine <strong>Neogene</strong> <strong>of</strong> the Dinarides. In: Karamata, S., Jankovic, S. (Eds.),<br />

Proceedings <strong>of</strong> the International Symposium Geology <strong>and</strong> Metallogeny <strong>of</strong><br />

the Dinarides <strong>and</strong> the Vardar Zone. Academy <strong>of</strong> Sciences <strong>and</strong> Arts <strong>of</strong> the<br />

Republic <strong>of</strong> Srpska, Banja Luka <strong>and</strong> Serbian Sarajevo, pp. 197–206.<br />

Wenz, W., 1919. Zur Systematik tertiärer L<strong>and</strong>- und Süßwasser-Gastropoden.<br />

Nachrichtsblatt der Deutschen Malakozoologischen Gesellschaft 51, 76–79.<br />

Wenz, W., 1923–1930. Gastropoda extramarina tertiaria. In: Diener, C. (Ed.),<br />

Fossilium catalogus, I Animalia, W. Junk, Berlin, 17, 18, 20-23, 32, 38, 40,<br />

43, 46, 1–3387.<br />

Wenz, W., 1938–1944. Gastropoda, Teil 1: Allgemeiner Teil und Prosobranchia.<br />

In:Schindewolf, O.H. (Ed.), H<strong>and</strong>buch der Paläozoologie, Gebr. Borntraeger.<br />

Berlin 6, 1–1639.<br />

Wenz, W., 1942. Die Mollusken des Pliozäns der rumänischen Erdöl-Gebiete als<br />

Leitversteinerungen für die Aufschluß-Arbeiten. Senckenbergiana 24,<br />

1–293.<br />

Whittaker, R.H., 1972. Evolution <strong>and</strong> measurement <strong>of</strong> species diversity. Taxon<br />

21, 213–251.<br />

Wilson, A.B., Glaubrecht, M., Meyer, A., 2003. Ancient <strong>lake</strong>s as evolutionary<br />

reservoirs: evidence from thalassoid gastropods <strong>of</strong> Lake Tanganyika.<br />

Proceedings <strong>of</strong> the Royal Society <strong>of</strong> London B 271, 529–536.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!